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1. Introduction

In [17], Li proposed a construction for the full C∗-algebra C∗(S) of a discrete left can-
cellative semigroup S. For a semigroup S that embeds into a group he also constructed a
related C∗-algebra called C∗

s (S). The reason one considers left cancellative semigroups is
that these are the semigroups that can be faithfully represented as semigroups of isome-
tries on Hilbert spaces. For instance, one can represent S on �2(S) by isometries in this
case. This representation is called the left regular representation of S and generates what
is called the Toeplitz algebra or reduced C∗-algebra of S, denoted by C∗

r (S). (One could
of course consider right cancellative semigroups instead.)

Murphy previously constructed C∗-algebras of left cancellative semigroups, but these
turned out to be very large. For instance, his C∗-algebra associated to (Z+)2 is non-
nuclear [21] (see [17] for more references). Li added a few extra restrictions that make
the algebras behave better. In particular, he showed that C∗(S) generalizes two important
types of C∗-algebras: Nica’s C∗-algebras for quasi-lattice ordered groups from [22], and
the Toeplitz algebras associated with the ring of integers in a number field [7].

Li also showed that a cancellative left reversible semigroup (a semigroup S is left
reversible if for any s, t ∈ S, sS ∩ tS �= ∅; this is also called the Ore condition) S is left
amenable if and only if C∗

s (S) and C∗
r (S) are canonically isomorphic, but only given that
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the constructible right ideals of S satisfy a certain technical requirement called indepen-
dence. Note that Li’s proof uses the fact that left reversibility of a cancellative semigroup
S implies that S embeds into a group and that there exists a character on C∗

s (S).
Let I(S) be the inverse semigroup of all partial bijections on S. For each s ∈ S, let

λs : S → sS be given by λs(t) = st. Since S is left cancellative, each λs is a partial
bijection. The set {λs}s∈S generates an inverse subsemigroup Il(S) ⊂ I(S) called the left
inverse hull of S. We show that Il(S) is isomorphic to an inverse semigroup V (S) of partial
isometries generating C∗

r (S). By considering the full and reduced C∗-algebras of Il(S) as
defined, for instance, in Paterson’s book [27], we get the surjective ∗-homomorphisms

C∗(S)
η−→ C∗

0 (Il(S)) Λ0−−→ C∗
r,0(Il(S)) h−→ C∗

r (S).

Here, C∗
0 (Il(S)) and C∗

r,0(Il(S)) are the quotients of C∗(Il(S)) and C∗
r (Il(S)), respec-

tively, by the ideal generated by the 0-element of Il(S), if it has one. The composition of
these ∗-homomorphisms is the canonical ∗-homomorphism C∗(S) → C∗

r (S). The question
of whether this is an isomorphism splits into three separate problems. When S embeds
into a group, we get the decomposition

C∗(S) πs−→ C∗
s (S) �−→ C∗

0 (Il(S)) Λ0−−→ C∗
r,0(Il(S)) h−→ C∗

r (S).

In particular, C∗
s (S) and C∗

0 (Il(S)) are canonically isomorphic.
A semigroup S is said to satisfy Clifford’s condition if, for all s, t ∈ S, either sS∩tS = ∅

or sS ∩ tS = rS for some r ∈ S. Any semigroup that is the positive cone in one of Nica’s
quasi-lattice ordered groups satisfies Clifford’s condition. The ax + b semigroup over an
integral domain R satisfies Clifford’s condition if and only if every pair of elements in
R has a least common multiple. If S satisfies Clifford’s condition, η is an isomorphism
and the constructible right ideals of S are independent. If S is cancellative and satisfies
Clifford’s condition, or if S embeds into a group and the constructible right ideals of S

are independent, then h is an isomorphism.
Using Milan’s work [19] on weak containment for inverse semigroups we show that

when S embeds into a group G, Λ0 is an isomorphism if and only if a certain Fell bundle
over G associated with Il(S) is amenable. In the special case when S is left reversible,
Λ0 is an isomorphism if and only if S is left amenable if and only if C∗

0 (Il(S)) is nuclear.
In the first part of the paper we recall the algebraic theory of semigroups and inverse

semigroups, and also look at an algebraic partial order and see how it is related to Nica’s
quasi-lattice ordered groups. We show that many of the properties of the positive cone
in these groups can be defined in a more general context, and remark that the algebraic
order is not essential for the theory to work.

In the second part of the paper, we introduce the C∗-algebras associated with S and
Il(S), and prove the above-stated results. In addition, we show that our construction
generalizes a method used by Nica in [23] to construct the C∗-algebra of a quasi-lattice
ordered group from a certain inverse semigroup called a Toeplitz inverse semigroup.

We also prove a functoriality result for the construction S �→ G(S) when S is left
reversible. Here, G(S) is the maximal group homomorphic image of Il(S). We use this to
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C∗-algebras of left cancellative semigroups 535

show that the construction S �→ C∗(Il(S)) is functorial for homomorphisms into groups
when S is left reversible. The construction S �→ G(S) originates from Rees’s proof of Ore’s
theorem: all cancellative left reversible semigroups are group embeddable. An account of
this theorem can be found in [6, p. 35] or in [15, Chapter 2.4].

2. Semigroups

2.1. Semigroups and algebraic orders

There are many sources on the algebraic theory of semigroups (see, for example, [6]
or [18] and the references therein).

Definition 2.1. A semigroup is a set S together with an associative binary operation
· : S × S → S, written (s, t) �→ st, and an identity element 1 ∈ S. (Usually, semigroups
are not required to have identities, and semigroups with identities are called monoids.
We will, however, only talk about monoids in this article, and we prefer to call them
semigroups.) That is, for all s, r, t ∈ S, s(rt) = (sr)t and 1s = s1 = s. Sometimes we
write 1 = 1S .

If S has an element z ∈ S such that zs = sz = z for all s ∈ S, we write that z = 0 = 0S .
If S is a semigroup, define S0 = S if S already has a 0 element, and otherwise let S0 be
the semigroup S ∪ {0} with the extended multiplication rule s0 = 0s = 0 for all s ∈ S0.

This choice of notation can be confusing, for instance in the case of (Z+, +) where we
have 1Z+ = 0, and where Z

+ does not have an element 0Z+ in the sense of the above
definition, but the notation is otherwise very convenient. (In our notation, Z

+ denotes
{0, 1, 2, . . . }, while N denotes {1, 2, . . . }.)

Definition 2.2. A homomorphism between semigroups S, S′ is a function f : S → S′

such that, for all s, t ∈ S, f(st) = f(s)f(t) and f(1S) = 1S′ . The homomorphism f

is a 0-homomorphism if, in addition, f(0S) = 0S′ (and this term is only defined for
homomorphisms between semigroups with zeroes).

Definition 2.3. A semigroup S is left cancellative if, for every s, r, t ∈ S, sr = st

implies that r = t. Equivalently, for every s ∈ S, the map λs : S → sS given by λs(t) = st

is bijective. In a left cancellative semigroup, if ss′ = 1, then ss′s = 1s = s1, so s′s = 1,
that is, every element with a left (or right) inverse is invertible. One can similarly define
right cancellativity. S is cancellative if it is both left and right cancellative.

Definition 2.4. A congruence on a semigroup S is an equivalence relation ∼ such
that, for all s, t, r,∈ S, s ∼ t implies that sr ∼ tr and rs ∼ rt. One can show that S/ ∼
is a semigroup and that there exists a homomorphism S → S/ ∼ sending elements to
equivalence classes. In fact, the homomorphism theorems for semigroups state that every
surjective homomorphism can be constructed in this way.

Definition 2.5. A subset X ⊂ S is a right ideal if, for all t ∈ X and s ∈ S, ts ∈ X.

For X ⊂ S and s ∈ S, define s−1(X) = {t : st ∈ X} and sX = {st : t ∈ X}. For
simplicity, we sometimes write s−1X for s−1(X). If X ⊂ S is a right ideal, then so are
sX and s−1X. The right ideals of the form sS are called the principal right ideals of S.
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Let � be the relation on S given by s � t if there exists an r ∈ S such that s = tr.
This relation is reflexive and transitive, so it gives a preorder on S. If it is antisymmetric,
then it is a partial order called the algebraic order on S and we say that S is algebraically
ordered. Note that � is often written with the opposite symbol � or � (such as in Nica’s
work [22]), but this is just a matter of convenience. For instance, we have 5 � 4 in
(Z+, +) with our notation.

For s, t ∈ S, s � t is easily seen to be equivalent to s ∈ tS and to sS ⊂ tS. It is also
equivalent to t−1({s}) �= ∅, and if S ⊂ G, where G is a group, it is equivalent to t−1s ∈ S.
Note that 1S is a maximal element for � and that if 0S exists, it is a minimal element.

Lemma 2.6. Let S be a left cancellative semigroup. Then, S is algebraically ordered
if and only if 1 is the only invertible element in S.

Proof. Suppose that rS = tS for some r, t ∈ S. There then exist s, s′ ∈ S such that
rs = t and ts′ = r. So ts′s = t. By left cancellation with t, this gives us that s′s = 1.
Then, s has a left inverse, so it is invertible since S was left cancellative. If 1 is the only
invertible element in S, then s = 1, and this implies that r = t.

On the other hand, suppose that there exist s, s′ ∈ S, with s′s = 1. Then, s′sS ⊂
s′S ⊂ S = s′sS, so, if S is algebraically ordered, s′ = 1. �

For instance, when S is a subsemigroup of a group G, S is algebraically ordered if and
only if S ∩ S−1 = {1}.

2.2. Inverse semigroups

Inverse semigroups are a large topic. See, for example, [15] or [27] and the references
therein for a review of the literature. In this section we just give a short overview of the
main concepts that we need.

Definition 2.7. A semigroup P is an inverse semigroup if, for every p ∈ P , there
exists a unique element p∗ ∈ P such that pp∗p = p and p∗pp∗ = p∗.

It follows from the uniqueness of p∗ that, for any semigroup homomorphism f : P → Q

between inverse semigroups, f(p∗) = f(p)∗ for any p ∈ P . Let L(P ) be the set of
idempotents in the inverse semigroup P . Then, L(P ) = {p∗p : p ∈ P} = {pp∗ : p ∈ P}.
One can show that L(P ) is a commutative subsemigroup of P , so L(P ) is what is called
a semilattice.

Definition 2.8. A semilattice is a commutative semigroup where every element is
idempotent.

Lemma 2.9. Let L be a semilattice, and let a, b ∈ L. Then, a � b if and only if ba = a.
Hence, � is a partial order on L.

Proof. If a = ba, then a ∈ bL, so a � b. Suppose that a ∈ bL, so a = bc for some
c ∈ L. Then a = aa = bca. So bca = bbca = ba, which implies that a = ba. If a � b and
b � a, then a = ba = ab = b. So � is a partial order. �
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It also follows that, for a, b ∈ L, ab is the greatest lower bound of a and b. On the
other hand, if L is a partially ordered set where any finite subset has a unique greatest
lower bound and one defines ab to be the greatest lower bound of {a, b}, then L is a
semilattice with the product (a, b) �→ ab. We later study partially ordered semigroups S,
and for this it is useful to let s ∧ t mean the greatest lower bound of s and t if it exists,
while st means the already existing semigroup product of s and t. These two products
only coincide if S is a semilattice.

Remark 2.10. Each inverse semigroup admits a natural partial order, which is gen-
erally not the same as the partial order described in the preceding paragraphs. We do
not use the natural partial order explicitly in this paper.

Perhaps the most important example of an inverse semigroup is the semigroup I(X) of
all partially defined bijective maps on some set X. By a partially defined bijective map
on X, we mean a bijective function f : dom(f) → ran(f), where dom(f) and ran(f) are
subsets of X. The product fg of f, g ∈ I(X) is defined such that dom(fg) = g−1(dom(f))
and fg(x) = f(g(x)) for all x ∈ dom(fg). Note that this product can result in the empty
function, which acts as a 0 for I(X). The ∗-operation is given by function inversion. For
any f ∈ I(X), f∗f = idom(f), where idom(f) : dom(f) → dom(f) is the identity map.

The Wagner–Preston theorem states that any inverse semigroup P can be faithfully
represented as a subsemigroup of I(P ) as follows. Let τ : P → I(P ) be the map such
that, for p ∈ P , dom(τ(p)) = {q ∈ P : p∗pq = q}, and τ(p)(q) = pq for all q ∈ dom(τ(p)).

Another important class of inverse semigroups are semigroups of partial isometries in a
C∗-algebra. Note that, in general, the product of two partial isometries does not have to
be a partial isometry. Two partial isometries can be part of the same inverse semigroup
if and only if their initial and final projections commute.

The following concepts are very important in the theory of inverse semigroups.

Definition 2.11. An inverse semigroup P is E-unitary if, for every p, q ∈ P , pq = q

implies that p ∈ L(P ). It is E∗-unitary (also-called 0-E-unitary) if, for every p, q ∈ P ,
pq = q and q �= 0 implies that p ∈ L(P ).

Note that if P is an E-unitary inverse semigroup with 0, then it is a semilattice. Note
also that, if we want to, we can assume without loss of generality that the q in either
definition is idempotent. Multiply the equation pq = q on the right by q∗. This gives us
that pqq∗ = qq∗, where qq∗ is idempotent. Recall that, for any semigroup S, S0 = S if S

already has a 0 element, and, otherwise, S0 is the semigroup S ∪ {0} with the extended
multiplication rule s0 = 0s = 0 for all s ∈ S0.

Definition 2.12. A grading of the inverse semigroup P is a map ϕ : P 0 → G0, where
G is a group, such that ϕ−1({0}) = {0} and, for all p, q ∈ P , ϕ(pq) = ϕ(p)ϕ(q) as long as
pq �= 0. P is strongly E∗-unitary if it has a grading ϕ such that ϕ−1({1G}) = L(P )\{0}.
Such a grading is sometimes said to be idempotent pure.

Note that if ϕ : P 0 → G0 is a grading of P , then L(P ) \ {0} ⊂ ϕ−1({1G}). Note also
that if P is strongly E∗-unitary, then it is E∗-unitary. It turns out that if P does not
have a 0, all these concepts are equivalent.
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Definition 2.13. Define a relation ∼ on P by p ∼ q if pr = qr for some r ∈ P

(if and only if pr = qr for some r ∈ L(P )). Then ∼ is a congruence, and P/ ∼ is a
group denoted by G(P ). Let αP : P → G(P ) be the quotient homomorphism. Then, P is
E-unitary if and only if α−1

P (1G(P )) = L(P ). The group G(P ) is often called the maximal
group homomorphic image of P .

We will need the following lemma later in the paper.

Lemma 2.14. Let f : P → Q be a surjective homomorphism between inverse semi-
groups. Suppose that the restriction of f to L(P ) is an isomorphism onto L(Q). Then f

is an isomorphism if and only if f−1(L(Q)) = L(P ).

Proof. The ‘only if’ part is trivial. Suppose that f−1(L(Q)) = L(P ). Let p, q ∈ P with
f(p) = f(q). Then, f(pq∗) = f(qq∗) ∈ L(Q), so by assumption pq∗ is idempotent. Since f

is an isomorphism restricted to L(P ), pq∗ = qq∗, so q∗pq∗ = q∗. Similarly, f(q∗) = f(p∗),
so q∗p = p∗p and pq∗p = p. Thus, p = q by the uniqueness property for these relations
in an inverse semigroup. �

2.3. The semilattice J(S), Clifford’s condition and the independence of
constructible right ideals

We are interested in the semilattice J(S) of constructible right ideals in the left can-
cellative semigroup S given by

J(S) =
{ N⋂

j=1

t−1
j1 sj1 · · · t−1

jnj
sjnj S : N, nj ∈ N, sjk, tjk ∈ S

}
.

We actually see in Lemma 3.9 that

J(S) = {t−1
1 s1 · · · t−1

n snS : n ∈ N, si, ti ∈ S}.

Here, the semilattice product on J(S) is given by set intersection. To motivate this
study, we can reveal that J(S) is isomorphic to a semilattice of projections generating
the diagonal subalgebra of C∗

r (S). It is also the semilattice of idempotents in the left
inverse hull of S. We establish these facts later. This semilattice plays an important part
in Li’s theory [17]. Li’s J is the same as our J(S) ∪ {∅} � J(S)0.

Lemma 2.15. Let S be an algebraically ordered semigroup and let s, t ∈ S. If sS∩tS =
rS for some r ∈ S, then s ∧ t exists and equals r. Conversely, if s ∧ t exists, then
(s ∧ t)S = sS ∩ tS.

Proof. First, suppose that r′ � s, t. Then, r′S ⊂ sS ∩ tS = rS, so r′ � r and,
therefore, r is the greatest lower bound of s and t, i.e. r = s ∧ t.

Next, if s ∧ t exists, then by definition (s ∧ t)S ⊂ sS ∩ tS. Let r ∈ sS ∩ tS. Then,
r � s, t, so r � s ∧ t, and r ∈ (s ∧ t)S, so (s ∧ t)S = sS ∩ tS. �

Lemma 2.16. Let S be a semigroup, and let s1, . . . , sn ∈ S. If
⋃n

i=1 siS = rS for
some r ∈ S, then rS = siS for at least one 1 � i � n.
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Proof. We have that rS ⊂
⋃n

i=1snS is equivalent to r ∈
⋃n

i=1snS, which implies that
r ∈ sjS for some j. Then, rS ⊂ sjS ⊂

⋃n
i=1siS = rS, so rS = sjS. �

Definition 2.17. We say that a semigroup S satisfies Clifford’s condition if, for any
s, t ∈ S, either sS ∩ tS = ∅ or there exists an r ∈ S such that sS ∩ tS = rS. (This is
not the same concept as a Clifford semigroup. Clifford’s condition is a term coined by
Lawson [14] because it plays an important role in the construction of 0-bisimple inverse
semigroups, and Clifford was the first to use this in [5]. See [14] for more on this.)

For instance, all free or free abelian semigroups satisfy Clifford’s condition. We see
more examples below.

Definition 2.18. Following Li [17], we say that J(S) is independent or that the con-
structible right ideals of S are independent if, for any X1, . . . , Xn, Y ∈ J(S),

⋃n
i=1Xn = Y

implies that Xi = Y for at least one 1 � i � n.

Proposition 2.19. Let S be a left cancellative semigroup. The following two condi-
tions are equivalent.

(i) S satisfies Clifford’s condition.

(ii) For every s, t ∈ S with t−1(sS) non-empty, there exists some r ∈ S such that
t−1(sS) = rS.

These conditions imply that J(S)∪{∅} = {sS : s ∈ S}∪{∅} and that J(S) is independent.
If S is algebraically ordered, (i) is equivalent to the following statement.

(iii) Every pair of elements in S that have a common lower bound have a greatest lower
bound.

This implies that when S is an algebraically ordered semigroup satisfying Clifford’s con-
dition, (S0,∧) is a semilattice and is isomorphic as a semilattice to J(S) ∪ {∅} � J(S)0.

Proof. (i) ⇒ (ii). Since S is left cancellative, then for any X ⊂ S we have that
tt−1(X) = tS ∩ X and t−1(tX) = X. If t−1(sS) is non-empty, then so is tt−1(sS) =
sS ∩ tS. Let q ∈ S be such that qS = sS ∩ tS. Since q ∈ tS, t−1({q}) is non-empty and
contains a unique element r, since S was left cancellative. We now have that

rS = (t−1{q})S = {uv : u, v ∈ S, tu = q}
= t−1{tuv : u, v ∈ S, tu = q}
= t−1{qv : v ∈ S} = t−1(qS)

= t−1(sS ∩ tS) = t−1(sS).

(ii) ⇒ (i). If tS ∩ sS is non-empty, then so are tt−1(sS) and t−1(sS). By assumption,
t−1(sS) = rS, so tS ∩ sS = (tr)S.

That (i)+(ii) implies that J(S)∪{∅} = {sS : s ∈ S}∪{∅} is proved by simple induction.
That this implies that J(S) is independent follows from Lemma 2.16: if

⋃n
i=1siS = Y ∈

J(S), Y = rS for some r ∈ S, and Lemma 2.16 gives that rS = siS for at least one i.
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(i) ⇔ (iii). Let s, t ∈ S. Then, sS ∩ tS �= ∅ if and only if there exists some r ∈ S such
that r � s, t if and only if s and t have a common lower bound. By Lemma 2.15, s and t

have a greatest lower bound s ∧ t if and only if sS ∩ tS = (s ∧ t)S.
By going to S0, we have that sS0 ∩ tS0 = {0} = 0S0 if and only if sS ∩ tS = ∅.

Otherwise, sS0 ∩ tS0 = rS0 for some r ∈ S. The isomorphism from (S0,∧) to J(S)∪{∅}
is then constructed by sending s to sS for s ∈ S and 0 to ∅. This is injective since S was
algebraically ordered. �

Definition 2.20. Let G be a group and let S ⊂ G be a subsemigroup. If S is alge-
braically ordered and generates G, it induces a partial order on all of G by g � h if and
only if g−1h ∈ S. Nica [22] calls (G, S) quasi-lattice ordered if, in addition, any finite
family of elements in G that has a common upper bound in S has a least common upper
bound in S. In this case S is called the positive cone in (G, S).

Note that, when restricted to S, � is the same as our �. This shows that if S is
a positive cone in a quasi-lattice ordered group, any pair in S that have a common
lower bound in S with respect to � have a greatest lower bound in S. So S satisfies
Clifford’s condition by Proposition 2.19, and it follows that J(S) is independent. Note
that Li proved in [17] that the positive cones of the quasi-lattice ordered groups have
independent constructible right ideals.

We can give a description of when the ax + b semigroup over an integral domain R

satisfies Clifford’s condition. The ax+b semigroup over R, denoted by R�R×, is defined
to be the set R × R× with product (b, a)(d, c) = (b + ad, ac). Here, R× = R \ {0}. The
reason one considers integral domains is that the ax + b semigroups over these are left
cancellative.

Consider first the multiplicative semigroup (R×, ·). This is a semigroup, since R has
no zero divisors. We see that, for a, b ∈ R×, a � b if and only if a divides b.

Definition 2.21. A common multiple of a, b ∈ R× is an element c of R× that is
divided by a and b. A least common multiple of a and b is a common multiple c such
that if c′ is a common multiple of a and b, then c divides c′.

It follows by a similar argument to that in Lemma 2.15 that aR× ∩ bR× = cR× if
and only if c is a least common multiple of a and b. Note that since R is commutative,
ab ∈ aR× ∩ bR× �= ∅. So R× satisfies Clifford’s condition if and only if every pair in
R× has a least common multiple (see also [4, Theorem 2.1]). Such an integral domain
R is often called a GCD domain because one can show that every pair has a greatest
common divisor if and only if every pair has a least common multiple. See [4] for a
detailed discussion of GCD domains; they are also discussed in [2], where they are called
pseudo-Bezout domains. The next lemma is stated without proof in Li’s paper, but we
include it for completeness.

Lemma 2.22. Let R be a ring. For any subrings I, J ⊂ R and b, d ∈ R, either
(b + I) ∩ (d + J) = ∅ or there exists some x ∈ R such that (b + I) ∩ (d + J) = x + I ∩ J .
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Proof. Suppose that (b + I) ∩ (d + J) �= ∅. There then exist y ∈ I and z ∈ J such
that b + y = d + z. Write x = b + y = d + z. Then, x + I = b + y + I = b + I and
x + J = d + z + J = d + J . So (b + I) ∩ (d + J) = (x + I) ∩ (x + J) = x + I ∩ J . �

Proposition 2.23. Let R be an integral domain. Then, R � R× satisfies Clifford’s
condition if and only if R is a GCD domain.

Proof. We show that R � R× satisfies Clifford’s condition if and only if R× satisfies
Clifford’s condition. Suppose that R× does satisfy Clifford’s condition. Note that since
R is a commutative ring, aR is an ideal of R for every a ∈ R. Let a, b, c, d ∈ R. Then,

(b, a)(R � R×) ∩ (d, c)(R � R×) = [(b + aR) × aR×] ∩ [(d + cR) × cR×]

= [(b + aR) ∩ (d + cR)] × [aR× ∩ cR×].

If this set is non-empty, (b + aR) ∩ (d + cR) is non-empty, so by the previous lemma
there exists some x ∈ R satisfying (b + aR) ∩ (d + cR) = x + aR ∩ cR. Moreover,
aR× ∩ cR× �= ∅, so, since R× satisfies Clifford’s condition, there exists some y ∈ R×

satisfying aR× ∩ cR× = yR×. This also implies that aR ∩ cR = yR. So we get that

(b, a)(R � R×) ∩ (d, c)(R � R×) = (x + yR) × yR× = (x, y)(R � R×).

Suppose that R�R× satisfies Clifford’s condition and let a, c ∈ R×. Since aR×∩cR× �= ∅,

(0, a)(R � R×) ∩ (0, c)(R � R×) = (aR ∩ cR) × (aR× ∩ cR×) �= ∅.

It follows that there exist y ∈ R× and x ∈ R (one may take x = 0) such that

(0, a)(R � R×) ∩ (0, c)(R � R×) = (x, y)(R � R×).

This implies that aR× ∩ cR× = yR×. �

Li showed that when R is a Dedekind domain, J(R � R×) is independent. Every
Dedekind domain that is also a GCD domain is a principal ideal domain. One way to see
this is to use that every non-trivial ideal in a Dedekind domain R is of the form c−1(aR)
for some c, a ∈ R. This is proved, for instance, in [17]. Note that Li denoted c−1(aR) as
((c−1a) · R) ∩ R. This comes from viewing c−1a as an element of the field of fractions of
R. Applying Proposition 2.19 (ii) to the semigroup R× one can deduce that, if R is also
a GCD domain, any non-trivial ideal in R is of the form aR for some a ∈ R. This is the
definition of a principal ideal domain.

There exist Dedekind domains that are not principal ideal domains. An example of this
is Z[

√
10] as seen in [12, p. 407]. This shows that not every left cancellative semigroup

with independent constructible right ideals satisfies Clifford’s condition. On the other
hand, every Dedekind domain is noetherian (see [12, Theorem 6.10]), but not every
GCD domain is noetherian. So the integral domain R does not have to be a Dedekind
domain for J(R � R×) to be independent. Examples of non-noetherian GCD domains
can be found in [4].
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3. C∗-theory

3.1. The C∗-algebras of an inverse semigroup

Let P be an inverse semigroup. We recall some common constructions for C∗-algebras
that are generated by representations of P by partial isometries. This is a short account
of the theory. A more thorough account can be found, for instance, in [27] or [8]. One
may construct such C∗-algebras by associating them with certain groupoids, but we do
not use this approach in the present paper.

Let {δp}p∈P be the canonical basis of �2(P ) such that δp(q) = 1 if p = q, and δp(q) = 0
otherwise. Let CP be the vector space consisting of the formal sums

n∑
i=1

aipi

for any n ∈ N, ai ∈ C and pi ∈ P . Define an involution on CP by( n∑
i=1

aipi

)∗
=

n∑
i=1

aip
∗
i

and a product by ( n∑
i=1

aipi

)( m∑
j=1

bjqj

)
=

n∑
i=1

m∑
j=1

aibjpiqj .

With these operations, CP is a ∗-algebra. The left regular representation of CP is defined
to be the map Λ : CP → B(�2(P )) given by

Λ(p)δq =

{
δpq if p∗pq = q,

0 otherwise.

Then, Λ can be shown to be a faithful ∗-representation of CP . Define C∗
r (P ) to be the

closure of the image of Λ with respect to the operator norm.
One way to construct the full C∗-algebra of P is to show that CP is dense in the

convolution algebra �1(P ). One then lets C∗(P ) be the certain C∗-completion of the
Banach ∗-algebra �1(P ). The left regular representation Λ extends to a ∗-homomorphism
Λ : C∗(P ) → C∗

r (P ).
C∗(P ) is universal for representations of P by partial isometries. If A is a C∗-algebra,

Piso(A) is the set of partial isometries in A and f : P → Piso(A) is a homomorphism onto
a subsemigroup of Piso(A), then there exists a ∗-homomorphism π : C∗(P ) → A such that
π(p) = f(p) for each p ∈ P . This implies that if P, Q are two inverse semigroups, then
every homomorphism f : P → Q extends to a ∗-homomorphism πf : C∗(P ) → C∗(Q).

Note that if P has a 0, then Λ(0)δ0 = δ0 and Λ(0)δp = 0 for p �= 0. So Λ(0) �= 0 is a
one-dimensional projection. This is undesirable in some of our later applications, but it
is not too difficult to work around the problem. If 0P exists, then C0P is an ideal in CP ,
so it is an ideal in C∗(P ), and Λ(C0P ) is an ideal in C∗

r (P ). Let C∗
0 (P ) = C∗(P )/C0P

and let C∗
r,0(P ) = C∗

r (P )/Λ(C0P ).
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Since Λ sends a ∈ C∗(P ) to Λ(C0P ) if and only if a ∈ C0P , Λ defines a ∗-homo-
morphism Λ0 : C∗

0 (P ) → C∗
r,0(P ). Moreover, if P and Q are inverse semigroups and

f : P 0 → Q0 is a 0-homomorphism, then πf pushes down to πf,0 : C∗
0 (P ) → C∗

0 (Q). It
is important to note that if P is an inverse semigroup without 0, then C∗

0 (P 0) � C∗(P )
and C∗

r,0(P
0) � C∗

r (P ).

Definition 3.1. The inverse semigroup P is said to have weak containment if
Λ : C∗(P ) → C∗

r (P ) is an isomorphism. Clearly, Λ is an isomorphism if and only if Λ0 is
an isomorphism. See [19] for a recent study of weak containment for inverse semigroups.

Proposition 3.2. Let P be a commutative inverse semigroup. Then P has weak
containment.

Proof. This follows from, for example, Paterson’s results in [25], since every commu-
tative inverse semigroup P is a so-called Clifford semigroup and any subgroup of P has
to be amenable. �

Corollary 3.3. Let P be an inverse semigroup. Let D be the C∗-subalgebra of C∗
r (P )

generated by Λ(L(P )). Then, D is canonically isomorphic to C∗
r (L(P )) and C∗(L(P )).

A similar result holds if we look at the subalgebra generated by Λ0(L(P )) in C∗
r,0(P ).

Proof. Since L(P ) is commutative it has weak containment, so C∗
r (L(P )) � C∗(L(P ))

is universal for representations of L(P ). Thus, the norm that CL(P ) obtains from its
representation on �2(L(P )) is greater than or equal to that it obtains from �2(P ). But
we also have that, for a ∈ CL(P ),

‖Λ(a)‖C∗
r (P ) = sup{‖Λ(a)ξ‖ : ξ ∈ �2(P )}

� sup{‖Λ(a)ξ‖ : ξ ∈ �2(L(P ))}
= ‖Λ(a)‖C∗

r (L(P )).

�

Let L be a semilattice with 0 and let S be a set such that there exists an injective
0-homomorphism f : L → 2S . Here, 2S = {X : X ⊂ S} is given the structure of a semi-
lattice by saying that the semigroup product is given by set intersection. This gives a
representation µ : L → �∞(S) by µ(a) = χf(a), where χX is the characteristic function
of X ⊂ S. Let C∗(L, f) be the C∗-algebra generated by the image of µ. By the uni-
versality of C∗

0 (L), for 0-representations of L by commuting projections, there exists a
∗-homomorphism π : C∗

0 (L) → C∗(L, f) such that π(a) = µ(a) for each a ∈ L. We say
that f is a maximal representation of L if π is an isomorphism.

Before we investigate this we discuss filters, which is a concept that is important in
the representation theory of semilattices in the same way that characters are important
in the representation theory of abelian C∗-algebras. See, for instance, [11, 16, 27] for
examples.
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Definition 3.4. Let L be a semilattice with 0. A filter on L is a 0-homomorphism
φ : L → {0, 1}. Here, {0, 1} is given the structure of a semilattice with 1 · 0 = 0. An
alternative view of filters on L is to define them to be subsets φ ⊂ L such that, for all
a, b ∈ L, the following hold:

(i) if a ∈ φ, then a � b implies that b ∈ φ;

(ii) if a, b ∈ φ, then ab ∈ φ;

(iii) 0 /∈ φ and 1 ∈ φ.

Through the correspondence a ∈ φ ⇔ φ(a) = 1, one sees that these are equivalent
definitions. The latter picture is the more traditional one.

Each character ψ on C∗(L, f) defines a filter φ on L by φ(a) = ψ(µ(a)) for each a ∈ L.
Since µ(a) is always an idempotent, we have that ψ(µ(a)) ∈ {0, 1}, so φ is well defined.
Moreover, since µ(L) generates C∗(L, f), two characters on C∗(L, f) are equal if and
only if their associated filters are equal. So the characters on C∗(L, f) are completely
determined by their associated filters. In general, not every filter on L will extend to a
character on C∗(L, f).

Proposition 3.5. Let the set-up be as above. The following conditions are equivalent:

• f : L → 2S is a maximal representation, i.e. π : C∗
0 (L) → C∗(L, f) is an isomor-

phism;

• for every filter φ : L → {0, 1}, there exists a character ψ on C∗(L, f) such that
ψ(µ(a)) = φ(a) for each a ∈ L;

• for all a1, . . . , an ∈ L, if there exists some b ∈ L such that
⋃n

i=1f(ai) = f(b), then
ai = b for at least one 1 � i � n.

Proof. (i) ⇒ (ii). Let φ : L → {0, 1} be a filter. If C∗(L, f) is isomorphic to C∗
0 (L),

then by the universal properties of this C∗-algebra there exists a non-zero ∗-homo-
morphism C∗(L, f) → C∗

0 ({0, 1}) � C extending φ. A non-zero ∗-homomorphism to
C is the definition of a character.

(ii) ⇒ (iii). Let a1, . . . , an, b ∈ L be such that
⋃n

i=1f(ai) = f(b). Note that µ(b) �∑n
i=1µ(ai). Let φ = {c ∈ L : b � c}. This is a filter on L. Let ψ be the extending

character. Then

1 = ψ(µ(b)) �
n∑

i=1

ψ(µ(ai)).

Then ψ(µ(ai)) = φ(ai) = 1 for at least one i. We have that f(aib) = f(ai)∩f(b) = f(ai),
so aib = ai, that is, ai � b. If φ(ai) = 1, then b � ai by the definition of φ, so ai = b.

(iii) ⇒ (i). This can be proved just like (i) ⇒ (ii) in [17, Proposition 2.24], so we skip
the proof. �
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Corollary 3.6. Let S be a left cancellative semigroup. J(S) is then independent (see
Definition 2.18) if and only if the inclusion ι : J(S) ∪ {∅} → 2S is a maximal representa-
tion.

Proof. This follows from (iii) above and the definition of the independence of J(S).
�

We will need the following proposition later.

Proposition 3.7. Let P be an E∗-unitary inverse semigroup, and let L be its subsemi-
lattice of idempotents. There exists a faithful conditional expectation Er,0 : C∗

r,0(P ) →
C∗

0 (L) such that Er,0(Λ0(p)) = p if p ∈ L, and Er,0(Λ0(p)) = 0 otherwise.

Proof. Let Er : B(�2(P )) → �∞(P ) be the usual faithful conditional expectation given
by

〈Er(a)δq, δq〉 = 〈aδq, δq〉.

Here �∞(P ) is viewed as a subalgebra of B(�2(P )) represented by pointwise multiplica-
tion. First, if p ∈ L, then 〈Λ(p)δq, δr〉 �= 0 if and only if p∗pq = pq = q and pq = r, which
implies that r = q. So Λ(p) ∈ �∞(P ), and Er(Λ(p)) = Λ(p).

In general, let p ∈ P and suppose that 〈Λ(p)δq, δq〉 �= 0 for some q ∈ P \ {0}. Then
pq = q, so, since P is E∗-unitary, p ∈ L.

Due to Corollary 3.3, we now identify C∗(L) with the closure of CL inside C∗
r (P ). We

have Er : C∗
r (P ) → C∗(L), and, since Er(Λ(0)) = Λ(0), Er,0 : C∗

r,0(P ) → C∗
0 (L) can be

defined with the desired properties.
For any a ∈ C∗

r (P ), let [a] denote its image in C∗
r,0(P ). We have that Er,0([a∗a]) = 0 if

and only if Er(a∗a) = αΛ(0P ) for some α ∈ C if and only if 〈a∗aδ0P
, δ0P

〉 = ‖aδ0P
‖2 = α

and ‖aδq‖2 = 0 for all q ∈ P \ {0P }. This implies that a∗a = αΛ(0P ) and that [a∗a] = 0,
so Er,0 is faithful. �

On the other hand, we have the following lemma, which is also interesting.

Lemma 3.8. Let A be a C∗-algebra generated by an inverse semigroup P of partial
isometries. Let L be the semilattice of idempotents in P , and let D be the subalgebra of A

generated by L. If there exists a conditional expectation E : A → D such that E(p) = p

if p ∈ L and E(p) = 0 otherwise, then P is E∗-unitary.

Proof. Suppose that p ∈ P and q ∈ L \ {0} satisfy pq = q. Then, pq = q = E(q) =
E(pq) = E(p)q since E is a conditional expectation. This implies that E(p) �= 0, so p ∈ L.
This shows that P is E∗-unitary. �

3.2. The left regular representation and the left inverse hull of a left
cancellative semigroup

From now on, S will always be a left cancellative semigroup unless otherwise stated.
Let {εs}s∈S be the orthogonal basis of �2(S), where εs(t) = 1 if s = t, and 0 otherwise.
The left regular representation of S is the semigroup homomorphism s �→ Vs, where
Vs : �2(S) → �2(S) is given by Vsεt = εst.
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Now, 〈V ∗
s εt, εr〉 = 1 if t = sr and 0 otherwise, so

V ∗
s εt =

∑
r∈t−1({s})

εr.

Since S is left cancellative, t−1({s}) is either a singleton or empty. It follows readily that
Vs is an isometry for each s ∈ S.

Let E : B(�2(S)) → �∞(S) be the conditional expectation given by 〈E(a)εs, εs〉 =
〈aεs, εs〉 for each s ∈ S. Here we view �∞(S) as a subalgebra of B(�2(S)) represented
by pointwise multiplication. For a subset X ⊂ S, let χX ∈ �∞(S) be the associated
characteristic function. It is easy to check that, for all s ∈ S and X ⊂ S,

VsχXV ∗
s = χsX , V ∗

s χXVs = χs−1(X). (3.1)

In particular, VsV
∗
s = χsS .

We let C∗
r (S) be the C∗-algebra generated by {Vs : s ∈ S}, and let Dr(S) be the

commutative C∗-algebra generated by {χX : X ∈ J(S)}. Note that C∗
r (S) is the closed

linear span of the set

V (S) = {V ∗
t1Vs1 · · ·V ∗

tn
Vsn : n ∈ N, s1, . . . , sn, t1, . . . , tn ∈ S}.

V (S) is itself a semigroup under composition of operators, and it is an inverse semigroup
since it consists of partial isometries with commuting initial and final projections. To
see this, note that if V = V ∗

t1Vs1 · · ·V ∗
tn

Vsn , then by repeatedly applying the relations in
(3.1) we get that V V ∗ = χX , with X = t−1

1 s1 · · · t−1
n snS. Similarly, V ∗V = χY , with

Y = s−1
n tn · · · s−1

1 t1S. The second assertion of the next lemma is also proved in [17].

Lemma 3.9. The semilattice of idempotents in V (S) is isomorphic to the ∩-semilattice

J := {t−1
1 s1 · · · t−1

n snS : n ∈ N, si, ti ∈ S}.

Moreover, J = J(S).

Proof. We saw in the previous paragraph that the semilattice of idempotents in V (S)
is {χX : X ∈ J}. For any X, Y ∈ J , χXχY = χX∩Y , so J has to be a ∩-semilattice and
be isomorphic to {χX : X ∈ J}. Since J is therefore closed under ∩, it must be equal to
J(S) as defined in § 2.3. �

The inverse semigroup V (S) plays an important role in the following. As we noted in § 1,
it can be given a purely algebraic description. Let I(S) be the inverse semigroup of all
bijective partially defined functions S → S. Define Il(S) to be the inverse subsemigroup
of I(S) generated by the partial bijections {λs}s∈S , where λs : S → sS is given by
λs(t) = st.

Lemma 3.10. There exists a faithful representation ω : Il(S) → B(�2(S)) such that
ω(λs) = Vs for each s ∈ S. So ω is an isomorphism of Il(S) onto V (S).
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Proof. For any f ∈ Il(S), define ω(f) : �2(S) → �2(S) by

ω(f)εs =

{
εf(s) if s ∈ dom(f),

0 otherwise,

where dom(f) is the domain of f . Then, ω(f) ∈ B(�2(S)) since f is injective, and, for any
s ∈ S, ω(λs) = Vs. For any f, g ∈ Il(S) we have that f = g if and only if dom(f) = dom(g)
and f(s) = g(s) for all s ∈ dom(f). This happens if and only if kerω(f) = ker ω(g) and
ω(f)εs = ω(g)εs for all s ∈ S. This is equivalent to ω(f) = ω(g). So ω is an injective
map. Now, for any f, g ∈ Il(S) and s ∈ S,

ω(f)ω(g)εs =

{
εf(g(s)) if s ∈ g−1(dom(f)),

0 otherwise,

so ω(f · g) = ω(f)ω(g). This shows that ω is a surjective homomorphism of Il(S) onto
V (S), and thus it is an isomorphism. �

Il(S) is often called the left inverse hull of S and has been previously studied in several
settings. Some recent information on it can be found in [13–15,18]. Using ω, one can
translate most statements about V (S) into statements about Il(S) and vice versa. Note
that the semilattice of idempotents in Il(S) is {iX : X ∈ J(S)} � J(S), where iX : X →
X is the identity map on X. We occasionally identify J(S) with {iX : X ∈ J(S)} in what
follows.

Many of the ideas of this subsection are present in [17], but they are not expressed in
terms of V (S) as an inverse semigroup. Using a simple induction argument (or deducing
it from the proof of Lemma 3.10) we know that, for any V ∈ V (S) and s ∈ S, V εs is
either 0 or εt for some t ∈ S.

Lemma 3.11. Let V ∈ V (S). Then, E(V ) = V if and only if V is idempotent.

Proof. By Lemma 3.9, V is idempotent if and only if V = EX for some X ∈ J(S).
This implies that E(V ) = V . Let V ∈ V (S), and suppose that E(V ) = V . For every
s ∈ S, 〈V εs, εs〉 is either 0 or 1, so V = E(V ) = χX , where X = {s ∈ S : 〈V εs, εs〉 = 1}.
Hence, V = V 2. �

Corollary 3.12. Let a ∈ C∗
r (S). Then, E(a) = a if and only if a ∈ Dr(S).

Proof. V (S) spans a dense subset of C∗
r (S), and {EX : X ∈ J(S)} spans a dense

subset of Dr(S). The result follows by the linearity and continuity of E. �

Lemma 3.13. Let ρ be the right action of S on itself given by ρr(s) = sr for s, r ∈ S.
Then, for every f ∈ Il(S), s ∈ dom(f) and r ∈ S,

ρr(f(s)) = f(ρr(s)). (3.2)
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Proof. Note that since dom(f) = dom(f∗f) ∈ J(S) is a right ideal in S, s ∈ dom(f)
implies that sr ∈ dom(f) for all r ∈ S. Equation (3.2) clearly holds when f = λt for
some t ∈ S. Suppose now that f = λ∗

t . Let s ∈ dom(λ∗
t ) = tS. There then exists some

q ∈ S such that tq = s and λ∗
t (s) = q. For any p ∈ S, λ∗

t (ρr(s)) = p if and only if
sr = ρr(s) = tp. On the other hand, ρr(λ∗

t (s)) = qr = p if and only if tqr = tp. Since
s = tq, this happens if and only if sr = tp. So, for any p ∈ S, ρr(λ∗

t (s)) = p if and only
if λ∗

t (ρr(s)) = p. This shows that ρr(λ∗
t (s)) = λ∗

t (ρr(s)).
Let f ∈ Il(S) be arbitrary. There then exist n ∈ N and s1, . . . , sn, t1, . . . , tn ∈ S such

that f = λ∗
t1λs1 · · ·λ∗

tn
λsn . Since s ∈ dom(f),

λ∗
tj

λsj · · ·λ∗
tn

λsn(s) ∈ dom(λ∗
t1λs1 · · ·λ∗

tj−1
λsj−1)

for all 1 � j � n. So,

ρr(λ∗
tj

λsj · · ·λ∗
tn

λsn
(s)) ∈ dom(λ∗

t1λs1 · · ·λ∗
tj−1

λsj−1)

for all 1 � j � n, since dom(λ∗
t1λs1 · · ·λ∗

tj−1
λsj−1) is a right ideal in S. Starting with

λ∗
t1λs1 · · ·λ∗

tn
λsn(ρr(s)),

we can then move ρr to the left one step at a time until we get

ρr(λ∗
t1λs1 · · ·λ∗

tn
λsn(s)).

�

Corollary 3.14. Let f ∈ Il(S). For any s ∈ dom(f), fλs = λf(s).

Proof. Note first that dom fλs = dom λf(s) = S. Lemma 3.13 implies that, for any
r ∈ S,

fλs(r) = f(sr) = f(ρr(s)) = ρr(f(s)) = f(s)r = λf(s)(r).

So fλs(r) = λf(s)(r) for all r ∈ S; hence, fλs = λf(s). �

Lemma 3.15. V (S) is E∗-unitary if and only if for every V ∈ V (S) we have that
E(V ) = V or E(V ) = 0.

Proof. Assume that V (S) is E∗-unitary and let V ∈ V (S). We show that if V εr = εr

for some r ∈ S, then E(V ) = V . Otherwise E(V ) is of course 0. Suppose that V εr = εr.
Using ω we can get from Corollary 3.14 that V Vr = Vr. Since V (S) is E∗-unitary this
implies that V is idempotent, so E(V ) = V by Lemma 3.11. The converse statement
follows from Lemma 3.8. �

Note that this implies that if V (S) is E∗-unitary, then E(C∗
r (S)) = Dr(S). Of course,

V (S) is E∗-unitary if and only if Il(S) is E∗-unitary.

Lemma 3.16. Let s, t ∈ S. The following conditions are equivalent:

(i) s = t;

(ii) λsλ
∗
t is idempotent;

(iii) λ∗
t λs = 1.
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Proof. (i) ⇒ (ii). This is trivial.

(ii) ⇒ (iii). We have that λsλ
∗
t λsλ

∗
t = λsλ

∗
t . Left multiplying with λ∗

s and right multi-
plying with λt gives the desired equality.

(iii) ⇒ (i). This implies that λsλ
∗
t λs = λs and λ∗

t λsλ
∗
t = λ∗

t . Since these relations are
unique for λ∗

s, we get that λ∗
t = λ∗

s. So λs = λt and s = λs(1) = λt(1) = t. �

Corollary 3.17. If Il(S) is E∗-unitary, S is cancellative.

Proof. Let s, t, r, p ∈ S and assume that sr = tr = p. Since λsλr = λp, λ∗
sλp = λr. So

λtλ
∗
sλp = λtλr = λp. Since Il(S) is E∗-unitary, λtλ

∗
s is idempotent, so by the previous

lemma s = t. Hence, S is (right) cancellative. �

Lemma 3.18. Assume that S is a subsemigroup of a group G. Let m, n ∈ N and
let si, ti, pj , qj ∈ S for 1 � i � n, 1 � j � m. Set f = λ∗

t1λs1 · · ·λ∗
tn

λsn
and f ′ =

λ∗
q1

λp1 · · ·λ∗
qm

λpm
, and assume that f, f ′ �= 0. If f = f ′, then the equality

t−1
1 s1 · · · t−1

n sn = q−1
1 p1 · · · q−1

m pm (3.3)

holds in G, where (·)−1 means taking inverses in G.

Proof. Since f, f ′ �= 0 we can pick some r ∈ dom(f). The equality f(r) = f ′(r) then
gives that

t−1
1 s1 · · · t−1

n snr = q−1
1 p1 · · · q−1

m pmr,

where (·)−1 denotes the preimage by left multiplication in S. However, this implies that
the same relation holds in G, where (·)−1 now stands for the inverse operation in G.
Cancelling with r, we get (3.3). �

The proof of the next proposition uses techniques similar to those employed by Jiang
in [13].

Proposition 3.19. Let S be a left cancellative semigroup. Then, S embeds into a
group if and only if Il(S) is strongly E∗-unitary.

Proof. Suppose first that S embeds into a group G. We omit the embedding homo-
morphism, and instead view S as a subsemigroup of G. Define a grading ϕ : Il(S)0 → G0

by

ϕ(0) = 0,

ϕ(λ∗
t1λs1 · · ·λ∗

tn
λsn) = t−1

1 s1 · · · t−1
n sn when λ∗

t1λs1 · · ·λ∗
tn

λsn �= 0.

This is well defined because of Lemma 3.18. Suppose that ϕ(f) = 1 for some f ∈ Il(S).
Then, if f = λ∗

t1λs1 · · ·λ∗
tn

λsn
, t−1

1 s1 · · · t−1
n sn = 1. So f(r) = t−1

1 s1 · · · t−1
n snr = r for all

r ∈ dom(f). Hence, f is idempotent, and ϕ is idempotent pure. This shows that Il(S) is
strongly E∗-unitary.

Now suppose that Il(S) is strongly E∗-unitary by some idempotent pure grading
ϕ : Il(S)0 → G0. For any t ∈ S, 1 = ϕ(λ∗

t λt) = ϕ(λ∗
t )ϕ(λt), so ϕ(λt)−1 = ϕ(λ∗

t ).
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For any s, t ∈ S, if ϕ(λs) = ϕ(λt), then ϕ(λsλ
∗
t ) = 1, so λsλ

∗
t is idempotent and, by

Lemma 3.16, s = t. This implies that the homomorphism S → G given by s �→ ϕ(λs) is
injective. �

We want to find a relation between C∗
r,0(Il(S)) and C∗

r (S).

Lemma 3.20. Let T : �2(S) → �2(Il(S)) be the isometry defined by

Tεs = δλs , s ∈ S.

Let ω : Il(S) → B(�2(S)) be the map defined in Lemma 3.10. Then T ∗Λ(f)T = ω(f) for
all f ∈ Il(S).

Proof. Let f ∈ Il(S) and let s ∈ dom(f). Then s ∈ dom(f∗f), so f∗f(s) = s. By
Corollary 3.14, f∗fλs = λs and fλs = λf(s). Now, by the definition of Λ,

T ∗Λ(f)Tεs = T ∗Λ(f)δλs = T ∗δfλs = T ∗δλf(s) = εf(s) = ω(f)εs.

On the other hand, if s /∈ dom(f), then s /∈ dom(f∗f). Thus, f∗fλs �= λs and we get
that T ∗Λ(f)Tεs = T ∗Λ(f)δλs = 0. So T ∗Λ(f)Tεs = ω(f)εs for any s ∈ S. This shows
that T ∗Λ(f)T = ω(f) for any f ∈ Il(S). �

Corollary 3.21. There exists a surjective ∗-homomorphism h : C∗
r,0(Il(S)) → C∗

r (S)
such that h(Λ0(f)) = ω(f) for all f ∈ Il(S).

Proof. Define h′ : C∗
r (Il(S)) → C∗

r (S) by

h′(a) = T ∗aT.

Then, h′ is a ∗-homomorphism on the span of Λ(Il(S)). Since this span is dense in
C∗

r (Il(S)) and since h′ is continuous, it has to be a ∗-homomorphism on all of C∗
r (Il(S)).

Since h′ sends Λ(0) to 0 whenever 0 ∈ Il(S), it descends to a ∗-homomorphism
h : C∗

r,0(Il(S)) → C∗
r (S) with the desired properties. �

Theorem 3.22. Suppose that Il(S) is E∗-unitary. The map

h : C∗
r,0(Il(S)) → C∗

r (S)

is then an isomorphism if and only if J(S) is independent.

Proof. Recall that Dr(S) is the diagonal subalgebra of C∗
r (S) generated by J(S).

Then Dr(S) is C∗(J(S)0, ι) as described in Proposition 3.5 and the paragraphs before
it. Here ι : J(S)0 → 2S is the inclusion map.

The restriction of h to C∗
0 (J(S)) (which we can identify with the subalgebra generated

by the image of J(S) in C∗
r,0(Il(S)) by Corollary 3.3) maps onto Dr(S), and this restric-

tion must necessarily be equal to the map π as described in and before Proposition 3.5.
According to this proposition and Corollary 3.6, π = h|C∗

0 (J(S)) is an isomorphism if and
only if J(S) is independent. This means that, if J(S) is not independent, h is not injective.
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Suppose that J(S) is independent and Il(S) is E∗-unitary. By Proposition 3.7 there
exists a faithful conditional expectation Er,0 : C∗

r,0(Il(S)) → C∗
0 (J(S)). As a consequence

of Lemma 3.15, E(C∗
r (S)) = Dr(S). Moreover, for any V ∈ V (S), E(V ) = V if and

only if V is idempotent, and E(V ) = 0 otherwise. Using the properties of Er,0 given in
Proposition 3.7, it follows that E ◦ h = h ◦ Er,0.

Now, assume that h(a) = 0 for some a ∈ C∗
r,0(Il(S)). Then h(a∗a) = 0, so E(h(a∗a)) =

0 = h(Er,0(a∗a)). Since h is an isomorphism on the image of Er,0, Er,0(a∗a) = 0, so
a∗a = a = 0 since Er,0 is faithful. This shows that h is an isomorphism. �

We can use the equality Dr(S) = C∗(J(S)0, ι) to describe the characters on Dr(S).
Proposition 3.5 and Corollary 3.6 imply that when J(S) is independent, the characters
on C∗(J(S)0, ι) are uniquely determined by the filters on J(S)0. When S is algebraically
ordered and satisfies Clifford’s condition, Proposition 2.19 tells us that (S0,∧) � J(S)0.
So, in this case, the characters on Dr(S) correspond to the filters on (S0,∧). It is not
difficult to see that the filters on (S0,∧) are exactly what Nica, in [22, § 6.2], called
non-void hereditary directed subsets of S. This is sometimes called the Nica spectrum
of S. In general, the set of characters on Dr(S) corresponds to some subset of the set of
filters on J(S)0, but it is not always obvious what this subset is.

Performing computations in Il(S) can be difficult, but if S satisfies Clifford’s condi-
tion, it becomes easier. Note that S satisfies Clifford’s condition exactly when Il(S) is
0-bisimple. We will, however, not use this fact explicitly in this paper. See, for exam-
ple, [5,14] or [13] for more information on this.

Proposition 3.23. The following conditions are equivalent:

(i) S satisfies Clifford’s condition;

(ii) for all s, t ∈ S such that λ∗
t λs �= 0 there exist p, q ∈ S such that λ∗

t λs = λpλ
∗
q ;

(iii) Il(S) \ {0} = {λpλ
∗
q : p, q ∈ S}.

Proof. (i) ⇒ (ii). Let s, t ∈ S. If λ∗
t λs �= 0, then sS ∩ tS �= ∅, so sS ∩ tS = rS for

some r ∈ S. Since r ∈ sS ∩ tS, p := t−1(r) and q := s−1(r) exist, and λtλp = λr, so we
get that λ∗

t λr = λ∗
t λtλp = λp. Similarly, λ∗

sλr = λq. By the definition of r we have that

λtλ
∗
t λsλ

∗
s = itSisS = irS = λrλ

∗
r .

So, multiplying from the left by λ∗
t and from the right by λs, we get

λ∗
t λs = (λ∗

t λr)(λ∗
rλs) = λpλ

∗
q .

(ii) ⇒ (i). Let s, t ∈ S such that sS ∩ tS �= ∅. Then λ∗
t λs �= 0, so there exist p, q ∈ S

with λ∗
t λs = λpλ

∗
q . This means that λtλ

∗
t λsλ

∗
s = λtpλ

∗
sq. This element is idempotent, so

tp = sq by Lemma 3.16. Write r = tp = sq. This gives that λtλ
∗
t λsλ

∗
s = λrλ

∗
r , which is

equivalent to sS ∩ tS = rS.

(iii) ⇒ (ii). This is trivial.

https://doi.org/10.1017/S0013091513000540 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000540


552 M. D. Norling

It remains to prove (ii) ⇒ (iii). Let f ∈ Il(S) \ {0}. There then exist n ∈ N and
s1, . . . , sn, t1, . . . , tn ∈ S such that f = λ∗

t1λs1 · · ·λ∗
tn

λsn . By condition (ii) we have that
λ∗

tn
λsn

= λpn
λ∗

qn
for some pn, qn ∈ S. Assume that for a given 1 � j � n there exist

pj , qj ∈ S such that

λ∗
tj

λsj · · ·λ∗
tn

λsn = λpj λ
∗
qj

.

Then

λ∗
tj−1

λsj−1λ
∗
tj

λsj · · ·λ∗
tn

λsn = λ∗
tj−1

λsj−1λpj
λ∗

qj
.

Now, by condition (ii), there exist p, q ∈ S such that

λ∗
tj−1

λsj−1λpj
= λ∗

tj−1
λsj−1pj

= λpλ
∗
q .

Setting pj−1 = p and qj−1 = qqj , we get that

λ∗
tj−1

λsj−1λpj λ
∗
qj

= λpj−1λ
∗
qj−1

.

By induction on j,

λ∗
t1λs1 · · ·λ∗

tn
λsn = λp1λ

∗
q1

.

This shows that any f ∈ Il(S) \ {0} is of the form λpλ
∗
q for some p, q ∈ S. �

Corollary 3.24. Suppose that S satisfies Clifford’s condition. Il(S) is then E∗-unitary
if and only if S is cancellative.

Proof. One implication was proved in Corollary 3.17. Suppose that S is cancellative,
and that fiX = iX for some non-zero f ∈ Il(S) and some non-empty X ∈ J(S). Then,
fλr = λr for any r ∈ X since X is a right ideal. Write f = λsλ

∗
t , with s, t ∈ S. Then

λ∗
t λr = λ∗

sλr. Let p ∈ dom λ∗
t λr and define q = λ∗

t λr(p) = λ∗
sλr(p). Then tq = sq = rp.

By right cancellativity this gives that t = s, so f is idempotent. �

Corollary 3.25. If S is cancellative and satisfies Clifford’s condition, h : C∗
r,0(Il(S)) →

C∗
r (S) is an isomorphism.

Proof. By the previous corollary, Il(S) is E∗-unitary. By Proposition 2.19, J(S) is
independent, so Theorem 3.22 implies that h is an isomorphism. �

Any semigroup that is the positive cone in a quasi-lattice ordered group satisfies these
conditions. Note, however, that a semigroup satisfying Clifford’s condition is allowed to
have non-trivial invertible elements. For instance, (Z × Z

+, +) satisfies Clifford’s condi-
tion, but it is not algebraically ordered.
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3.3. Li’s constructions of full C∗-algebras for a left cancellative semigroup

In [17], Li defined the full C∗-algebra C∗(S) of a left cancellative semigroup S. The
construction is as follows. C∗(S) is the universal C∗-algebra generated by the isometries
{vs : s ∈ S} and projections {eX : X ∈ J(S)0} such that, for all s, t ∈ S and X, Y ∈
J(S)0,

vst = vsvt, vseXv∗
s = esX ,

eS = 1, e∅ = 0, eX∩Y = eXeY .

Li also defined a C∗-algebra C∗
s (S) when S embeds into a group G. The C∗-algebra C∗

s (S)
is the universal C∗-algebra generated by the isometries {vs : s ∈ S} and projections
{eX : X ∈ J(S)0} such that, for all s, t ∈ S,

vst = vsvt,

e∅ = 0,

and, whenever s1, . . . , sn, t1, . . . , tn ∈ S satisfy t−1
1 s1 · · · t−1

n sn = 1 in G,

v∗
t1vs1 · · · v∗

tn
vsn = e(t−1

1 s1···t−1
n snS).

Li then showed that {vs : s ∈ S} ⊂ C∗
s (S) and {eX : X ∈ J(S)0} ⊂ C∗

s (S) satisfy
the relations defining C∗(S), so there exists a surjective ∗-homomorphism πs : C∗(S) →
C∗

s (S) that sends vs ∈ C∗(S) to vs ∈ C∗
s (S). The universal property of C∗

s (S) also gives a
canonical ∗-homomorphism C∗

s (S) → C∗
r (S) that sends vs to Vs for all s ∈ S. Moreover,

we have the following.

Proposition 3.26. Suppose that S embeds into a group G. There exists a ∗-iso-
morphism κ : C∗

s (S) → C∗
0 (Il(S)) such that κ(vs) = λs for each s ∈ S.

Proof. The existence of a surjective ∗-homomorphism κ : C∗
s (S) → C∗

0 (Il(S)) fol-
lows from the universality of C∗

s (S). C∗(Il(S)) is generated by {λs : s ∈ S} and
{iX : X ∈ J(S)}, and these satisfy the given relations when projected down to C∗

0 (Il(S)).
In particular, if s1, . . . , sn, t1, . . . , tn ∈ S satisfy t−1

1 s1 · · · t−1
n sn = 1 in G, then, by the

proof of Proposition 3.19, f := λ∗
t1λs1 · · ·λ∗

tn
λsn is idempotent. So f = ff∗ = iX , with

X = t−1
1 s1 · · · t−1

n snS.
Let V ′(S) be the subset of C∗

s (S) given by

V ′(S) = {v∗
t1vs1 · · · v∗

tn
vsn : n ∈ N, t1, . . . , tn, s1, . . . , sn ∈ S}.

Li’s relations guarantee that V ′(S) is actually an inverse semigroup. Using [17,
Lemma 2.8] (and mapping down to C∗

s (S)), we get that, for any v ∈ V ′(S), v∗v = eX and
vv∗ = eY for some X, Y ∈ J(S), so v is a partial isometry. Moreover, any v, w ∈ V ′(S)
have commuting initial and final projections.

Comparing the universal properties of C∗
s (S) and C∗

0 (V ′(S)) yields that these two
C∗-algebras are canonically isomorphic. Hence, κ is an isomorphism if and only if its
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restriction to V ′(S) gives a semigroup isomorphism V ′(S) → Il(S) (note that the restric-
tion of κ to V ′(S) is automatically a surjective semigroup homomorphism onto Il(S)).
Let J ′(S) be the semilattice of idempotents in V ′(S). For any v ∈ J ′(S), v∗v = v, so
v = eX for some X ∈ J(S), i.e. J ′(S) = {eX : X ∈ J(S)}. Hence, κ restricts to an
isomorphism J ′(S) → J(S) since it is injective on this set.

Let v = v∗
t1vs1 · · · v∗

tn
vsn ∈ V ′(S). Suppose that κ(v) = λ∗

t1λs1 · · ·λ∗
tn

λsn is idempotent.
Then t−1

1 s1 · · · t−1
n sn = 1 in G. This implies that v is idempotent. Thus, κ−1(J(S)) =

J ′(S), so κ|V′(S) is an isomorphism by Lemma 2.14. �

Proposition 3.27. Let S be any left cancellative semigroup. There exists a surjective
∗-homomorphism η : C∗(S) → C∗

0 (Il(S)) such that η(vs) = λs for each s ∈ S. If S

satisfies Clifford’s condition, then η is an isomorphism.

Proof. The existence of η follows, as before, from the universality of C∗(S). Define
V(S) ⊂ C∗(S) to be

V(S) = {v∗
t1vs1 · · · v∗

tn
vsn : n ∈ N, t1, . . . , tn, s1, . . . , sn ∈ S}.

As in the previous proposition, V(S) is an inverse semigroup and it is sufficient to show
that the restriction of η to V(S) is a semigroup isomorphism onto Il(S). Let J ′′(S) =
{eX : X ∈ J(S)}. Then, J ′′(S) is the semilattice of idempotents in V(S) and η|J′′(S) is
an isomorphism onto J(S).

We first show that V(S) \ {0} = {vpv
∗
q : p, q ∈ S}. The proof is almost identical to

that in Proposition 3.23, and we only show that, for any s, t ∈ S with v∗
t vs �= 0, there

exist p, q ∈ S with v∗
t vs = vpv

∗
q . If v∗

t vs �= 0, then vtv
∗
t vsv

∗
s �= 0, so since η|J′′(S) is an

isomorphism onto J(S), and since S satisfies Clifford’s condition, there exists some r ∈ S

with sS ∩ tS = rS and
vtv

∗
t vsv

∗
s = vrv

∗
r . (3.4)

Since r ∈ sS ∩ tS, there exist p, q ∈ S such that sq = r and tp = r. Then vsvq = vr,
so vq = v∗

svr. Similarly, vp = v∗
t vr. Now, by multiplying both sides of (3.4) on the left

with v∗
t , then multiplying both sides on the right with vs, we get that

v∗
t vs = v∗

t vrv
∗
rvs = vpv

∗
q .

Consider v ∈ V(S) \ {0}, and suppose that η(v) is idempotent. There exist p, q ∈ S

with v = vpv
∗
q . Now η(v) = λpλ

∗
q , so p = q by Lemma 3.16. Thus, v = vpv

∗
q = vpv

∗
p,

which is idempotent. It follows from Lemma 2.14 that η|V(S) is an isomorphism. �

It is now clear that the canonical map C∗(S) → C∗
r (S) factors as

C∗(S)
η−→ C∗

0 (Il(S)) Λ0−−→ C∗
r,0(Il(S)) h−→ C∗

r (S).

When S embeds into a group we get the following factorization:

C∗(S) πs−→ C∗
s (S) κ−→

�
C∗

0 (Il(S)) Λ0−−→ C∗
r,0(Il(S)) h−→ C∗

r (S).

Note that in this case η = κ◦πs, so πs is an isomorphism if and only if η is an isomorphism.
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Li asked when a semigroup homomorphism φ : S → R of left cancellative semigroups
induces a ∗-homomorphism C∗(S) → C∗(R) by the formula vs �→ vφ(s). We can give a
partial answer. It induces a ∗-homomorphism C∗

0 (Il(S)) → C∗
0 (Il(R)) given by λs �→ λφ(s)

if and only if φ extends to a 0-homomorphism Il(S)0 → Il(R)0. Of course, determining
when this is the case may not be easy. See Corollary 3.39 for a result in this direction
when S is left reversible and R is a group.

C∗(S) has the nice feature that it can be described as a crossed product by endomor-
phisms (see [17, Lemma 2.14]). Li also showed that C∗(S) generalizes Nica’s C∗-algebras
for quasi-lattice ordered groups as well as for the Toeplitz algebras associated with rings
of integers [7]. Nica proved in [23] that his C∗-algebra for the quasi-lattice ordered group
(G, S) can be constructed as a C∗-algebra of the Toeplitz inverse semigroup T (G, S).
This can be explained by the next lemma as well as Proposition 3.27. For each g ∈ G,
define

βg : {s ∈ S : gs ∈ S} → {s ∈ S : g−1s ∈ S}, βg(s) = gs.

Then, T (G, S) is defined to be the inverse subsemigroup of I(S) generated by {βg}g∈G.

Lemma 3.28. Let (G, S) be a quasi-lattice ordered group. Then Il(S)0 = T (G, S)0.

Proof. Let g ∈ S. Then {s ∈ S : gs ∈ S} = S and {s ∈ S : g−1s ∈ S} = gS, so
βg = λg. This shows that T (G, S) contains Il(S).

Note that, for any g ∈ G, βg−1 = β∗
g . If βg �= 0, domβ∗

g = {s ∈ S : g−1s ∈ S} = gS ∩ S

is non-empty, so g−1s = t ∈ S for some s, t ∈ S. Then g � s, as defined in Definition 2.20.
Moreover, 1−1s ∈ S, so 1 � s. Thus, s is a common upper bound for g and 1 in S. Then,
g and 1 have a least common upper bound r ∈ S since (G, S) is quasi-lattice ordered.

Let p ∈ gS ∩ S. Using the same arguments as we did for s, we get that g � p and
1 � p, so r � p since r was a least common upper bound for g and 1. Then r � p, so
p ∈ rS. This shows that gS ∩ S ⊂ rS. However, since g � r, g−1r = u for some u ∈ S.
Then r = gu, so rS = guS ∩ S ⊂ gS ∩ S. Now,

dom β∗
g = gS ∩ S = rS = dom λuλ∗

r .

Moreover, for any v ∈ gS ∩ S,

β∗
g (v) = βg−1(v) = g−1v = ur−1v = λuλ∗

r(v).

So β∗
g = λuλ∗

r , and βg = λrλ
∗
u. This shows that T (G, S)0 ⊂ Il(S)0. �

A more detailed discussion on the relationship between Il(S) and T (G, S) can be
found in [13]. Nica’s construction of a C∗-algebra for T (G, S) uses a groupoid, but
Milan explained in [19, § 5] why this C∗-algebra is isomorphic to C∗

0 (T (G, S)).

3.4. Left reversible semigroups, left amenability and functoriality

We still consider a left cancellative semigroup S unless otherwise stated. Recall that
S is left reversible if, for any s, t ∈ S, sS ∩ tS �= ∅. The next lemma is a slightly stronger
version of [15, Lemma 2.4.8].

https://doi.org/10.1017/S0013091513000540 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000540


556 M. D. Norling

Lemma 3.29. S is left reversible if and only if 0 /∈ Il(S) if and only if ∅ /∈ J(S).

Proof. Clearly, 0 /∈ Il(S) if and only if ∅ /∈ J(S). Moreover, sS ∩ tS ∈ J(S) for all
s, t ∈ S, so ∅ /∈ J(S) implies that S is left reversible. Suppose that S is left reversible,
and let X, Y ⊂ S be non-empty right ideals. If s ∈ X and t ∈ Y , then sS ⊂ X and
tS ⊂ Y , so sS ∩ tS ⊂ X ∩ Y and X ∩ Y �= ∅. Moreover, for any t ∈ S, tt−1X = X ∩ tS,
so t−1X is non-empty. It follows by a simple induction argument that ∅ /∈ J(S). �

We include a short proof of the well-known fact that left amenable semigroups are
left reversible. See also [26, Proposition 1.23]. To be formal, a left invariant mean on S

is a state µ on �∞(S) such that, for any s ∈ S and ξ ∈ �∞(S), µ(ξ ◦ λs) = µ(ξ). The
semigroup S is left amenable if it has a left invariant mean. Right amenability is similarly
defined. It is not difficult to show that a group or an inverse semigroup is left amenable
if and only if it is right amenable, so left amenable groups and inverse semigroups are
often just called amenable.

Lemma 3.30. Let S be left amenable. Then, for any left invariant mean µ on S,
µ(χX) = 1 for all X ∈ J(S). This implies that S is left reversible.

Proof. For convenience, we set µ(X) = µ(χX) for any X ⊂ S. Note that, for any
t ∈ S, χX ◦ λt = χt−1X . Thus, µ(t−1X) = µ(X). Since t−1tX = X, we also have that
µ(tX) = µ(X). By Lemma 3.9,

J(S) = {t−1
1 s1 · · · t−1

n snS : n ∈ N, si, ti ∈ S}.

So an induction shows that µ(X) = µ(S) = 1 for all X ∈ J(S). As µ(∅) = 0, this shows
that ∅ /∈ J(S). �

It is also well known that every cancellative left reversible semigroup embeds into a
group G. This is one formulation of Ore’s theorem [24]. The proof of Theorem 3.31 we
present below is basically the same as Rees’s proof, found in [6, p. 35]. The reason we
repeat it here is that it illustrates how Il(S) is related to G. See also [15, Chapter 2.4],
where Lawson gives an account of this proof and shows that Il(S) is E-unitary when S

is left reversible and cancellative.
Suppose that 0 /∈ Il(S). We can then construct the maximal group homomorphic image

G(Il(S)) of Il(S) as described in Definition 2.13. For simplicity we write that G(S) =
G(Il(S)). Let αS : Il(S) → G(S) denote the quotient homomorphism. Let γS : S → G(S)
be given by γS(s) = αS(λs). G(S) is then generated by the cancellative semigroup γS(S).

Theorem 3.31. Let S be left reversible. The following conditions are equivalent:

(i) S is cancellative;

(ii) γS : S → G(S) is injective;

(iii) S embeds into a group;

(iv) Il(S) is E-unitary.
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Proof. (ii) ⇒ (iii) and (iii) ⇒ (i) are trivial. (iii) ⇔ (iv) follows from Proposition 3.19
and the fact that an inverse semigroup without 0 is E-unitary if and only if it is strongly
E∗-unitary.

(i) ⇒ (ii). Since the map S ↪→ Il(S) is injective, we have only to prove that the homo-
morphism Il(S) → G(S) is injective on the set {λs : s ∈ S}. Let s, t ∈ S and suppose
that λs and λt map to the same element. Then, by the definition of the congruence that
was used to construct G(S) there exists an X ⊂ J(S) such that λsiX = λtiX . Hence, for
any r ∈ X, sr = λs(r) = λt(r) = tr. By cancelling with r we get that s = t. �

Definition 3.32. Let P be a semigroup. Recall that a subset X ⊂ P is said to be left
thick if, for any finite sequence s1, . . . , sn ∈ P ,

n⋂
i=1

siX �= ∅.

The next proposition is related to [26, Proposition 1.27].

Proposition 3.33. Let S be a subsemigroup of a group G such that S generates G.
S is then left reversible if and only if S is a left thick subset of G.

Proof. For t ∈ S and X ⊂ S, t−1(X) = (t−1)X ∩ S, where t−1(X) is the preimage
inside S and (t−1)X is defined by multiplication inside G. So, for any n ∈ N and si, ti ∈ S,

t−1
1 s1 · · · t−1

n snS = S ∩
n⋂

j=1

(t−1
1 s1 · · · t−1

j sj)S.

If S is left thick, this set is never empty, nor is any finite intersection of sets of this type,
so ∅ /∈ J(S). On the other hand, for any g1 · · · gm ∈ G, write that gi = t−1

i,1 si,1 · · · t−1
i,ni

si,ni ,
with si,j , ti,j ∈ S. Then,

m⋂
i=1

giS ⊃ S ∩
m⋂

i=1

ni⋂
j=1

(t−1
i,1 si,1 · · · t−1

i,j si,j)S.

If ∅ /∈ J(S), the right-hand side is non-empty, and so is the left-hand side, so S is a left
thick subset of G. �

By a theorem of Mitchell [20], if S′ is a left thick subsemigroup of a semigroup S, then
S′ is left amenable if and only if S is left amenable. Hence, we get the following.

Corollary 3.34. Let S be cancellative and left reversible. S is then left amenable if
and only if G(S) is amenable.

We now show that the assumption that S is right cancellative is redundant in the
statement of Corollary 3.34. If P is any semigroup, let ≈ (or ≈P ) be the relation on P

given by s ≈ t if there exists some r ∈ P with sr = tr. From [6, p. 35] we have that if P

is left reversible, ≈ is a congruence and P/≈ is a right cancellative semigroup. Proposi-
tion 1.25 of [26] states that P is left amenable if and only if P/≈ is left amenable. Note
that ≈Il(S) is exactly the congruence on Il(S) one takes the quotient with to create G(S).
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Lemma 3.35. Let S be left reversible. γS(S) is then isomorphic to S/≈S

Proof. We show that γS(s) = γS(t) if and only if there exists some r ∈ S such that
sr = tr. First, if sr = tr, then λsλr = λtλr, so γS(s) = γS(t). On the other hand, if
γS(s) = γS(t), there exists some X ∈ J(S) such that λsiX = λtiX . Let r ∈ X. Then,
λsiXλr = λsλr = λtiXλr = λtλr, so by evaluating at 1 we get that sr = tr. �

Corollary 3.36. Let S be a left cancellative, left reversible semigroup. The following
statements are equivalent:

(i) S is left amenable;

(ii) γS(S) is left amenable;

(iii) G(S) is amenable;

(iv) Il(S) is amenable.

Proof. To show that the amenability of G(S) is equivalent to the left amenability of
γS(S), we need to show that γS(S) is left reversible. We have that, for any s, t ∈ S,

γS(s)γS(S) ∩ γS(t)γS(S) = γS(sS) ∩ γS(tS) ⊃ γS(sS ∩ tS).

The right-hand side is non-empty, so the left-hand side must be non-empty as well. This
proves that γS(S) is left reversible, since any p ∈ γS(S) is of the form γS(s) for some
s ∈ S. All the other equivalences are taken care of by the results we have developed so
far. Since G(S) = Il(S)/≈Il(S), G(S) is amenable if and only if Il(S) is amenable. Since
γS(S) � S/≈S , γS(S) is left amenable if and only if S is left amenable. �

We conclude this subsection by showing that when S is left reversible the construction
S �→ G(S) is a generalization of the Grothendieck construction in that it is functorial.
This is probably already known by specialists, but we give a proof here for completeness.
Another way to prove it is to show that any homomorphism of S to a group can be
extended to define a group homomorphic image of Il(S), and then use that G(S) is the
maximal group homomorphic image of Il(S).

Lemma 3.37. Let S be a subsemigroup of a group G such that S generates G, and
let H be a group. If S is left thick in G, then every homomorphism φ : S → H uniquely
extends to a homomorphism φ′ : G → H.

Proof. Let t1, . . . , tn, s1, . . . , sn ∈ S. We want to define

φ′(t−1
1 s1 · · · t−1

n sn) = φ(t1)−1φ(s1) · · ·φ(tn)−1φ(sn),

so we need to show that this is a consistent definition. Let q1 · · · qm, p1 · · · pm ∈ S be such
that

t−1
1 s1 · · · t−1

n sn = q−1
1 p1 · · · q−1

m pm.
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Since S is left thick in G,

S ∩
n⋂

i=1

(s−1
n tn · · · s−1

i ti)S ∩
m⋂

j=1

(p−1
m qm · · · p−1

j qj)S �= ∅.

So there exists an r ∈ S such that

ui := t−1
i si · · · t−1

n snr ∈ S,

vj := q−1
j pj · · · q−1

m smr ∈ S

for all 1 � i � n and 1 � j � m. First, t−1
n snr = un, so snr = tnun, which implies that

φ(sn)φ(r) = φ(tn)φ(un) and φ(tn)−1φ(sn)φ(r) = φ(un). Suppose now that, for some
1 � k � n,

φ(tk)−1φ(sk) · · ·φ(tn)−1φ(sn)φ(r) = φ(uk).

Then, since
sk−1t

−1
k sk · · · t−1

n snr = sk−1uk = tk−1uk−1,

we get that
φ(tk−1)−1φ(sk−1)φ(uk) = φ(uk−1).

Using induction, this implies that φ(t1)−1φ(s1) · · ·φ(tn)−1φ(sn)φ(r) = φ(u1). Similarly,
φ(q1)−1φ(p1) · · ·φ(qm)−1φ(pm)φ(r) = φ(v1) = φ(u1), so by cancelling with φ(r) we see
that φ′ is well defined. The uniqueness of φ′ is trivial since S generates G. �

Theorem 3.38. Let S be left reversible and let H be a group. Every homomorphism
φ : S → H then gives rise to a unique homomorphism φ′ : G(S) → H such that φ′◦γS = φ.

Moreover, for any left cancellative left reversible semigroup R and homomorphism
φ : S → R, there exists a unique homomorphism φ′ : G(S) → G(R) such that φ′ ◦ γS =
γR ◦ φ.

Proof. First we need to show that φ : S → H can be pushed down to a homomorphism
γS(S) → H. If s, t, r ∈ S, with sr = tr, then φ(s)φ(r) = φ(t)φ(r), so φ(s) = φ(t).
This implies that φ is constant on the equivalence classes of ≈; hence, there exists a
homomorphism φ′′ : γS(S) → H such that φ′′ ◦ γS = φ. By Lemma 3.37, φ′′ extends
to a homomorphism φ′ : G(S) → H such that φ′ ◦ γS = φ. Uniqueness follows since
the constructions φ �→ φ′′ and φ′′ �→ φ′ are unique, so if ψ : S → G(S) is another
homomorphism with ψ ◦ γS = φ, then the restriction of ψ to γS(S) must be equal to φ′′.

If φ : S → R is a homomorphism, then we can apply the above construction to γR ◦
φ : S → G(R) and thereby get the desired φ′ : G(S) → G(R). �

Corollary 3.39. Let S be left reversible and let G be a group. For every homomor-
phism φ : S → G there then exists a ∗-homomorphism πφ : C∗(Il(S)) → C∗(G) such that
πφ(λs) = λφ(s) for each s ∈ S.
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Proof. Consider a homomorphism φ : S → G. From Theorem 3.38 there exists a
homomorphism φ′ : G(S) → G such that φ′ ◦ γS = φ. Then, φ′ ◦ αS : Il(S) → G satisfies
φ′(αIl(S)(λs)) = λφ(s) for each s ∈ S, so the existence of πφ follows from the universal
property of C∗(Il(S)). �

For example, if S is left reversible we may consider the quotient homomorphism
αS : Il(S) → G(S) and obtain a surjective ∗-homomorphism πS : C∗(Il(S)) → C∗(G(S)).
(Li also showed the existence of such a map from C∗

s (S).) When S = Z
+ this is the

surjective part of the classical C∗-extension

0 → K(�2(Z+)) → C∗
r (Z+) → C(T) → 0,

where K(�2(Z+)) are the compact operators on �2(Z+),

C∗
r (Z+) � C∗

r (Il(Z+)) � C∗(Il(Z+))

is the unique C∗-algebra generated by a single isometry, and

C(T) � C∗(Z) � C∗(G(Z+)).

By [8, Proposition 1.4], there also always exists a canonical ∗-homomorphism

πS,r : C∗
r (Il(S)) → C∗

r (G(S)).

In general, it would be interesting to have a description of the kernel of πS and πS,r.
Nica [22] gave some necessary and sufficient conditions for C∗

r (S) to contain the compacts
when (G, S) is a quasi-lattice ordered group.

3.5. Amenability and weak containment when S embeds into a group

In [17], Li showed that if S is left reversible and embeds into a group, and J(S) is
independent, then S is left amenable if and only if the canonical map C∗

s (S) → C∗
r (S) is

an isomorphism. Note that to recover this formulation of the result from Li’s statement,
one has to use the fact that, when S embeds into a group, S is left reversible if and
only if there is a character on C∗

s (S). This is proved in [17, Lemma 4.6]. One also has to
use that since S is left reversible, S is cancellative if and only if S embeds into a group.
From [19], we know that an E-unitary inverse semigroup P has weak containment if and
only if G(P ) is amenable. Hence, Theorem 3.31 and Corollary 3.34 give us the following.

Theorem 3.40. A cancellative left reversible semigroup S is left amenable if and only
if Il(S) has weak containment.

This lets us recover Li’s result.

Corollary 3.41. Suppose that S is left reversible, that it embeds into a group, and
that J(S) is independent. S is then left amenable if and only if the canonical map
C∗

s (S) → C∗
r (S) is an isomorphism.
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Proof. Theorems 3.31 and 3.22 together imply that h is an isomorphism. Propo-
sition 3.26 shows that κ is an isomorphism. Theorem 3.40 shows that when S is left
reversible, Λ is an isomorphism if and only if S is left amenable. The composition of κ,
Λ and h is the canonical map C∗

s (S) → C∗
r (S). �

Corollary 3.42. Suppose that S is cancellative, left reversible and satisfies Clifford’s
condition. The canonical map C∗(S) → C∗

r (S) is then an isomorphism if and only if S is
left amenable.

Proof. By Corollary 3.30, h is an isomorphism, and by Proposition 3.27 η is an
isomorphism. Since S is left reversible, Theorem 3.40 implies that S is left amenable if
and only if Λ is an isomorphism. The composition of η, Λ and h is the canonical map
C∗(S) → C∗

r (S). �

Remark 3.43. Corollary 3.36 does not imply that left amenability of S is equivalent
to weak containment of Il(S) for any left reversible S. Without Il(S) being E-unitary,
one also has to prove that the inverse semigroup H := α−1

S (1G(S)) has weak containment
(see [19, Theorem 2.4 and Corollary 2.5]). Milan’s results do, however, give us that weak
containment of Il(S) implies left amenability of G(S) and thus of S (for left reversible S).

When S is not left reversible, S cannot be left amenable, but Λ0 : C∗
0 (Il(S)) →

C∗
r,0(Il(S)) can still be an isomorphism. Nica showed in [22] that his version of the

full and reduced C∗-algebras for F
+
n are canonically isomorphic. Here, F

+
n is the free

semigroup on n generators. This implies that Λ0 is an isomorphism in this case. The
semigroup F

+
n is easily seen to be not left reversible for n � 2.

Milan [19] developed a technique for determining weak containment of strongly
E∗-unitary inverse semigroups P . Fixing an idempotent pure grading ϕ : P → G0, he
defined

Ag = span{p ∈ P : ϕ(p) = g} inside CP/C0P ,

Bg = Ag inside C∗
0 (P ).

Milan then showed that {Bg}g∈G is a Fell bundle over G and that P has weak containment
if and only if this Fell bundle is amenable. Milan stated this result for the universal
grading of P , but the proof works for any idempotent pure grading.

In our setting, Il(S) is strongly E∗-unitary if and only if S embeds into a group G.
Recalling the idempotent pure grading ϕ : Il(S)0 → G0 constructed in Proposition 3.19,
one sees that the associated Fell bundle {Bg}g∈G is given by

Bg = span{λ∗
t1λs1 · · ·λ∗

tn
λsn : t−1

1 s1 · · · t−1
n sn = g} in C∗

0 (Il(S)). (3.5)

Theorem 3.44. Suppose that S embeds into a group G. Then, Λ0 : C∗
0 (Il(S)) →

C∗
r,0(Il(S)) is an isomorphism if and only if the Fell bundle {Bg}g∈G defined in (3.5) is

amenable.

https://doi.org/10.1017/S0013091513000540 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000540


562 M. D. Norling

Corollary 3.45. Suppose that S embeds into a group and satisfies Clifford’s condition.
The canonical map C∗(S) → C∗

r (S) is then an isomorphism if and only if the Fell bundle
{Bg}g∈G given by

Bg = span{λsλ∗
t : st−1 = g} in C∗

0 (Il(S)) (3.6)

is amenable.

Proof. For semigroups satisfying Clifford’s condition, one can use Proposition 3.23 to
deduce that the Fell bundles defined in (3.5) and (3.6) are the same. �

When (G, S) is a quasi-lattice ordered group, this expresses Nica’s amenability of
(G, S) in terms of the amenability of the Fell bundle defined in (3.6), and is, in view
of Lemma 3.28, merely a restatement of [19, Proposition 5.2]. In the case where S is a
finitely generated free semigroup, amenability of the Fell bundle defined in (3.6) may be
deduced from [10]. However, the proof one would thereby get from Corollary 3.45, that
C∗(S) → C∗

r (S) is an isomorphism, would not be simpler than Nica’s original proof [22].
Li [17] showed that C∗(S) and C∗

r (S) are nuclear when S is countable, cancellative and
right amenable. The last two conditions imply that S embeds into an amenable group.
We show that S does not have to be countable to prove that C∗

s (S) is nuclear.

Proposition 3.46. Suppose that S embeds into an amenable group. Λ0 is then an
isomorphism, and C∗

0 (Il(S)) (� C∗
s (S)) and C∗

r (S) are nuclear.

Proof. From [9, Theorem 4.7] we know that a Fell bundle over an amenable group
satisfies the approximation property, and is thus amenable. Moreover, it was proved in [1]
that a Fell bundle with nuclear unit fibre has nuclear cross-sectional C∗-algebra if it also
satisfies the approximation property. The unit fibre in {Bg}g∈G is the closure of the
span of J(S) in C∗

0 (Il(S)), and is abelian. C∗
r (S) is also nuclear since it is a quotient of

C∗
0 (Il(S)) (see [3, Theorem 10.1.3]). �

Corollary 3.47. Let S be cancellative and left reversible. S is then left amenable if
and only if C∗

0 (Il(S)) (� C∗
s (S)) is nuclear. If, in addition, J(S) is independent, S is left

amenable if and only if C∗
r (S) is nuclear.

Proof. One implication follows from Proposition 3.46, since a cancellative and left
amenable S embeds into the amenable group G(S). It remains to show that C∗

0 (Il(S))
being nuclear implies that S is left amenable. This was shown for C∗

s (S) in [17, Propo-
sition 4.17] with an argument analogous to the following. C∗(G(S)) is a quotient of
C∗

0 (Il(S)) and is thus nuclear. This implies that G(S) is amenable and that S is left
amenable (see [3, Theorems 10.1.3 and 2.6.8]).

Assume that J(S) is independent and that C∗
r (S) is nuclear. By Theorem 3.22,

C∗
0,r(Il(S)) � C∗

r (S). Since C∗
r (G(S)) is a quotient of C∗

0,r(Il(S)) it is also nuclear. This
implies that G(S) is amenable (see [3, Theorem 2.6.8]). �

Remark 3.48. Note that when S is left reversible, but not right cancellative, nucle-
arity of C∗

0 (Il(S)) still implies that S is left amenable.
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Corollary 3.49. Let R be a GCD domain. The canonical ∗-homomorphism C∗(R �

R×) → C∗
r (R � R×) is then an isomorphism and C∗(R � R×) is nuclear.

Proof. As Li remarked in [17], R � R× embeds into an amenable group, so Λ0 is an
isomorphism and C∗

0 (Il(R � R×)) is nuclear by Proposition 3.46. By Corollary 3.25, h is
an isomorphism, and by Propositions 3.27 and 2.23, η is an isomorphism. �

Note that if one also assumes that R is a Dedekind domain, the previous corollary
is weaker than the results given in [7, 17], since not all rings of integers or Dedekind
domains are GCD domains.
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