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Abstract

Design of an interior point method for linear programming is discussed, and results
of a simulation study reported. Emphasis is put on guessing the optimal vertex at
as early a stage as possible.

1. Introduction

In this paper certain aspects both of the design and the implementation of an
interior point method for linear programming are discussed.The motivation
for this work has been the satisfaction of the author's curiosity about certain
aspects of the developments that have stemmed from the impetus that the
work of Narendra Karmarkar (see for example the remarkable paper [4])
gave to consideration of these methods; and, in particular to try and answer
the question 'should I be using these methods instead of active set, reduced
gradient methods for the typically rectangular (many more constraints that
variables) and dense problems encountered in approximation theory and data
analysis'? For this purpose attention is given to two distinct components of
the interior point method:

(i) a basis solution step which generates at each point a new feasible
point with a lower objective function value, and which would con-
verge eventually to the desired solution in an iterative fashion; and
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(ii) an existential step in which, at selected points produced by the above
procedure, an attempt is made to guess the optimal vertex; and the
algorithm terminates if the step is successful.

In a previous paper [5] modified barrier functions were used in constructing
the iterative step, and these were designed to give accelerated convergence
to the associated Kuhn-Tucker multiplier estimates. It was hoped that this
multiplier information would provide an effective basis for making the exis-
tential step; but this proved to be the case only if the minimization of the
barrier function in each iterative step was computed with sufficient precision
with an accompanying cost in expensive 'inner' iterations. This contrasts un-
favourably with the single step 'inner' iterations in the methods associated
with the method of centres (for example [4], [7]). However, these methods
have the disadvantage that dual information of adequate integrity now has
to be fought for (for example [3], [8]). The method considered here is de-
scribed in the next section. It belongs to the class of immediate descendents
of the Karmarkar algorithm, and has the advantage that it gives accelerated
convergence of the multiplier estimates in a form which is adequate for the
existential step. In fact it is possible to modify the algorithm to give the
same kind of superfast convergence of the multiplier estimates as that which
formed the basis for the investigation in [5]. Implementation is described
briefly in Section 3 (the method has proved agreeably stable in the experi-
ments so far conducted), and numerical results based on quite extensive sim-
ulations using randomly generated problems are discussed in Section 4. In
summary, while interesting trends are evident which may suggest advantages
in large and very sparse problems there is no doubt that active set methods
are superior for the problems reported here by a wide margin on conventional
computing machinery. However, the algorithm does appear to lend itself to
implementation on vector processors.

2. Development of an interior point method

The linear programming problem is considered in the form:

mincrx; X = {x: Ax > b} (2.1)

where A: RP -+ R" is assumed to have its full rank p, and where the problem
is assumed to have a bounded minimum at x = x*. Let the currently (strictly
feasible) point be x, and set

y = Ax - b > 0, r = A x - b .
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Following Barnes [1] who considers problems in standard form (the dual of
(2.1)) the problem

min c rx subject to ^2 I — 1 < R2 (2.2)
i=i '

is used as the basis of the iterative method (that Barnes' method gives the ba-
sic step for his problem for suitably chosen R is actually noted by Karmarkar
in [4]). The first result needed follows by a simple contradiction argument.

LEMMA 2.1. Let x solve (2.2), then x is strictly feasible provided \R\ < 1.

The Kuhn-Tucker conditions for (2.2) are

'•^•a,, Y > 0 (2.3)

where aj denotes the /'th row of A.

REMARK 2.1. The multiplier satisfies y > 0 provided x is strictly feasible.

LEMMA 2.2.

* v / * • * v —C X — C X = yi?2. (2.4)

PROOF. This follows on multiplying (2.3) by x and x, subtracting, and using
that the constraint (2.3) must be active.

The following result is an immediate consequence of the boundedness of
the solution of (2.1), but the conditions are worth stressing.

THEOREM 2.1. Let (2.2) be applied iteratively to generate a sequence {
with the properties that

(i) r^ is strictly positive (so that cT\^ is bounded below), and
(ii) RW is bounded,

for all k. Then the iteration is weakly convergent in the sense that {crx<fc>}
converges and the series of positive terms £ y(k) is convergent.

Another contradiction argument gives the result:

LEMMA 2.2. Let

<J = min(>'/, / = 1,2,...,/!) (2.5)
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then l im^oo ^ = 0 so that the limit points of the iteration must lie in the
boundary of X.

The next step is to solve (2.3) for x. To do this note that it can be written

" 1

1=1 Jl

so that

x = x - i r | A r D i A \ c, (2.6)

where
D(z) = diag{z,, i = 1,2,...,«}.

It follows from (2.4) that
- l

c, (2.7)
r \ in )

In particular,

lLa <£< ^-am (2 8)
where amiD and <7max are the extreme singular values of Z)[^]^4. As this ma-
trix has uniformly bounded elements it follows that the smallest residual
converges to zero with y.

REMARK 2.2. Note that the constraint (2.2) is independent of the scaling of
the constraints (2.1) as is the multiplier y determined by (2.3). Also this
invariance property extends to the sequence {x(fc)},

To discuss the nature of the limit points of the iteration it is convenient
to assume that the sequence of matrices {ArD({M /y'fc))2A} have uniformly
bounded inverses.

THEOREM 2.2. With this assumption it follows that

(a) the sequence {x(fe>} converges, and
(b) the limit point of the iteration is a vertex of the feasible region.

PROOF. Part (a) is an immediate consequence of (2.6), (2.7), and the con-
vergence of J2 y^- Part (b) follows because at least p of the elements Z)[£]
must remain bounded away from zero to ensure boundedness of the inverse
matrices.

To discuss the optimality of this vertex let a be an index set pointing
to the active constraints. Subscript a will be used to denote corresponding
subvectors and matrices.
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THEOREM 2.3. Under the same assumptions (a) the limiting vertex is opti-
mal, (b) there exists a subsequence of the {y(k) [y\k) - r\k)]/y\k)\ i = 1,2, • • • }
converging to a non-negative Kuhn-Tucker vector, and (c) if\o\ = p then the
sequence converges to the unique Kuhn-Tucker vector and the rate of conver-
gence is O{y2).

PROOF. It follows from (2.6) and the above assumptions that

(2.9)

Let

then Ui = O(y2) if i e ac by (2.9) as y, -~ 0. If / e a then

2 ( - . - - > \ - l

(2.11)

Because rf^ —> 0, k —* oo an infinite number of uf^ > 0. It follows from
(2.10), (2.11) that there exists a bounded, non-negative vector ua such that
(by selecting subsequences if necessary)

0 < u{k) -> Ma, k-> oo, (2.12)

and that
Alua = c. (2.13)

This establishes parts (a) and (b). Part (c) follows from (2.11) on noting that
if | <71 = p then A<, must be invertible so that ua converges to a unique limit
which must be non-negative.

REMARK 2.3. This convergence result suggest that it may be worth sorting
the multiplier estimates y{ri-yi)/yf and testing the index set determined by
the p largest to see if it points to the optimal vertex. An alternative is to sort
the r, and test the index set determined by the p smallest. But it follows from
(2.8) that the rate of convergence of the quantities tested to their final value
is slower in this case. Thus it would be satisfying if the first heuristic proved
superior (these are just heuristics as we hope to stop before final convergence
sets in). Note that r, transforms with the scale of the jth constraint, while
the multiplier estimate transforms with its reciprocal. Thus it is presumably
sensible to ensure that the constraint scales are comparable before making
these comparisons.
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REMARK 2.4. In Brophy and Smith [2] an alternative derivation of Barnes'
algorithm is given motivated by trajectory arguments. If in fact the r\k) did
correspond to values r (^) , tk = Yl%k y(7)> lym8 o n a smooth trajectory then
we would have

{k)-r{k)

t e r m s

so that y,M, would be independent of i to first order, and (2.14) would give
(n -yi)lyi = -R/pi/2. This might even suggest that an optimum choice of
R giving a faster rate of convergence is possible. But this would contradict
(2.8), while (2.14) is not born out by numerical experimentation. Thus the
trajectory following analogy cannot be pushed too far.

REMARK 2.5. The assumption that ATD(£/y)2A has a bounded inverse does
not exclude at least some degenerate behaviour, but does exclude the impor-
tant case of nonuniqueness. In this latter case it is easy to construct examples
which show that convergence is to a boundary point which is not a vertex in
general, and that the particular limit point will depend on the initial feasible
x. However, the above argument can be extended to show that this limit point
is optimal and that the rate of convergence to zero of the active constraint
residuals is O(y).

The existence of convergent multiplier estimates suggests that it might be
possible to proceed as in [5] and develop procedures which give estimates
possessing superfast rates of convergence. The idea is to introduce positive
weights into the constraint inequality (2.2) which now has the form

(2.15)
I -..V"-/ I

1=1

The previous argument still goes through with the only change being to ac-
commodate the weights. The idea used in [5] is to choose WJ® as the best
estimate of corresponding Kuhn-Tucker multiplier, and this suggest the up-
date

(2.16)

However, defined in this way, WJ® does not transform the right way under
charge of constraint scale (if a, —• /),a, then it is required that 10, —* j.Oj).
This can be remedied by modifying the constraint inequality (2.15) to

,(*p2

«fll«illF-sH <^' (2-17)— • i v(fc)
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choosing w\0^ to transform correctly (for example, by setting u>(-
0) = l/||a,||),

and modifying (2.16) to
(k) (k)

u>f*+'> = yt*>y' "/'• wfWatl (2.18)

But there is a further problem with w{
t
k) defined by (2.16) or (2.18). This is

that wj^ is not guaranteed to be positive. This does not seem to be serious
as (2.10) shows that the multiplier estimates of most interest will necessarily
be positive eventually. As the remainder must become small the simplest
solution would seem to be to define wfk+l^ as the absolute value of the right
hand side of (2.18). To demonstrate the superfast convergence note that if
U( = 0 corresponding to i £ (7 then

™<*+I)^o, with Y[yU)2

Thus the argument used previously to improve the estimate given by (2.12)
shows that

Ji iea. (2.19)

3. Implementation notes

The numerical results presented in the next section have been obtained
using a neat implementation in which the major component of the work
done in each basic solution step corresponds to using modified Gram Schmidt
orthogonalisation [6] to compute the tableau transformation

where Qi is an orthogonal basis for the range of D(£/y)A. We then compute
in sequence

v = U-Tc,

[dTTB(Z/y)dxT] = vT[Qf U~T],

a = minO>,/rfr,, dr, > 0), and

[TT XT] = [yT xT] - Aa[drT dxT]

where A is an under relaxation factor (0 < A < 1) which ensures feasibility
is maintained, before performing the existential step by guessing a vertex
(Remark 2.2) and checking it for feasibility and optimality using
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If this test is not satisfied then we set

[yT xT]:=[rT xT],

and the iteration sequence is repeated. The parameter which determines the
step in x in the current situation is the under relaxation factor A rather than
R. The implementation ensures that the relative change in residuals satisfies

V; — T;
1 = 1 , 2 , . . . , / ! ,

and this seems appropriate in view of the particular form of the constraint
on (2.2) as it ensures both uniform boundedness of R2 (actually

R2 < A2(\\yTQf\\/max(vTqr,vT
qi > 0))2),

and strict feasibility as required by Theorem 2.1 (this method of ensuring
feasibility is suggested in Brophy and Smith [2]). However, both R and y are
readily available. For example, from (2.3),

-£v = yQfz. zt = in-yd/yt, i=i,2,...,n

so that

as z is the range of D{£/y)A.

4. Numerical experiments

The basis for the testing of the interior point method is the routine for
generating random linear programs with known solution and multiplier vec-
tors described in [6]. A MATLAB program is given in the appendix. The
basic idea is that given a, \a\ = p, r satisfying r, = 0, / e a, r, > 0, i e ac, A,
x, and u > 0 then c, B can be found from

c = A^u, b = Ax - r.

The implementation of the interior point method then standardizes the prob-
lem data so that ||a,|| = 1, / = 1,..., n, and considers the penalised problem

min[crcu]

subject to
A e ] f x 1
o IJ k JK+.J"[o]

which has the same optimum if a is large enough, and has the strictly feasible
point x = 0, xp+i = 1 + max(max(6,, / = 1,2,...,«), 0) which can be used to
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start the computation. From the manner of construction of u it is known that
£ l/Wj where w, are the row multipliers that standardize the data matrix is
a suitable upper bound for co.

Two types of preliminary calculation were carried out:
(i) Clearly the existential step is easier if the optimal vertex is well separated
from its competitors in an appropriate sense. One factor affecting this is
the scale of the residual vector r, and it was observed that by choosing this
smaller it was possible to make small problems (n = 20, p = 5 say) more
difficult. However, this effect proved to be confounded with problem size and
rapidly became less significant as the dimensions were increased. Subsequent
calculations held the scale at 1.
(ii) Problems were solved for a range of values of A to obtain information on
the effect of different choices. While these could not be considered exhaustive,
being restricted to comparatively small problems, it is clear that A needs to be
chosen relatively large in (0,1). Most consideration was given to the choices
.9, .95, .99; and the final choice for the more extensive calculations was .95,
but the evidence for this choice over .99 was not clear cut.

TABLE 4.1. Cumulative iteration counts for 25 randomly generated linear programs for A = .95.

\ p

n ^v

a

10

20

40

80

160

320

640

1280

5

minr

161

214

252

308

411

513

587

683

maxu

137

209

251

296

350

34

486

525

10

minr

219

306

380

475

561

796

924

maxu

229

274

351

438

516

688

853

20

minr

316

420

479

588

841

959

maxu

308

389

470

603

890

871

40

minr

406

512

602

745

maxu

384

475

573

785

The more extensive calculations are summarized in Table 4.1. Here cu-
mulative iterations for each of 25 randomly generated problems are reported
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for each of the two possibilities for the existential step in Remark 2.3, for
the range of values of n and p indicated. It will be seen that there is clear
evidence of growth with n, and some evidence of slow growth with p. There
is some evidence also that 25 is not really large enough for the statistic to
have stabilized (a more robust statistic may have been preferable as the occa-
sional large outlier was noted). However, by and large, the choice of a based
on the large multiplier estimates seems more serviceable that that based on
small residuals.

TABLE 4.2. Cumulative iteration counts for reduced gradient solution of 25 randomly
generated linear programs.

\ p

\
n \

10

20

40

80

160

320

640

1280

5

211

259

309

362

411

494

529

554

10

483

673

806

953

1070

1191

1820

20

1120

163

2013

1388

2752

2961

40

2534

4067

5192

6009

A basis for comparison with an active set method is given in Table 4.2.
Here similar tests have been run using an implementation of the reduced
gradient algorithm described in [6]. The general characteristics show a slower
growth with n and a much faster growth with p (at least linear in p). But
these are dense problems so the relative work in performing the modified
Gram-Schmidt orthogonalisation (costing O(np2) flops) destroys any possible
advantage of the interior point method as each reduced gradient step costs
only O(np) flops. The result is that the reduced gradient wins very easily,
the comparison may be more interesting for very sparse problems when the
significantly slower growth with p for the interior point method may prove
an important advantage.

There remains the question of the utility of the accelerated multiplier es-
timates w\k) given by (2.16) and (2.18). Using (2.16) to guess the optimal
vertex in similar tests to those described above gave the following hopeful
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TABLE 4.3. Results for the accelerated multiplier estimate.

20 40 80

65 78 82

results for the cumulative totals for 10 replications for each of the indicated
parameters values (Table 4.3).

Unfortunately, the results for (2.18) are not nearly so satisfactory, and do
not prove competitive with either of the other two methods for selecting the
vertex to test for optimality.

Appendix

The code that follows is the MATLAB text for a procedure that generates
random linear programs in the form (2.1) with known solution and multiplier
vectors. It is based on the discussion in [6], section 7.4.

a = - .7 + rand (n,p)\-l/l.2); % set matrix
x = rand(/7,1); % set solution
z = rscl*rand(n, 1); % rscl scales residual
ones = ones(«, 1)
% determine optimal vertex by sampling p distinct integers from 1 - n

for / = 1: p
j = ceil(n'rand);

while one (j) == 0, j = ceil(«*rand); end
one(y) = 0; end
in =find (one==0); % in points to optimal vertex
z(in)=zeros(in); %zero residuals at optimal vertex
u = rand(/7,1); % set multiplier vector
c = (u' * A(in,: ))'; % set objective
b = A * x - z; % set right hand side
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