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Abstract

In this paper we give an analytic solution for graphs with n nodes andE = cn log n edges
for which the probability of obtaining a given graph G is µn(G) = exp (−β∑n

i=1 d
2
i ),

where di is the degree of node i. We describe how this model appears in the context of load
balancing in communication networks, namely peer-to-peer overlays. We then analyse
the degree distribution of such graphs and show that the degrees are concentrated around
their mean value. Finally, we derive asymptotic results for the number of edges crossing
a graph cut and use these results (i) to compute the graph expansion and conductance,
and (ii) to analyse the graph resilience to random failures.
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1. Introduction

Random graphs provide a way of modelling large and complex networks, and of studying
stochastic processes on such networks [7, pp. 15–21]. Early work on this topic goes back to
the famous random graph or Bernoulli graph introduced by Solomonoff and Rapoport [25] in
the early 1950s and studied by Erdös–Rényi [8] a decade later. The Bernoulli random graph
model is, however, rather simplistic and fails to capture important features of many real-world
networks. This has stimulated work on a number of other random graph models. Exponential
random graphs were first introduced in the early 1980s by Holland and Leinhardt [15] based
on the work of Besag [2]. More recently, Frank and Strauss [9] studied a subclass of these
graphs, namely Markov graphs. They correspond to log-linear statistical models of random
graphs with general dependence structure and Markov dependence [4, Chapter 7] widely used
by statisticians and social network analysts [24].

To motivate the study of such graphs, we consider the situation where we have measurements
of a number of network properties, or observables, for a real-world network, and wish to come up
with a network model that exhibits similar properties. Denote these observables by (xi)i=1,...,k
and denote by (x̄i)i=1,...,k their measured average values. Let G be a set of graphs, and let G
be a graph in G. To describe a family of graphs that reproduce the graph’s observed properties,
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we wish to choose a probability distribution µ on G such that
∑
G∈G

µ(G)xi(G) = x̄i for all i = 1, . . . , k, (1)

where xi(G) is the value taken by xi in the graph G. Clearly, there are infinitely many such
probability distributions; a popular choice is the one that maximises the Gibbs or Shannon
entropy

S = −
∑
G∈G

µ(G) logµ(G)

subject to (1) and the normalising condition
∑
G∈G µ(G) = 1. Introducing Lagrange multi-

pliers we can easily show [23] that the maximum entropy is achieved for the distribution

µ(G) = 1

Z
e−H(G), H(G) =

k∑
i=1

θixi(G), (2)

where Z = ∑
G∈G e−H(G) is the normalising constant and the constants (θi)i=1,...,k can be

expressed in terms of the measured average values (x̄i)i=1,...,k . Graphs drawn according to
distributions defined by (2) are called exponential random graphs. They are random graphs
with maximum entropy subject to the specified constraints.

Exponential random graphs can be generated using suitable random walks on the space of
graphs, for which they arise as the stationary distribution. More precisely, given H(G), a cost
or energy function associated with the graph G, define the Markov chain on G with transition

pG,G′ = min(1, e−(H(G′)−H(G))).

It can easily be shown that the transition matrix fulfills the detailed balance condition (the
Markov chain is reversible) and the corresponding stationary distribution is given by the
Boltzmann-type probability distribution µ(G) = Z−1e−H(G).

In this paper we study the particular case of graphs with n nodes andE = cn log n edges for
whichH(G) = ∑n

i=1 d
2
i , where di is the degree of node i. This model appears in the context of

load balancing in certain communication networks, namely peer-to-peer overlays as described
in Section 2. In Section 3 we present our main results. We analyse the degree distribution of
such graphs in Section 4 and show that the degrees are concentrated around their mean value
with high probability (w.h.p.). In Section 5 we derive asymptotic results on the number of edges
crossing a graph cut and use these results (i) to compute the graph expansion and conductance
in Subsection 5.1, and (ii) to analyse the graph resilience to random failures in Subsection 5.2.
(This paper expands on an earlier short version which appeared in the proceedings of the 41st
Allerton Conference on Communications, Control and Computing [11].)

2. Load balancing in overlay networks

Peer-to-peer (P2P) systems are decentralised networks enabling users to contribute resources
for mutual benefit. File sharing using P2P networks has gained wide popularity and it has
recently been suggested that it is the dominant consumer of bandwidth ahead of Web traffic [26].
In these systems users form a network or overlay of peers that can act as both clients and servers
alleviating the bottlenecks that appear in centralised schemes relying on servers to provide the
content. Early P2P systems relied on structured overlays wherein users are allocated identifiers
using digital hash tables. These structured overlays are chosen to facilitate routeing between
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nodes and searching for data. More recently, unstructured overlays have been advocated as a
viable alternative to cope with some of the most important features of P2P networks [18].

In what follows we will model an overlay as a graph with n nodes representing the peers
connected by edges describing whether two peers know each other or not. We assume that
the ‘who knows who’ relationship is symmetric, i.e. the graph is undirected. We will call
the nodes that a given node knows its neighbours, the degree of a node being the number
of its acquaintances. In [12], an algorithm was described that ensures the construction of
an Erdös–Rényi-like overlay, wherein any pair of peers is connected with a given probability
independently from other pairs. It is known that such graphs are connected, w.h.p., if the order
of the mean degree of nodes is higher than log n [3, Theorem 7.3], and the result is true for
more general graphs [1]. These results highlight the fact that the overlay building protocol
should ensure that each peer is provided with a set of neighbours of size c log n, c > 1, so that
the memory requirements on each member grows slowly in the overlay size whilst having the
desired connectedness property.

Let G = (V , E) be a graph where V = {1, . . . , n} is the set of nodes and E is the set of
edges of size E. We will denote by di the degree of node i. In the rest of the paper we will
focus on connected graphs with

n∑
i=1

di = 2E = cn log n, c > 1.

We now describe a distributed iterative scheme that will modify the initial overlay to provide
the nodes with neighbourhoods of size concentrated around log n. Define the energy of a
graph G by

H(G) =
n∑
i=1

d2
i .

Starting from a graph G, periodically at rate 1, each node i performs the following steps.

1. Choose uniformly at random two neighbours j and k of i.

2. Evaluate the cost of replacing link {i, j} by link {j, k}, i.e.

�H = 2(dk − di + 1).

3. Replace link {i, j} by link {j, k} with probability

min

((
e−β�H di(di − 1)

dk(dk + 1)

)
, 1

)
.

The above algorithm is a particular instance of the Metropolis algorithm [21] (see [4,
Chapter 7] for more details). It is parametrised by the constant β that corresponds to the
inverse of a temperature and provides a trade-off between accuracy, in terms of how close
we get to the optimal configuration, and speed of convergence. It defines a random walk on
the set of connected graphs with a given number of edges E = 1

2

∑n
i=1 di = cn log (n)/2. In

particular, the stationary distribution of this Markov chain is given by the following Gibbs
distribution [4, Chapter 7]:

µn(G) = 1

Z
exp

(
−β

n∑
i=1

d2
i

)
1{∑n

i=1 di=cn log n}, (3)

where Z is a normalizing constant.
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Starting from a connected graph, the above algorithm retains connectedness. In [10], the
authors introduced a similar algorithm dubbed the localiser that takes into account locality
awareness. More precisely, the authors included an additional term in the energy function
that accounted for the cost of the communication between two nodes. Using simulations, they
showed that in the graph obtained the set of neighbours of a node consists mainly of nearby
nodes.

3. Main results

The main results of this paper state that, for graphs generated according to (3), we have the
following assertions.

• (See Theorem 1, below.) Given d = ∑n
i=1 di/n, the degrees of the nodes di are concen-

trated around d = ∑n
i=1 di/n, i.e. there exists a constant α > 0, such that

max
1≤i≤n |di − d| ≤ √

α log n w.h.p.

• (See Theorem 4, below.) Let U be a subset of the set of nodes V of size u, and let eU,U c

be the number of links betweenU and its complementU c. There exists a constant δ̃ such
that

eU,U c ≥ (1 − δ̃)cu log n w.h.p.

In the terms of the overlay networks this means that, if we assume that U is the set of
nodes holding the data that all nodes are interested in, there is a large number of paths
through which the data could be sent to the nodes in U c that have not acquired it yet.

• (See Theorem 6, below.) The overlay network constructed above is resilient to node
failures, i.e. it remains connected, w.h.p., despite nodes failing at random with probability
p as long as p < exp (−1/c(1 − δ̃)).

In the rest of the paper we give detailed proofs of these results.

4. Degree distribution

We work with labelled graphs throughout. We consider random graphs on n nodes with E
edges generated according to distribution (3). Our aim in this section is to show that the degree
sequence of a graph generated according to (3) is concentrated around its mean.

The probability measureµn on graphs induces a probability measure on degree distributions,
which we denote by πn. For d = (d1, . . . , dn),

πn(d) = 1

Zn
Gn(d) exp

(
−β

n∑
i=1

d2
i

)
1{∑n

i=1 di=cn log n},

where Gn(d) is the number of graphs having the degree sequence d and Zn is a normalizing
constant. We can rewrite the above as

πn(d) = 1

Zn(γ )

(
E! 2E

(2E)!Gn(d)
n∏
i=1

di !
) n∏
i=1

1

di ! exp(−βd2
i + γ (log n)di)1{∑n

i=1 di=cn log n}

= G̃n(d)

Zn(γ )

n∏
i=1

1

di ! exp(−βd2
i + γ (log n)di)1{∑n

i=1 di=cn log n}, (4)
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where

G̃n(d) = E! 2E

(2E)!Gn(d)
n∏
i=1

di !. (5)

The introduction of the tilt parameter γ does not change the distribution as it multiplies
πn(d) by e2γE log n. This is a constant since the total number of edges is fixed. Thus, it can be
absorbed into the normalization factor Zn(γ ) along with the term E! 2E/(2E)!.

After sampling a degree sequence according toπn, we use the configuration model to generate
a graph C(n, d) with this degree sequence [3, p. 52]. To each node i we associate di labelled
half-edges, also called configuration points or stubs. All stubs need to be paired to construct
the graph; this is done by randomly connecting them. When a stub of i is paired with a stub
of j , we interpret this as an edge between i and j . The graph C(n, d) obtained following this
procedure may not be simple, i.e. it may contain self-loops due to the pairing of two stubs of i
and multi-edges due to the existence of more than one pairing between two given nodes. The
number of configurations with degree sequence d is given by

Hn(d) = (2E)!
E! 2E

n∏
i=1

di !.

In fact, there are (2E)!/E! 2E different ways of pairing the 2E configuration points, each
corresponding to

∏n
i=1 di ! distinct configurations since the di edges incident on node i can be

assigned to its di configuration points in di ! ways.
We denote the minimum and maximum degrees by dmin and dmax, respectively. To restrict

ourselves to the family of simple graphs, we define the erased configuration model. Starting
from the multigraph obtained through the configuration model, we merge all multiple edges
into a single edge and erase all self-loops. It was shown in [27] that, provided that the maximum
degree of the graph dmax is such that dmax = o(

√
n), the configuration model and the erased

configuration model are asymptotically equivalent, in probability. We will show in Theorem 2,
below, that the above condition is indeed satisfied.

Note that every simple graph obtained by the erased configuration model corresponds to
exactly

∏n
i=1 di ! distinct configurations describing the number of ways stubs are assigned,

and G̃n(d) introduced in (5) corresponds to the probability of obtaining a simple graph in the
configuration model [16]. This implies the upper bound G̃n(d) ≤ 1 for any degree sequence d.
When dmax = o(E1/4), McKay and Wormald [20] established the equivalence, for large n,

G̃n(d) ∼ exp(−λ− λ2), where λ = 1

4E

n∑
i=1

di(di − 1). (6)

In [27, Proposition 7.5], it was shown that, for any degree sequence d, conditional on the graph
C(n, d) being simple, C(n, d) is a uniform simple random graph with degree sequence d.

Given a degree sequence d, we define the mean degree d = ∑n
i=1 di/n and the variance

var(d) = (1/n)
∑n
i=1(di − d)2. For fixed positive constantsα1 andα2, we define the following

set of degree sequences:

A1(α1, α2) = {d : − √
α1 log n ≤ di − d ≤ √

α2 log n for all i = 1, . . . , n}.
We now state the main result of this section.
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Theorem 1. For graphs generated according to (3), there exist two constants α1 and α2 such
that

πn(A1(α1, α2)) → 1 as n → ∞.

The above theorem states that, for the random graph model defined by distribution (3), the
node degrees concentrate about their mean value. Specifically, all node degrees are within
order

√
log n of the mean, w.h.p. This is in contrast to the Erdös–Rényi model (with the same

number of edges), where the maximum fluctuation of node degrees is typically of order log n.
The rest of the section is devoted to the proof of this theorem.

The main ingredient of the proof is to restrict our attention to sequences of degrees such that
di ≤ n1/4 for all i = 1, . . . , n, for which estimate (6) holds.

Theorem 2. Define the event A2 = {d : di ≤ n1/4 for all i = 1, . . . , n}. Then

πn(A
c
2) → 0 as n → ∞.

To prove this result, we first state a series of lemmas which are proved in Appendix A.
For d ∈ A1(α1, α2), since E = cn log n/2, we have dmax = o(E1/4). Observe from (6) that

4Eλ = n(var(d)+ d
2 − d).

Moreover, for d ∈ A1(α1, α2), we have var(d) ≤ max{α1, α2} log n, so that

λ ≤ 1

2

(
c log n− 1 + 1

c
max{α1, α2}

)
. (7)

Hence,

d ∈ A1(α1, α2) 
⇒ 1

G̃n(d)
∼ exp(λ+ λ2) ≤ exp

(
c2 log2 n

2

)
(8)

for sufficiently large n. Recall that G̃n(d) ≤ 1 for all d and, in particular, for d ∈ Ac
2, the

complement of A2.
It follows from (4) and (8) that, for sufficiently large n,

πn(A
c
2)

πn(A1(α1, α2))
≤ exp

(
c2 log2 n

2

) ∑
d∈Ac

2

∏n
i=1(1/di !) exp(−βd2

i + γ (log n)di)∑
d∈A1(α1,α2)

∏n
i=1(1/di !) exp(−βd2

i + γ (log n)di)
.

(9)
Let D1, . . . , Dn be independent and identically distributed (i.i.d.) random variables with

P(D1 = k) = 1

F(γ )

1

k! exp(−βk2 + γ (log n)k), k ∈ N, (10)

where F(γ ) is a normalization constant. The dependence of the Di on n and γ has not been
made explicit in the notation. We choose γ (depending on n, β, and c) so that E[D1] = c log n
for a specified constant c; this is possible by the following lemma.

Lemma 1. Let

dγ = 1

2β

(
γ log n+ log log n+ γ

2β

)
,

and let kγ − 1 denote the integer part of dγ . Then, E[D1] − kγ and var(D1) remain bounded
as n tends to ∞. In particular, γ can be chosen so that E[D1] = c log n.
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Moreover, let ρ = 2β(dγ − kγ + 1
2 ) and

ψ(θ) =
∑∞
j=−∞ exp(θj − βj2)∑∞
j=−∞ exp(−βj2)

.

Then, the moment generating function of D1 satisfies

E[exp(θD1)] ∼ exp(θkγ )
ψ(θ + ρ)

ψ(ρ)
as n → ∞.

Proof. See Appendix A.

Let D denote the random vector (D1, . . . , Dn), and consider the eventsA = {d : d = c log n}
and Â1(α1, α2) = A∩A1(α1, α2). Since we are interested in graphs generated according to (3),
πn(A) = 1 and πn(Â1(α1, α2)) = πn(A1(α1, α2)). We can now rewrite (9) as

πn(A
c
2)

πn(Â1(α1, α2))
≤ exp

(
c2 log2 n

2

)
P(D ∈ Ac

2)

P(D ∈ Â1(α1, α2))
. (11)

Lemma 2. There exists a constant K > 0, independent of n, such that

P(D ∈ Ac
2) ≤ Kne−β√

n/4. (12)

Proof. See Appendix A.

Let (D̃1, . . . , D̃n)have the joint distribution of (D1, . . . ,Dn) conditional on D ∈ A1(α1, α2).
Equivalently, D̃1, . . . , D̃n are i.i.d., with D̃j having the distribution of Dj conditional on

−√
α1 log n ≤ Dj − E[Dj ] ≤ √

α2 log n.

Now

P(D ∈ Â1(α1, α2)) = P(D ∈ A1(α1, α2))P

( n∑
j=1

Dj = cn log n

∣∣∣∣ D ∈ A1(α1, α2)

)

= P(D ∈ A1(α1, α2))P

( n∑
j=1

D̃j = cn log n

)
. (13)

Suppose that α1, α2 > 0 are chosen large enough so that, for large n, E[D̃1] = E]D1] = c log n.
We wish to estimate the probability that D̃1+D̃2+· · ·+D̃n = cn log n. We will do this using

a result from [19]. For j = 1, . . . , n, define the centred random variables,Xnj = D̃j − E[D̃j ];
we have made the dependence of the distribution of D̃j on n explicit in the notation. Thus,
Xn1, Xn2, . . . , Xnn is an array of integer-valued zero-mean random variables such that, for each
n, Xn1, . . . , Xnn are i.i.d. To apply [19, Theorem 1], we need the following result.

Lemma 3. The random variables {Xnj , j = 1, . . . , n, n ∈ N} satisfy the following condi-
tions:

(i) lim supn→∞ E[exp(θ |Xn1|)] < ∞ for some θ > 0,

(ii) lim infn→∞ var(Xn1) > 0,

(iii) lim infn→∞
∑∞
j=−∞ min{P(Xn1 = j),P(Xn1 = j + 1)} > 0.

Proof. See Appendix A.
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An immediate corollary of [19, Theorem 1] is as follows.

Theorem 3. If a sequence of independent random variables, {Xnj , j = 1, . . . , n, n ∈ N},
satisfies conditions (i), (ii), and (iii) of Lemma 3, then

P

( n∑
j=1

Xnj =
n∑
j=1

E[Xnj ]
)

= 1√
2π

∑n
j=1 var(Xnj )

(
1 +O

(
1

n

))
.

A direct application of the above result yields

P

( n∑
j=1

D̃j = cn log n

)
= 1√

2πnσ̃

(
1 +O

(
1

n

))
, (14)

where σ̃ = var(D̃1) remains bounded as n → ∞. Combining this with (11), (12), and (13),
we obtain

πn(A
c
2) ≤ πn(A

c
2)

πn(Â1(α1, α2))
≤ exp

(
c2 log2 n

2

)√
2πσ̃Kn3/2e−β√

n/4

P(D ∈ A1(α1, α2))

(
1 +O

(
1

n

))
. (15)

Lemma 4. Let D denote the random vector (D1, . . . , Dn). Given any K > 0, we can choose
α1 and α2 such that P(D ∈ A1(α1, α2)

c) < e−K log n for all sufficiently large n.

Proof. See Appendix A.

Combining the above lemma with the bound in (15), it is immediate that πn(Ac
2) → 0 as

n → ∞, which establishes the claim of Theorem 2. Thus, to prove Theorem 1, we can restrict
our attention to graphs with degree sequences in A2, for which we can use the estimate in (6).

Proof of Theorem 1. Observe that

πn(Â1(α1, α2)) = πn(A)− πn(A \ A1(α1, α2))

≥ πn(A)− πn((A \ A1(α1, α2)) ∩ A2)− πn(A
c
2).

But, πn(A) = 1 by definition, and we have shown above that πn(Ac
2) → 0 as n → ∞. Hence,

it suffices to show that

πn((A \ A1(α1, α2)) ∩ A2) → 0 as n → ∞. (16)

Recall from (6) that if d ∈ A2 then G̃n(d) ∼ exp(−λ(d)− λ(d)2). Now,

λ(d) = var(d)+ d
2 − d

2d
≥ c log n− 1

2
for all d ∈ A,

since the mean degree d = c log n. In particular, the above lower bound on λ(d) holds for all
degree sequences d in (A \ A1(α1, α2)) ∩ A2, since this is a subset of A.

In addition, we saw earlier in (7) that if d ∈ Â1(α1, α2) then

λ(d) ≤ 1

2

(
c log n− 1 + 1

c
α

)
,

where α = max{α1, α2}, and the estimate in (6) holds.
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Now, by (4),

πn((A \ A1(α1, α2)) ∩ A2)

πn(Â1(α1, α2))

=
∑

d∈(A\A1(α1,α2))∩A2
exp(−λ(d)− λ(d)2)

∏n
i=1(1/di !) exp(−βd2

i + γ (log n)di)∑
d∈Â1(α1,α2)

exp(−λ(d)− λ(d)2)
∏n
i=1(1/di !) exp(−βd2

i + γ (log n)di)

≤ exp

(
α

2c

(
c log n+ α

2c

))∑
d∈(A\A1(α1,α2))∩A2

∏n
i=1(1/di !) exp(−βd2

i + γ (log n)di)∑
d∈Â1(α1,α2)

∏n
i=1(1/di !) exp(−βd2

i + γ (log n)di)
.

In other words, there are constants κ1 and κ2 such that

πn((A \ A1(α1, α2)) ∩ A2)

πn(Â1(α1, α2))
≤ κ1 exp(κ2 log n)

P(D ∈ (A \ A1(α1, α2)) ∩ A2)

P(D ∈ Â1(α1, α2))

≤ κ1 exp(κ2 log n)
P(D ∈ A \ A1(α1, α2))

P(D ∈ Â1(α1, α2))
. (17)

Now, by Lemma 4, for any given K > 0, we can choose α1 and α2 such that P(D ∈
A1(α1, α2)

c) ≤ e−K log n. Thus,

P(D ∈ A \ A1(α1, α2)) ≤ P(D ∈ A1(α1, α2)
c) ≤ e−K log n. (18)

Moreover, analogous to (14), we have

P(D ∈ A) = P

( n∑
j=1

Dj = cn log n

)
= 1√

2πnσ

(
1 +O

(
1

n

))
,

where σ = var(D1) remains bounded as n → ∞. Therefore, for large n,

P(D ∈ Â1(α1, α2)) = P(D ∈ A)− P(D ∈ A ∩ A1(α1, α2)
c)

≥ P(D ∈ A)− P(D ∈ A1(α1, α2)
c)

= 1√
2πnσ

(
1 +O

(
1

n

))
. (19)

Substituting (18) and (19) into (17), we have

πn((A \ A1(α1, α2)) ∩ A2) ≤ πn(A \ A1(α1, α2))

πn(Â1(α1, α2))

≤ κ1σ
√

2πn exp((κ2 −K) log n)

(
1 +O

(
1

n

))
.

Since K can be chosen arbitrarily large, the above quantity goes to 0 as n → ∞, which
establishes (16) and the claim of the theorem.

5. Graph cuts

Given a graph G and a subset U of its vertex set, let eU (G) denote the number of edges
incident within U (i.e. having both their vertices within U ), let eU,U c(G) denote the number of
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edges having one vertex inU and the other in its complementU c (i.e. crossing the cut (U,U c)),
and denote by u or |U | the number of vertices or the size of U .

Let d(G) = (d1, d2, . . . , dn) denote the degree sequence of G, and define the volume of a
subset of vertices U by

vol(U) =
∑
i∈U

di.

Note that
2eU (G)+ eU,U c(G) = vol(U). (20)

In the remainder of this section we derive lower bounds for graph cuts in a graph generated
according to (3). To this end, we will show that there exists a constant δ̃ such that eU,U c(G) >

(1− δ̃)uc log n, w.h.p., using different techniques depending on the size ofU , when |U | ≤ n/2.

Proposition 1. For any ε > 0, there exists δ1 ∈ (0, 1), independent of n, such that if the subset
of vertices U is such that u ≤ 2εc log n then eU,U c(G) ≥ (1 − δ1)uc log n, w.h.p.

Proof. Denote |U | by u. Suppose first that u ≤ 2εc log n for a given ε > 0. The number
of edges incident within U can be at most

(
u
2

)
, so eU (G) ≤ εuc log n for all U . Now, for

any degree sequence d ∈ A1(α1, α2), vol(U) ≥ cu log n− u
√
α1 log n. By Theorem 1, it is

not restrictive to consider only graphs with degree sequences belonging to the set A1(α1, α2).
Hence, using (20) for graphs G with such degree sequences,

eU,U c(G) ≥ u[(1 − 2ε)c log n− √
α1 log n].

Let δ1 = 3ε. Then, for sufficiently large n, eU,U c(G) ≥ (1 − δ1)uc log n, w.h.p., whenever
u ≤ 2εc log n, and the claim of the proposition is established.

To prove a similar result for subsets U such that u ≤ n/2, first recall the definition of the
configuration model from Section 4. For constants δ ∈ (0, 1), ε > 0, and τ > 0, for n ∈ N and
a degree sequence d, we define the following subsets of graphs on a vertex setV of cardinality n:

E1(n, δ, τ, d) = {G : d(G) = d and eU,U c(G) < (1 − δ)uc log n

for some U ⊆ V with 2εc log n < u ≤ τn}, (21)

E2(n, δ, τ, d) = {G : d(G) = d and eU,U c(G) < (1 − δ)uc log n

for some U ⊆ V with τn < u ≤ n/2}. (22)

We also define

E1(n, δ, τ ) =
⋃
d

E1(n, δ, τ, d), E2(n, δ, τ ) =
⋃
d

E2(n, δ, τ, d).

We will derive bounds on the probabilities of these sets using the definition of the configuration
model.

Given a degree sequence d = (d1, d2, . . . , dn), and for H , a configuration on V , we define
the analogous sets of configurations Ê1(n, δ, τ, d), Ê2(n, δ, τ, d), Ê1(n, δ, τ ), and Ê2(n, δ, τ ),
that is, instead of considering sets of graphs G, we consider sets of configurations H fulfilling
the conditions in (21) and (22).

Note that, given the degree sequence d such that
∑n
i=1 di = cn log n, µn(· | d) corresponds

to the probability with respect to the uniform distribution on graphs with degree sequence d. Let
Pr(· | d) denote the probability with respect to the uniform distribution on configurations with
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degree sequence d. Under µn, d ∈ A(α1, α2) w.h.p. and estimate (6) holds, i.e. the probability
that a configuration yields a (simple) graph is asymptotically equivalent to exp(−λ − λ2).
Hence,

µn(Ei (n, δ, τ, d) | d) ≤ exp(λ+ λ2)Pr(H ∈ Êi (n, δ, τ, d) | d). (23)

Recall that λwas defined in (6) to be
∑n
i=1 di(di − 1)/4E, whereE is the number of edges,

i.e. 2E = ∑n
i=1 di . The dependence of λ on d has been suppressed for notational convenience.

Proposition 2. If τ ∈ (0, 1/(1 + 4e)) then there exists δ2 ∈ (0, 1), independent of n, such that

lim
n→∞µn(E1(n, δ2, τ )) = 0,

where the distribution µn was defined in (3).

Proof. First note that

µn(E1(n, δ, τ )) ≤ µn(E1(n, δ, τ, d) | d ∈ A1(α1, α2))+ µn(d /∈ A1(α1, α2)).

By Theorem 1, µn(d /∈ A1(α1, α2)) goes to 0 as well. In what follows we will use (23) to
prove that

lim
n→∞µn(E1(n, δ, τ, d) | d ∈ A1(α1, α2)) = 0.

For degree sequences d ∈ A1(α1, α2) and any subset U of the vertex set, vol(U) ∼ uc log n
for large n. Hence, by (20), eU,U c(H) < u(1 − δ)c log n for a subset U implies that eU (H) >
(δ/2)vol(U) for sufficiently large n. To prove the proposition, it therefore suffices to show that
there exists δ2 ∈ (0, 1) such that Pr(eU (H) > (δ2/2)vol(U)) tends to 0 when n tends to ∞.

Recall that, for subset U of V , the volume of U is given by vol(U) = ∑
i∈U di . As the

half-edges in the configuration model are matched uniformly, eU (H), the number of edges
incident within U in a random configuration, is bounded above by a binomial random variable
X with parameters vol(U) and vol(U)/(2E − vol(U)). The dependence of X on U has been
suppressed for notational convenience. For δ ∈ (0, 1), by Chernoff’s bound we have

log Pr

(
X >

δ

2
vol(U)

)

≤ −vol(U)

(
δ

2
log

(δ/2)(2E − vol(U))

vol(U)
+

(
1 − δ

2

)
log

(1 − δ/2)(2E − vol(U))

2E − 2vol(U)

)

≤ −vol(U)

(
δ

2
log

(δ/2)(2E − vol(U))

vol(U)
+

(
1 − δ

2

)
log

(
1 − δ

2

))
.

Applying the inequality log x ≤ x−1 for x ≥ 1 to x = 1/(1−δ/2), we have log(1−δ/2) ≥
−(δ/2)/(1 − δ/2). Using the fact that

∣∣∣∣ vol(U)

uc log n
− 1

∣∣∣∣ <
√
α

c

1√
log n

,

we have

log Pr

(
X >

δ

2
vol(U)

)
≤ −uc log n

(
δ

2
log

(
δ(n− u)

2u

)
− δ

2

)(
1 +O

(
1√

log n

))
. (24)

Suppose first that 2εc log n < u ≤ √
n.
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For all sufficiently large n, (24) becomes

log Pr

(
X >

δ

2
vol(U)

)
≤ −uδc

6
log2 n.

Since X stochastically dominates eU (H) (conditional on d), we have, by the union bound,
for sufficiently large n,

Pr

(
there exists U, 2εc log n < u ≤ √

n, eU (H) >
δ

2
vol(U)

)

≤
√
n∑

u=2εc log n

(
n

u

)
exp

(
−uδc

6
log2 n

)

≤
√
n∑

u=2εc log n

1

u! exp

(
u log n− uδc

6
log2 n

)

≤ κ3 exp(−κ4εδc
2 log3 n) (25)

for two constants κ3, κ4 > 0. We have used the inequality
(
n
u

) ≤ nu/u! to obtain the second
inequality above.

Next, consider
√
n < u ≤ τn.

In this case, (24) becomes

log Pr

(
X >

δ

2
vol(U)

)
≤ −1

2
uc log n

(
δ log

(
δ(1 − τ)

2τ

)
− δ

)(
1 +O

(
1√

log n

))
.

If τ < 1/(1 + 4e) then there exists δ2 ∈ (0, 1) such that

δ2 log

(
δ2(1 − τ)

2τ

)
− δ2 >

2

c
,

and, subsequently, for all sufficiently large n and u ≤ τn, we have

log Pr

(
X >

δ2

2
vol(U)

)
≤ −2u log n.

Hence, by the union bound,

Pr

(
there exists U : √

n < u < τn, eU (H) >
δ2

2
vol(U)

)
≤

τn∑
u=√

n

(
n

u

)
e−2u log n

≤
τn∑

u=√
n

1

u!e−u log n

≤ κ5e−√
n log n. (26)

By (23), (25), and (26), for large n, we can find two constants κ6, κ7 > 0 such that

µn(E1(n, δ2, τ, d) | d) ≤ exp(λ+ λ2)κ6 exp(−κ7 log3 n).

Since λ = O(log n), it is readily checked that µn(E1(n, δ2, τ, d) | d ∈ A1(α1, α2)) goes to 0
as n → ∞.

The claim of the proposition is established.
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Next, we find a similar lower bound for eU,U c(G) that holds, w.h.p., for subsets U with
τn < u ≤ n/2.

Proposition 3. For τ > 0, there exists δ3 ∈ (0, 1), independent of n, such that

lim
n→∞µn(E2(n, δ3, τ )) = 0.

Proof. As in the proof of Proposition 2, we fix a degree sequence d and a subsetU , and bound
the probability that eU,U c(G) < u(1 − δ)c log n in terms of the probability that eU,U c(H) <

u(1 − δ)c log n, where H is drawn uniformly at random from configurations with degree
sequence d , i.e.

µn(E2(n, δ, τ, d) | d) ≤ exp(λ+ λ2)Pr(H ∈ Ê2(n, δ, τ, d) | d). (27)

Fix constants τ > 0 and δ ∈ (0, 1), and a degree sequence d. Let U be a subset of the
vertex set with τn < u ≤ n/2, and let j < (1 − δ)uc log n ≤ 1

2 (1 − δ)cn log n. Recall that the
number of configurations with degree sequence d is

Hn(d) = (2E)!
E! 2E

n∏
i=1

di !, (28)

where E = ∑n
i=1 di/2 is the total number of edges.

LetH be a configuration such that we choose j configuration points each from U and U c to
pair, and pair the remaining 2E−2j configuration points within the setsU andU c: vol(U)−j
configuration points are paired inU and 2E−vol(U)−j configuration points are paired inU c.
For such a configuration to exist, vol(U)− j must be even, as should 2E − vol(U)− j . The
number of these configurations with exactly j edges crossing the cut between U and U c is

HU,U c(j) ≤
(

vol(U)

j

)(
2E − vol(U)

j

)
j ! (vol(U)− j)!
((vol(U)− j)/2)! 2(vol(U)−j)/2

× (2E − vol(U)− j)!
(E − (vol(U)− j)/2)! 2(2E−vol(U)−j)/2

n∏
i=1

di !. (29)

The dependence of H on d has been suppressed for notational convenience. The first two terms
on the right-hand side above count the number of ways we can choose j configuration points
each from U and U c to match up. The term j ! counts the number of ways of matching them.
The remaining configuration points have to be matched within the sets U and U c as there are
only j edges crossing the cut. The number of ways of doing this is equal to the number of
configurations on U with vol(U) − j points times the number of configurations on U c with
2E− vol(U)− j points, and with a degree sequence strictly bounded by d (since j points each
in U and U c have been used up). This yields the remaining terms in the bound above. We
obtain from (28) and (29), after some simplification,

Pr(eU,U c(H) = j) = HU,U c(j)

Hn(d)
≤

(
E

vol(U)/2

)(vol(U)/2
j/2

)(
E−vol(U)/2

j/2

)
( 2E

vol(U)

)(
j
j/2

) 2j .
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Taking logarithms and using Stirling’s formula, we obtain

log Pr(eU,U c(H) = j) ≤ Eh

(
vol(U)

2E

)
+ vol(U)

2
h

(
j

vol(U)

)

+ 2E − vol(U)

2
h

(
j

2E − vol(U)

)

− 2Eh

(
vol(U)

2E

)
+O(log n), (30)

where, for x ∈ [0, 1], h(x) = −x log x − (1 − x) log(1 − x) is the binary entropy of x. Now,
2E = cn log n and, since it was assumed that d ∈ A1(α1, α2), |vol(U)−cu log n| ≤ u

√
α log n.

Moreover, τn < u ≤ n/2, while j < 1
2 (1 − δ)cn log n. Hence, for some δ̂1 and large enough n,

we have, for all δ ≥ δ̂1

h

(
j

vol(U)

)
< h

(
(1 − δ)n log n

2τn log n

)
= h

(
(1 − δ)

2τ

)
,

and it can likewise be shown that, for some δ̂2 and large enough n, we have, for all δ ≥ δ̂2

h

(
j

2E − vol(U)

)
< h(1 − δ).

On the other hand, as |U | < n/2, for large n,

h

(
vol(U)

2E

)
≥ h(τ).

Using the fact that vol(U) ≤ 2E for all U , it follows from (30) that, for sufficiently large n,

log Pr(eU,U c(H) = j) ≤ −E
(
h(τ)− h

(
1 − δ

2τ

)
− h(1 − δ)

)
≤ −κn log n,

where δ is chosen big enough so that h(τ)− h((1 − δ)/2τ)− h(1 − δ) > 0, i.e. κ > 0.
The above bound applies for all subsets U of V , of size u where n < u < n/2. The number

of subsets U with cardinality between τn and n/2 is smaller than the total number of subsets,
which is 2n. Hence, by the union bound,

Pr(H : there exists U with τn < u < n/2 and eU,U c(H) = j) ≤ 2ne−κn log n.

The above holds for each j < 1
2 (1 − δ)cn log n. Applying the union bound once more,

Pr(H ∈ Ê2(n, δ, τ, d) | d) ≤ (1 − δ)cn log (n)2n−1e−κn log n

for all d ∈ A1(α1, α2). Substituting this into (27) and noting that λ = O(log n), we see that,
for large enough δ,

µn(E2(n, δ, τ, d) | d ∈ A1(α1, α2)) → 0 as n → ∞.

We also know from Theorem 1 that µn(d /∈ A1(α1, α2)) goes to 0. Since

µn(E2(n, δ, τ )) ≤ µn(E2(n, δ, τ, d) | d ∈ A1(α1, α2))+ µn(d /∈ A1(α1, α2)),

there exists δ3 > 0 such that µn(E2(n, δ3, τ )) → 0 as n → ∞, as claimed.
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Fix ε > 0 and τ < 1/(1+4e). Then, by Propositions 1, 2, and 3, there exists δ̃, independent
of n, which is the maximum of δ1, δ2, and δ3 for which the three propositions hold. Hence, we
have the following lower bound for the graph cut.

Theorem 4. For graphsG drawn according to (3), there exists δ̃ ∈ (0, 1) such that, for a subset
U of V with u = |U | ≤ n/2, the number of edges crossing the cut (U,U c) is such that

eU,U c ≥ (1 − δ̃)cu log n w.h.p.

5.1. Conductance and expansion

Using Theorem 4, we can easily recover asymptotic results for the conductance and the
expansion of a graph drawn according to (3), which are relevant for phenomena such as routeing
congestion analysis [14], the behaviour of random walks in terms of the mixing and cover
times [17], and epidemic thresholds [6], [13].

Let A = (aij )i,j=1,...,n be the adjacency matrix of a graphG, and let D = diag(d1, . . . , dn)

be the diagonal matrix of the degree distribution of G. First, we define the isoperimetric
constant or expansion of a graph G by

φ = inf
U⊂V
u≤n/2

eU,U c

u
.

It is related to λ2(L), the second (smallest) eigenvalue of the Laplacian L = D − A of the
graph, through the following inequality [5], [22]:

φ2

2dmax
≤ λ2(L) ≤ 2φ.

The lower bound in the above inequality is known as Cheeger’s inequality.
The conductance of a graph G is defined by

� = inf
U⊂V

vol(U)≤E

eU,U c

vol(U)
.

Let λ2(P ) be the second (largest) eigenvalue of P , the transition matrix of the simple random
walk on a graph pij = aij /di . By Cheeger’s inequality [17, Theorem 5.3],

�2

8
≤ 1 − λ2(P ) ≤ �.

Theorem 5. For graphs G drawn according to (3), and for the constant δ̃ of Theorem 4, the
expansion φ and the conductance � satisfy

(1 − δ̃)c log n ≤ φ ≤ c log n, (1 − δ̃) ≤ � ≤ 1, w.h.p.

Proof. First note that if dmin is the minimum degree of G then, by Theorem 1, dmin =
c log n− √

α1 log n, w.h.p. Hence,

φ ≤ (1 + o(1))c log n, � ≤ (1 + o(1)), w.h.p.

The lower bounds follow from Theorem 4.
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5.2. Failure resilience

In the following we work with graphs whose degree sequence belongs to the set A1(α1, α2)

for some specified α1 and α2. We are interested in the probability that the graph remains
connected when links fail independently with probability p. It is straightforward to compute
the probability that a given node i becomes isolated due to link failures; it is simply pdi . Thus,
by the union bound, the probability that some node becomes isolated is at most

n∑
i=1

pdi ≤ npc log n−√
α1 log n = exp((1 + c logp) log n− √

α1 log n logp).

Hence, if c logp < −1 or, equivalently, p < exp(−1/c), then the probability that some node
becomes isolated goes to 0 as n increases to ∞.

By way of comparison, consider the classical random graph model of Erdös and Rényi [8]
with the same mean degree. Here, an edge is present between each pair of nodes with probability
c log n/n, independent of all other edges. Here we should assume that c > 1 to ensure that the
Erdös–Rényi graph is connected, w.h.p. After taking failures into account, the edge probability
becomes (1−p)c log n/n, and the presence of edges continues to be mutually independent. It is
well known for this model that if (1−p)c < 1 then the graph is disconnected, w.h.p. Moreover,
in a sense that can be made precise, the main reason for disconnection when (1−p)c is ‘close to’1
is the isolation of individual nodes. Intuitively, these arguments suggest that graphs generated
according to (3) can tolerate link failure rates up to e−1/c while retaining connectivity, whereas
classical random graphs can tolerate failure rates only up to (c − 1)/c. We now rigorously
establish a weaker result.

We will use Theorem 4 to show that random graphs drawn from the distribution µn can
tolerate link failure rates up to exp (−1/c(1 − δ̃)), where δ̃ is defined in Theorem 4, without
losing connectivity.

Theorem 6. For anyp < exp (−1/c(1 − δ̃)), a graphG chosen at random from the distribution
µn and subjected to independent link failures with probability p remains connected, w.h.p.

Proof. Fix p < exp (−1/c(1 − δ̃)). For a subset U of the vertex set, let êU,U c denote the
number of edges between U and U c that have not failed. We will show that, w.h.p., êU,U c > 0
for all subsets U , i.e. the graph is connected. Now,

µn(êU,U c(G) = 0 | eU,U c(G)) = peU,Uc (G).

Assume that eU,U c(G) ≥ (1 − δ̃)uc log n for all U ⊆ V with u ≤ τn. Then

µn(there exists U : u ≤ τn, êU,U c(G) = 0) ≤
τn∑
u=1

(
n

u

)
p(1−δ̃)uc log n.

Since p < exp (−1/c(1 − δ̃)) is given, then, for some ε > 0 and large n, p(1−δ̃)c log n <

e−(1+ε) log n. Using the inequality
(
n
u

) ≤ nu/u!, we obtain

µn(there exists U : u ≤ τn, eU,U c(G) = 0) ≤
τn∑
u=1

1

u! (np
(1−δ̃)c log n)u

≤ exp(np(1−δ̃)c log n)− 1

≤ exp(ne−(1+ε) log n)− 1, (31)

which goes to 0 as n → ∞.
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Suppose that eU,U c(G) ≥ (1 − δ̃)cu log n for all U ⊆ V with τn < u ≤ n/2. Then

µn(there exists U : τn < u ≤ n/2, êU,U c(G) = 0)

≤
∑

U : τn<u≤n/2
p(1−δ̃)cu log n

≤ 2np(1−δ̃)τcn log n. (32)

We see from (31) and (32) that

µn(there exists U : êU,U c(G) = 0 | eU,U c(G) ≥ (1 − δ̃)cu log n) → 0 as n → ∞.

Also, by Theorem 4,

µn

(
eU,U c(G) < (1 − δ̃)cu log n for all U ⊆ V, 0 < u ≤ n

2

)
→ 0 as n → ∞,

whenG is chosen according to the distribution µn, which establishes the claim of the theorem.

Appendix A

Let D1, . . . , Dn be i.i.d. random variables with distribution given by (10). Define

f (j, γ ) = 1

j ! exp(−βj2 + γj log n) and F(γ ) =
∞∑
j=0

f (j, γ ), (33)

so that P(D1 = j) = f (j, γ )/F (γ ). Now, the ratio

f (j + 1, γ )

f (j, γ )
= 1

j + 1
e−(2j+1)β+γ log n

is a decreasing function of j . Define kγ to be the smallest value of j for which f (j + 1,
γ )/f (j, γ ) ≤ 1, and note that the maximum of f (j, γ ) over j is attained at kγ . Now, kγ − 1
is the integer part of the (unique) solution of the equation

h(x, γ ) := − log(x + 1)− (2x + 1)β + γ log n = 0.

It is readily verified that the solution is

dγ = 1

2β

(
γ log n+ log log n+ γ

2β

)
+ o(1).

Let kγ = �dγ � + 1, where �x� is the integer value of x. Then, for any j > 0,

f (kγ + j + 1, γ )

f (kγ + j, γ )
= 1

kγ + j + 1
exp(−β(2kγ + 2j + 1)+ γ log n)

= f (kγ + 1, γ )

f (kγ , γ )

kγ + 1

kγ + j + 1
e−2βj

≤ e−2βj ,
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where we have used the fact that f (kγ + 1, γ )/f (kγ , γ ) ≤ 1 to obtain the last inequality.
Iterating this inequality yields f (kγ + j, γ )/f (kγ , γ ) ≤ e−βj (j−1). Similarly, we obtain

f (kγ − j − 1, γ )

f (kγ − j, γ )
= f (kγ − 1, γ )

f (kγ , γ )

(
1 − j

kγ

)
e−2βj ≤ e−2βj ,

since f (kγ , γ )/f (kγ − 1, γ ) > 1 by the definition of kγ . Iterating this inequality yields
f (kγ − j, γ )/f (kγ , γ ) ≤ e−βj (j−1). Thus, for all integers j ≥ −kγ , we have the inequality

f (kγ + j, γ )

f (kγ , γ )
≤ e−β|j |(|j |−1) ≤ exp(−β(|j | − 1)2). (34)

Next, we derive an equivalent for the above ratio. Observe that, for any fixed j ,

f (kγ + j, γ )

f (kγ , γ )
= kγ !
(kγ + j)! exp(−βj (2kγ + j)+ γj log n)

= 1

k
j
γ

exp(−βj (2kγ + j)+ γj log n)

(
1 +O

(
j2

kγ

))
.

Taking logarithms,

log
f (kγ + j, γ )

f (kγ , γ )
= −j log kγ − βj (2kγ + j)+ γj log n+O

(
j2

log n

)

= jh(xγ , γ )+ ρj − βj2 +O

(
j2

log n

)
,

where ρ = 2β(xγ − kγ + 1
2 ). Note that ρ ∈ [−β, β] for all n because kγ ∈ [dγ , dγ + 1].

Since h(dγ , γ ) = 0 by the definition of dγ , we can now write

g(j, γ ) := f (kγ + j, γ )

f (kγ , γ )
= (1 + λj ) exp(ρj − βj2), where λj = O

(
j2

log n

)
. (35)

Thus, by (33),

F(γ ) = f (kγ , γ )

∞∑
j=−kγ

g(j, γ ) = K0(ρ, β)f (kγ , γ ), (36)

where K0(ρ, β) ∼ ∑∞
j=−∞ exp(ρj − βj2) is bounded uniformly in γ and n.

Proof of Lemma 1. We obtain from (10) and (35) that

E[D1] =
∑∞
j=0 jf (j, γ )∑∞
j=0 f (j, γ )

= kγ

∑∞
j=−kγ (1 + j/kγ )g(j, γ )∑∞

j=−kγ g(j, γ )

= kγ

(
1 + 1

kγ

∑∞
j=−kγ j (1 + λj ) exp(ρj − βj2)∑∞
j=−kγ (1 + λj ) exp(ρj − βj2)

)

= kγ +K1(ρ, β),
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where

K1(ρ, β) ∼
∑∞
j=−∞ j exp(ρj − βj2)∑∞
j=−∞ exp(ρj − βj2)

.

Note that K1(ρ, β) is bounded uniformly in γ and n. It is also easy to see that E[D1] is a
continuous and increasing function of γ . This yields the first claim of the lemma.

A similar calculation yields

E[(D1)
2] =

∑∞
j=0 j

2f (j, γ )∑∞
j=0 f (j, γ )

= k2
γ

∑∞
j=−kγ (1 + j/kγ )

2g(j, γ )∑∞
j=−kγ g(j, γ )

= k2
γ + 2kγK1(ρ, β)+K2(ρ, β),

where

K2(ρ, β) ∼
∑∞
j=−∞ j2 exp(ρj − βj2)∑∞
j=−∞ exp(ρj − βj2)

remains bounded, uniformly in γ and n. Hence,

var(D1) = K2(ρ, β)−K1(ρ, β)
2

remains bounded. In fact, we see that var(D1) is asymptotic to the variance of a discrete
Gaussian distribution; this distribution is nondegenerate for any finite β. Hence, var(D1)

remains bounded below by some strictly positive constant as n goes to ∞.
Next, we evaluate the moment generating function ofD1. Proceeding as in the calculations

of the mean and variance, we have

E[eθD1 ] =
∑∞
j=0 eθj f (j, γ )∑∞
j=0 f (j, γ )

= exp(θkγ )

∑∞
j=−kγ eθj g(j, γ )∑∞
j=−kγ g(j, γ )

= exp(θkγ )

∑∞
j=−kγ (1 + λj ) exp((θ + ρ)j − βj2)∑∞

j=−kγ (1 + λj ) exp(ρj − βj2)

∼ exp(θkγ )
ψ(θ + ρ)

ψ(ρ)
, (37)

where

ψ(θ) =
∑∞
j=−∞ exp(θj − βj2)∑∞
j=−∞ exp(−βj2)

(38)

is the moment generating function of the discrete Gaussian distribution which adds mass
proportional to e−βj2

at each j ∈ Z.
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Proof of Lemma 2. We obtain, using (34) and (36), for large n,

P(D1 > n1/4) =
∑∞
j=n1/4+1 f (j, γ )

F (γ )

≤ 1

K0(ρ, β)

∞∑
j=0

exp(−β(j + n1/4 − kγ )
2)

≤ 1

K0(ρ, β)

∞∑
j=0

exp

(
−β

(
j + 1

2
n1/4

)2)

≤
∑∞
j=0 exp(−βj2)

K0(ρ, β)
e−β√

n/4.

By the union bound,

P(D ∈ Ac
2) ≤

n∑
i=1

P(Di > n1/4) ≤ Kne−β√
n/4,

which establishes the claim of the lemma.

Proof of Lemma 3. In what follows we prove the result for the sequence Di . Following the
same lines, we can prove the lemma for D̃i .

Since E[D1] = kγ +K1(ρ, β), it follows from (37) that

E[exp(θXn1)] = exp(−θE[D1])E[exp(θD1)] ∼ exp(−θK1(ρ, β))
ψ(θ + ρ)

ψ(ρ)
. (39)

For fixed θ , this is bounded uniformly in n since K1(ρ, β) is so bounded, and ψ does not
depend on n. The first claim of the lemma now follows from the inequality E[exp(θ |Xn1|)] ≤
E[exp(θXn1)] + E[exp(−θXn1)].

Since Xn1 = D1 − E[D1], var(Xn1) = var(D1), and the second claim of the lemma is
immediate from Lemma 1.

The last claim of the lemma follows from the fact that

∞∑
j=−∞

min{P(Xn1 = j),P(Xn1 = j + 1)}

=
∞∑
j=0

min{P(D1 = j),P(D1 = j + 1)}

≥
∞∑
j=0

P(D1 = j)P(D1 = j + 1)

∼
∑∞
j=−∞(exp(ρj − βj2))(exp(ρ(j + 1)− β(j + 1)2))∑∞

j=−∞ exp(ρj − βj2)

> 0.

This completes the proof of the lemma.
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Proof of Lemma 4. We will bound P(D ∈ A1(α1, α2)
c) using the moment generating func-

tion of Xn1 := D1 − E[D1] and Chernoff’s bound. Observe from (39) that

E[exp((
√
θ log n)Xn1)] = exp(−√

θ log nK1(ρ, β))
ψ(

√
θ log n+ ρ)

ψ(ρ)
, (40)

where ψ is defined in (38). Here, ρ and β are constants, and K1(ρ, β) remains bounded as
n → ∞. Let

y∗ =
√
θ log n+ ρ

2β
, j∗ = �y∗�.

We have( ∞∑
j=−∞

exp(−βj2)

)
ψ(

√
θ log n+ ρ)

= exp((
√
θ log n+ ρ)j∗ − β(j∗)2)

∞∑
j=−∞

exp((
√
θ log n+ ρ)(j − j∗)

− β(j2 − (j∗)2))

= eβj
∗(2y∗−j∗)

∞∑
k=−∞

exp(2β(y∗ − j∗)k − βk2)

= exp(β(y∗)2) exp(−β(y∗ − j∗)2)
∞∑

k=−∞
exp(2β(y∗ − j∗)k − βk2),

and so

ψ(
√
θ log n+ ρ) = κ(ρ, β, θ) exp

(
(
√
θ log n+ ρ)2

4β

)
,

where κ(ρ, β, θ) is bounded, uniformly in n and θ . Substituting this into (40) yields

E[exp((
√
θ log n)Xn1)] = κ1 exp

(
θ log n

4β
+ κ2

√
θ log n

)
,

where κ1 and κ2 may depend on ρ, β, θ , and n, but are bounded. Thus, we obtain, using
Chernoff’s bound,

P(Xn1 >
√
α2 log n) ≤ κ1 exp

(
−√

θα2 log n+ θ log n

4β
+ κ2

√
θ log n

)
for all θ > 0.

Take θ = 4α2β
2. Now, by the union bound,

P

( n⋃
j=1

{Xnj >
√
α2 log n}

)
≤ κ1 exp(−(α2β − 1) log n+ 2κ2β

√
α2 log n).

The constant α2 can be chosen large enough so that α2β − 1 > K . Hence, the right-hand side
above decreases to 0 faster than e−K log n as n → ∞. A similar bound can be obtained on the
probability that Xnj < −√

α1 log n for some j ∈ {1, . . . , n}. Thus, we have shown that, given
K > 0, we can choose α̃1 and α̃2 so that

P

( n⋃
j=1

{Xnj >
√
α̃2 log n} ∪

n⋃
j=1

{Xnj < −√
α̃1 log n}

)
<

e−K log n

2
(41)
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for all sufficiently large n. Here, Xnj = Dj − E[Dj ], and the Dj are i.i.d. with mean c log n.
Let D denote the empirical mean of D1, . . . , Dn. The event, |D − E[D1]| > √

η log n is the
same as the event |Xn1 + · · · +Xnn| > n

√
η log n. Using the same Chernoff bound techniques

as above, we can show that η can be chosen so that, for sufficiently large n, this event has
probability at most e−K log n/2. Combining this with (41) yields the claim of the lemma:
simply take

√
α1 = √

α̃1 + √
η and

√
α2 = √

α̃2 + √
η.
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