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Abstract

Age-dependent branching processes are increasingly used in analyses of biological data.
Despite being central to most statistical procedures, the identifiability of these models
has not been studied. In this paper we partition a family of age-dependent branching
processes into equivalence classes over which the distribution of the population size
remains identical. This result can be used to study identifiability of the offspring and
lifespan distributions for parametric families of branching processes. For example, we
identify classes of Markov processes that are not identifiable. We show that age-dependent
processes with (nonexponential) gamma-distributed lifespans are identifiable and that
Smith–Martin processes are not always identifiable.
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1. Introduction

Let Z(t) denote the size of a population governed by an age-dependent branching process
started at t = 0 with a single particle or cell of age 0. Upon completion of its lifespan,
every cell produces a random number of offspring ξ ∈ J = {0, 1, 2, . . . , J }, where J is a
given positive integer. Let p := (p0, . . . , pJ ), where pj := P(ξ = j), j ∈ J, denote the
offspring distribution. Set h(u;p) :=∑

j∈J pju
j , u ∈ [−1, 1], and μ := E(ξ) = ∑

j∈J jpj
for its probability generating function (PGF) and expectation. A cell that produces a single
offspring (ξ = 1) is said to be quiescent. This feature is relevant when modeling tumor
growth ([1]; see also [5]). Throughout, we will implicitly assume that p1 ∈ [0, 1). Let
J∗(p) := {j ∈ J : pj > 0}. For every j ∈ J∗(p), let Gj(t) := P(τ ≤ t | ξ = j), t ≥ 0,
denote the conditional cumulative distribution function (CDF) of the lifespan τ , given ξ = j .
Write D for the class of all absolutely continuous (a.c.) CDFs F that are proper and satisfy
F(0+) = 0 (the assumption of a.c. is not needed but simplifies the presentation). Assume
that Gj ∈ D , j ∈ J∗(p). As usual, every cell evolves independently of all other cells. Let
G = {Gj, j ∈ J∗(p)}. We will refer to C = (p,G) as the characteristics of the process. The
process is of Bellman–Harris type if the CDFsGj are identical for all j ∈ J∗(p). Otherwise, it
allows the lifespan and offspring to be dependent, and belongs to the class of Sevastyanov
processes [3], [4], [7].
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In this paper we address the following question: are there distinct characteristics (p,G)
under which the distribution of the process Z(t) is identical? This question is relevant to the
problem of model identifiability, which is a central prerequisite to most statistical procedures.
Although age-dependent branching processes are widely used in biology, this question does not
appear to have been studied for this class of models [2], [5], [9]. Answering this question will
inform us about what can or cannot be estimated by only observing Z(t), a situation that arises
frequently in cell biology.

Let P denote the class of all processes that satisfy the above assumptions. It will be useful
to define a subclass of processes included in P , say P0, with characteristics (p,G) satisfying
p1 = 0. We will say that two processes with characteristics (p,G) and (p̂, Ĝ) are equivalent if,
for all t ≥ 0, the distribution of Z(t) is the same under either characteristics. Let Cp,G denote
the collection of processes included in P that are equivalent to the process with characteristics
(p,G). It forms an equivalence class, and our objective is to identify all the processes included
in this class for any admissible set of characteristics (p,G). If the class includes processes other
than the process with characteristics (p,G), then p and G cannot be unequivocally identified
by the marginal distribution of Z(t) for all t ≥ 0.

We construct the class Cp,G in the next section. We proceed in three steps. First, we
identify a collection of equivalent processes (Section 2.1). Next, by inverting the transformation
that defines this collection about a properly chosen process, we find a larger collection of
equivalent processes (Section 2.2). Finally, we prove, when J = 2, which is typical of most
biological applications, and J = 3, that the larger collection is identical to Cp,G (Section 2.3).
Each equivalence class contains a single process such that p1 = 0. When J = 2, the
equivalence classes are fully characterized by the expectation and the variance of Z(t) (Section
2.4). Our results are applicable to study identifiability of families of parametric models. For
example, we find that the Markov version of the process is not always identifiable (Section 3.1).
The age-dependent process with (nonexponential) gamma-distributed lifespan is identifiable
(Section 3.2). We also find that the Smith–Martin process is not always identifiable (Section 3.3).

2. Main results

2.1. A collection of equivalent processes

For every p1 ∈ [0, 1) and a ∈ [0, p1], define p(a) = (p
(a)
0 , . . . , p

(a)
J ), where

p
(a)
j :=

⎧⎪⎪⎨
⎪⎪⎩

pj

1 − a
, j ∈ J \ {1},

p1 − a

1 − a
, j = 1.

(1)

Note that J∗(p) \ {1} = J∗(p(a)) \ {1}. By convention, when p1 = 0, G1 will denote any
CDF in D . For every t ≥ 0, j ∈ J∗(p), and a ∈ [0, p1], set

G
(a)
j (t) := (1 − a)Gj ∗

∞∑
k=0

akG∗k
1 (t),

where Gj ∗G1(t) := ∫ t
0 Gj(t − x) dG1(x) denotes the convolution of Gj and F1, and

G∗k
1 (t) := ∫ t

0 G
∗(k−1)
1 (t − x) dG1(x) is the k-fold convolution of G1 with itself. For every

p1 ∈ [0, 1) and a ∈ [0, p1], it can be verified that G(a)j is the CDF of a proper distribution;
it can be interpreted as the CDF of a (non-Markov) phase-type distribution, and the Laplace

https://doi.org/10.1239/aap/1409319556 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319556


706 R. CHEN AND O. HYRIEN

transform of g(a)j (t) := dG(a)j (t)/dt is

L
g
(a)
j

(s) = (1 − a)Lgj (s)

1 − aLg1(s)
, (2)

where Lgj is the Laplace transforms of gj (t) := dGj(t)/dt . Write G(a) = {G(a)j , j ∈
J∗(p(a))} and C(a) = (p(a),G(a)).

Let Sp,G denote the collection of processes with characteristics (p(a),G(a)), a ∈ [0, p1].
Since (p(0),G(0)) = (p,G), Sp,G includes the process with characteristics (p,G). Thus, it is
never empty. Moreover, since p(p1)

1 = 0, Sp,G always includes at least one process from P0.
This process will play a central role in constructing Cp,G.

Theorem 1. For all t ≥ 0, the distribution of the population size process Z(t) is identical
under all processes included in Sp,G, that is, Sp,G ⊆ Cp,G.

Proof. Let �C(u, t) := E(uZ(t) | Z(0) = 1), u ∈ [−1, 1] and t ≥ 0, denote the PGF of
Z(t) under the process with characteristicsC. Conditioning on the lifespan of the cell initiating
the population yields

�C(u, t) = u

{
1 −

∑
j∈J∗(p)

pjGj (t)

}
+

∑
j∈J∗(p)

pj

∫ t

0
�C(u, t − x)j dGj(x). (3)

For every j ∈ J and u ∈ [−1, 1], let L
�
j
C

(u, s) := ∫ ∞
0 e−st�C(u, t)j dt denote the Laplace

transform of �C(u, t)j . Put L�C (u, t) = L�1
C
(u, t). Since |�C(u, t)| ≤ 1 for every u ∈

[−1, 1] and t ≥ 0, we have L
�
j
C

(u, s) < ∞ for every s > 0. Also, it follows from (3) that
L�C (u, s), s > 0, satisfies

L�C (u, s) = u

s

{
1 −

∑
j∈J∗(p)

pjLgj (s)

}
+

∑
j∈J∗(p)

pjL�
j
C

(u, s)Lgj (s). (4)

For every a ∈ [0, p1], (4) can be rearranged as

{1 − aLg1(s)}L�C (u, s) = u

s

{
1 −

∑
j∈J∗(p)\{1}

pjLgj (s)− p1Lg1(s)

}

+
∑

j∈J∗(p)\{1}
pjL�

j
C

(u, s)Lgj (s)+ (p1 − a)L�C (u, s)Lg1(s).

Dividing both sides of the equation by 1 − aLg1(s) yields

L�C (u, s) = u

s

{
1

1 − aLg1(s)
−

∑
j∈J∗(p(a))\{1}

pj

1 − a

(1 − a)Lgj (s)

1 − aLg1(s)

− p1 − a

1 − a

(1 − a)Lg1(s)

1 − aLg1(s)
− aLg1(s)

1 − aLg1(s)

}

+
∑

j∈J∗(p(a))\{1}

pj

1 − a

(1 − a)Lgj (s)

1 − aLg1(s)
L
�
j
C

(u, s)

+ p1 − a

1 − a

(1 − a)Lf1(s)

1 − aLg1(s)
L�C (u, s)

= u

s

{
1 −

∑
j∈J∗(p(a))

p
(a)
j (θ)L

g
(a)
j

(s)

}
+

∑
j∈J∗(p(a))

p
(a)
j L

�
j
C

(u, s)L
g
(a)
j

(s). (5)
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By comparing (4) and (5), we deduce that L�C (u, s) = L�
C(a)
(u, s); hence, the processes with

characteristics (p,G) and (p(a),G(a)), a ∈ [0, p1], are equivalent.

2.2. A larger collection of equivalent processes

By inverting the transformation (p,G) → (p(a),G(a)), a ∈ [0, p1], about a properly chosen
process in Sp,G, we will construct a collection of equivalent processes that is larger than Sp,G.
Setting a = p1 in (1) and (2) yields

p
(p1)
j =

⎧⎨
⎩

pj

1 − p1
, j ∈ J \ {1},

0, j = 1,

L
g
(p1)
j

(s) = (1 − p1)Lgj (s)

1 − p1Lg1(s)
, j ∈ J∗(p) \ {1},

which identifies a process in P0. We note that �C(p1) (u, t) does not depend on G(p1)
1 . Also,

any process with characteristics (p̂, Ĝ) that satisfy

p̂
(p̂1)
j = p

(p1)
j , j ∈ J \ {1},

L
ĝ
(p̂1)
j

(s) = L
g
(p1)
j

(s), j ∈ J∗(p) \ {1}, (6)

belongs to Cp,G because �
Ĉ
(u, t) = �

Ĉ(p̂1) (u, t) = �C(p1) (u, t) = �C(u, t). By solving (6)
we find that (p̂, Ĝ) satisfies

p̂j = p
(p1)
j (1 − p̂1), j ∈ J \ {1},

Lĝj (s) = L
(p1)
gj (s)

{1 − p̂1Lĝ1(s)}
1 − p̂1

, j ∈ J∗(p) \ {1},
(7)

where p̂1 ∈ [0, 1) and Ĝ1 ∈ Dp,G, and Dp,G ⊆ D is a set of distributions such that Lĝj (s), j ∈
J∗(p̂) \ {1}, are the Laplace transforms of distributions in D . Write (p

p̂1,Ĝ1
,G

p̂1,Ĝ1
) for any

characteristics that satisfy (7). Then, the collection of processes

Sp,G :=
⋃

p̂1∈[0,1)

⋃
Ĝ1∈Dp,G

{process with characteristics (p
p̂1,Ĝ1

,G
p̂1,Ĝ1

)}

is included in Cp,G. It is also clear that Sp,G⊂ Sp,G.

2.3. Exhaustivity of Sp,G when J = 2 and J = 3

Our final step toward identifying Cp,G is to prove that it coincides with Sp,G. Denote by
�
(k)
C (u, t) := ∂k�C(u, t)/∂u

k the kth-order partial derivative of �C(u, t), k = 1, 2, . . .. Let
mk(t) := E(

∏k−1
l=0 {Z(t)− l} | Z(0) = 1), t ≥ 0, k = 1, 2, . . ., denote the kth-order factorial

moment of Z(t) under the process with characteristics C, and write m(t) = m1(t). We have
mk(t) = �(k)(1, t). Differentiating both sides of (3) with respect to u at u = 1 yields the
following integral equation for the expectation of the process:

m(t) = 1 −
∑

j∈J∗(p)
pjGj (t)+

∑
j∈J∗(p)

jpj

∫ t

0
m(t − x) dGj(x). (8)
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The second- and third-order factorial moments satisfy

m2(t) =
∑

j∈J∗(p)
jpj

∫ t

0
m2(t − x) dGj(x)+

∑
j∈J∗(p)

j (j − 1)pj

∫ t

0
m2(t − x) dGj(x) (9)

and

m3(t) =
∑

j∈J∗(p)
jpj

∫ t

0
m3(t − x) dGj(x)

+
∑

j∈J∗(p)
3j (j − 1)pj

∫ t

0
m(t − x)m2(t − x) dGj(x)

+
∑

j∈J∗(p)
j (j − 1)(j − 2)pj

∫ t

0
m(t − x)3 dGj(x). (10)

Let Lmk (s) denote the Laplace transform of mk(t), k = 1, 2, 3. Taking the Laplace transform
of both sides of (8)–(10) and rearranging the terms yields

Lm(s) = 1 − ∑
j∈J∗(p) pjLgj (s)

s{1 − ∑
j∈J∗(p) jpjLgj (s)}

, (11)

Lm2(s) = Lm2(s)
∑
j∈J∗(p) j (j − 1)pjLgj (s)

1 − ∑
j∈J∗(p) jpjLgj (s)

, (12)

and

Lm3(s) = Lm3(s)
∑
j∈J∗(p) j (j − 1)(j − 2)pjLgj (s)

1 − ∑
j∈J∗(p) jpjLgj (s)

+ 3Lmm2(s)Lm2(s)

Lm2(s)
, (13)

where Lmm2(s) denotes the Laplace transform of m(t)m2(t).

Lemma 1. Suppose that J = 2 or J = 3. For every admissible (p,G), the equivalence class
Cp,G includes a single process in P0.

Proof. Assume first that J = 3. Consider two processes in P0 with characteristics C =
(p,G) and Ĉ = (p̂, Ĝ). Thus,p1 = 0 and p̂1 = 0. Suppose that these processes are equivalent,
that is, they both belong to Cp,G. Then �C(u, t) = �

Ĉ
(u, t) and �(k)C (1, t) = �

(k)

Ĉ
(1, t), u ∈

[−1, 1], t ≥ 0, and k = 1, 2, 3. Write m̂k(t) for the kth-order factorial moment of the process
with characteristics Ĉ. Hence, L

�
(k)
C

(s) = L
�
(k)

Ĉ

(s), which, using identities (11)–(13), yields

1 − p0Lg0(s)− p2Lg2(s)− p3Lg3(s)

d(s)
= 1 − p̂0Lĝ0(s)− p̂2Lĝ2(s)− p̂3Lĝ3(s)

d̂(s)
,

Lm2(s){2p2Lg2(s)+ 6p3Lg3(s)}
d(s)

= Lm2(s; Ĉ){2p̂2Lĝ2(s)+ 6p̂3Lĝ3(s)}
d̂(s)

,

6Lm3(s)p3Lg3(s)

d(s)
+ 3Lmm2(s)Lm2(s)

Lm2(s)
= 6Lm̂3(s)p̂3Lĝ3(s)

d̂(s)
+ 3Lm̂m̂2(s; )Lm̂2(s)

Lm̂2(s)
,
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where d(s) = 1 − 2p2Lg2(s) − 3p3Lg3(s) and d̂(s) = 1 − 2p̂2Lĝ2(s)− 3p̂3Lĝ3(s). Since
Lmk (s) = Lm̂k (s), k = 1, 2, 3, and Lmm2(s) = Lm̂m̂2(s), the above system reduces to

pjLgj (s)

d(s)
= p̂jLĝj (s)

d̂(s)
, j = 0, 2, 3. (14)

The above equations obtained when j = 2, 3 yield

p2Lg2(s)− 3p2Lg2(s)p̂3Lĝ3(s) = p̂2Lĝ2(s)− 3p̂2Lĝ2(s)p3Lg3(s),

p3Lg3(s)− 2p3Lg3(s)p̂2Lĝ2(s) = p̂3Lĝ3(s)− 2p̂3Lĝ3(s)p2Lg2(s),

which imply that 2p2Lg2(s) + 3p3Lg3(s) = 2p̂2Lĝ2(s)+ 3p̂3Lĝ3(s); hence, d(s) = d̂(s),
and the system of equations (14) reduces to pjLgj (s) = p̂jLĝj (s), j = 0, 2, 3. Hence,
(p̂, Ĝ)=(p,G) since the distributions Gj and Ĝj , j ∈ J∗(p), are all proper. This completes
the proof when J = 3. The case J = 2 is treated similarly except that we only use the first and
second equations of the system (14), and we set p3 = p̂3 = 0.

Theorem 2. We have Sp,G = Cp,G for every admissible (p,G) when J = 2 and J = 3.

Proof. We already know that Sp,G ⊆ Cp,G. To prove that the converse holds, let (p̂, Ĝ)
denote the characteristics of any process included in Cp,G. Then, by construction, the pro-
cess with characteristics (p̂(p̂1), Ĝ(p̂1)) belongs to P0. We also know from Lemma 1 that
(p̂(p̂1), Ĝ(p̂1)) = (p(p1),G(p1)). Hence, the process with characteristics (p̂, Ĝ) belongs to
Sp,G, which implies that Cp,G ⊆ Sp,G. This completes the proof.

2.4. Characterization of Cp,G using moments when J = 2

In data analyses, model parameters are sometimes estimated using moments of the process
rather than its distribution. Then, a relevant question is: which moments are sufficient to
fully characterize the equivalence class Cp,G? We show below that the answer is simply the
expectation and variance when J = 2. This property does not appear to generalize when J > 2,
however.

Theorem 3. Assume that J = 2 and that the marginal distribution of {Z(t), t ≥ 0} is
determined by its moments. Then Cp,G = {processes with characteristics (p̂, Ĝ) : m̂(t) =
m(t), m̂2(t) = m2(t), t ≥ 0}.

Proof. To simplify the presentation, we assume, when pj = 0, thatGj is any arbitrary CDF
in D . For k = 2, 3, . . ., it can be shown by induction and using the identitymk(t) = �

(k)
C (1, t)

that

mk(t) = p2

∫ t

0


k/2�∑
r=1

ckrmr(t − x)mk−r (t − x) dG2(x)+
2∑
j=1

jpj

∫ t

0
mk(t − x) dGj(x),

where 
k/2� denotes the largest integer less than or equal to k/2, and ckr are some positive
integers. Then

Lmk (s) = p2lk(s)Lg2(s)+ Lmk (s)

2∑
j=1

jpjLgj (s), (15)
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where lk(s) is the Laplace transform of
∑
k/2�
r=1 ckrmr(t)mk−r (t). Hence,

Lmk (s) = lk(s)p2Lg2(s)

1 − ∑2
j=1 jpj L̃gj (s)

.

Let Ĉ = (p̂, Ĝ) denote the characteristics of any process in Cp,G. Then�
Ĉ
(u, t) = �C(u, t),

t ≥ 0, u ∈ [−1, 1]. By assumption, �c(u, t) is determined by its moments. Hence, Cp,G =
{processes with characteristics (p̂, Ĝ) : m̂k(t) = mk(t), t ≥ 0, k ∈ N}, where N = {1, 2, . . .}.
We note that m̂k(t) = mk(t) implies that Lm̂k (s) = Lmk (s) and l̂k(s) = lk(s), k ∈ N, from
which we deduce, when k = 2, that

p2Lg2(s)

1 − ∑2
j=1 jpjLgj (s)

= p̂2Lĝ2(s)

1 − ∑2
j=1 jp̂jLĝj (s)

, (16)

and, when k = 3, 4, . . ., that

lk(s)p2Lg2(s)

1 − ∑2
j=1 jpjLgj (s)

= lk(s)p̂2Lĝ2(s)

1 − ∑2
j=1 jp̂jLĝj (s)

. (17)

Equation (16) and (17) are clearly equivalent when lk(s) �= 0. When lk(s) = 0, we deduce
from (15) that Lmk (s) = 0 and mk(t) = 0, k = 3, 4, . . .. Thus, in either case, we conclude
that Cp,G = {processes with characteristics (p̂, Ĝ) : m̂k(t) = mk(t), t ≥ 0, k = 1, 2}, which
completes the proof.

3. Application to model identifiability

The results obtained in Section 2 are applicable to study identifiability of branching processes
when specific parametric assumptions are made about the lifespan distributions. To shorten the
discussion, we only consider the case in which J = 2.

3.1. Exponentially distributed lifespan

We assume here that τ is conditionally exponentially distributed, given {ξ = j}: Gj(t) =
1 − e−ψj t , t ≥ 0, for some ψj ∈ R

∗+, j ∈ J∗(p). The resulting class of processes is denoted
by M. We note that Lgj (s) = ψj/(ψj + s), j ∈ J∗(p). It is defined for s ∈ (−ψj ,∞), and
extendable to s ∈ (−∞,−ψj ) ∪ (−ψj ,∞) by analytic continuation.

For every admissible (p,G), let CM
p,G = Cp,G∩M denote the class of all processes included

inM that are equivalent to the process with characteristics (p,G). We say that the characteristics
(p,G) are identified by {Z(t), t ≥ 0} if and only if CM

p,G includes only the process with
characteristics (p,G). To establish identifiability of (p,G), or lack thereof, it suffices to
construct the class CM

p,G. Let (p̂, Ĝ) denote the characteristics of any process in CM
p,G. Then

Ĝj , j ∈ J∗(p̂), is exponential.
Assume first that p1 = 0. If p̂1 = 0, Lemma 1 implies that (p̂, Ĝ) = (p,G). If p̂1 ∈ (0, 1),

we know from Theorem 2 and (7) that, for every j ∈ J∗(p) \ {1},
(1 − p̂1)ψ̂j

ψ̂j + s
= ψj

ψj + s

(
1 − p̂1ψ̂1

ψ̂1 + s

)
.

Rearranging the terms in the above identity leads to the polynomial equation

(1 − p̂1)ψ̂j (ψj + s)(ψ̂1 + s) = ψj {(1 − p̂1)ψ̂1 + s}(ψ̂j + s). (18)
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This identity holds if and only if ψ̂j = ψ̂1 = ψj/(1 − p̂1). Hence, for any j1, j2 ∈ J∗(p),
ψj1 = ψj2 , and the process with the characteristics (p,G) must be Bellman–Harris. Write
ψ := ψj , j ∈ J∗(p), and we have ψ̂j = ψ/(1 − p̂1). Using the first equation in (7), we
deduce that p̂j = pj (1 − p̂1), p̂1 ∈ (0, 1).

Assume next that p1 ∈ (0, 1). If p̂1 = 0, a similar line of arguments shows that the process
with characteristics (p̂, Ĝ) satisfying ψ̂j = ψ(1 − p1), p̂j = pj/(1 − p1), j ∈ J∗(p){1},
belongs to CM

p,G if ψj = ψ, j ∈ J∗(p).
Now assume that p1 ∈ (0, 1) and p̂1 ∈ (0, 1). Then, for every j ∈ J∗(p), we have

(1 − p̂1)ψ̂j

ψ̂j + s
= (1 − p1)ψj

ψj + s

(
1 − p̂1ψ̂1

ψ̂1 + s

)/(
1 − p1ψ1

ψ1 + s

)
.

Rearranging the terms in the above identity leads to the polynomial equation

(1− p̂1)ψ̂j {(1−p1)ψ1 + s}(ψj + s)(ψ̂1 + s) = (1−p1)ψj {(1− p̂1)ψ̂1 + s}(ψ̂j + s)(ψ1 + s).
(19)

Solving this equation together with the first equation in (7) for each j ∈ J∗(p) \ {1} separately
leads to three admissible sets of equations, denoted by Aj , Bj , and Cj (indexed by j ):

(Aj )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p̂1)ψ̂j = (1 − p1)ψj ,

ψ̂1 = ψ1,

ψ̂j = ψj ,

(1 − p̂1)ψ̂1 = (1 − p1)ψ1,

p̂j

1 − p̂1
= pj

1 − p1
,

(Bj )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p̂1)ψ̂j = (1 − p1)ψj ,

ψ1 = ψj ,

ψ̂1 = ψ̂2,

(1 − p1)ψj = (1 − p̂1)ψ̂j ,

p̂j

1 − p̂1
= pj

1 − p1
,

and

(Cj )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p̂1)ψ̂2 = (1 − p1)ψ2,

ψ̂1 = ψ1,

ψ2 = (1 − p̂1)ψ̂1,

ψ̂2 = (1 − p1)ψ1,

p̂j

1 − p̂1
= pj

1 − p1
.

Assume first that p0p2 > 0. Then the collection of Markov processes that are equivalent to
the process with characteristics (p,G) is determined by simultaneously solving the equations
X0 and Y2, where X and Y stand symbolically for either A, B, or C. There are nine such
combinations.

• For equations A0 and A2, it is easy to show that the only solution is (p̂, Ĝ) = (p,G).
Thus, here (p̂, Ĝ) identifies the process with characteristics (p,G).

• Equations B0 and B2 admit solutions if and only if ψj = ψ, j ∈ J∗(p), that is, the
process with characteristics (p,G) must be Bellman–Harris. When this condition is
met, the solutions to the two equations satisfy ψ̂j = ψ̂, j ∈ J∗(p), where ψ̂ = ψ(1 −
p1)/(1 − p̂1), p̂j = pj (1 − p̂1)/(1 −p1), and p̂1 ∈ (0, 1). Thus, any Markov Bellman–
Harris process admits infinitely many equivalent processes in M, which are also all
(Markov) Bellman–Harris.
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• Equations C0 and C2 admit solutions if and only if ψ0 = ψ2 and ψ0 ≤ ψ1. Under these
constraints, the unique solution to the two sets of equations is ψ̂1 = ψ1, ψ̂0 = ψ̂2 =
(1 − p1)ψ1, p̂1 = 1 − ψ0/ψ1, and p̂j = pjψ0/{(1 − p1)ψ1}, j = 0, 2. This solution
always differs from (p,G), except when p1 = 1 − ψ0/ψ1. Thus, processes that satisfy
the conditionsψ0 = ψ2 andψ0 ≤ ψ1 are identifiable only ifp1 = 1−ψ0/ψ1. Otherwise,
there exists a unique (p̂, Ĝ) that differs from (p,G) under which the distribution of the
process Z(t) does not change.

• Any other pair of equations admits solutions only under specific restrictions on (p,G).
For example, equationsA0 andB2 will have a solution provided thatψ1 = ψ2. When the
conditions are met, the only solution to the equations is (p̂, Ĝ) = (p,G), and, therefore,
identifies the initial process.

When either p0 = 0 or p2 = 0, we obtain the same set of solutions as above (details are
omitted). We summarize the above findings in the following corollary.

Corollary 1. Suppose that J = 2 and, for every j ∈ J∗(p), that Gj(t) = 1 − e−ψj t , t ≥ 0,
for some ψj ∈ R

∗+. Then (p,G) is uniquely identified by the process {Z(t), t ≥ 0}, except in
the following cases.

Case 1. If ψj = ψ, j ∈ J∗(p) (Bellman–Harris case), then CM
p,G includes the Markov

processes with characteristics (p̂, Ĝ) ∈ {p̂1 ∈ [0, 1), p̂j = pj (1 − p̂1)/(1 − p1), j ∈
J∗(p) \ {1}, ψ̂j = ψ(1 − p1)/(1 − p̂1), j ∈ J∗(p̂)}.

Case 2. If ψj = ψ, j ∈ J∗(p) \ {1}, p1 ∈ (0, 1), ψ < ψ1, and p1 �= 1 − ψ/ψ1 (‘extended’
Bellman–Harris case), then CM

p,G consists of the process in M with characteristics
(p,G) and (p̂, Ĝ), where p̂1 = 1 − ψ/ψ1, p̂j = pjψ/{(1 − p1)ψ1}, ψ̂1 = ψ1,
and ψ̂0 = ψ̂2 = (1 − p1)ψ1, j ∈ J∗(p) \ {1}.

Remark 1. Corollary 1 identifies two classes of processes in M that are not identifiable. The
characteristics of the equivalent processes differ widely over Cp,G when (p,G) identifies
a Bellman–Harris process. As an illustration, consider the Markov process with offspring
distribution p = ( 1

5 ,
1
2 ,

3
10 ) and exponentially distributed lifespan with parameters ψ0 = ψ1 =

ψ2 = 1. This process is of Bellman–Harris type. The class of processes in M equivalent
to this process is determined by case 1 of Corollary 1, and it includes the processes with
offspring distributions p̂ = [ 2

5 (1 − p̂1), p̂1,
3
5 (1 − p̂1)] and exponentially distributed lifespan

with parameters ψ̂0 = ψ̂1 = ψ̂2 = 1/2(1 − p̂1), where p̂1 ∈ [0, 1). In particular, if p̂1 = 0,
we obtain the process parameterized by p̂ = ( 2

5 , 0, 3
5 ) and ψ̂0 = ψ̂2 = 0.5, which belongs to

P0. In Figure 1(a) we present examples of probability density functions ĝ2 for a sample of
processes that belong to the equivalence class. In Figure 1(b)–(c) we plot the set of probability
density functions ĝ2 when the Bellman–Harris structure of the process is relaxed. For example,
in Figure 1(b) we set ψ1 = 1.5 (all other parameter values are identical to those used in
Figure 1(a)), and find using case 2 of Corollary 1 that the class of equivalent processes in
M includes a second process with offspring distribution p̂ = ( 4

15 ,
1
3 ,

2
5 ) and exponentially

distributed lifespan with parameters ψ̂1 = 1.5 and ψ̂0 = ψ̂2 = 0.75. In Figure 1(c) we set
ψ1 = 0.5, while in Figure 1(d) we set ψ1 = 1 and ψ0 = 2. In these two cases, the class of
equivalent processes includes only the original process, which is therefore identifiable.

Remark 2. From a statistical standpoint, when Z(t) is observed at discrete time points, the
likelihood function can be solely expressed using the marginal distribution of {Z(t), t ≥ 0}, and
the model parameters are therefore not always identifiable. The maximum likelihood estimator
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Figure 1: Representation of the set of probability density functions ĝ2 over the class of equivalent
processes for four processes in M: (a) ψ0 = ψ1 = ψ2 = 1 (Bellman–Harris process); (b) ψ0 = ψ2 = 1
and ψ1 = 1.5(> ψ0 and > ψ2) (‘extended’ Bellman–Harris process); (c) ψ0 = ψ2 = 1 and ψ1 < 1
(‘extended’ Bellman–Harris process); (d) ψ0 �= ψ2, ψ1 > 0, and ψ2 = 1. We set p1 = 1

2 in all
cases. Each plot shows g2 and ĝ2 (whenever there exists ĝ2 �= g2) for the process with characteristics
(p,G) (solid lines), representative processes of the equivalence class (dash–dot line), and the equivalent
processes in M in P0 (dashed lines). The model is nonidentifiable in cases (a) and (b), and identifiable

in cases (c) and (d).

is not consistent, at least in the traditional sense [6]. If modeling quiescence is not of primary
interest, this nonidentifiability issue may be avoided by imposing p̂1 = p1 = 0. Under such a
restriction, the interpretation of Gj, j ∈ J∗(p), may change because the time to producing j
offspring could now include a resting phase latently embedded in the lifespan.

3.2. Gamma-distributed lifespan

We now extend the Markov process by assuming that the lifespan is gamma distributed:

Gj(t) :=
∫ t

0

κ
ωj
j


(ωj )
xωj−1e−κj x dx
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for someψj := (ωj , κj ) ∈ R
∗+ ×R

∗+, j ∈ J∗(p). We have Lgj (s) = κ
ωj
j /(κj + s)ωj , defined

for s ∈ (−κj ,∞), but also extendable to s ∈ (−∞,−κj )∪ (−κj ,∞) by analytic continuation.
The assumption of a gamma-distributed lifespan is frequently made in practice [3], [9]. We
obtain the Markov process of the previous section if ωj = 1, j ∈ J∗(p). In the following
result we show, when ωj �= 1, that it is identifiable.

Corollary 2. Suppose that J = 2 and, for every j ∈ J∗(p), that Gj is a gamma distribution
with parameters κj > 0, ωj > 0, andωj �= 1. Then (p,G) is uniquely identified by the process
{Z(t), t ≥ 0}.

Proof. Let (p̂, Ĝ) denote the characteristics of any process included in Cp,G. Assume first
that p1 = 0. If p̂1 = 0, Lemma 1 implies that (p̂, Ĝ) = (p,G). If p̂1 ∈ (0, 1), (6) gives

(1 − p̂1)

(
κ̂j

κ̂j + s

)ω̂j
=

(
κj

κj + s

)ωj{
1 − p̂1

(
κ̂1

κ̂1 + s

)ω̂1
}
.

Rearranging the terms in the above identity leads to the equation

(1 − p̂1)κ̂
ω̂j
j (κ̂1 + s)ω̂1(κj + s)ωj = κ

ωj
j (κ̂j + s)ω̂j {(κ̂1 + s)ω̂1 − p̂1κ̂

ω̂1
1 }. (20)

Dividing both sides of (20) by (κ̂1 + s)ω̂1(κj + s)ωj and letting s → ∞ yields

(1 − p̂1)κ̂
ω̂j
j = κ

ωj
j lim

s→∞

{
(κ̂j + s)ω̂j

(κj + s)ωj
− p̂1κ̂

ω̂1
1 (κ̂j + s)ω̂j

(κj + s)ωj (κ̂1 + s)ω̂1

}
.

In order for the right-hand side to converge to a constant, we must have ω̂j = ωj , which implies
that (1− p̂1)κ̂

ω̂j
j = κ

ωj
j . Then (20) reduces to (κ̂1 + s)ω̂1(κj + s)ωj = (κ̂j + s)ωj {(κ̂1 + s)ω̂1 −

p̂1κ̂
ω̂1
1 }. Setting s = −κ̂1 gives p̂1κ̂

ω̂1
1 (κ̂j − κ̂1)

ωj = 0, from which we deduce that κ̂j = κ̂1,
and (20) further reduces to (κj + s)ωj = (κ̂1 + s)ωj − p̂1κ̂

ω̂1
1 (κ̂1 + s)−ω̂1 . Letting s → −κ̂1,

the left-hand side converges to (κj − κ̂1)
ωj , whereas the right-hand side diverges to −∞.

Hence, (20) has no admissible solutions.
Assume next that p1 ∈ (0, 1). If p̂1 = 0, a similar line of arguments shows that there are no

admissible solutions. If p̂1 ∈ (0, 1), (6) gives

(1 − p̂1)(κ̂j /(κ̂j + s))ω̂j

1 − p̂1(κ̂1/(κ̂1 + s))ω̂1
= (1 − p1)(κj /(κj + s))ωj

1 − p1(κ1/(κ1 + s))ω1
.

Rearranging the terms in the above identity leads to the equation

(1 − p1)κ
ωj
j (κ1 + s)ω1(κ̂j + s)ω̂j {(κ̂1 + s)ω̂1 − p̂1κ̂

ω̂1
1 }

= (1 − p̂1)κ̂
ω̂j
j (κ̂1 + s)ω̂1(κj + s)ωj {(κ1 + s)ω1 − p1κ

ω1
1 }. (21)

Divide both sides of (21) by (κ1 + s)ω1(κ̂1 + s)ω̂1(κ̂j + s)ω̂j and let s → ∞. Then

(1 − p1)κ
ωj
j = (1 − p̂1)κ̂

ω̂j
j lim

s→∞

{
(κj + s)ωj

(κ̂j + s)ω̂j
− p1κ

ω1
1 (κj + s)ωj

(κ̂j + s)ω̂j (κ1 + s)ω1

}
.

In order for the right-hand side to converge to a constant, we must haveωj = ω̂j , which implies
that (1 − p1)κ

ωj
j = (1 − p̂1)κ̂

ω̂j
j . Then (21) reduces to

(κ1 + s)ω1(κ̂j + s)ωj {(κ̂1 + s)ω̂1 − p̂1κ̂
ω̂1
1 }

= (κ̂1 + s)ω̂1(κj + s)ωj {(κ1 + s)ω1 − p1κ
ω1
1 }. (22)
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Setting s = −κ1 gives −p1κ
ω1
1 (κ̂1 − κ1)

ω̂1(κj − κ1)
ωj = 0, from which we deduce that either

κ̂1 = κ1 or κj = κ1. We study these two cases separately.
Case (a): κ̂1 = κ1. Assume first that ω1 > ω̂1. Equation (22) becomes

(κ1 + s)ω1−ω̂1(κ̂j + s)ωj {(κ1 + s)ω̂1 − p̂1κ
ω̂1
1 } = (κj + s)ωj {(κ1 + s)ω1 − p1κ

ω1
1 }. (23)

Setting s = −κ1 gives p1κ
ω1
1 (κj − κ1) = 0. Hence, we must have κ1 = κj , and (23) becomes

(κ1 + s)ω1−ω̂1(κ̂j + s)ωj {(κ1 + s)ω̂1 − p̂1κ
ω̂1
1 } = (κ1 + s)ωj {(κ1 + s)ω1 − p1κ

ω1
1 }. (24)

We distinguish two sets of solutions.

(i) If κ̂j = κ1, (24) reduces to (κ1 + s)ω1−ω̂1{(κ1 + s)ω̂1 − p̂1κ
ω̂1
1 }= {(κ1 + s)ω1 − p1κ

ω1
1 }.

Setting s = −κ1 yields p1κ
ω1
1 = 0, which is not admissible here because p1κ1 > 0.

(ii) If κ̂j �= κ1, dividing both sides of (24) by (κ1+s)ωj and letting s → −κ1 entails thatωj =
ω1−ω̂1 > 0, and (24) reduces to (κ̂j + s)ωj {(κ1 + s)ω̂1 − p̂1κ

ω̂1
1 } = (κ1+s)ω1 −p1κ

ω1
1 .

Differentiating both sides of the equation with respect to s gives

ωj (κ̂j + s)ωj−1{(κ1 + s)ω̂1 − p̂1κ
ω̂1
1 } + ω̂1(κ̂j + s)ωj (κ1 + s)ω̂1−1 = ω1(κ1 + s)ω1−1.

Letting s → −κ̂j , the left-hand side of the equation converges to 0 ifωj > 1 and diverges
to −∞ if 0 < ωj < 1, whereas the right-hand side converges to ω1(κ1 − κ̂j )

ω1−1 ∈
(0,∞).

Hence, (22) has no admissible solutions in this case either. By using a similar line of arguments,
we can show that (22) has no admissible solutions either when ω1 < ω̂1.

When ω̂1 = ω1, (22) reduces to

(κ̂j + s)ωj {(κ1 + s)ω1 − p̂1κ
ω1
1 } = (κj + s)ωj {(κ1 + s)ω1 − p1κ

ω1
1 }. (25)

If κ̂j �= κj , setting s = −κ̂j gives (κ1 − κ̂j )
ω1 = p1κ

ω1
1 and setting s = −κj gives (κ1 −

κj )
ω1 = p̂1κ

ω1
1 . This implies that κ1 �= κ̂j and κ1 �= κj . Taking the derivative with respect to

s on both sides of (25) yields

ωj (κ̂j + s)ωj−1{(κ1 + s)ω1 − (κ1 − κj )
ω1} + ω1(κ̂j + s)ωj (κ1 + s)ω1−1

= ωj (κj + s)ωj−1{(κ1 + s)ω1 − (κ1 − κ̂j )
ω1} + ω1(κj + s)ωj (κ1 + s)ω1−1. (26)

As s → −κ̂j , the left-hand side of (26) converges to 0 if ωj > 1 and diverges to −∞ if
0 < ωj < 1, whereas the right-hand side converges to ω1(κj − κ̂j )

ωj (κ1 − κ̂j )
ω1−1 ∈ (0,∞).

Hence, (25) has no admissible solutions.
If κ̂j = κj then (κ̂i , ω̂i) = (κi, ωi), i = 1, j . We also deduce from (25) that p̂1 = p1.

Hence p̂j = pj using (19).
Case (b): κ̂1 �= κ1 and κj = κ1. Equation (22) reduces to

(κ1 + s)ω1(κ̂j + s)ωj {(κ̂1 + s)ω̂1 − p̂1κ̂
ω̂1
1 } = (κ̂1 + s)ω̂1(κ1 + s)ωj {(κ1 + s)ω1 −p1κ

ω1
1 }. (27)

Setting s = −κ̂1 gives p̂1κ̂
ω̂1
1 (κ1 − κ̂1)

ω1(κ̂j − κ̂1)
ωj = 0. Because κ̂1 �= κ1, we must have

κ̂1 = κ̂j , and (27) reduces to

(κ1 + s)ω1−ωj {(κ̂1 + s)ω̂1 − p̂1κ̂
ω̂1
1 } = (κ̂1 + s)ω̂1−ωj {(κ1 + s)ω1 − p1κ

ω1
1 }. (28)

We consider the following cases separately.

(i) If ω1 > ωj , setting s = −κ1 yields p1κ
ω1
1 (κ̂1 − κ1)

ω̂1−ωj = 0, which has no admissible
solutions.

https://doi.org/10.1239/aap/1409319556 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319556


716 R. CHEN AND O. HYRIEN

(ii) If ω̂1 > ωj , setting s = −κ̂1 yields p̂1κ̂
ω̂1
1 (κ1 − κ̂1)

ω1−ωj = 0, which has no admissible
solutions.

(iii) If ωj > ω1 and ωj > ω̂1, (28) can be rewritten as

(κ̂1 + s)ωj−ω̂1{(κ̂1 + s)ω̂1 − p̂1κ̂
ω̂1
1 } = (κ1 + s)ωj−ω1{(κ1 + s)ω1 − p1κ

ω1
1 }. (29)

Setting s = −κ̂1 yields (κ1 − κ̂1)
ω1 = p1κ

ω1
1 , and setting s = −κ1 yields (κ̂1 − κ1)

ω̂1 =
p̂1κ̂

ω̂1
1 . Differentiating (29) with respect to s gives

(ωj − ω̂1)(κ̂1 + s)ωj−ω̂1−1{(κ̂1 + s)ω̂1 − (κ̂1 − κ1)
ω̂1} + ω̂1(κ̂1 + s)ωj−1

= (ωj − ω1)(κ1 + s)ωj−ω1−1{(κ1 + s)ω1 − (κ1 − κ̂1)
ω1} + ω1(κ1 + s)ωj−1.

Letting s → −κ̂1, the left-hand side of the equation either converges to 0 (ifωj − ω̂1 > 1)
or diverges to −∞ (if ωj − ω̂1 < 1), whereas the right-hand side converges to ω1(κ1 −
κ̂1)

ωj−1 ∈ (0,∞). Hence, (29) has no admissible solutions.

(iv) If ωj = ω1 and ωj > ω̂1, (28) can be rewritten as

(κ̂1 + s)ωj−ω̂1{(κ̂1 + s)ω̂1 − p̂1κ̂
ω̂1
1 } = {(κ1 + s)ω1 − p1κ

ω1
1 }. (30)

Taking the derivative with respect to s on both sides of (30) gives

(ωj − ω̂1)(κ̂1 + s)ωj−ω̂1−1{(κ̂1 + s)ω̂1 − p̂1κ̂
ω̂1
1 } + ω̂1(κ̂1 + s)ωj−1 = ω1(κ1 + s)ω1−1.

Letting s → −κ̂1, the left-hand side of the equation either converges to 0 (ifωj−ω̂1 > 1)
or diverges to −∞ (if ωj − ω̂1 < 1), whereas the right-hand side converges to ω1(κ1 −
κ̂1)

ωj−1 ∈ (0,∞). Hence, (30) has no admissible solutions. The case in which ωj > ω1
and ωj = ω̂1 is handled similarly, and has no solutions either.

(v) If ωj = ω1 and ωj = ω̂1, (28) reduces to (κ̂1 + s)ω1 − p̂1κ̂
ω1
1 = (κ1 + s)ω1 − p1κ

ω1
1 ,

which has no admissible solutions because κ̂1 �= κ1.

3.3. A Smith–Martin process

We consider a generalization of the Smith–Martin model originally proposed in [8]. The
process assumes that, conditional on ξ = j, j ∈ J∗(p), the lifespan takes the form τ = τAj+δj ,
where τAj follows an exponential distribution with parameterψj , and where δj is a nonnegative
constant. In the original formulation of the model, τA2 essentially represents the duration spent
by the cell in the G0/G1 phases, and δ2 is the time spent by the cell in the S, G2, and M
(and part of G1) phases. Here Lgj (s) = e−δj sψj /(ψj + s), where it can be extended to
s ∈ R \ {−ψj } by analytic continuation. This process is identical to the process of Section
3.1 if δj = 0, j ∈ J∗(p). Let MSM denote the family of Smith–Martin processes. Write
CSM
p,G = Cp,G ∩ MSM for the class of Smith–Martin processes equivalent to the process with

characteristics (p,G). This process is not always identifiable.

Corollary 3. Suppose that J = 2 and, for every j ∈ J∗(p), that Gj(t) = 1 − e−ψj (t−δj )
(t ≥ δj ). Then (p,G) is uniquely identified by {Z(t), t ≥ 0} except in the following cases.

Case 1. If ψj = ψ, j ∈ J∗(p), and δ1 = 0 when p1 = 0 (Bellman–Harris case), CSM
p,G

includes the Smith–Martin processes with characteristics (p̂, Ĝ) ∈ {p̂1 ∈ (0, 1), p̂j =
pj (1 − p̂1)/(1 − p1), δ̂1 = 0, δ̂j = δj , ψ̂1 = ψ̂j = ψ(1 − p1)/(1 − p̂1), j ∈
J∗(p)\{1}}∪{p̂1 = 0, p̂j = pj/(1−p1), δ̂j = δj , ψ̂j = ψ(1−p1), j ∈ J∗(p)\{1}}.
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Case 2. If p1 ∈ (0, 1), p1 �= 1 − ψ/ψ1, δ1 = 0, ψj = ψ, j ∈ J∗(p) \ {1}, and ψ < ψ1
(‘extended’ Bellman–Harris case), CSM

p,G consists of the Smith–Martin processes with
characteristics (p,G) and (p̂, Ĝ), where p̂1 = 1 − ψ/ψ1, p̂j = pjψ/{(1 − p1)ψ1},
δ̂1 = 0, δ̂j = δj , ψ̂1 = ψ1, and ψ̂j = (1 − p1)ψ1, j ∈ {0, 2}.

Proof. Let (p̂, Ĝ) denote the characteristics of any process in Cp,G. Assume first that
p1 = 0. If p̂1 = 0, Lemma 1 yields (p̂, Ĝ) = (p,G). If p̂1 ∈ (0, 1), (7) gives

(1 − p̂1)
e−δ̂j s ψ̂j
ψ̂j + s

= e−δj sψj
ψj + s

{
1 − p̂1

e−δ̂1sψ̂1

ψ̂1 + s

}
. (31)

Taking the logarithm of both sides of the equation, we obtain

−δ̂j s + log ψ̂j (1 − p̂1)− log(ψ̂j + s) = −δj s − log(ψj + s)+ logψj

(
1 − p̂1

e−δ̂1sψ̂1

ψ̂1 + s

)
.

Dividing both sides of the equation by s and letting s → ∞ yields δ̂j = δj , and (31) reduces to
(1 − p̂1)ψ̂j (ψj + s)(ψ̂1 + s)− ψj (ψ̂j + s)(ψ̂1 + s) = ψj (ψ̂j + s)p̂1ψ̂1e−δ̂1s . Taking again
the logarithm of both sides of the equation, dividing by s, and letting s → ∞ yields δ̂1 = 0.
Hence, (31) leads to (18), from which we deduce that ψ̂1 = ψ̂j = ψ/(1 − p̂1), where ψ :=
ψj , j ∈ J∗(p), and p̂j = pj (1 − p̂1), p̂1 ∈ (0, 1). This proves part of case 1 of Corollary 3.

Assume next that p1 ∈ (0, 1). If p̂1 = 0, the same line of arguments applies, and, by
symmetry, we find that the process with characteristics (p̂, Ĝ) satisfying δ̂j = δj , ψ̂j = ψ(1−
p1), and p̂j = pj/(1 − p1), j ∈ J∗(p) \ {1}, belongs to CSM

p,G if ψj = ψ, j ∈ J∗(p), and
δ1 = 0. This also proves part of case 1.

Assume now that p1 ∈ (0, 1) and p̂1 ∈ (0, 1). Then, for every j ∈ J∗(p) \ {1}, (6) gives

(1 − p̂1)
e−δ̂j s ψ̂j
ψ̂j + s

{
1 − p1

e−δ1sψ1

ψ1 + s

}
= (1 − p1)

e−δj sψj
ψj + s

{
1 − p̂1

e−δ̂1sψ̂1

ψ̂1 + s

}
. (32)

Taking the logarithm, dividing both sides of (32) by s, and letting s → ∞ implies that δ̂j = δj ,
and (32) reduces to

(1 − p̂1)
ψ̂j

ψ̂j + s

{
1 − p1

e−δ1sψ1

ψ1 + s

}
= (1 − p1)

ψj

ψj + s

{
1 − p̂1

e−δ̂1sψ̂1

ψ̂1 + s

}
.

Multiplying both sides by s and letting s → ∞, we obtain (1 − p̂1)ψ̂j = (1−p1)ψj . Then (32)
becomes

(ψj − ψ̂j )(ψ1 + s)(ψ̂1 + s) = p1ψ1e−δ1s(ψj + s)(ψ̂1 + s)− p̂1ψ̂1e−δ̂1s(ψ̂j + s)(ψ1 + s).

(33)

We distinguish four sets of solutions.

(i) If δ1 > 0 and δ̂1 > 0, dividing both sides of (33) by s2 and letting s → ∞ yields
ψ̂j = ψj . Then, (33) reduces to p1ψ1e−δ1s(ψ̂1 + s) = p̂1ψ̂1e−δ̂1s(ψ1 + s), from which
we deduce that δ̂1 = δ1, p̂1 = p1, and ψ̂1 = ψ1. Hence, (p̂, Ĝ) = (p,G).

(ii) If δ1 > 0 and δ̂1 = 0, rearranging the terms of (33) leads to (ψ1 +s){(ψj −ψ̂j )(ψ̂1 +s)+
p̂1ψ̂1(ψ̂j + s)} = p1ψ1e−δ1s(ψj + s)(ψ̂1 + s). Letting s → ∞, the left-hand side of
the equation diverges to infinity, whereas the right-hand side converges to 0. Hence, (33)
has no admissible solutions.
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(iii) If δ1 = 0 and δ̂1 > 0, a similar line of arguments shows that (33) has no admissible
solutions.

(iv) If δ1 = 0 and δ̂1 = 0, (33) is equivalent to (19). The values of p̂ and ψ̂j , j ∈ J∗(p̂) that
solve the equation are given in Corollary 1, and lead to parts of case 1 and case 2.
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