The place of Dirac’s Equation in Five-Dimensional
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§(1).

After a summary of the results of previous writers §(2), it is
shown in §(3) that if Dirac’s equation holds, then div D vanishes,
where D is Whittaker’s Euclidean vector.! D may be written in the
form ¢’ Fy, the product of three matrices. In five-dimensional
Riemannian geometry Flint’s form of Dirac’s equation? may be

rewritten asg ¥ y# %’g = 0. These modifications of the forms of

Whittaker and Flint are later linked thrqugh the geometry of Distant
Parallelism,?® necessary results in which are given in §(4). The
postulates of §(5) show the relativistic manner of linkage and the
broadening of the Riemannian geometry proposed for this purpose.
In §(6) the effect of this broadening on metrical quantities is examined
while in § (7) the suggested quantum equation is seen to be Dirac’s.
The dependence of the Dirac ¢’s on space-structure and the inter-
pretation of the coordinate transformations of z° are given in § § (8 and
o\ =appectively.

§(2). Summary of known results used later.
With a slight change of notation, Whittaker’s vector D has-com-
ponents

D' =y hy +hsha, D? = «(1hs — 3 ¢2), D3 =ty ihs — hathy,
Dt=. ('ﬁl Y+ oths) (1)

1 B. T. Whittaker, Proc. Royal Soc. (A) (158) (1937), 38-46.

3 H. T. Flint, Phil. Mag., 7{(29) (1940), 417-433 (429).
H. T. Flint, Proc. Royal Soc. (A) (160) (1935), 421-441.

3 A. Einstein, Berliner Sitzungberichte (1928), 217-221, 224-227.
A. Einstein, Berliner Sitzungberichte (1929), 2-7, 166-159.
A, Einstein, Berliner Sitzungberichte (1930), 18-23, 401-402.
A. Einstein, W. Mayer, Berliner Sitzungberichte (1931), 257-265.
R. Weitzenbock, Berliner Sitzungberichte (1928), 466-474.

. H. T. Flint, Proc. Royal Soc. (A) (121) (1928), 676-681.
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where (i,, 2) and (3, 4,) are spinors transforming according to
$i=oiy + Bis; o=y + 3¢y (28) where ad —By=1, (3a)
the metric being given by ds®> = (dz!)2 + (dz?%)? 4 (d2®)% + (d2*)2. The
vector D is self-perpendicular so that

(DY) + (D?)? + (D)2 + (D*)* = 0. (4a)
The Riemannian interval do is given by
do® =y, dz*dz”  (5a) where g, v=1, 2, 3, 4, 5.

Greek scripts relate to a five-dimensional world. Kaluza! and Klein?
take this to be cylindrical. Hence

Y., 18 independent of x5 (6a)
The three-index symbol is written as I'; (=1I). The Tetrode,
matrices, y*, are connected with the y** by the equations
Y Yyt =2y L (7a)
The covariant denivative of a tensor 7'; with respect to z* is denoted
by T%.,. Schroedinger® writes
Yo =TIy — 7. D (8a)

The permissible ‘transformations of coordinates in this cylmdrlcal
world are governed by

2 = B + f5 (&', % 2° &) (9a)

x™ ::f’m (x-l’ 5225 jsy $-4.)- (10&)

To include electromagnetism with gravitation in this world, Klein
takes

Yms = koPns  Ymn — Gmn = (75m'75n)/w2 (11a)

Y™ = — (k(i)m)/w, 7% = (k2 o™ 4_’m + 1)/“’2,
where m, n = 1, 2, 3, 4, k is & constant connecting gravitational and
electromagnetic units, g,,, is the metrical tensor of General Relativity
corresponding to y,, and the constant w is given by ;
w? = ¥ss. (12a)
Further, the expressions )
6 = (ysdz)lw  (13a) yun o Yaw®  (142)

1 Th. Kaluza, Berliner Sitzungberichte (1921), 966-972.

2 0. Klein, Zeischrift fiir Phys. (37) (1926), 895-906.

3 H. Tetrode, Zeitschrift fiir Phys. (50) (1928), 336-346.

4 E. Schroedinger, Berliner Sitzungberichte (11) (1932), 105-128 (109).
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and g <7—£’) _ 0 <M> (15a)

2"\ w ox™ \
are invariant under (9a) and (10a).

The immediate vicinity of every point of a Riemannian
continuum is the seat of the embedded world of Einstein’s Distant
Parallelism, determined by tensors k%, #,, in which components
relating to the embedded geometry are denoted by the first subscrip
after the h, while Riemannian components are indicated by the
ensuing super- or subscript.

We have Yiw = Ry« Py (16a)
Y = h’:z . h; (17a)
L* = ht L, (18a)

where L* and L, are corresponding components of the same vector in
the two geometries. The three-index symbol appropriate to Distant
Parallelism is denated by A¥; and

oh,,
A:'LA = h; axl\

while the covariant derivative of Tg with respect to 2* in this ceametry
is written as 7';.,. It follows that
has;n=0 and Af., =0. (20a)

(19a)

The quantity A%, — A4 is a tensor which vanishes if the continuum is
Euclidean everywhere and we write

Aby = Ak, — AE (21a) and AL, = A, (22a)
The connection between I'% and A~ is given by
20 = A4 + AL+ vy AL + yg y*e A (23a)
and the simplest connection between y* and k* is given by
y=h*E, a=1,2,3,4,5 (24a)

where E, are five Dirac matrices forming a pentad of which the one
used later is

.. 1. T . =t ! . .1 T
E1= . s . E2=n. .Es—'. - -E4=i; - . ‘

1... e —i.—l
N B ... "1 . .. L —t

=1 .
—1
where a dot indicates a zero element. The E’s are Hermitean.
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It = (1, o, 3, ¥4) is a row vector in cylindrical five-dimensional
geometry in which w is a constant, Flint obtains Dirac’s equation in
the form

0 & 2mumge
7"5;—/; =0 (26a) where 8_:;[}5 = mh Y/ (27a)

and ¢ is a scale-factor after the manner of Weyl.

§(3).
From now on new equations are numbered (1), (2), etc., the
known results of §(2) are quoted as (1a), (2a), etec.
From (1a) the equation div D = 0 becomes

(et )
+ "[’4< a;l’f + gfll 321 Zﬁi + ‘/’3)
+¢1<a¢3+§f: | C¢§+%+b¢2>=

+¢2< Gps Oy _ 6¢3.—.%4—b¢:1>

aet T T 'aR T
where bh = 2 mimge.

In (1) certain terms containing b have been added but the sum of
such terms is zero and the equation takes the form

$, Q=0 r=1,2 3, 4, (2)
where Q. =0 (3)

are Dirac’s equations. Hence (1) holds when Dirac’s equations hold.

Since the coefficients of the ¢if/ox™ and of b in (3) are elements

of E-matrices, the vector D may be written as

2Dm = F™y m=1,234

2D = F5¢ = 0, (4)
where the F’s form a set of five four-point matrices, and " is the
transposed of .

The vector character of D has thus been made dependent on the
vector character of the four-point matrices F, the ¢’s being regarded
as invariants. This procedure seems justified by the remarks of
Laporte and Uhlenbeck! who give alternatively the F’s as constants
and the f’s transformables.

1 Laporte and Uhlenbeck, Phys. Rev. 2nd Series (37) (2) (1931), 1380-1397.
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Flint’s! equation (26a) may be written as

w0, (®)

drn
where * is the complex conjugate of i, and be linked with
Whittaker’s work by passing from Euclidean to Riemannian Geometry
via, Distant Parallelism.
§(4). Some properties of Distant Parallelism.
From (21a), (23a) it follows that
A}l- = h: (hau.;a - haa:'/-l-) (6)

and, by differentiating the equation 2. h,, = 8% with manipulation of
dummy suffixes, we have

hoo - 7y = 0, (7)
which, with (8), gives
A =R}, (8)
DAo=—hgy b2, (9)
he A, = — Rt . (10)

Using (25a), (20a) and (24a) and Laporte’s second alternative §(3) it
follows that

4, =0. (11)
Also (24a) yields
2 k% = trace (y* £, + E,y*) (12)
so that 2 hy, , = trace (517“ E, + E, v ). (13)
Hence by (9), 2A, = — trace Ve + va¥h,) (14)
and, by (10) and (24a),
ya=—rA. as)
It is found that
2 yn:)\ = (‘}’Aa. A:‘ + ‘y'.u.A;p, + y#a A'?A) 7“’ (16)
by use of (23a) and (24a), and this leads to the value of T', in (8a)
namely
'—SP)\=(Y)\QA:,+ 'y;m.A:", _YVGA;M) S“v+t)\.1, (17)

where 2 s#* = y* y* — 3" o* and {, is an arbitrary vector.
alv 4 YV y

1 H, T. Flint, Phil. Mag. (7) (29) (1940), 417-433 (429).
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§(5). Postulates.

A. The vector $* y* ¢, where the four non-vanishing components
of y* and ¢ are invariants in a cylindrical Riemannian five-world, is
the generalised Whittaker vector. * is the complex conjugate of 4.

B. The generalised Whittaker vector is identified with the basic
vector of Distant Parallelism by the equation

Av=¢g*y . (18)
C. The fundamental law of atomic mechanics is given by
A, =0 (19)
in a cylindrical world more general in character than that of Klein.

D. The generalisation in C is obtained by setting

w2 = VY55 == F(xl, xz, x3, x4).

E. When atomic phenomena are considered w is given by D and
gravitation is neglected so that g,,, = 1 or 0 according as m, n are the
same or different.

F. The dependence of ¢ in A oh 25 is given by

o 2mumpcw
— . 20
ox® h v (20)

G. The constant k in (11a) loses its meaning when gravitation

is neglected, in which case we set
e/l = myc?. (21)

§(6).

Postulates A, B, C are suggested by §(3). The generalisation D
does not affect the invariance of (12a), (13a) and (14a) under trans-
formations (9a) and (10a), but the expression (15a), still to be regarded
as the electromagnetic intensity, will be invariant only if

Ofs dw _ . ofs  Ow

ox™ * oz ox" " ox™’
that is, if w and f; are functions of each other. We then have w
invariant and (9a) becomes

2° =3° + f(w). (22)
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Using E, it is found that one se’
(11a) is

* k% which satisfy

h11=h22=h33=h44= 1 =h%=h2 h3 h4
hom = kdm, bss = w, BE, = — (k¢™)/w, B =1/w (23)

where m =1, 2, 3, 4 and k is given in G. With these values the only
components of A2 which do not vanish are

Azm = (kan)/w (24)

Aty = Ay = An= — 0B (25)

in which F,,, = aa¢’: 245,: is the electromagnetic intensity.
With (24a), (23) gives

m = E™ and yPw = — k¢™ E™ + E°. (26)
Y

§(7). The suggested Quantum Equation.
From (18), (19), (11) we have

o yif A h 8:/1 0, : (27)

ox*

which, with (26), (21) and (20) yields
a %
(B3 E 4+ gmyr B —moc¢*E5)¢
Fg* (HEm o _ 2 gm By + mocE5¢> —o, (28)

where 2 m H = h. Writing Q = HE'”:T{I”—— -Z— ™ E™ip + mgc E5 o,
and remembering that ™, E® are Hermitean, (28) assumes the form
trace (Q*y§ + ¢*Q) =0, (29)

in which Q¥ denotes the complex conjugate of Q. Setting
Q, = R, exp (:0,) and ¢, = r, exp {ia,), (29) becomes R,r, cos (§,—a,)=0.

Since, in general, 0, — a, differs from (2% + 4)= and, by A, 7,
differs from zero, it is concluded that R, vanishes and that

Q, =0. (30)
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It then appears that the ¢’s in (30) are Dirac Wave-functions and
that the equation

is Dirac’s equation when B is used.

§(8).

The step from classical to quantum mechanics involves (1) the
promotion of w from a constant to an invariant and (2) the transition
from the Riemannian continuum to that of the embedded world of
Distant Parallelism. The relationship between the Dirac )’s and the
metrical tensor A, is, by (18) and (25a),

A =‘/’ik'/’3+¢‘."z“‘l’4+‘/'§"/’1 + i o

and four similar components, the last of which is zero. TFrom these
it follows that

A* A, = [trace y* ]2 (31)
so that the length of A, is proportional to the probability of occur-
rence of the electron.

From (15), (25), (26) we have
dlogw
ox™

Using (25a) with (32) it is found that

25 et = — 0 = W= = = — e log o (39

yh, = Em (32) and trace y*, = 0. (33)

and three other similar results. Thus, apart from their dependence
on 2%, the Dirac ¢’s are more truly part of the geometric stage than
actors on it and this is a sine qua non of a relativistic theory.

§(9). The Coordinate Transformation of °.

The unidentified fifth coordinate, z°, transforming according to
(22), behaves differently from the others. It is a cyclic coordinate
and its réle, to use Whittaker’s metaphor, is that of a catalytic agent.
By postulate A the ¢’s are Riemannian invariants and will be
unchanged in value by the transformation (22) which yields

mgy ¢ w f (w) = nh, (35)
so that (22) becomes

25 = g% 4+ nh [ (myc w) (36)
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where » is an integer. Hence at any point, P, of the continuum =z°
can be changed only by an integral multiple of %/ (m,c w), that is,
of an invariant at P. This restriction, and the freedom to ascribe a
meaning to 2%, suggests that the permissible change in it is a measure
of the uncertainty of position of the electron and that mycw is
associated with the uncertainty of the (conjugate) momentum.

If a is the angle between the vectors with components A, and
dz* we have, by (31),

Y P . cO8 a . do = A, da* (37)
so that, by (25),

w = w_oexp<—J.¢;,‘3,‘ ¢mcosa.da> (38)

§(10). Conclusion.

It must be confessed that in the foregoing a heavy burden has
been placed on the invariant w, that the interpretation of (36) is
speculative and that perhaps the ¢’s have -been overdetermined by
equations (34) and (30).

It has been said that some of the entities appearing in quantum
theory have ‘‘slipped through the tensor net.”. -Prof. Whittaker’s
paper on the relations between the spinor and tensor calculus shows
"how this has happened and has introduced the important vector D
on which this paper is founded.

Summary.

The generalised Whittaker vector is A, which is prevented from
vanishing by rejection of the constancy of w, previously assumed by
all writers. It is shown that (1) the null divergence of A* is
equivalent to Dirac’s equation, (2) the length of A* measures the
probability of occurrence of the electron (3) components of A* are
connected with the Dirac wave functions and.possible transformations
of z* are probably related to the Uncertainty Principle.
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