
Original Article

Inactivation of Severe Acute Respiratory Coronavirus Virus 2
(SARS-CoV-2) and Diverse RNA and DNA Viruses on
Three-Dimensionally Printed Surgical Mask Materials

Jennifer L. Welch PhD1,2,3,a, Jinhua Xiang MD1,2,3,a, Samantha R. Mackin BS3, Stanley Perlman MD, PhD3, Peter Thorne PhD4,

Patrick O’Shaughnessy PhD4, Brian Strzelecki BS5, Patrick Aubin PhD6,7, Monica Ortiz-Hernandez MS6,7 and

Jack T. Stapleton MD1,2,3

1Medical Service, Iowa City Veterans’ Affairs Medical Center, Iowa City, Iowa, 2Department of Internal Medicine, Carver College of Medicine University of Iowa,
Iowa City, Iowa, 3Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 4Department of Occupational
and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, 5VA Puget Sound Health Care System, Seattle, Washington, 6Center for
Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Washington and 7Department of Mechanical Engineering, University of
Washington, Seattle, Washington

Abstract

Background: Personal protective equipment (PPE) is a critical need during the coronavirus disease 2019 (COVID-19) pandemic. Alternative
sources of surgical masks, including 3-dimensionally (3D) printed approaches that may be reused, are urgently needed to prevent PPE
shortages. Few data exist identifying decontamination strategies to inactivate viral pathogens and retain 3D-printing material integrity.

Objective: To test viral disinfection methods on 3D-printing materials.

Methods: The viricidal activity of common disinfectants (10% bleach, quaternary ammonium sanitizer, 3% hydrogen peroxide, or 70%
isopropanol and exposure to heat (50°C, and 70°C) were tested on four 3D-printedmaterials used in the healthcare setting, including a surgical
mask design developed by the Veterans’ Health Administration. Inactivation was assessed for several clinically relevant RNA and DNA
pathogenic viruses, including severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and human immunodeficiency virus 1 (HIV-1).

Results: SARS-CoV-2 and all viruses tested were completely inactivated by a single application of bleach, ammonium quaternary compounds,
or hydrogen peroxide. Similarly, exposure to dry heat (70°C) for 30 minutes completely inactivated all viruses tested. In contrast, 70%
isopropanol reduced viral titers significantly less well following a single application. Inactivation did not interfere with material integrity
of the 3D-printed materials.

Conclusions: Several standard decontamination approaches effectively disinfected 3D-printed materials. These approaches were effective in
the inactivation SARS-CoV-2, its surrogates, and other clinically relevant viral pathogens. The decontamination of 3D-printed surgical mask
materials may be useful during crisis situations in which surgical mask supplies are limited.

(Received 6 July 2020; accepted 8 August 2020; electronically published 12 August 2020)

Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2)
recently emerged as a highly transmissible human pathogen
that rapidly escalated into a global pandemic.1 SARS CoV-2
is the causative agent of coronavirus disease 2019 (COVID-19),
causing significant respiratory distress and mortality accounting
for >18.1 million confirmed cases and ~691,000 deaths worldwide
as of August 4, 2020.2 Six pathogenic coronaviruses are known to
infect humans. Of these, SARS CoV-1, Middle East respiratory
syndrome coronavirus (MERS-CoV), and now SARS CoV-2 are

considered highly pathogenic.3,4 Human-to-human transmission
of SARS CoV-2 occurs at an elevated rate compared to SARS
CoV, which shares considerable sequence homology (79%).4–6

Until there is an effective vaccine and/or therapeutic approach
to treat COVID-19, SARS-CoV-2 control strategies are focused
on transmission prevention, including social distancing, hand
washing, and use of personal protective equipment (PPE).7 The
increased demand for and shortages of PPE in healthcare and other
essential workplace settings has created a need to address decon-
tamination strategies and reuse of PPE. The Veterans’ Health
Administration (VHA) recently began developing a supplemental
surgical mask.8 The use of 3-dimensional (3D) printing technology
within the healthcare industry is not new; it is currently used
in applications such as drug delivery systems,9,10 surgery,11,12

personalized medicine,13–15 and biomedical engineering.16,17
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In response to current needs during the COVID-19 pandemic, 3D
printed technology has expanded to include the production of ven-
tilators and other respiratory support equipment,18,19 nasopharyn-
geal swabs,20 face shields,21 and face masks.22,23

In 2006, the US Department of Health and Human Services
(DHHS) asked the Institute of Medicine (IOM) to convene a com-
mittee to conduct an evaluation of measures that would permit the
reuse of disposable N95 respirators and reusable face masks in
healthcare settings. The IOM committee followed criteria to pre-
vent transmission of the 2003 SARS-CoV. The IOM committee
found no validated method of decontamination that met criteria
for decontamination of N95 respirators or surgical masks.24

Although reuse of PPE masks was considered before the SARS-
CoV-2 pandemic, literature on potential decontamination strate-
gies are limited and guidelines are often institution- or manufac-
turer specific.25,26 In this study, we assessed the ability of materials
used in the 3D printing of surgical masks to be decontaminated for
human viral pathogens including SARS-CoV-2 using common dis-
infection methods. Data showing that human coronaviruses may
survive on various surfaces for up to 9 days makes identification
of decontamination strategies against pathogenic viruses increas-
ing important not only during the SARS-CoV-2 pandemic but
also for future viral transmission prevention practices.27 Our goal
was to identify practical decontamination procedures that are
easily adapted across healthcare and other workplace settings.
We assessed the VHA 3D-printed mask material and 3 additional
3D-printing materials for virus inactivation in these studies.

Materials and methods

Healthy volunteers were invited to participate in the study.
Following written informed consent, anticoagulated blood was
obtained using heparin collection tubes. This study was approved
by the University of Iowa Institutional Review Board.

We used numerous viruses in these studies. Enterovirus 68
(EV68), vaccinia virus, influenza A H1N1 and human coronavirus
(HCoV-229E) were all supplied by the American Type Culture
Collection (ATCC). We also tested yellow fever virus (YFV,
provided by Sanofi), HIV-1 (provided by the NIH AIDS
Reagent Program), mumps virus (provided by Merck), adenovirus
(provided by University of Iowa Viral Vector Core), Zika virus
(kindly provided by DrWendy Maury, University of Iowa),
SARS CoV-2 (Seattle Washington strain MN985325), murine
hepatitis virus (MHV A59 strain, kindly provided by Dr Stanley
Perlman, University of Iowa), and Dengue viruses types 1–4
(DENV, kindly provided by Sarah George, St Louis University).
Virus titers were determined in appropriate cell lines by median
tissue culture infectious dose (TCID50) or p24 enzyme-linked
immunosorbent assay (ELISA) for HIV-1.28,29 All SARS-CoV-2
work was performed at the University of Iowa Biosafety Level
(BSL) 3 core facility, and all other virus studies were conducted
at the Iowa City Veterans’ Affairs Infectious Diseases Research
Laboratory under BSL2 conditions.

Vero and MDCK cells were purchased from the ATCC, and
HEK293 and MT-2 cells were obtained from the NIH AIDS
Reagent Program. MRC-5 was purchased from Sigma-Aldrich
(St Louis, MO), and VeroE6 and 17Cl-1 were provided by
Dr Stanley Perlman. Cells were maintained in media as previously
described.28,30-32

The VHA supplemental surgical face mask8 being developed
is 3D printed using Multi-Jet Fusion (MJF) technology and a
powder-based polyamide-12 (PA12) material (HP 3D HR CB

PA 12 - Hewlett-Packard, Palo Alto, CA). The surgical face
mask incorporates a removable filter (not tested in this study).
The 3D-material is a biocompatible thermoplastic used in medical
applications33 and is believed to be resistant to disinfectants. Thus,
it may be reused many times following standard approaches to
disinfection. The surgical face mask design has undergone review
in a clinical setting and was found appropriate when fabricated
with the printer type and materials specified.23

Virus titers were determined by determining the TCID50 in the
cognate cell line as previously described28,34,35 or by p24 ELISA
(R&D Systems) for HIV-1.29

Inactivation studies

Disks were printed in Seattle and shipped to Iowa for testing. Each
virus (100 μL) was added to 2 cm diameter × 1.5-mm-thick 3-D
printed circular disks (PA12 material unless otherwise noted).
Disks were allowed to dry in a laminar flow safety cabinet at room
temperature for 2 hours. Disks were inactivated either by thermal
or chemical treatment (as described in the Results section). Viruses
were recovered by placing the disks into a 12-well culture plate,
adding 200 μLmedia to each well, pipetting 6 times, then removing
the media and storing at −80°C until determining the viral titer
(within 1 week in all cases). Virus infectivity following each
inactivation method was compared to control disks treated only
with phosphate-buffered saline (PBS), and the reduction in infec-
tivity (log10 or p24) was calculated. Control and postinactivation
virus titers were performed in a minimum of 3 biological replicate
experiments.

Statistical analysis

Statistical analyses were performed using GraphPad software V8.2
(GraphPad Prism). We used 2-tailed Student t tests to compare
results between treatment and control virus titers from triplicate
experiments. P < .05 was considered statistically significant.

Results

To determine the effectiveness of inactivation of viruses applied
to 3D printing material, we examined a diverse group of human
viral pathogens that have different virion structures (envelope vs
nonenveloped), different genome compositions (DNA vs RNA),
and genome structures (single strand vs double strand).36 In light
of the COVID-19 epidemic, we included 1 human low patho-
genicity coronavirus (229E), 1 nonhuman coronavirus (MHV),
and SARS-CoV-2 in most inactivation experiments. We also
included a variety of healthcare-relevant human pathogens (Table 1).

Chemical inactivation

Chemical inactivation studies were performed by treating the
virus-coated disks with a single application (by wipe) of bleach
(10%; 0.6% hypochlorite), isopropyl alcohol (70% IPA), a commer-
cial quaternary ammonium compound (Sani-Cloth germicidal dis-
posable wipe AF3; n-Alkyl [68% C12, 32% C14] dimethyl ethylbenzyl
ammonium chlorides – 0.14%; n-Alkyl [60% C14, 30% C12, 5% C18]
dimethyl benzyl ammonium chlorides – 0.14%), control wipe (PBS),
or a no-wipe control as indicated. After a single application, disks
were allowed to dry (<5 minutes in all cases) and virus recovery
was measured.

Nearly complete recovery of virus from 3D-printed surgical
mask materials was observed, and wiping the disk with PBS
did not significantly reduce virus titers compared to the no-wipe
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controls (>99% of input virus recovered) (Fig. 1A). All viruses
tested were exquisitely sensitive to bleach and quaternary ammo-
nium compounds (Fig. 1B–C, 1E), and no infectivity remained fol-
lowing a single wipe of these disinfectants across the 3D mask
material. In contrast, 70% IPA did not eliminate viral infectivity

although there was >95% (≥1.3 log) inactivation of viruses applied
with the exception of HIV-1, for which IPAwas ineffective (Fig. 1D
and 1E). The log10 reduction in infectivity is shown in Table 2.

Vaporized H2O2 treatment of virus-coated disks utilized ion-
ized H2O2 (~3% after application) for 15 minutes of vapor contact

Table 1. Viruses Used in Inactivation Studies

Virus Strain Genome Envelope Size (nm) Cell Type

SARS CoV-2 Seattle RNA SS þ Y 65–125 VeroE6

HCoV 229E RNA SS þ Y 80–150 MRC-5

MHV A59 RNA SS þ Y 80–160 17Cl-1

Mumps Jeryl Lynn strain RNA SS − Y 100–600 Vero

YFV 17D strain RNA SS þ Y 25–65 Vero

Vaccinia Walter Reed DNA DS Y 200–300 Vero

Adenovirus Type 5 DNA DS N 70–100 HEK293

EV68 US/IL/14-18952 RNA SS þ N 25–30 MRC-5

Zika PR RNA SS þ Y 40–50 Vero

Dengue Serotypes 1-4 RNA SS þ Y 40–60 Vero

Influenza A H1N1 A/Virginia/ATCC2/2009 RNA SS − Y 80–120 MDCK

HIV-1 NL4-3 gp41 (36G) N42S RNA SS þ Y 110–145 MT-2

Note. SS, single strand; DS, double strand;þ, positive polarity;−, negative polarity; Y, enveloped virus; N, nonenveloped virus; HCoV human coronavirus; MHV,mouse hepatitis virus; YFV, yellow
fever virus; EV68, enterovirus 68; HIV-1, human immunodeficiency virus type 1.

Fig. 1. Virus inactivation (log10) on 3D-printed materials by method and type of chemical disinfection. Recovery of virus from 3D-printed mask material after exposure to a single-
wipe application of (A) phosphate-buffered saline (PBS), (B) 10% bleach, (C) ammonium quaternary compounds, and (D) 70% IPA. (E) Recovery of HIV-1. Virus titer was completed
as described in the methods in the cell typed indicated in Table 1. Significance was determined using the Student t test. *P < .05; **P < .01; ***P < .001; ****P < .0001; ns, not
significant. Error bars represent standard error of the mean (SEM) of 3 independent experiments. Note. TCID50, median tissue culture infectious dose, MHV, mouse hepatitis virus,
YFV, yellow fever virus, IPA, isopropyl alcohol. HIV-1, human immunodeficiency virus type 1.
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time and 15-minute air exchange using the SteraMist Binary
Ionization Technology (BIT) at the University of Iowa Hospitals
and Clinics Central Sterilizing Services (UIHC) in a 1.90 M L ×
1.90 M H × 0.99 M W chamber. Alternatively, virus-coated disks
were treated with ionized H2O2 (~3% after application) in a direct
contact format at a 61-cm (24-inch) distance with aminimum con-
tact time of 4 seconds. Ionized H2O2 delivery was generated by
passing a low-concentration source liquid (7.8% H2O2) through
a 17,000V cold plasma arc.37 Both vaporized and direct contact
H2O2 completely inactivated all viruses (Fig. 2A–C). Notably,
we were not able to test inactivation by ionized H2O2 with

SARS-CoV-2 in the BSL3 facility. To assess the effect of H2O2

on SARS CoV-2, we applied 3% H2O2 to the disks with a single
wipe as was done with bleach, IPA, and quaternary ammonium
compounds. SARS-CoV-2 was completely inactivated by H2O2

(Fig. 2D) using this approach.

Thermal inactivation

The effect of thermal inactivation on select viruses was examined
by incubating the disks at room temperature and measuring virus
recovery over time for the murine coronavirus serving as a SARS

Table 2. Virus Infectivity Reduction (log10) by Treatmenta

Virus

Treatment

10% Bleach 70% IPA Ammonium Quaternary

MHV >6.0 2.7 >6.0

YFV >6.5 1.7 >6.5

Mumps >5.0 1.9 >5.0

Vaccinia >5.5 1.6 >5.5

Adenovirus >4.0 2.0 >4.0

229E >3.5 1.3 >3.5

SARS-CoV-2 >5.5 1.4 >5.5

Note. IPA, isopropyl alcohol; MHV, murine hepatitis virus; YFV, yellow fever virus.
aValues represent the log10 reduction in infectivity following a single wipe application of the indicated treatment. Log reduction between viruses varied due
to differences in virus inocula.

Fig. 2. Hydrogen peroxide (H2O2) inactivation on 3D-print material by application method versus controls. Virus recovery from 3D printed mask material after exposure to ionized
H2O2 (3%) in (A) direct contact or (B) vaporized application format. (C) Recovery of HIV-1. Virus applied to 3D material without exposure to H2O2 acted as control. (D) Recovery of
SARS-CoV-2 virus from 3D-printed mask material after exposure to a single-wipe application of phosphate-buffered saline (PBS) or H2O2 (3%). Virus titer was completed as
described in the Methods section in the cell type indicated in Table 1. Significance was determined using the Student t test. *P < .05; **P< .01; ***P < .001; ****P < .0001;
ns, not significant. Error bars represent standard error of the mean (SEM) of triplicate experiments. Note. DENV, dengue virus.
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CoV-2 surrogate (MHV) and other virus controls (YFV). As seen
in Figure 3A and B, MHV and YFV both required 6 days before
infectivity was completely inactivated in these high-titer virus
preparations. We tested select viruses (HCoV-229E, MHV, YFV,

and mumps) for inactivation at 50°C and 70°C incubation for
30 minutes. Complete inactivation occurred for all viruses incu-
bated at 70°C. HCoV-229E, MHV, YFV, and mumps viruses incu-
bated at 50°C were not completely inactivated, although infectivity

Fig. 3. Effectiveness of virus thermal inactiva-
tion. Recovery of virus over time from 3D-printed
mask material incubated at room temperature
(RT, 20°C) for (A) MHV and (B) YFV. Recovery of
virus from 3D material after thermal inactivation
for 30 minutes at (C) 50°C or (D) 70°C. Virus
incubated at 20°C (RT) acted as the control.
Virus titer was completed as described in the
Methods section in the cell type indicated in
Table 1. Significance was determined using the
Student t test. *P < .05; **P< .01; ***P < .001;
****P < .0001; ns, not significant. Error bars
represent standard error of the mean (SEM) of
triplicate experiments.

Fig. 4. Effectiveness of chemical inactivation of viruses (log10) in the presence of blood and after repetitive disinfection of material. Virus recovery from 3D printed mask material
after virus addition to whole blood (50% final concentration) and exposure to a single-wipe application of (A) 10% bleach, (B) ammonium quaternary, and (C) 70% IPA. Wipe
application of PBS acted as control. Virus recovery from 3D material after the material was exposed to disinfectant 100 times prior to application of virus and a single-wipe
application of (D) 10% bleach, (E) quaternary ammonium, and (F) 70% IPA. Virus titer was completed as described in the Methods section in the cell type indicated in
Table 1. Significance was determined using the Student t test. *P < .05; **P< .01; ***P < .001; ****P < .0001; ns, not significant. Error bars represent standard error of the mean
(SEM) of triplicate experiments.
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was reduced by >97% (1.6 log) (Fig. 3C–D). We did not have the
equipment to allow testing of SARS-CoV-2 in the BSL3 at these
temperatures.

Effects of blood and repetitive disinfection on chemical
inactivation

Previous studies found that the presence of human blood may
interfere with the viricidal activity of disinfectants.38 The effects
of blood on chemical inactivation were studied by adding
virus to whole blood (50% final concentration) and testing inacti-
vation as described above. Although disinfectant sensitivity varied
between viruses in the presence of blood, viruses remained highly
sensitive to bleach and quaternary ammonium (Fig. 4A–B) with
infectivity reduced by >93% (>1.2 log). IPA (70%) did not com-
pletely inactivate the virus preparations but did reduce infectivity
by at least 92% (1.1 log) (Fig. 4C). Notably, for the MHV–blood
mixture, one operator had complete inactivation, while a different
operator detected a 99.9% (3 log10) reduction in inactivation with
bleach application, highlighting the importance of maximizing
inactivation.

An important concern for the reuse of PPE is the PA12 materi-
al’s stability and resistance to disinfectants. To address the effect of
repeat exposure to disinfectants on efficacy of viral inactivation, the
PA12 material was exposed to 100 applications of disinfectant
before virus was applied and virus inactivation assessed using

a single-wipe application as described above. Following repetitive
inactivation, there was no grossly apparent loss of integrity, and
virus inactivation was reproducible (Fig. 4D–F).

Alternative 3D printing materials

In addition to the PA12 material, we tested the inactivation of
select viruses on 3 materials commonly used in 3D printing appli-
cations. These included a fused deposition modeling (FDM acryl-
onitrile butadiene styrene (ABS) material (ABS M-30 from
Stratasys, Rehovot, Israel), an FDM polylactic acid (PLA) material
(PLA from Stratasys, Rehovot, Israel), and a stereolithography
acrylic (SLA) material (Surgical Guide from Formlabs,
Somerville, MA). These additional materials were selected because
the FDM and SLA 3D-printing technology platforms are very fre-
quently utilized, and ABS and PLA are the 2 most common mate-
rials for FDM. Further, the surgical guide (SG) material is a very
popular SLA material for additional medical applications.
Although these 3 materials and PA12 represent the most com-
monly used materials, other 3D printing materials have been uti-
lized in the healthcare setting. Application of select viruses to these
materials found that SLA was more impermeable, requiring longer
time intervals for virus drying (>4 hours), while PLA was per-
meable to the applied virus preparations. In contrast, ABS was sim-
ilar to the PA12 material studied above. Virus inactivation by
chemical disinfection was identical to that observed using the

Fig. 5. Chemical inactivation of viruses (log10) on alternative 3D-printed mask materials by type of disinfectant versus controls. Virus recovery from alternative 3D-printed mask
material (A) FDM acrylonitrile butadiene styrene (FDM ABS), (B) FDM polylactic acid (PLA), and (C) stereolithography acrylic-surgical guide (SLA SG) after exposure to a single-wipe
application of 10% bleach, ammonium quaternary, 70% IPA, and 3% H2O2. Wipe application of PBS acted as the control. Virus titer was completed as described in the Methods
section in the cell type indicated in Table 1. Significance was determined using the Student t test. *P < .05; **P< .01; ***P < .001; ****P < .0001; ns, not significant. Error bars
represent standard error of the mean (SEM) of triplicate experiments.
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PA12 material (Fig. 5A–C). However, the permeability of PLA to
the virus preparation would preclude use in PPE manufacture.

Discussion

The shortage of PPE during the COVID-19 pandemic created a
critical need for the development of alternative, reusable equip-
ment. However, decontamination guidelines for reusable equip-
ment have not reached consensus and are often limited by
incomplete testing against surrogate pathogens. To address the
shortage of respiratory PPE, the VHA developed a 3D-printed
surgical mask that may be disinfected and reused.8 In this study,
we evaluated practical chemical and thermal decontamination
methods for the ability to inactivate SARS-CoV-2, the causative
agent of the COVID-19 pandemic, 2 surrogate coronaviruses
(MHV and 229E), and a diverse set of clinically relevant human
viral pathogens with different viral properties that may influence
inactivation.

SARS-CoV-2 and all other viruses tested were completely inacti-
vated by a single application of 10% bleach, ammonium quaternary,
and 3% H2O2 formulations. Also, 70°C dry heat completely inacti-
vated viruses including the SARS-CoV-2 surrogate coronaviruses
used (MHV and HCoV-229E); however, this decontamination
method was not tested against SARS-CoV-2. Furthermore, 70%
IPA and 50°C dry heat did not completely inactivate the viruses
included in this study, although viral titers were reduced by >90%
(>1 log) with these methods. Notably, in these studies, a single-wipe
application of 70% IPA did not decontaminate surfaces completely,
and a more stringent application of 70% IPA may be required for
complete virus inactivation. To address the concern that blood
may alter the efficacy of inactivation, we showed that virus present
in 50%whole bloodwas reduced by>93%when treated with a single
application of 10% bleach and ammonium quaternary. These studies
illustrate the potential for slight operator differences in inactivation,
which highlights this potential importance when suboptimal virus
inactivation chemicals (IPA) are utilized.

Ionized disinfecting mist behaves like a gas, and in our studies it
was applied to environmental surfaces using 2 types of delivery
devices (TOMI Environmental Solutions, trade name SteraMist).
This technology is EPA-registered as a hospital disinfectant under
the name “Binary Ionization Technology (BIT) Solution,” and
appears on EPA lists K, L, G and M. This approach was used
because the antimicrobial effect is rapid (15 minutes), there is little
damage to materials and surfaces, the H2O2 dissipates into water
vapor and oxygen after application leaving no toxic residue or
odor, and the proprietary delivery system is portable, making
the adoption of this technology useful.37 This approach to disinfec-
tion was also completely effective (Fig. 2A–C).

In summary, several decontamination approaches (10% bleach,
ammonium quaternary, 3% H2O2, and 70°C dry heat) were effec-
tive on 3D-printed surgical mask materials. Some approaches were
effective for inactivation of the SARS-CoV-2 virus, while others
were also effective against its surrogates and other clinically rel-
evant viral pathogens. These results are consistent with previous
viral inactivation studies, although those studies included varia-
tions in decontamination procedures and did not incorporate virus
application onto a 3D-printed material.27,39,40 The decontamina-
tion of 3D-printed surgical masks may be useful during crisis
situations in which the supply of surgical masks is limited. Our
results may be used to further study decontamination strategies
for 3D-printed materials used in clinical settings.
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