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Abstract

Let G and H be two vertex disjoint graphs. The join G + H is the graph with V(G + H) = V(G) + V(H)
and E(G + H) = E(G) ∪ E(H) ∪ {xy | x ∈ V(G), y ∈ V(H)}. A (finite) linear forest is a graph consisting of
(finite) vertex disjoint paths. We prove that for any finite linear forest F and any nonnull graph H, if
{F, H}-free graphs have a χ-binding function f (ω), then {F, Kn + H}-free graphs have a χ-binding function
k f (ω) for some constant k.
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1. Introduction

Throughout this paper, all graphs have finite vertex sets and no loops or parallel edges.
We follow [1] for undefined notation and terminology.

We say that a graph G contains a graph H if some induced subgraph of G is
isomorphic to H. A graph is H-free if it does not contain H. WhenH is a set of graphs,
G is H-free if G contains no graph of H . A class of graphs G is called hereditary
if every induced subgraph of any graph in G also belongs to G. One important and
well-studied class of hereditary graphs is the family ofH-free graphs.

Let G be a graph and X be a subset of V(G). We use G[X] to denote the subgraph
of G induced by X, and call X a clique (independent set) if G[X] is a complete
graph. The clique number ω(G) of G is the maximum size taken over all cliques of
G (we sometimes simply write ω(X) for ω(G[X])). If v ∈ V(G), we denote the set of
neighbours of a vertex v by N(v) or NG(v). For X ⊆ V(G), let

NG(X) = {u ∈ V(G) \ X | u has a neighbour in X}.
(We omit the subscript G if there is no ambiguity.)

This paper was partially supported by grants from the National Natural Sciences Foundation of China
(No. 12271170) and Science and Technology Commission of Shanghai Municipality (STCSM) (No.
22DZ2229014).
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

1

https://doi.org/10.1017/S0004972724000662 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972724000662
https://orcid.org/0000-0002-2739-9053
https://orcid.org/0000-0003-3380-8535
https://orcid.org/0000-0001-5580-3829
https://orcid.org/0000-0002-7308-9443
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972724000662&domain=pdf
https://doi.org/10.1017/S0004972724000662


2 K. Lan, F. Liu, D. Wu and Y. Zhou [2]

Let G and H be two vertex disjoint graphs. The union G ∪ H is the graph with
vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H). The join G + H is the graph with
V(G + H) = V(G) + V(H) and E(G + H) = E(G) ∪ E(H) ∪ {xy | x ∈ V(G), y ∈ V(H)}.

For a graph G, χ(G) denotes the chromatic number of G (we sometimes simply
write χ(X) for χ(G[X])). Erdős [9] showed that for any n, there exists a triangle-free
graph with chromatic number at least n. Hence, in general, there exists no function of
ω(G) that gives an upper bound on χ(G) for all graphs G. We denote by N the set of
all positive integers. A class of graphs G is said to be χ-bounded if there is a function
f : N→ N (called a χ-binding function) such that χ(G) ≤ f (ω(G)) for every graph
G ∈ G; and the class is polynomially χ-bounded if f can be taken to be a polynomial.

A graph G is perfect if χ(H) = ω(H) for each induced subgraph H of G. Perfect
graphs are a well-known hereditary χ-bounded graph class, that is, a class of graphs
for which the identity function is a χ-binding function. A hole in a graph is an induced
subgraph which is a cycle of length at least four, and a hole is even or odd according
to whether its length is even or odd. An antihole of a graph G is an induced subgraph
of G whose complement graph is a cycle of length at least four. Chudnovsky et al.
[4] characterised perfect graphs as the class of {odd hole, odd antihole}-free graphs, a
result known as the strong perfect graph theorem.

One important research direction in the area of χ-boundedness is to determine graph
families H such that the class of H-free graphs is χ-bounded, as well as finding the
smallest possible χ-binding function for such a hereditary class of graphs. Gyárfás [15]
and Sumner [32] independently reported the following conjecture.

CONJECTURE 1.1 [15, 32]. For every forest F, the class of F-free graphs is χ-bounded.

This conjecture remains open in general, though it has been proved for some very
restricted trees (see, for example, [5, 15–18, 23, 25]).

For any positive integer t, we use Pt to denote a t-vertex path. It is known that
P3-free graphs are disjoint unions of complete graphs and P4-free graphs are perfect
[31]. From [14] (see also [13]), every P5-free graph G with ω(G) ≥ 3 satisfies χ(G) ≤
5 · 3ω(G)−3, and a recent result of Scott et al. [30] states that every P5-free graph G
satisfies χ(G) ≤ ω(G)log2 ω(G). In general, Gyárfás [15] showed that χ(G) ≤ (t − 1)ω(G)−1

for all Pt-free graphs. This upper bound was improved to χ(G) ≤ (t − 2)ω(G)−1 in [14].
To support Conjecture 1.1, one approach is to continuously expand the known graph

classes which are χ-bounded. We state three recent results of Chudnovsky et al. [6],
Wu and Xu [34], and Schiermeyer and Randerath [22].

THEOREM 1.2 [6, Theorem 1.3]. Let F be a forest. If F-free graphs are polynomially
χ-bounded, then {F ∪ P4}-free graphs are polynomially χ-bounded.

THEOREM 1.3 [34, Theorem 1.1]. Let H be a connected graph or the union of a
connected graph and an isolated vertex with |V(H)| ≥ 3, and let G be a connected
{P5, K1 + H}-free graph. If {P5, H}-free graphs have a χ-binding function f (ω), then
{P5, K1 + H}-free graphs have a χ-binding function k f (ω) for some constant k.
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THEOREM 1.4 [22, Theorem 33]. Let G be a {Pk, gem}-free graph for k ≥ 4 with clique
number ω(G) ≥ 2. Then, χ(G) ≤ (k − 2)(ω(G) − 1).

We refer to a graph that contains at least one vertex as a nonnull graph. Using
the idea of [22, Theorem 33], we generalise the results of Wu and Xu [34], and
Schiermeyer and Randerath [22].

THEOREM 1.5. For any finite linear forest F and any nonnull graph H, if {F, H}-free
graphs have a χ-binding function f (ω), then {F, Kn + H}-free graphs have a χ-binding
function k f (ω) for some constant k.

We derive Theorem 1.5 from the following theorem.

THEOREM 1.6. For any integers n ≥ 0 and t ≥ 4, if H is a nonnull graph and
{Pt, H}-free graphs have a χ-binding function f (ω), then {Pt, Kn + H}-free graphs have
a χ-binding function (t − 2)n+1 f (ω).

2. The main proof

The aim of this section is to prove Theorems 1.6 and 1.5. Following a proof idea
in [22], we first establish a lemma which generalises a result of Schiermeyer and
Randerath [22].

LEMMA 2.1. Let t ≥ 4 be an integer and G be a Pt-free graph with ω(G) ≥ 2. If there
exists a function φ : N→ N such that φ(x) ≥ x and χ(N(v)) ≤ φ(ω(G) − 1) for every
vertex v of G, then χ(G) ≤ (t − 2)φ(ω(G) − 1).

PROOF. We proceed by induction on t. It is known that P4-free graphs are perfect.
Therefore, χ(G) = ω(G) ≤ 2ω(G) − 2 ≤ 2φ(ω(G) − 1) if t = 4. Now, for some fixed
t ≥ 4, suppose that (t − 2)φ(ω(G) − 1) is a χ-binding function for all Pt-free graphs G.
We will prove Lemma 2.1 holds for all Pt+1-free graphs to complete our proof.

Let G be a Pt+1-free graph. Without loss of generality, G is connected. Assuming
that χ(G) > ((t + 1) − 2)φ(ω(G) − 1), we shall reach a contradiction by constructing an
induced (t + 1)-vertex path Pt+1 in G.

We define sets V(Gi) ⊆ V(Gi−1) ⊆ · · · ⊆ V(G1) = V(G) and vertices v1 ∈ V(G1),
v2 ∈ V(G2), . . . , vi ∈ V(Gi) for all i satisfying 1 ≤ i ≤ t − 1 with the following
properties:

(1) Gi is a connected subgraph of G;
(2) χ(Gi) > (t − i)φ(ω(G) − 1); and
(3) if 1 ≤ j < i and v ∈ V(Gi), then vjv is an edge of G if and only if j = i − 1 and

v = vi.

Notice that G1 = G and χ(G1) > (t − 1)φ(ω(G) − 1) as we have assumed. Let v1 be any
vertex of G1. Assume that G1, G2, . . . , Gi and v1, v2, . . . , vi are already defined for some
i ≤ t − 1; moreover, properties (1)–(3) are satisfied. Define Gi+1 and vi+1 as follows. Let
A denote the set of neighbours of vi in Gi. Let

B = V(Gi) \ (A ∪ {vi}).
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The graph G[A] satisfies ω(A) ≤ ω(G) − 1. Otherwise, adding vi would give a clique
of cardinality ω(G) + 1. Furthermore, since A = NGi (vi),

χ(A) ≤ φ(ω(G) − 1).

Suppose first that B � ∅. Then, χ(Gi) ≤ χ(A) + χ(B). It follows that

χ(B) ≥ χ(Gi) − χ(A) > ((t + 1) − 1 − i)φ(ω(G) − 1) − φ(ω(G) − 1)
= (t − (i + 1))φ(ω(G) − 1),

which allows us to choose a connected component H of G[B] satisfying
χ(H) > (t − (i + 1))φ(ω(G) − 1). Since Gi is connected by property (1), there exists a
vertex vi+1 ∈ A such that V(H) ∪ {vi+1} induces a connected subgraph which we choose
as Gi+1. Now it is easy to check that G1, G2, . . . , Gi+1 and v1, v2, . . . , vi+1 satisfy the
requirements in properties (1)–(3).

Suppose now that B = ∅. Then χ(Gi) ≤ φ(ω(G) − 1), which in turn implies that
(t − i)φ(ω(G) − 1) < χ(Gi) ≤ φ(ω(G) − 1). It follows that i = t.

Since A � ∅ by properties (1) and (2) of Gi, vt+1 can be defined as any vertex of A,
that is to say, G[{v1, v2, . . . , vt+1}] is an induced (t + 1)-vertex path Pt+1 in G, which is
a contradiction. This completes the proof of Lemma 2.1. �

PROOF OF THEOREM 1.6. We proceed by induction on n. For a fixed integer t ≥ 4,
since {Pt, H}-free graphs have a χ-binding function f (ω), Theorem 1.6 holds when
n = 0. We may assume that {Pt, Kn−1 + H}-free graphs have a χ-binding function
(t − 2)n f (ω). Now, let G be a {Pt, Kn + H}-free graph. Since G is {Pt, Kn + H}-free,
G[N(v)] is {Pt, Kn−1 + H}-free for every vertex v of G. Therefore, there exists a function
(t − 2)n f : N→ N such that (t − 2)n f (x) ≥ x and χ(N(v)) ≤ (t − 2)n f (ω(G) − 1)
for every vertex v of G. By Lemma 2.1, χ(G) ≤ (t − 2)(t − 2)n f (ω(G) − 1) =
(t − 2)n+1 f (ω(G) − 1). This proves Theorem 1.6. �

Using Theorem 1.6 as the induction base, we next prove Theorem 1.5 by induction
on the number of paths contained in F.

PROOF OF THEOREM 1.5. With the same arguments as in Theorem 1.6, it suffices
to prove that {F, K1 + H}-free graphs have a χ-binding function k f (ω) for some
constant k.

Let G be an {F, K1 + H}-free graph. Since F is a finite linear forest, we may assume
that F consists of m vertex disjoint paths. We proceed by induction on m. If m = 1, by
Theorem 1.6, we are done. Suppose Theorem 1.5 holds for any positive integer m′ < m.
Choose any path in F such that this path is a component of F, say P. Consequently, we
assume that |V(P)| = h.

For each vertex v ∈ V(P), the graph G[N(v)] is {F, H}-free and thus
χ(N(v)) ≤ f (ω(G)). So, χ(N(V(P))) ≤ h f (ω(G)). By the induction hypothesis, there
exists an integer k′ such that χ(G \ (V(P) ∪ N(V(P)))) ≤ k′ f (ω(G)). Therefore,
χ(G) ≤ (k′ + h) f (ω(G)). This proves Theorem 1.5. �
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3. Remarks

In most cases, proofs of χ-boundedness give fairly fast-growing functions, so it is
interesting to ask: when do we get the stronger property of polynomial χ-boundedness?
A provocative conjecture of Esperet [12] asserted that every χ-bounded hereditary
class is polynomially χ-bounded, but this was recently disproved by Briański et al. [2].
So the question now is: which hereditary classes are polynomially χ-bounded? For any
tree T, perhaps every T-free graph is polynomially χ-bounded. Scott et al. [28] proved
that if T contains no P5, then every T-free graph is polynomially χ-bounded. We refer
to [6, 7, 19, 26–30] for some recent results and to [20, 22, 24] for some surveys about
topics related to χ-boundedness.

Actually, if a χ-binding function is polynomial, it has another very important conse-
quence. Graph classes with polynomial χ-binding functions satisfy the Erdős–Hajnal
conjecture [10, 11].

CONJECTURE 3.1 (Erdős–Hajnal conjecture). For every graph H, there exists some
ε > 0 such that each H-free graph G has a clique or an independent set of size at
least |G|ε .

The problem of finding a polynomial χ-binding function for the class of P5-free
graphs is still open, and the problem is open even for the class of {P5, C5}-free graphs
(mentioned in [3]). The best known result is an exponential upper bound, 2ω(G)−1, due
to Chudnovsky and Sivaraman [8]). The following well-known problem is proposed
by Schiermeyer [21].

PROBLEM 3.2 [21]. Are there polynomial functions fpk for k ≥ 5 such that
χ(G) ≤ fpk (ω(G)) for every Pk-free graph G?

According to Theorem 1.6, we can directly derive the following result.

THEOREM 3.3. For any integers n ≥ 0 and t ≥ 4, if H is a nonnull graph and
{Pt, H}-free graphs have a polynomial χ-binding function f (ω), then {Pt, Kn + H}-free
graphs have a polynomial χ-binding function (t − 2)n+1 f (ω).

Theorem 3.3 has some interesting corollaries. We use Ms to denote the disjoint
union of s edges. A friendship graph Fs is the graph K1 +Ms (see Figure 1). We give
a polynomial χ-binding function for {Pt, Kn + Fs}-free graphs. We first introduce the
following result of Wagon [33].

LEMMA 3.4 [33]. For every s ∈ N, every Ms-free graph G satisfies χ(G) ≤ ω(G)2s−2.

FIGURE 1. Graph F2.
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Then we have the following corollary of Theorem 3.3.

COROLLARY 3.5. Let n ≥ 0, s ≥ 1 and t ≥ 4 be integers. Let G be a {Pt, Kn + Fs}-free
graph. Then χ(G) ≤ (t − 2)n+1(ω(G) − 1)2s−2.

PROOF. Let H be a {Pt, Fs}-free graph and φ(x) = x2s−2. Since H is Fs-free, H[N(v)] is
Ms-free for any vertex v of H; moreover, ω(H[N(v)]) ≤ ω(H) − 1. From Lemma 3.4,

χ(N(v)) ≤ φ(ω(H) − 1) = (ω(H) − 1)2s−2

for every vertex v of H. Therefore, from Lemma 2.1,

χ(H) ≤ (t − 2)φ(ω(H) − 1) = (t − 2)(ω(H) − 1)2s−2.

By Theorem 1.6, χ(G) ≤ (t − 2)n+1(ω(G) − 1)2s−2 if G is a {Pt, Kn + Fs}-free graph.
This completes the proof of Corollary 3.5. �
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