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Singularities in a Relativistic Pulsar Wind
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Abstract: The nature of a singularity in a cool, gravitation-free axisymmetrical,
relativistic, steady pulsar wind is further investigated, in line with the recent
counter-argument of Ardavan (1995, hereafter A95) that the pure Alfvén ‘singularity’
has an equal importance to the Alfvén singularity if one defines the singularity via a
quadratic form rather than using the ratio as adopted by Li & Melrose (1994). The
pure Alfvénic point in A95 coincides with the proposed characteristic point through
which a continuous wind will meet the star and infinity. However, we find that
the critical point as implied in the quadratic form is in fact the intermediate point
(Ardavan 1979), but not the pure Alfvénic point. Thus the analysis of A95 does not
indicate any significance of the pure Alfvénic point. We also demonstrate that the
intermediate point which appears in the quadratic form of A95 is not genuine.
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1 Introduction

The discovery of rapidly rotating neutron stars
with a magnetic field ∼ 1012 G or 108 T in the
late 60s changed our view about stellar degenerate
matter, and revealed the existence of an astrophysical
laboratory for electrodynamics. A rapidly rotating
conducting neutron star with a strong magnetic
field will induce significant electric fields across the
magnetic field lines. For a typical rotation rate
(e.g. 0 ·03 s for the Crab pulsar) and the typical
magnetic field strength shown above, the electric
field above the stellar surface (∼ 1013 V m−1) has a
component along a field line and is strong enough to
pull the charged particles out of the stellar surface
to form a pulsar magnetosphere, despite the huge
surface gravity (Goldreich & Julian 1969; Mestel
1971). Such a magnetosphere is responsible for
generating spin-modulated radio emission which led
to the discovery of these pulsing neutron stars—
pulsars. The strong centrifugal effect, due to
the rapid stellar spin, becomes dominant at large
distances, and a pulsar wind inevitably develops (cf.
e.g. Mestel & Shibata 1994; Michel 1969; Goldreich &
Julian 1970). Understanding these magnetospheres
and associated pulsar winds has been one of the
important frontiers of theoretical research.

In comparison with an outflow from a main
sequence star, the pulsar wind is different as the
special relativity effect plays an important role. The
pressure and even the gravitational forces acting
on the wind plasma, however, may not be as
important as the electromagnetic and centrifugal
forces. Theoretical modelling of the wind thus often
neglects thermal and gravity effects, and such a

wind is usually called a gravity-free, cold relativistic
wind (see Michel 1969). An analytic approach
usually assumes mass conservation and an ideal
plasma (dissipation-free). The former is probably
the crudest one of all, as the plasma may be generated
from electron–positron pair production along curved
field lines in the the magnetosphere (e.g. Sturrock
1971; Ruderman & Sutherland 1975), indicating that
the inner boundary conditions for a wind may not be
well-defined. But nevertheless, one may ignore this
complication and assume that ideal MHD equations
are applicable to the whole domain. Assuming
a steady state and axisymmetry, the ideal MHD
equations for a pulsar wind can be integrated along a
poloidal field line. Although the transfield equation
(e.g. Okamoto 1975; Okamoto 1978, hereafter O78;
Ardavan 1979, hereafter A79) cannot be simply
integrated (when considering the three dimensional
magnetic field structure), a solution for a cold,
gravity-free relativistic pulsar wind derived only
along a poloidal field line, or the ‘standard solution’,
is of particular theoretical importance, as it is
the simplest and has perhaps inherited the most
important physics for a realistic pulsar wind.

The singular nature is one of the important
issues for a standard wind. The wind solutions,
which relate wind quantities to integral constants,
are singular for a physical quantity, and some
work (see below) even indicates the ‘multi-singular’
nature. It is therefore an important matter whether
a singular feature is physical or unphysical. The
alternative way to phrase the question is whether
the singularity is significant or not. We say that a
singularity is significant when it physically constrains
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the flow parameters, and we say it is spurious
when it may only arise from a special mathematical
form, without constraining the flows. O78 found
two mathematical singularities associated with the
relativistic ‘splitting’ of the conventional Alfvénic
point, i.e. the Alfvénic and the pure-Alfvénic points.
O78 argued that the Alfvénic point may be more
significant than the pure-Alfvénic point, though the
later singularity might still have physical significance.
It was suggested by (A79) that, in addition to
the previous two important singularities, there
exists another equally important singularity, the
intermediate point , though O78 did not argue for
the existence of the intermediate one. The analysis
of A79 involves a selection of different variables
other than the Lorentz factor γ, leading to different
‘singularities’. However, other derivations (e.g.
Michel 1969; Goldreich & Julian 1970; Kennel,
Fujimura & Okamoto 1983; Camenzind 1986) do
not indicate the existence of the pure Alfvénic point
and also the intermediate one. Thus some confusion
and inconclusiveness remain in the literature about
the singular nature of the standard pulsar wind. The
complication is entirely due to special relativistic
effects, because in the classic stellar wind domain
all the proposed three singularities merge into one,
the Alfvénic point. Resolving the multi-singular
nature of a pulsar wind is clearly not trivial, as
this would answer the question whether the special
relativistic effects impose more constraints on the
wind flow than for the nonrelativistic case. Li &
Melrose (1994, thereafter LM94) studied the problem
and have shown that only the Alfvénic point is
genuine, and once the equations are regularised at
the Alfvénic point, other singularities disappear and
therefore they are not genuine. The argument is
consistent with the physical nature – wave-singularity
analogy (see LM94). The unequivocal implication is
that the relativistic effect does not yield additional
constraints on the wind solution.

However, in a recent paper, Ardavan (1995; A95)
reiterated his early argument (A79), and therefore
criticised LM94. A95 emphasised that a singularity
does not necessarily arise from a ratio of variables
as defined at a point in which the denominator goes
to zero (and so the numerator must also go to zero).
A95, following A79, used a quadratic form of certain
variables and discussed the determinant in relation
to the two branch solutions. A79 and A95 argued
that different singularities might arise by choosing
different variables, and these singularities all have
the same physical significance. A95 concluded that
LM94 considered only a part of the linearised version
of singular analysis, and the definition of a singularity
could be more general, for instance with the use of
a quadratic form.

In fact, the conclusion of A95 is the fundamental
argument which we believe may have caused confusion

in the literature, since it emphasises the importance
of a variation of mathematical form rather than in
physical nature, i.e. whether it helps to constrain
the flow or not. In this paper we attempt to
clarify this matter. We first summarise and study
the argument of A95 in Section 2, where we show
that the characteristic point which A95 argued is
the intermediate point but not the pure Alfvénic
point, and then demonstrate in Section 3 that
the intermediate point, is not genuine, and finally
conclude in Section 4. (We use the symbols adopted
in A95 simply for an easy comparison.)

2 Characteristic Point

The basic integrals along a magnetic field line for
the standard pulsar wind are (O78; A79)

vφ = κBφ + rω , (1)

κρ = (vp/Bp)ρ = F , (2)

−rBφ/(4π) + rγρvφκ = G , (3)

γ

(
1− rω

c

vφ

c

)
= expH . (4)

In the above formulae subscript p and φ denote
the poloidal and toroidal components respectively,
γ is the Lorentz factor, ω, F , G and expH are
integral constants along a field (or poloidal field)
line, and the other quantities have their usual
meaning. Integrals (1) to (4) are in order the
generalised Ferraro isorotation law (the integral of
the induction equation), mass flux conservation,
angular momentum conservation and finally energy
conservation. Setting γ = 1, these equations reduce
to those derived earlier by Mestel (1968), except
the difference in (4) due to neglecting the pressure
and gravity terms. Most important is the Lorentz
factor γ, which characterises the relativistic nature
of a pulsar wind. It can be expressed by

γ =
(1− r̂2

A − 4πFγκ) expH
(1− r̂2

A)(1− r̂2 − 4πFγκ)
, (5)

where

r̂A = (1 + c2F expH/ωG)−1/2, r̂ = rω/c . (6)

It can been seen that there is a unique singularity
at r̂ = r̂A in (5), though the regularisation at the
Alfvénic point has been made. Note that (5) is a
complete expression as the RHS has no dependence
on γ (γκ is independent of γ). The quantity γ is
thus a function of integral constants, the proper
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density and also the distance. The toroidal velocity
vφ may be expressed as

vφ =
rω − 4πGκ/r
1− 4πFγκ

. (7)

Note that (7) is not a complete form because the
numerator is a function of γ which is subject to
its singular nature. It turns out that once γ is
regularised at r̂A, i.e. equation (5), vφ in (7) is
automatically singular free at the pure Alfvénic
point (see LM94). Nevertheless, once

4πFγκ = 1 , (8)

which is the definition of the so-called pure Alfvénic
point, we must require

rω = 4πGκ/r . (9)

One can in principle express (5) in a quadratic
form as adopted in A95:

Γ2 − [(1− r̂2)R+ (1− r̂2
A)−1]Γ +R = 0 , (10)

where the new variables are

Γ = e−Hγ, R = (4πF 2eH)−1 ρ . (11)

We bear in mind that (10) is not a complete quadratic
expression as Γ andR are not independent. However,
this does not affect having two solutions of Γ:

Γ± = 1
2 [(1− r̂2)R+ (1− r̂2

A)−1]

± { 1
4 [(1− r̂2)R+ (1− r̂2

A)−1]2 −R}1/2 . (12)

A95 discussed the two solutions and found that
Γ+ and Γ− behave well at infinity and within r̂A
respectively. Thus the continuity of a smooth solution
requires a transition from Γ− to Γ+ (outwards) at
a point Γ+ = Γ−. This point has been shown
by A95 to occur at r̂ > r̂A and we may call it a
characteristic point. Two extra conditions from (12)
for the characteristic point are readily obtained:

∆ = [(1− r̂2)R+ (1− r̂2
A)−1]2 − 4R = 0 , (13)

Γ = 1
2 [(1− r̂2)R+ (1− r̂2

A)−1] . (14)

Alternatively, (13) and (14) define the characteristic
point. This leads to

Γ =
√
R . (15)

It is important to realise that A95 does not give
the correct form (15) but Γ = R instead. By (15),
we obtain an equivalent relation

(4πFγ2κ)c = expH . (16)

With the use of (4), (16) becomes

1− (4πFγκ)c −
(
rω

c

vφ

c

)
c

= 0 . (17)

According to A79, (17) defines the intermediate
point.

For the pure Alfvénic point, one can derive a
different relation as compared to (15). Expressing
(11) as

R = Γ/4πF 2(γ/ρ) , (18)

we find that the pure Alfvénic point, as defined by
(8), corresponds to

Γ = R . (19)

The difference between (19) and (15) shows that
the intermediate point is independent of the pure
Alfvénic point. We thus conclude that the quadratic
analysis of A95 has no relevance to the pure Alfvénic
point.

3 Is the Intermediate Point Genuine?

The quadratic form allows one to incorporate some
arguments about the boundary conditions both near
the stellar surface and infinity, and as a result the
special point Γ− = Γ+ looks like ‘important’ as it
yields an extra condition (15). By analogy with
nozzle-type flows in aerodynamics, where critical
points exist, we see that a subsonic flow for the
inner boundary and a supersonic flow for the outer
boundary are satisfied simultaneously simply by
having a transonic flow through the critical point.
Our question is whether the intermediate point
resembles such a point or not?

As we have already seen in Section 2, (5) is a
regularised expression for the Lorentz factor γ, and
in contrast, the quadratic form (10) is incomplete
in that both Γ and R are coupled with γ. The
quadratic analysis is thus based on having coefficients
(of quadratic expression) which are not independent
of the variable Γ. To realise this is important
because a characteristic point in such a situation is
not unique and different characteristic points can
be generated.

We may write (10) in a different form:

(1 + k)Γ2 − [(1− r̂2)R+ (1− r̂2
A)−1 − kΓ]Γ +R = 0 ,

(20)
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where k is an arbitrary constant. Because (20) is
identical to (10), following A95 we still argue that
Γ− must connect to Γ+ at a characteristic point.
The solutions are

Γ± =
1

2(1 + k)
[(1− r̂2)R+ (1− r̂2

A)−1 − kΓ]

± 1
2(1 + k)

{[(1− r̂2)R+ (1− r̂2
A)−1 − kΓ]2

− 4(1 + k)R} 1
2 . (21)

To require Γ = Γ− = Γ+ at the characteristic
point, we obtain two conditions:

[(1− r̂2)R+ (1− r̂2
A)−1 − kΓ]2 = 4(1 + k)R , (22)

[(1− r̂2)R+ (1− r̂2
A)−1 − kΓ] = 2(1 + k)Γ . (23)

Combining (20) and (21), we obtain

Γ = (1 + k)−1/2
√
R . (24)

By (11), equation (24) leads to

4πFγ2κ =
1

(1 + k)
expH . (25)

With the use of (4) again, (25) becomes

1− 4πFγκ−
(
rω

c

vφ

c

)
− k(4πFγκ) = 0 . (26)

Clearly for k 6= 0, (26) describes a point other
than the intermediate one, and there can be many
different points for arbitrary k. Because they
are created by having a non-zero k for the same

relation (10), they are spurious and therefore have
no significance. The ease of generating all these
spurious points stems from the dependence between
the coefficients and Γ of the quadratic form, in
a similar manner to dependent variables on both
sides of a ratio (see LM94). Since the intermediate
point is derived on the condition that Γ and R are
dependent, we argue that it is created rather than
being a genuine one. Once Γ is expressed by γ
as an independent variable, i.e. equation (5), the
intermediate point disappears.

4 Conclusion

The characteristic point which arises from the
quadratic analysis of A95 is the intermediate point
in A79, but not the pure Alfvénic point as argued in
A95. Thus the quadratic analysis in A95 does not
show any significance of the pure Alfvénic point.
We also demonstrate that a quadratic analysis may
generate non-genuine characteristic points, and the
intermediate point is one of them.
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