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Abstract. The cosmic star formation rate density first increases with time towards a pronounced
peak 10 Gyrs ago (or z=1-2) and then slows down, dropping by more than a factor 10 since z=1.
The processes at the origin of the star formation quenching are not yet well identified: either
the gas is expelled by supernovae and AGN feedback, or prevented to inflow. Morphological
transformation or environment effects are also invoked. Recent IRAM/NOEMA and ALMA
results are reviewed about the molecular content of galaxies and its dynamics, as a function
of redshift. Along the main sequence of massive star forming galaxies, the gas fraction was
higher in the past (up to 80%), and galaxy disks were more unstable and more turbulent. The
star formation efficiency increases with redshift, or equivalently the depletion time decreases,
whatever the position of galaxies, either on the main sequence or above. Attempts have been
made to determine the cosmic evolution of the H2 density, but deeper ALMA observations are
needed to effectively compare with models.
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1. Introduction
The cosmic star formation and its evolution through the Hubble time is now well

established (e.g. Madau & Dickinson 2014). One of the main issue is to understand
the rather fast winding down of star formation after z=2, both globally and also in
individual galaxies. The suppression of star formation in galaxies appears rather sudden
and therefore is called quenching; this has been revealed by their bimodal distribution,
between a blue cloud of galaxies actively forming stars, and a red sequence of dead objects.
The paucity of galaxies in an intermediate sequence (e.g. Baldry et al. 2006) means
that the quenching time-scale is typically smaller than 1 Gyr. However the quenching
mechanism is hard to identify. In a recent study of 56 GOODS galaxies at z=1.7, Mancini
et al. (2015) found an equal proportion of AGN in both star forming and quenched
galaxies, and their morphology, traced by the bulge to disk ratio or their Sersic index,
was also comparable over a large range of specific star formation rate (SFR).

Since star formation is directly linked to the amount of molecular gas, it is primordial to
determine the gas fraction as a function of redshift, and also the star formation efficiency
(SFE), defined by the ratio between SFR and gas mass. In the recent years, a large
variety of data have been obtained, with somewhat discrepant results, revealing either
low or high SFE at high redshift. In sub-millimeter galaxies (SMG), and ultra-luminous
starbursts (ULIRGs) the SFE increases with redshift, and the depletion time (the inverse
of SFE) which is of the order of 0.5-1Gyr for ULIRGs at z∼ 0 becomes as low as 10-100
Myr at z=1-2 (Greve et al. 2005, Combes et al. 2011, 2013). But there exists a population
of massive BzK galaxies, selected from their near-IR and optical colors, which are also
actively forming stars (they are ULIRGs), but with a lower efficiency, with a depletion
time-scale of the order of 0.3 Gyr at z∼ 1.5 (Daddi et al. 2008), i.e. similar to local
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ULIRGs. This might be due to their extended molecular component (10 kpc scales), and
their low density state, revealed by their low excitation: the CO emission as a function
of the upper level J peaks at J = 3, as in the Milky Way (Dannerbauer et al.2009),
justifying the adoption of the standard CO-to-H2 conversion factor (5 times that adopted
for ULIRGs). Let us recall that local main-sequence galaxies, such as the Milky Way, have
a depletion time-scale of the order of 2 Gyr (Bigiel et al. 2011).

2. Starburst galaxies
In a recent work with IRAM and ALMA, Silverman et al. (2015) detected CO emission

in 7 galaxies from the COSMOS survey, with SFR∼ 300-800 M�/yr, at 1.4 < z < 1.7.
Their gas fraction was determined to be ∼ 30-50%, and their global SFE is enhanced,
although the objects are unresolved, and the starbursting regions cannot be separated.

To trace redshift evolution and in particular the winding down of star formation after
z=1, the intermediate redshift epoch 0.2 < z < 1 is a key region to explore. We have
observed the gas content of ULIRGs at these intermediate z, to make the link with local
starbursts (Combes et al. 2011, 2013). Out of 69 ULIRG, 33 were detected in CO emission,
with variable excitation. Some of the objects have a lower H2 density, which can be
explained in terms of at least two components. The objects for which an interferometric
map is available show the separation of the molecular emission in a nuclear starburst
and an extended gas disk of scale ∼20 kpc. The presence of such an extended component
may explain lower SFE, in particular when low gas excitation suggests a higher CO-to-H2
conversion ratio.

This study at intermediate z, compared to all other starburst data, showed that both
gas fraction and SFE increase with redshift, by a factor 3±1, between z=0 and 1, with
or without taking into account upper limits.

Recently, the Bzk galaxies at z=1.5, which show globally low excitation of the CO
lines at low J were observed to have quite high CO(5-4) fluxes, revealing a second com-
ponent of more excited, denser and warmer molecular gas (Daddi et al. 2015). For this
excited component, the objects have the same correlations than for ULIRGs, confirming
that the starburst occurs either in a separate nuclear region, or in hot and dense star
forming clumps. In local starbursts, the total CO SLEDs observed with Herschel reveal
a very large variety of shapes, with several molecular components (Mashian et al.2015),
suggesting that the overall CO-to-H2 conversion ratio could explore even wider ranges
than expected, from α =0.4 to 5 M�/(K km/s pc2) for the M(H2) to L’CO ratio.

3. Main sequence galaxies
Most of the cosmic star formation (∼ 90%) occurs in the main sequence galaxies, and

only about 10% in starbursts. The main sequence is clearly defined in an SFR versus
stellar mass diagram as a power-law with slope slightly lower than 1. This power-law is
similar at all redshift ranges, but the zero point is increasing with redshift, following the
evolution of the cosmic star formation rate density described in the introduction. Large
surveys of hundred thousands of galaxies locally (SDSS) or at high redshift (GOODS,
COSMOS, ..) have shown a correlation between morphology and stellar populations
since z∼2.5 (Wuyts et al. 2011): blue star forming galaxies on the main sequence are
exponential disks (Sersic index near 1), while quiescent red systems are of de Vaucouleurs
type (Sersic index more near 4).

With the goal to explore the molecular gas content of main sequence galaxies, we
undertook the PHIBSS project (Plateau de Bure HIgh z Blue Sequence Survey, Tacconi
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Figure 1. Distribution in the redshift versus specific star-formation rate plane of all the star
forming galaxies with CO flux measurements found in the literature, compared with the PHIBSS
data by Genzel et al. (2015). The sSFR on the vertical axis is normalized to the main sequence
(ms) value of sSFR at a given mass and redshift, according to the scaling relation given by
Whitaker et al. (2012). The membership to the main sequence is defined by the two horizontal
dashed lines, situated at ±0.6 dex from the mid MS line. A color version is available online.

et al. 2010, 2013). In the first part of the project, 52 galaxies were detected at IRAM
in the CO(3-2) line at z=1.2 and 2.3. The targets were selected to be massive (M∗ >
2.5 1010 M�) star forming galaxies (SFR > 30 M�/yr). Adopting a standard CO-to-H2
conversion ratio for these main sequence objects, molecular masses were found between
1010 and 3 1011 M�, corresponding to gas fraction in average of 33% at z=1.2 and 47%
at z=2.3. The SFE was found to increase slightly with z, and the depletion time scale is
in average 0.7 Gyr at z=1.2.

The CO detection rate was quite high (>85%), in these normal massive Star Forming
Galaxies (SFG). Some were mapped at high spatial resolution, and a rather regular
velocity field was found, confirming the absence of major mergers. At z=1.2, it was
possible to resolve four galaxy disks in clumps with the help of the velocity information,
both with CO and [OII] lines (gas content and SFR), since there is a good correlation
between molecular and ionised gas. This allowed us to draw a resolved Kennicutt-Schmidt
(KS) relation (Freundlich et al. 2013). The high-z points extend the local KS relation
towards high gas and SFR surface densities, with the same slope. For one galaxy at
z=1.5, it was possible to observe the Hα line at high resolution from the ground (Genzel
et al. 2013). The KS slope depends strongly on the dust extinction model adopted, but
falls around 1.

The evolution of specific SFR with redshift was compatible with the results of op-
tical surveys, provided that the depletion time is varying on the main sequence as
tdep=1.5/(1+z) Gyr. The PHIBSS project is now being extended with the goal of ob-
serving CO lines in about 150 galaxies, exploring also intermediate redshifts (z=0.5-0.7),
and some galaxies departing from the main sequence, either starbursts above the MS or

https://doi.org/10.1017/S1743921316007560 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316007560


Gas content and star formation from z=3 to 0 243

Figure 2. Ratio of the molecular to stellar mass versus redshift, for galaxies on the
main-sequence (Genzel et al. 2015). The best linear fit has a slope of 2.71 (dashed line).

quiescent galaxies below (PHIBSS2). Detecting smaller masses, and bright galaxies with
more spatial resolution and/or more molecular lines in addition will be attempted with
ALMA.

The first results and the scaling relations obtained on the main sequence, by comparison
with all other data with CO detections at high redshift (cf Fig 1), were presented in Genzel
et al. (2015). On the MS, the gas fraction increases regularly with z, as shown in Fig 2.

Fig 3 displays the depletion time as a function of redshift, for the galaxies on the main
sequence. There is a slight decrease, and the effect depends on the way the molecular gas
content is estimated, either from the CO line, or from the dust emission.

A recent survey with ALMA of the continuum dust emission of 180 star forming
galaxies between z=1 and 6.4 results in slightly different results (Scoville et al. 2015).
The gas fraction estimated from the dust emission, assuming a constant dust temperature,
is also highly increasing with redshift, reaching values as high as 50-80%. The depletion
time-scale is found to be the same for starbursts and main sequence galaxies; it decreases
strongly with redshift, to reach 200 Myr at z> 1, therefore 10 times lower than for local
MS galaxies.

4. The cosmic H2 density
One of the key issues to understand the cosmic star formation history is to observe

the cosmic evolution of the H2 density. Theoretical considerations and semi-analytical
models predict that the molecular gas density must increase with redshift, and dominate
over the atomic gas in galaxies (Obreschkow & Rawlings, 2009, Obreschkow et al. 2009).
The phase transition from atomic to molecular hydrogen is favored by pressure (Blitz &
Rosolowsky 2006), while surface density and consequently the pressure is higher in high-z
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Figure 3. Depletion time versus redshift for galaxies on the main sequence, computed from the
dust emission (black circles), and from the CO lines (blue circles). The best linear fit has a slope
of –0.77 (black dashed line). A color version is available online.

galaxies. Models predict a molecular-to-atomic ratio H2/HI varying as (1+z)m , with m
as high as 1.6. Some models however predict flatter evolutions of the H2 density at high
z (Lagos et al. 2011, Popping et al. 2014).

Decarli et al. (2014) and Walter et al. (2014) have attempted to constrain the H2
density by observing a large cosmic volume of ∼7000 Mpc3, in the Hubble deep field
North with Plateau de Bure. They separate the results in three redshift bins: z<0.45,
1.01<z<1.89 and z>2. A blind molecular line survey has been carried out through scan-
ning the whole 3mm band. The blind detection of 17 CO lines, together with the upper
limits obtained by stacking the observations towards spectroscopically identified objects,
constrain the CO luminosity functions at the corresponding redshifts. The results show
that optical/mid-IR bright galaxies contribute less than 50% to the star formation rate
density at 1 < z < 3, and the normalised density Ω(H2) at high z tends to be higher than
the predictions.

It might be easier and certainly quicker to determine the evolution of the H2 density
from dust emission surveys. A recent 870μm continuum survey with ALMA of 99 SMG in
the Extended Chandra Deep Field South (Swinbank et al. 2014) has discovered that the
well detected sources (S870 > 4.2 mJy) are in average ULIRGs with SFR=300 M�/yr,
and dust temperatures of 32 K. They contribute to only 1-2% of SFR. The extrapolation
of the counts down to S870 > 1 mJy through stacking shows that these sources contribute
to 20% of the cosmic star formation density over z=1-4 (see Fig 4). Deriving H2 masses
from dust masses, the average SFE is found rather high, with depletion time-scale of 130
Myr.
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Figure 4. Left: The normalised H2 density Ω(H2) as a function of redshift, for SMG and other
high-z starbursts (Swinbank et al.2014, Combes et al. 2013) in red, compared to main sequence
galaxies in blue (Tacconi et al.2013). The dashed lines are the model predictions, for different
SFR (Lagos et al.2011). Right: The H2 mass function for SMG and main sequence galaxies
compared with models. The main sequence galaxies at z=1.5 (green) are from Daddi et al.
(2010) and at z=1-2 (blue) from Tacconi et al. (2013). They are well above the predictions at
z=2 by Lagos et al.(2011) indicated by the blue dashed curve. From Swinbank et al. (2014). A
color version is available online.

5. Conclusions
It is now well established that galaxies at high redshift have a larger gas fraction

than local ones, whatever their position on the main sequence or above, in the starburst
domain. The gas fraction can reach 50% and above.

There is not yet a consensus on the exact evolution of the star formation efficiency with
redshift. The inverse of the SFE, the depletion time scale, is decreasing with redshift,
however the amplitude of its variation with z is still debated. The various results depend
on the way to estimate the total molecular gas amount, either from CO lines or from
dust emission. The results may also depend on the definition of the Main Sequence (e.g.
Renzini & Peng, 2015).

A higher SFE at high z might be explained by a higher surface density of molecular gas,
if the Kennicutt-Schmidt relation is non-linear, which is not yet well known. Alternatively,
a starburst can be triggered in nuclear regions when the gas is concentrated. Diagnostics
could be searched for with CO excitation and the observation of several J lines, and also
dense gas tracers (HCN, HCO+).

ALMA observations begin to estimate the evolution of the molecular gas mass in
galaxies, however we are still far from a total census of Ω(H2) as a function of redshift.
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