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Abstract

A permutation group G on a finite set Q is always exposable if whenever G stabilises a switching class
of graphs on 0, G fixes a graph in the switching class. Here we consider the problem: given a finite
group G, which permutation representations of G are always exposable? We present solutions to the
problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations, (iii)
generalised quaternion groups and (iv) some representations of the symmetric group Sn.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 25.

Introduction

According to Harries and Liebeck (1978), a permutation group G on a finite set £2
is always exposable if whenever G stabilises a switching class of graphs on 12, G
fixes a graph in the switching class. Equivalently, in the notation of Cameron
(1977), G is always exposable if the first invariant y of G and T is zero for every
2-graph T on B on which G acts. Here we consider the following problem:

PROBLEM. Given a finite group G, which permutation representations of G are
always exposablel

The problem has been solved when G is cyclic by Mallows and Sloane (1975)
and when G is dihedral by Harries and Liebeck (1978). Here we present solutions
for the following groups: (i) 2-generator abelian groups, (ii) all abelian groups in
semiregular representations, (iii) generalised quaternion groups, (iv) some repre-
sentations of the symmetric group Sn. The methods used for (i), (ii) and (iii) are
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[2 ] Groups fixing graphs in switching classes 77

based on those introduced by Harries and Liebeck (1978); it will readily be seen

that they suffice to solve the problem for any group G, given a presentation for G

and a very large supply of patience. For (iv) we use a different technique.

One application of the results is given by the observation that if X is a

2-transitive automorphism group of a nontrivial 2-graph and P is a Sylow

2-subgroup of X then P is not always exposable (see Corollary 3.7 of Harries and

Liebeck (1978) or Proposition 2.5 of Cameron (1977)). Hence solutions to the

above problem give restrictions on possible permutation representations of Sylow

2-subgroups of 2-transitive automorphism groups of nontrivial 2-graphs (the fact

that such 2-graphs must be regular gives further restrictions).

For notation and an introduction to switching classes see Harries and Liebeck

(1978); for connections with 2-graphs (and other things) see Sections 2,3 of

Cameron (1977).

1. Abelian groups in semiregular representations

If F is a graph on a finite set Q we denote the switching class of T by S(F); if s

is the switch with respect to the subset $ of fi then sT is the graph obtained from

F by switching with respect to $ . For a permutation a of S2, a ($ ) is the image of

$ under a, and as is the switch with respect to a(4>). We say that $ is compatible

with a if each cycle of a involves an even number of elements of 4>. Write $ a for

the symmetric difference $Aa(O); note that if s is the switch with respect to $

then sas is the switch with respect to 5>a. As observed in Section 3 of Harries and

Liebeck (1978), the graphs on 12 are permuted by switches s, by permutations a

and by compositions sa of these operations, which are called switch-permutations.

These satisfy the rule as =asa. If ^ is a fixed set of ( a ) then a* denotes the

action of a on ¥ . Let Zn denote a cyclic group of order n.

THEOREM 1.1. Let G be a finite, abelian, semiregular permutation group. Then G

is always exposable if and only if G has no subgroup isomorphic to Z2~X ZA.

PROOF. First suppose that Z 2 X ZA*zG and write G = Z f | X Z r ; X • • • X Zr^

where 4 | r, and 2 | r2. We show that G is not always exposable. Let au...,an be

generators for the cyclic factors Zr,...,Zr respectively. For simplicity we sup-

pose that G is regular (the proof extends readily to the semiregular case). We may

identify fl with { 1 , 2 , . . . ,rxr2 • • • rn) and take

a, = ( 1 2 • • • / - , ) ( / - ,+ 1 . . . 2 r , ) - - - ,

a,• = (1 r, • • • /•_, + 1 • • • (r, - l ) r , •••#-,._, + l ) (2 r, ••• r,_, + 2 • • • ) • • •
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7 8 Martin W. Liebeck 131

for i > 2. Let $ = {r G fi | r odd} and let s be the switch with respect to $ . For
/ = 3 , . . .,n define

a, if r, is even,

' a2at if r, is odd ,

so that each /?, has even order and $ is compat ible with a , , a 2 , / J 3 , . . . ,/Jn (since
4 | /-,). Note that a , ($) = S2 \<3>, a 2 ($) = $ and # ( $ ) = $ for i > 3. Let Q be
the group (sa,, sa2, s(i3,... ,sfin) of switch-permutations. It is easy to verify, in
the notation of Harries and Liebeck (1978), (i) that Q s= («, , a2, /?3,.. .,/?„)
( = G), hence that no element (2 involves switch 1-cycles (a) (b), and (ii) that no
involution of Q involves a switch-transposition (ab). Hence by Theorem 3.8 of
Harries and Liebeck (1978), Q fixes a graph F on £2. Then G stabilises S(F);
however if G fixes the graph s'T G §(F) then s = s'ais' = s^s'. It is not hard to
see that no such switch s' can exist, so G is not always exposable.

Conversely, suppose that G has no subgroup Z2 X Z4 and let P be a Sylow
2-subgroup of G; then .P is cyclic or elementary abelian. If P is cyclic then G is
always exposable (Theorem 4.6 of Harries and Liebeck (1978) or the remark after
Theorem 3.4 of Cameron (1977)). So suppose that P = ( a , , . . .,(*„)= (Z2)". We
show that P, and hence G, is always exposable by induction on n. Let P stabilise
a switching class S(F). By induction, the subgroup Q — (ala2,ala3,...,aian)
fixes a graph F, G S(F), so a , r , = a2F, = • • • = anF, = J T , , say, and
(sas,... ,san) fixes F,. If $ is the subset switched by 5 then $ is compatible with
each a, (Lemma 4.4 of Harries and Liebeck (1978)). Hence from the action of P
on an orbit we see that $ must be a union of P-orbits. For each P-orbit ¥ C $,
let ^ ' be a (?-°rbit contained in ^ . Then since P = (?(a,>, we have ^ = ¥ for
/ = \,...,n (recall that V — ̂ ' A a , ^ ' ) ) . Hence if s' is the switch with respect to
a union of Q-orbits, one for each P-orbit in 0 , then s = s'as' for all ; and so P
fixes the graph s'F,. By induction then, P, and so G, is always exposable.

2. Two-generator abelian groups

In this section we obtain a necessary and sufficient condition for a 2-generator
abelian permutation group X to be always exposable. We shall see that X is
always exposable if and only if a Sylow 2-subgroup of X is always exposable
(Theorem 2.7), so we first restrict our attention to 2-generator abelian 2-groups.
Throughout this section the group G is defined by

G= (a,p\a2m = p r = [a,0] = l ) (m, n > 1 ) .

Let G act on a finite set fl. Then £2 is a union of G-orbits and since G is abelian,
each orbit is determined by the kernel of the action of G on it. We shall see that
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[4) Groups fixing graphs in switching classes 79

the exposability of G depends closely on the nature of the intersections of the
kernels of the actions of G on its various orbits. First we list the proper subgroups
of G in four classes:

(A) 1, (a2'), (B2'), (a2', B2'), (<x2'B2r), (a2\ a2'B2r) (i > IJ > \, k > l> 1,
anyr);

(B) (a), (a2', B), <«2)82r+1>, (a2\ a2>B2r+i) (/ » 1, * > / » 1);
(O subgroups in (B) with a, B interchanged;
(D)<o0 2 ' + 1 > ,<a 2 ' , a /8 2 ' + I > ( i> l ) .

Write ^ y or ¥ w for an orbit of G on £2 with kernel H — (y,, . . .,yr) and
ny> y or nH for the number of such orbits. Denote by %A)(%B), %o> %D)) t n e

union of the orbits with kernels in (A) ((B), (C), (Z>)) and by n(A) (n(B), n(C), «(D))
the number of these orbits.

Our strategy in considering the exposability of G is as follows: if G stabilises
the switching class S(T) then there is a switch s such that (sot, sB) fixes a graph
F, G S(T) (Lemma 5.1 of Harries and Liebeck (1978)). The group G fixes the
graph sT, £ S(F) if and only if

( * ) •« - S'aS' = SfiS'-

Thus we seek all switches .s such that (5a, s($y fixes a graph and determine
whether or not there is a switch s' satisfying (*). The following definition is useful
in this strategy.

DEFINITION 2.1. Let * be an orbit of G on Q, and let l e t
(i) The subset 2 ' of 2 is an (a, B)-subset of 2 (respectively (a, ^)-subset;

(a, B)-subset) if Ta (= 2'Aa(2')) = 2 and 2^ = 2 (respectively 2^ = 2 and
2;, = * \ 2; 2 ; = * \ 2 and 2^ = 2). We say that 2 is amenable if it has (a, /?)-,
(a, 0)- and (a, /?)-subsets.

(ii) The orbit ^ is strictly (a, B) if it has an (a, /?)-subset but no (a, B)- or
(«, /?)-subset (similar definitions apply for a strictly (ot, B) and a strictly (a, B)
orbit).

EXAMPLE 2.2. Let m = 3, « = 2 and let A,, A2 be the orbits of G with kernels
A:, = (<x2B2), K2 = (a2B3) respectively. We may write

aA,uA2 = ( i234)(5678)(91011 12),

p*v*2 = (1 5 3 7)(2 6 4 8)(9 ll)(10 12).

It is easy to see that A, is amenable, whereas A2 is strictly (a, B).

LEMMA 2.3. The orbits with kernels in class {A), (B), (C), (D) are, respectively,
amenable, strictly (a, B), strictly (a, B), strictly (a, B) orbits.
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PROOF. We consider only an orbit ^ = ^ ' ^ (r odd); other cases are similar.
Write H = (a2/82 ' r ) . There exists an odd integer k such that ft2' = a2'k (mod H)
and assuming that m + j' «£ n + i, we may write

af = ( i 2 • • • 2m) • • • ((2> - l )2 m + 1 • • • 2m+>) • • •,

/?* = (l 2"1 + 1 2.2m + 1 • • • (2J' - l ) 2 m + 1 Tk + 1 2"' + 2'7c + 1 • • • ) • • • .

Let 5 , , . . . ,82j be the orbits of ( a * ) in the order written above. If / > \,j > 1 then

{/-odd | 1 <r<2m+J},8l U 53 U • • • U 8 2 , _ , , {r odd | r G « 2 / + 1 , / = 0 , 1 , . . . } U

{r even | r G 52 / , / = 1 , 2 , . . . } are, respectively, (a , /?)-, (a , /?)-, (a , /8)-subsets of

^ , so ^ is amenable. If y = 0, / > 1 then * is strictly (a , /?) and if ; = 0, j > 1

then * is strictly (a , y3). Finally if 1 = 7 = 0 then /8* = ( a * ) * so * is strictly

LEMMA 2.4. Le; / / x (A G A) be subgroups of G and let s be the switch with respect
to a union ty — U A e A ^ w 0/ G-orbits. Then (sa, s/3) does not fix a graph on il if
and only if there is a subgroup K of G such that (i) S2 \ $ contains an orbit tyK, and
(ii) for some X, Hx D K contains an element of odd length in a, ft (that is, an
element a'/?" where t + u is odd).

PROOF. We use Theorem 3.8 of Harries and Liebeck (1978). Since s is a switch
with respect to a union of G-orbits, (5a, sfi) contains no elements which involve a
switch-transposition (db). Also an element (sa)x(sfiy involves switch 1-cycles
(d)(b) if and only if for some X, a G ^ C $ and b G ^fK C fl\4> where
a-vy8-v G //x n K and * + >> is odd.

In view of Lemma 2.4 we make the following definition.

DEFINITION 2.5. (i) The B-graph of G is defined as follows: its vertices are those
subgroups H in (B) with nH > 0, and H is joined to K if and only if H D /T
contains an element of odd length in a, /?. The C-graph is similarly defined.

(ii) The D-graph of G has vertex set {H in (Z)) | «w > 0} and H is joined to K if
and only if H D K contains a'fi" for some odd t, u.

By Lemma 2.4, the subsets $ C ty(B) which are unions of G-orbits such that
(sa, sfi) fixes a graph (where s is the switch with respect to $) , are in 1-1
correspondence with unions of components of the 5-graph; if G is the set of
vertices in a union of components, the corresponding subset <£ is Uwet> ^ w .
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THEOREM 2.6. The 2-generator abelian 2-group G acting on S2 is not always

exposable if and only if iixG ~ 0 and one of the following holds:

(i) all orbits of G have their kernels in class {A) and nai ^ — 0;

(n)n(B)n(C)n(D)>0;

(iii) the B-graph is disconnected;

(iv) the C-graph is disconnected;

(v) the D-graph is disconnected.

PROOF. If fix G ^ 0 then G is always exposable (every switching class contains

a unique graph in which a given vertex is isolated), so suppose that fix G — 0 .

Let G stabilise $(T); then there is a switch s with respect to $ such that (sot, sB)

fixes a graph F, G S(F) (Lemma 5.1 of Harries and Liebeck (1978)). As ex-

plained before, we seek all such switches s and determine whether or not there is a

switch s' with s = s'as = s^s. Certainly sasB = sBsa, so sas = s^s. Consequently

is either £ ($ ) or &

Case 1. O « a union of G-orbits. Since orbits with kernels in (A) are amenable

(Lemma 2.3) we may assume that $ C * ( f i ) U ¥ ( C ) U ¥ ( 0 ) . As noted after

Definition 2.5 the sets $ C ¥ ( B ) for which (sa,sB) fixes a graph are in 1-1

correspondence with unions of components of the B-graph. Since ty(B) consists of

strictly (a , B) orbits, the required switch s' will not exist if and only if S 2 \ $

contains either a strictly (a , /?) orbit or both a strictly (a , /?) and a strictly (a , /?)

orbit. Hence G is not always exposable in cases (ii), (iii) of the theorem. The case

$ C ^ ( C ) yields (iv) of the theorem; other possibilities for $ give no further cases

where s' does not exist.

Case 2. $ is not a union of G-orbits. Recall that a(4>) is either /#($) or £2 \

Suppose first that a ( $ ) = /?($) . By considering the relevant permutation repre-

sentations we find that if 0 ¥= 0 n ^H ¥= VH for some H G (A) U (B) U ( C )

then $ n ^ w is amenable. Now consider an orbit ^ = ty^ a r/3 (r odd) in (D).

We have (assuming / *s n)

«* = ( l 2 - - - 2 ' ) , /?* = ( « " ) ' •

If cT'/? £ <a2', a~rfi) (so that r ^ 1) and r - 1 = 2 ^ where k is odd, then

% = {l,2J+ 1, 2 . 2 > + l , . . . , 2 ' - 2 ^ + 1} is an orbit of <a~"'^> and $ * has

(a , ^ ) - and (a , )8)-subsets but no (a , /8)-subset. Further, if i , is the switch with

respect to <&y then (s1a)r(.s1/?)~' = Sy(xrB~] where s^ is the switch with respect to

^ . Hence if

$ = U { $ ^ | 'J' = 4^^, / / ranges over a component of the D-graph}
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then (sat, s(i) fixes a graph (Theorem 3.8 of Harries and Liebeck (1978)).
Consequently s' does not exist in case (v) of the theorem; this is the only case
where a ($ ) = /?($) and no switch s' exists.

Finally, if a ($ ) = £2 \/?(<!>) then, using Theorem 3.8 of Harries and Liebeck
(1978) we see that n(B) = n(C) = n(D) = nai ^ = 0, since (sot, s/8) fixes a graph;
and if this is the case it is easy to construct a switch s for which there is no s'. For
instance, for an orbit ¥ = ^ar pv (i > 2, j > 1) we have

a* = (1 2 • • • 2') • • • {{2J ~ 1)2' + 1 • • • 2'+J),

B* = (l 2' + 1 2.2' + 1 • • • {V' - 1)2' + 1) • • •

and we take $ D ty to be {r odd | 1 < r < 2i+i).

THEOREM 2.7. Let X be a 2-generator abelian permutation group on a finite set Q,
and let G be a Sylow 2-subgroup of X. Then X is always exposable if and only if G is
always exposable.

PROOF. Write X = (a, B | am = B" = [a, B] = 1). The result is clearly true if m
or n is odd (for then G is cyclic), so suppose that m, n are even. It is not difficult
to see that if H is a subgroup of X containing elements a'1/?"1, a'2/?"2 where r,, u2

are odd and t2, ux are even then G < H. Hence we may partition the subgroups
K = (av>/3w\aV2(lW2) of X into five classes: (A) subgroups K with u,, w, even
(/' = 1,2); (B) subgroups with o,, v2 even, w, odd; (C) subgroups with w,, tv2

even, u, odd; (£>) subgroups with u;, wt odd ( / = 1,2); ( £ ) subgroups K
containing G. Note that this agrees with the previous use of (A), (B), (C), (D).

As before we write n(A) for the number of orbits of X with kernel in class (A),
and so on. An orbit of X with kernel K breaks up into isomorphic orbits of G,
each having kernel G D K. And if K belongs to class (A) ((B), (C), (D)) then, as
a subgroup of (7, G n /£ belongs to class (^) ((£), (C), (£>) respectively). If X
has an orbit ¥ with kernel in class ( £ ) then ^ has odd size and so X is always
exposable by Corollary 3.6 of Harries and Liebeck (1978); also ^ C fix G. The
B-, C- and Z)-graphs of A'are defined in the same way as in Definition 2.5.

The method of proof of Theorem 2.6 shows that X is not always exposable if
and only if n(E) — 0 and one of the following holds: (i) all orbits of X have kernel
in (A) and «a2, ^ = 0 for any odd q, r; (ii) n(B)n(C)n(D) > 0; (iii) the B-, C- or
Z)-graph is disconnected. It is easy to see that connectedness of the 5-graph
(C-graph, D-graph) of X is equivalent to connectedness of the 5-graph (C-graph,
Z>-graph) of G. Hence by Theorem 2.6, X is always exposable if and only if G is.
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3. Generalised quaternion groups

Let G be the generalised quaternion group of order 2 O + ' > 8 defined by

G= (a,R\a2" = 1, B2 = a 2 " ' , R']aB = cT1

Fory = 1,.. . ,a — 1 denote by ^ the set of right cosets of (a2" ', aR) in G. The
methods of the proof of Theorem 2.6 yield

THEOREM 3.1. The generalised quaternion group G acting on a finite set fl is not
always exposable if and only if one of the following holds:

(i) G is semiregular;
(ii) fix G = 0 , fix a ¥= 0 , fix R ¥= 0 and for some j , G has an orbit isomorphic

to tyj.

4. Some representations of Sn

The methods used in the previous two sections to solve the problem of the
Introduction are only really efficient when the group G is easily presented on few
generators. We now introduce a different technique which applies to any permu-
tation group; we apply it only to certain representations of the symmetric group
Sn.

THEOREM 4.1. Let Sn act naturally on 2 = {1,2, . . . , n}, let k be a positive integer
and denote by 1{k] the set of k-subsets of 2 . / / n s* 4k — 2 then the action of Sn on
2 '* ' is always exposable.

PROOF. Write fl = 2 ( / t ) . Our strategy is as follows: firstly, by looking at the
orbits of Sn on 12(2) we classify all the switching classes on 12 in which Sn fixes a
graph; then by considering the orbits of Sn on fl(3> we show that any 2-graph on
S2 on which Sn acts corresponds to one of these switching classes.

Step 1. Orbits on fl(3>. An orbit of Sn on 12(3) is uniquely determined by a
4-tuple (r, s, t, u) of nonnegative integers with u < r < s < t, where {A, B, C) is
in the orbit (r, s, t, u) {A, B, C £ 12) if and only if | A n B \ = r, | A n C \ = s,
| B n C | = r a n d | ^ n f l n C | = u . Clearly (i)u^r^s^t<k and (ii) s + t «£
k + u; and if (r, s, t, u) satisfies (i) and (ii) then it corresponds to an orbit of Sn

on
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Step 2. Orbits on fi(2) and corresponding 2-graphs. Denote the orbits of Sn on
Q{2> by (0) , ( l ) , . . . , ( fc - 1) where {A, B) G (r) if and only if | A n f l | = r . The
graphs on fl on which Sn acts are Te ( 6 any subset of {0 ,1 , . . . , k — 1}), where the
edge-set of Te is U c e e ( c ) . Recall (see Section 2 of Cameron (1977)) that the
2-graph Ae corresponding to the graph Fe is the set of triples of vertices
containing an odd number of edges of Te. Thus Ae is the union of all orbits
(r, s, t, «) of Sn on fl(3) such that | Q n {r, s, t] | is odd. Clearly any switching
class on fi in which Sn fixes a graph corresponds to some Ae. So to complete the
proof we must show that the Ae are the only 2-graphs on fi on which Sn acts.

Thus let Sn act on a 2-graph A C S2<3>. Put (2 = {c | (c, 0,0,0) C A}.
Step 3. We have A = Ae. Let {A, B, C) G (r, s, t, u) where rs ¥= 0. Then

\A U B U C\= 3k - (r + s + t) + u < 3k - (r + s) =£ 3A: - 2.

Since n 3s 4k — 2 we may pick D G 12 with D disjoint from A U B U C. Consider
the 4-set {v4, 5 , C, £>}. We have

{A,B,C} £(r,s,t,u), {A,C,D) G (s, 0,0,0),

{^,B,Z)} G ( r ,0 ,0 ,0 ) , ( 5 , C , Z)} G (f ,0 ,0,0) .

Since A is a 2-graph, an even number of these triples lies in A. Hence (r, s, t, u) C
A if and only if an odd number of r, s, t lies in Q. Thus A = Ae.

COROLLARY 4.2. If n > 4k — 2 and n > 10 then the action of An on 2{Ac) is
always exposable.

PROOF. This follows from the fact that An is 3fc-transitive and hence has the
same orbits on S2(3) (where £2 = 2(Ar}) as Sn (see Remark 2 below).

REMARKS. 1. The restriction n s* 4k — 2 was made entirely for convenience in
the proof of Theorem 4.1 and can probably be relaxed considerably.

2. The following observations are elementary: let G and H be permutation
groups on 2 and suppose that H is always exposable. Then G is always exposable
if either (i) H < G and G has the same orbits as H on 2 ( 2 ) , or (ii) G < H and G
has the same orbits as H on £2{3}.
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