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Introduction. The relation i£* is defined on a semigroup 5 by the rule that a!£*b if
and only if the elements a, b of S are related by Green's relation =2" in some
oversemigroup of 5. A semigroup S is an E-semigroup if its set £(5) of idempotents is a
subsemilattice of S. A right adequate semigroup is an £-semigroup in which every
i?*-class contains an idempotent. It is easy to see that, in fact, each i?*-class of a right
adequate semigroup contains a unique idempotent [8]. We denote the idempotent in the
if-class of a by a*. Then we may regard a right adequate semigroup as an algebra with a
binary operation of multiplication and a unary operation *. We will refer to such algebras
as "-semigroups. In [10], it is observed that viewed in this way the class of right adequate
semigroups is a quasi-variety.

In this paper, which is the promised sequel to [10], we are concerned with right type
A semigroups. These are semigroups which are right adequate and in which ea = a(ea)*
for each a e S and e e E(S); they form a sub-quasi-variety of the quasi-variety of all right
adequate semigroups. Thus, from general results in universal algebra, we know that free
right type A semigroups exist. It is the purpose of this paper to give an explicit description
of these free objects and to discuss some of their properties.

Our approach is to make use of the construction of free right h-adequate semigroups
in [10], a right adequate semigroup being right h-adequate when the mapping
aa: E(Sy —> E(Sy defined by xaa = (xa)* is a homomorphism for each element a of 5. By
a "-congruence on a right adequate semigroup 5, we mean a congruence on S regarded as
a "-semigroup, that is, a semigroup congruence p on 5 which also satisfies apb implies
a*pb*. A "-congruence p on a right adequate semigroup S is called a right type A
congruence if Sip is a right type A semigroup, where the semigroup Sip is made into a
"-semigroup by defining (ap)* to be a*p. On any right adequate semigroup, there is a
minimum right type A congruence and if y is this congruence on Px, the free right
h-adequate semigroup on X, then Pxly is the free right type A semigroup on X. For any
non-empty set X, we construct a semigroup Ax isomorphic to Pxly which is analogous to
Scheiblich's construction [20] of the free inverse semigroup on X.

This construction allows us to obtain several results which are analogues of theorems
on inverse semigroups. For example, the fact that free inverse semigroups are E-unitary
gives rise to one proof that every inverse semigroup has an £-unitary cover [18, Theorem
VIII. 1.10]. The corresponding result for right type A semigroups is that every right type
A semigroup has a proper cover [8]. On a right type A semigroup, the minimum left
cancellative congruence is denoted by a and the semigroup is proper if a n S£* = t. It is
easily seen that ^4^ is proper and we give a new proof of the covering result modelled on
that in the inverse case.

After recalling the basic properties of right type A semigroups in Section 1, we
devote Section 2 to the construction outlined above. In Section 3, we show that Ax enjoys
properties similar to those of Px. Among other things we have that Green's relations on
Ax are trivial, the word problem for Ax is solvable and Ax is residually finite.

We examine sets of free generators in right type A semigroups in Section 4. The
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136 JOHN FOUNTAIN

results are similar to those of Section 4 in [10] and both sets of results are inspired by
those of Reilly [19] in the inverse case.

In the final section we obtain a simple description of the free objects in the
quasi-variety of adequate semigroups with central idempotents. This parallels the
description of free Clifford semigroups in Chapter VIII of [18].

1. Preliminaries. We begin by giving some elementary facts about right adequate
and right type A semigroups. Alternative characterisations of the relation i?* are given by
the following lemma from [14] and [17].

LEMMA 1.1. Let S be a semigroup and let a,b be elements of S. Then the following
conditions are equivalent:

(1) a£*b,
(2) for all x,y e S1, ax = ay if and only if bx = by,
(3) there is an S1-isomorphism <p:aSi—>bSl with acp = b.

As an easy consequence we have the following corollary.

COROLLARY 1.2. If e is an idempotent of a semigroup S then the following are
equivalent for an element a of S:

(1) eSe*a,
(2) ae = a and, for all x, y in S1, ax = ay implies ex = ey.

From the definition and Lemma 1.1, it follows that ££* is a right congruence and that
5£c;3?*. It is well known and easy to see that, for regular elements a, b of 5, we have
aS£*b if and only if aZ£b. In particular, if 5 is a regular semigroup then i£ = 2£*.

We record next some elementary properties of right adequate semigroups which we
use repeatedly.

PROPOSITION 1.3 [9, Proposition 1.6]. Let S be a right adequate semigroup and a, b
elements of S. Then

(1) aX*b if and only ifa* = b*,
(2) {ab)* = {a*b)*,
(3) (ab)* =£ b*, where =£ is the natural ordering on the semilattice E{S).

As noted in [9, Lemma 2.1], if 5 is a right type A semigroup then (efa)* = (ea)*(fa)*
for all e, f e E(S), a eS. Thus, in our present terminology, a right type A semigroup is
right h-adequate.

From universal algebra, we have the notions of *-subsemigroup, *-homomorphism
and *-congruence. It is clear that if 5 is right adequate, right h-adequate or right type A
then so is any *-subsemigroup of 5. A left *-ideal of 5 is a left ideal of S which is also a
*-subsemigroup of 5. By a *-ideal of 5, we mean an ideal of 5 which is also a left *-ideal.
In the case of a right adequate semigroup 5, a left ideal / is a left *-ideal if and only if it is
a union of if*-classes.

These ideas are connected by the following result from [10].

PROPOSITION 1.4. Let S be a right adequate semigroup and let I be a *-ideal of S. Then
the Rees quotient semigroup S/I is right adequate and the natural map v:S—>S/I is a
*-homomorphism. Furthermore, if S is right h-adequate or right type A then so is S/I.
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FREE RIGHT TYPE A SEMIGROUPS 137

Let p be a *-congruence on a right type A semigroup 5. We conclude this section by
considering the smallest *-congruence on S which induces the same partition of E(S) as p.
It is a relatively straightforward adaptation of the corresponding result for inverse
semigroups [18]. We define the relation pmin on 5 by

apminb if and only if ae = be for some e e E(S) with epa*pb*.

PROPOSITION 1.5. Let p be a * -congruence on a right type A semigroup S. Then pmin is
a *-congruence on S, pmin | £(5) = p | E(S) and pmin c x for any *-congruence x on S with
x | £(S) = p | E(S). Furthermore, S/pmin is right type A and

E(S/pmin) = {epmin:eeE(S)}.

Proof. Clearly pmin is reflexive and symmetric. If apminb, bpminc then there are
idempotents e, f with epa*pb*pc*pf, ae = be and bf = cf. Hence e2pef; so that efpa*pc*
and aef = bef = cef, whence apminc.

Now let apminb and ceS. Then ae = be for some idempotent e with epa*pb*.
Certainly (ca)e(ca)* = (cb)e(ca)* and, from Proposition 1.3,

(ca)* = a*(ca)*pe(ca)*,

(cb)* = b*(cb)* = b*(cb)*b*pe(cb)*e.

Now cae = cbe so that (ca)*e = (cae)* = (cbe)* = (cb)*e and hence

(cb)*pe(ca)*e = e{ca)*.
Thus capmincb.

Since 5 is right type A, we have ec = c(ec)*; so that

(ac)(ec)* = aec = bee = (c)(ec)*.

As a*pe, we have a*cpec and so (a*c)*p(ec)* since p is a *-congruence. But
(a*c)* = (ac)*; so that (ac)*p(ec)*. Similarly (be)*p(ec)*, and hence acpminbc.

Also, from ae = be, we obtain

a*e = (ae)* = (be)* = b*e

and, as a*pb*pe, we conclude that a*pminb*.
Thus pmin is a *-congruence on 5.
If e, f eE(S) and ep/ then epe/ and e(ef)=f(ef)\ so that epminf. Conversely, if

epmin/tnen 't ^ immediate that epf and thus p | £(5) = pmjn | £(5).
Now let x be a *-congruence on 5 with p | £(5) = x \ E(S). If apminb then ae = be for

some idempotent e with epa*pb*. Thus exa*xb* and so aa*xae, bb*xbe, whence
aa*xbb*, that is, arfc. Thus pm i n£ T.

To show that the *-semigroup S/pmin is right type A, it is sufficient to show that it is
right adequate. To see this, let a e S, x, y € S1 and suppose that axpminay. Then axe = aye
for some e e E(S) with (ax)*p(ay)*pe. Since a*Z£*a, we thus have a*xe = a*ye and, by
Proposition 1.3, (a*x)*p(a*y)*pe; so that a*j:pminfl*_y as required and 5/pmin is right type
A.

If a2pmina then, from above, a*apmina* and hence (a*a)*pmina*. Thus epmina*,
where e = a*(a*a)*. Now e = (a(a*a)*)* and p m i n c p ; so that, from ae = a(a*a)*e, we
conclude apmina(a*a)*. But a*a = a(a*a)* since 5 is right type A and so apmina*. It
follows that the set of idempotents of S/pmin is {epmin:e e E(S)}.
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138 JOHN FOUNTAIN

By considering the case when p = co is the universal congruence on 5, it is
straightforward to obtain the following corollary which is Lemma 1.3 of [8] (see also [12,
Proposition 1.7]). We denote <umin by o and note that aab if and only if ae = be for some
idempotent e of 5.

COROLLARY 1.6. Let S be a right type A semigroup. Then o is a *-congruence on S,
SI o is a left cancellative monoid and a is the minimum left cancellative congruence on S.

Following [8], we define a right type A semigroup to be proper if a f~l SB* = i. Every
proper right type A semigroup 5 is £-unitary (i.e. a eS, ae, e e E(S) implies a e E(S))
but the converse is not true as shown by Example 3 of [8].

PROPOSITION 1.7. If p is a *-congruence on a proper right type A semigroup S then
5/pmin is proper.

Proof. Write x for pmin and suppose that ax, bx are (a D i?*)-related in Six. Then
(ar)* = (bx)* so that a*xb* and hence a*f = 6*/for some / e £(5) with fpa*pb*.

Now (ar)(er) = (br)(er) for some e e E(S) since ar, bx are a-related in Six. Thus
aexbe and so aeh = beh for some idempotent h. This gives aob and so afobf. But
(af)*=a*f = b*f = (bf)* so that afSB*bf and, as 5 is proper, we get af = bf. But
fpa*pb* and so axb as required and Six is proper.

2. The semigroup Ax- In this section, we construct the free right type A semigroup
Ax on a set X. We show that Ax is free by showing that it is isomorphic to Pxly, where
Px is the free right h-adequate semigroup on X and y is the minimum right type A
congruence on Px. We begin by recalling the construction of Px in [10].

Let Fx be the free semigroup on X and partially order Fx by putting u =s t; if and only
if M is a final segment of v. For any subset A of Fx, we write

max A = {a eA: a is maximal in A under « }.
Now let

Ex = {A:AczFx, A is finite and non-empty, A = max.<4}.

Thus Ex is the set of all finite suffix codes over X. For A, B e Ex, let AB = max(y4 U B).
Then Ex is a semilattice; in fact, if we consider Fx as partially ordered by the dual of
the above ordering then Ex is the free semilattice on this partially ordered set [11]. We
note that the following statements are equivalent for members A, B of Ex where we use
=£ for the order relation in Ex as well as that in Fx:

A =£fl; AB =A; max(A U B) = A; for each b in B, there is an a in A
such that b «s a; each element in B is a final segment of some
element in A.
For w e Fx, AeEx, we put A . w = {aw:a eA}. Clearly A . w e Ex and we have an

action of Fx on Ex. Furthermore, if w e Fx, A, B e Ex then it is routine to verify that

(AB) .w = (A. w)(B. w)

and consequently the action is order-preserving.
For each element w of Fx, we define w* to be the singleton {w} e Ex. We note that

if A = {wu . .. , wk) s Ex then A = w*. . . w£; so that Ex is generated by the set
{w*: w e Fx}. We also observe that, for any A e Ex, w e Fx, we have A . w =s {w} = iv*.
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Consider the free product Fx * Ex in the category of semigroups. Its elements can be
written uniquely as words a =5, . . . sn, where s,: e Fx U Ex and, for i = 1 , . . . ,« — 1, the
elements sh si+l are not both in the same factor Fx or Ex.

We extend * from Fx to Fx * Ex as follows: for A e Ex, we put A* = A and if
a = st . . . sn (as above), b =st . . . sn-} and b* e Ex has been defined then

\b*sn if sneEx,
lb*.sn if sneFx.

Let ~ be the congruence on Fx * Ex generated by the relation {(aa*,a):a e Fx * Ex}
and put Px = (Fx * Ex)/~. It is shown in [10] that Px is the free right h-adequate
semigroup on X. Further, every element of Px can be represented as w0At . . .Anwn,
where each A( is in Ex, each w, is in Fx U {1} with w, =£ 1 when / =£0, n, and, for each i,
Ai<(w0Al . . . Wj-x)*. An element of Px written in such a way is said to be in normal
form.

From [10], we know that if a e Px has normal form uvl , . . . Anwn then a* = An . wn

and thus we have the following lemma which is part of Proposition 3.3 of [10].

LEMMA 2.1. Let a,b be elements of Px with normal forms wuAx . . . Anwn,
v0B{ . . . Bmvm respectively. Then

aS£*b if and only if An .wn = Bm. wm.

On any right adequate semigroup there is a minimum left cancellative congruence a.
A description of o on right type A semigroups was given in Section 1. Now we want a
characterisation of a on Px. For any element a = w0At . . . Akwk of Fx * Ex, we define
c(a) = w0 . . . wk. If a, b e Fx * Ex and a ~ b then c(a) = c(b), so that we may regard c as
defined on Px. Then c is a *-homomorphism from Px onto F\ and we have the following
result.

PROPOSITION 2.2 [10, Proposition 3.7]. On Px,
(1) (a, b) € a if and only if c(a) = c(b) and
(2) Pxlo^Fx.

The class si of right type A semigroups is contained in the class of right h-adequate
semigroups and so, in the terminology of [15], Px is free for sd over X, that is, Px is
generated by X and, for every S e si and for every mapping a.X—*S, there is a
*-homomorphism /3:Px-»5 which extends a. Since si is a quasi-variety, it follows from
Lemma 4.112 of [15] that Px/y is free in si over X = {xy.x eX}, where y is the
intersection of all the *-congruences p on Px such that Pxlp is right type A. In other
words, y is the minimum right type A*-congruence on Px and Px/y is the free right type
A semigroup on X. As\X\ = \X\, we may regard Pxly as the free right type A semigroup
on X.

Our next task is to describe y on Px. To help do this, we introduce the semigroup
Ax:

^x = {(w, A) e Fx x Ex: w =£ a for some a e A}

and the multiplication in Ax is given by

(w, A)(v, B) = (wv,A.v A'B):
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140 JOHN FOUNTAIN

It is an easy matter to verify that Ax is a right type A semigroup with semilattice of
idempotents E(AX) = {(1, A) :A e Ex} and with (w, A)* = (1, A).

THEOREM 2.3. On Px,y = oD^* and Px/y = Ax.

Proof. Define a mapping 9:PX—*AX by putting ad = (c(a),a*) for each a in Px.
Then a*6 = (c(a*),a*) = (l,a*) since c maps all idempotents of Px to 1. Thus
fl*0 = (a6>)*.

Next we note that if C1 ; . . . ,Cke Ex, uu .. . , uk_t e Fx and uk e Fx then, using the
definition of a*, an easy induction argument yields

(dw, . . . Ckuk)* = (Ci . (M, . . . uk))(C2 . (M2 . . . uk)). . . (Ck . I/*).

Thus if a,6 e Px have normal forms HVIJH', . . . y4nwn, Wo^i^i • • • 5mum respectively then

(a*b)* = ((^n . wn)v0BlVl . . . Bmvm)*

= ((An . wn). K • • • u » ) ) ( f l i . ( « , . . . « „ ) ) . . . (Bm . vm)

= {{An . wn) . c{b))(Bm . vm)

= a*.c(b)Ab*.
Hence

(ab)d = (c(ab), (ab)*) = (c(a)c(b), (a*b)*)

= (c(a)c(b),a*.c(b)Ab*)

= (c(a),a*)(c(b),b*)

= (a6)(b6).

Thus 6 is a *-homomorphism. Further, 6 is surjective because if (w,A) eAx then wA is
an element of Px. Also A =£ {w} since w « a for some a e>l and so (nvi)* =/4. Hence
(w,A) = (wA)6.

Thus Fv/ker 0^ /4^ , so that ker 6 is a right type A congruence and y c ker 0. Now
(a,b)ekei 6 if and only if c(a) = c(b) and a* = />*; so that, by Proposition 2.2,
ker 0 = on %*.

On the other hand, for all elements c and all idempotents e in Px, we have ecyc(ec)*.
Repeated application of this to Aiwl, A2w2, {Axwl)*w2 etc., where H V ! , ^ . . . Anwn is the
normal form of an element a of Px, leads to

)* . . .{Anvn)*,

where u, = w,. . . wn. Now i4,-+1 <A- • w, gives

(^nwn)* = An . wn <At. vt = (A,v,)*

for / = 1 , . . . , « - 1 and hence ayc(a)a*. Thus if a, 6 are elements of Px with c{a) = c(b)
and a* = b* then ay6. In view of Proposition 2.2, we thus have a f l i ? * c y and so

COROLLARY 2.4. yl^ is the free right type A semigroup on X.

By comparing Ax with the free objects in the category of SL2 6-semigroups as
described in [1], we see that Ax is the free SL2 6-semigroup on X. Thus, as noted in [3],
we have the following corollary.
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COROLLARY 2.5. In the class of *-semigroups, the variety generated by the quasi-
variety of right type A semigroups is the variety of SL2 8-semigroups.

Part (1) of the following result is an easy consequence of the definition of a on a right
type A semigroup; part (2) follows from (v,A)* = (1,A).

PROPOSITION 2.6. Let {v,A), (w, B) be elements of Ax; then
(1) (v,A)o(w, B) if and only if v = w,
(2) (v,A)2*(w, B) if and only if A = B.

COROLLARY 2.7. The free right type A semigroup Ax is proper.

We can now give an alternative proof of Theorem 3.3 of [8]. A homomorphism
6:S—*• T of semigroups is called an <£*-homomorphism in [8] if ad = bd implies aX*b.
When 5, T are right adequate, it is easy to see that if 6 is an idempotent-separating
*-homomorphism then 6 is an if*-homomorphism. Thus the formulation in the next
theorem does give Theorem 3.3 of [8].

THEOREM 2.8. Let S be a right type A semigroup. Then S is the image of a proper right
type A semigroup under an idempotent-separating * -homomorphism.

Proof. Every right type A semigroup is a *-homomorphic image of some free right
type A semigroup. Thus S = Ax/p for some X and some "-congruence p on Ax. Now
Pmin £ p; so AxIp = (Ax/pmm)/(p/pmin). Since Ax is proper, it follows from Proposition
1.7 that Ax/pmin is proper. Since p | E(AX) = pmin | E(AX), the *-congruence p/pmin is
idempotent-separating and the result follows.

We remark that it is evident from the definition of pmin that pmin c o; so that, in the
terminology of [1] and [2], Ax/pmin is quasi-free. A result similar to Theorem 2.8 is stated
in [1] and [2], where it is asserted that every SL2 y-semigroup is the image of a quasi-free
SL2 y-semigroup under an idempotent-separating *-homomorphism.

We also remark that Theorem 2.8 was proved in [16] by analysing *-congruences on
M-semigroups and using the characterisation of Ax as an M-semigroup.

3. Properties of Ax. The relation 5?* on a semigroup is the dual of $£*; 3)* is the
join of X* and 9t*. We describe the relation 52* on Ax and show that Ax is a single
2)*-class. By contrast, all Green's relations on Ax are trivial. We then show that Ax

satisfies certain maximal conditions, has solvable word problem and is residually finite.
For any element (v, A) of Ax, we define the subset lS(v,A) of Fx by

IS(i/, A) = {ueFx:uve A}.

Since (v,A) is a member of Ax, v is a final segment of some element of A and so
lS(v,A) is not empty. Furthermore, since A = max/4, it is clear that lS(v,A) = {1} or
IS(w, ,4) = max IS(u, A). In the latter case, IS(v, A) is a member of Ex.

PROPOSITION 3.1. Let (v,A), (w,B) be elements of Ax; then (v,A)Sft*(w, B) if and
only if IS(v, A) = lS(w,B).

Proof. Put H = lS(v, A). Then A = H. vU(A\H.v). UteA\H.v then t and uv
are incomparable for any element u of Fx since A = max A. Hence we see that A\H. v is
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a subset of C.VAA for any member C of Ex. Thus, for C,DeEx, we have
C. v A A = D . v A A if a n d o n l y H C . V A H . V = D . V A H . V . It H = { 1 } , t h i s l a t t e r
condition is equivalent to C. v = D. v and it is not difficult to see that (v,A) is right
cancellable. If H ¥= {1} then, since Fx acts on Ex by semilattice homomorphisms, we have
C.VAA = D.VAA if and only if (C A H) . v = (D A H). v, that is, if and only if
C A H = D A H. It is now easy to see that (v, A)0l*{\, H) and the result follows.

COROLLARY 3.2. On Ax, the relation 3>* is the universal relation, that is, Ax is
3)*-simple.

Proof. Let A e Ex and let v eA. Then (v,A) is a member of Ax and \S(y,A) = {1};
so that (v,A) is right cancellable. Since (l,A)3!*(v,A), it follows that every idempotent
of Ax is i?*-related to a right cancellable element of Ax and hence all idempotents of Ax

are in the same 3)*-class. The corollary now follows.

We now turn to Green's relations.

PROPOSITION 3.3. On Ax, $= i.

Proof. Suppose that (v,A), (w, B) are ^-related. It follows that v, w are subwords
of each other and hence that v = w. Thus

for some C, D e Ex; whence A «£ B. Similarly B ^A and so (v, A) = (w, B).

As pointed out in [10], it is easy to see that the semilattice Ex satisfies the ascending
chain condition. We use this fact in the proof of the next result.

PROPOSITION 3.4. Ax satisfies the maximal condition for principal left ideals, for
principal right ideals and for principal ideals.

Proof. Since $ is trivial, it suffices to prove the condition for principal ideals. If
aua2,... are the generators of an increasing sequence of principal ideals in Ax then
ai<7, a2a,... are the generators of a similar sequence in Fx. Hence aka - ak+1o = . . . for
some k. Write v = aka and, for j^k, let a; = (v, A,). It is easy to see that Ak^Ak+x =£
. . . ; so that, for some positive integer n, An= An+l = . . . . The result follows.

In [10], it is shown that an element of the free *-semigroup on X can be effectively
reduced to a normal form in Px. Given an element a of Px in normal form, it is clear that
there is a finite procedure for finding c(a) and a*. We can determine in an effective way
whether two elements of Fx (resp. Ex) are equal and so, by virtue of Lemma 2.1,
Proposition 2.2 and Theorem 2.3, we can decide when two elements in normal form in Px

are related by the congruence y. The following result is an immediate consequence.

PROPOSITION 3.5. The word problem for Ax is solvable.

We conclude this section by considering the residual finiteness of Ax.

PROPOSITION 3.6. Ax is residually finite in the class of right type A semigroups.

Proof. Let (v,A), (w, B) be distinct elements of Ax and let Y be the set of letters
(elements of X) occurring in words in A U B. Let Q be the set of elements C of Ex for

https://doi.org/10.1017/S0017089500008168 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008168


FREE RIGHT TYPE A SEMIGROUPS 143

which an element of X \ Y occurs in a word belonging to C. It is clear that Q is an ideal of
Ex. It follows that

J = {(u,C)eAx:XeQ}

is an ideal of Ax and it is clear that it is in fact a *-ideal.
Next we let k - 1 be the length of the longest word in A U B and let Jk be the ideal of

Ex consisting of all members of Ex which contain a word of length at least k. Then

K={(u,C)€Ax:CeJk}

is a *-ideal of Ax. Now let / = / U K. Then / is a *-ideal of Ax; so that, by Proposition 1.4,
Ax/I is a right type A semigroup and the natural homomorphism v from Ax onto Ax/I is
a *-homomorphism. Since neither (v,A) nor (w,B) is a member of /, we have
(v, A)v ¥= (w, B)v. However, it is easy to see that Ax/I is finite.

We recall that an algebra is hopfian if all its surjective endomorphisms are
automorphisms. It is pointed out in [10] that the general result of Evans [6] that a finitely
generated residually finite algebra in a variety of algebras is hopfian applies equally well
to a quasi-variety of algebras. The following corollary is therefore immediate from
Proposition 3.6.

COROLLARY 3.7. For a finite set X, Ax is hopfian.

4. Sets of free generators. For a subset Y of a right adequate semigroup 5, we
denote by (Y)* the *-subsemigroup generated by Y. As we observed in Section 1, if S is
right type A then so is (Y)*. If the inclusion map Y—* (Y)* extends to an isomorphism
of AY onto (Y)* then we say that Y is a set of free generators for (Y)*.

The results of this section are inspired by the corresponding ones of Reilly [19] as
were those of Section 4 in [10]. We start observing that Ax has only one set of free
generators.

PROPOSITION 4.1. Let X be a non-empty set. Then the subset X = {(x, {x}):x e X) is
the only set of free generators for Ax.

Proof. For any subset Y of Ax, let Yr = {y*:ye Y}. Then Xr = {(1, {x}):x eX} is
the set of maximal elements of E(AX). We can thus characterize X as the unique subset
of Ax such that X (1 Xr = 0 and Xr is the set of maximal elements of E(AX).

For any right type A semigroup S, we define the relation =£ by

a =£ b if and only if a = ba*.

As noted in [1] and [5], "a = ba*" is equivalent to "a = be for some idempotent e in 5"
and the relation =s is a compatible partial order on 5 which extends the natural order of
the semilattice of idempotents of 5. It will always be clear from the context when =£ is
being used for the relation just described and when it is the partial order on Fx used
throughout the paper. ,-- •

We now give criteria for a subset of a right type A semigroup to be a set of free
generators for the *-subsemigroup which it generates.
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PROPOSITION 4.2. Let Y be subset of a right type A semigroup S. Then Y is a set of free
generators for {Y}* if and only if

(1) no pair of elements of (Y) have a lower bound in (Y)*, and
m

(2) if (y,. . . >>,)* 3= II (yjp<J) • . . yn)*, where the y, and yjk are elements of Y, then

there is a j e {1,. . . ,m) such thatyt = yn for i = 1,. . . , t.
Proof. Let A' be a set in one-one correspondence with Y and let 6.X—*Y be a

bijection. Then there is a unique *-homomorphism ip from Ax onto (Y)* such that
(JC, {JC})V = xd for each x eX. Thus Y is a set of free generators for (Y)* if and only if xp
is injective.

Suppose first that ip is injective. We identify X with Y and Ax with (Y)*. A typical
element of (X) is (v, {v}), where v e Fx, and it is easily seen that condition (1) holds. If
the hypothesis of condition (2) holds then we have

(1, {*,... *,}) s= Ft ( l ,

so that x,... Xi is a final segment of xjp^ . . . xiX for some j . Since Fx is the free semigroup
on X, we have xt = *;, for i = 1,. . . , t and the conclusion of condition (2) now follows.

Now suppose that conditions (1) and (2) hold and let A,BeEx be such that
(l,A)y = {\,B)%\). Let A = {vu . . . , vm) and B = {wu . . . , wn). Then, since A = m&xA,
fl = m a x B , no two of vu...,vm a re comparab le and no two of wt,...,wn a re
comparab le . Fu r the r ,

(1,A) = (1, W ) . . . (1, {vm}) = (u,, {vx})* . . . (vm, {vm})*,

(1, B) = (1, {iv,})... (1, {"„}) = (w,, {w,})* . . . (wn, {wn})*.

Thus (l,A)^ = (l,B)xp^(l,{w1})ip = ((wu{wl})xl>)*. For eachy = l , . . . ,m, let vt =
Xjp(j)- • -Xji, where xjkeX for l^k^p(j), and let w, =JC, . . . xu where JC,, . . . ,x, e X.
For each xjk and each JC,-, put xjk8 = y;jt and JC,0 = y,. Then

and

n (yjpu) • • • yn)* = FI ((vj, {vj})yy = (i,

Hence
m

(y,--- yd* & Ft (yjpm • • • yn)*

and so, by condition (2), there is some j in {1, . . . , m] such that _y, = _yy, for / = 1,. . . , t. It
follows that xt = Xjj for i = 1,. . . , t and so w{ is a final segment of some uy. A similar
argument shows that vt is a final segment of some wk. Now we have that w, and M^ are
comparable so that k = 1 and H^ = u,-. Replacing w, by w, shows that each w, is some vy;
similarly each uy is some w,. Thus /4 = B and t// is idempotent-separating.

Now let (v,A), (w,B) be elements of Ax with (u,/4)t/; -(w, B)ip. Since i/; is a
*-homomorphism, (1, A)ij> — (1, fl)i^ and so A = B. Hence

(v, {
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so that (v, {v})ip, (w, {w})ip have a lower bound in (Y)*. It follows from condition (1)
that (u, {u})V = (if, {w})rp and, since \j> is a *-homomorphism, we obtain (1, {v})ty =
(1, {w})xp. As V ^ idempotent separating, we conclude that v = w and hence ip is
injective.

Let Fx = {(w, {w}): w e / ^ } . We now consider which subsets of Fx are sets of free
generators for the *-subsemigroups of Ax which they generate. It is easy to see that any
subset of Fx satisfies condition (1) of Proposition 4.2. Thus for a subset YoiFx, condition
(2) is necessary and sufficient for Y to be a set of free generators for (Y)*. We recall that
a subset C of Fx is a suffix code over X if FXC D C = 0 . We refer the reader to Chapter 5
of [13] for the essential facts about suffix codes.

COROLLARY 4.3. Let Y be a subset of Fx and letC = {weFx: (w, {w}) e Y}. Then the
*-subsemigroup (Y) * of Ax is freely generated by Y if and only if C is a suffix code over
X.

Proof. Suppose that (Y)* is freely generated by Y. If weFxC(~)C then w has a
proper final segment, say u, in C. Let y = (w,{w}), y' = (u,{u}); then (y')*>y*,
contradicting condition (2). Hence FXC (1C = 0 and C is a suffix code over X.

Now let C be a suffix code over X. As remarked above, we need only prove that
condition (2) holds. Suppose then that

L e t yi = (Wi,{Wi}) f o r i = l , . . . , t a n d yJk = (wjk, {wjk}) f o r j = \ , . . . , m a n d k =
1 , . . . ,p(j); so that w, and wjk are in Fx. Then our assumption is

{w,. . . w,} & max{wlp(1). . . wn,. . . , wmp(m). . . wml}

and so w,... w, is a final segment of WjP(j) • • • wjX for some /. Thus either w1 = wn or one
of w,, wy, is a proper final segment of the other. The latter is impossible since wx, w;1 e C
and C is a suffix code. Hence wy = wn and so w,. . . w2 is a final segment of wjpU). . . wj2.
We now get w2 = wj2 and similarly we obtain w, = w,, for i - 1,. . . , t. Thus y,- = y^ for
i = 1,. . . , t and condition (2) holds as required.

Over sets with at least two elements there are infinite suffix codes and so we have the
following immediate consequence of Corollary 4.3.

COROLLARY 4.4. If 2 =s \X\ then there is a countably infinite subset Y of Fx such that Y
is a set of free generators for the *-subsemigroup (Y)* of Ax.

Since a right type A semigroup 5 is right /z-adequate we know by Lemma 4.5 of [10]
that if 5 = (a)* for some a in 5 then E(S) = {(ak)*:ke Z,k^ 1}. In particular, E(S) is a
chain, so that if s, t are any two elements of 5 then s,t cannot freely generate (s,t)*
because E((s,t)*) is not isomorphic to E(A{xy)). Thus if \Z\ = 1 then Az does not
contain copies of Ax for any set X with 2 ̂  \X\. We conclude this section by showing that
a non-idempotent element a in any Ax freely generates (a)*.

PROPOSITION 4.5. If (v, A) e Ax and v^l then (v,A) is a free generator of {{v, A))*.

Proof. If (v, A)'(l, B) = (v, A)k(l, C) for any B,CeEx and positive integers t, k
then v' = vk; so that / = k and condition (1) of Proposition 4.2 holds.
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Let a = (v, A) and suppose that

{a'y^X\{apU))*.

Then t ̂ max{/?(l),. . . ,p(m)} and hence condition (2) of Proposition 4.2 holds.

5. Free right type A semigroups with central idempotents. Let 38 be the class of
right type A semigroups with central idempotents. From [7], we know that if 5 e 38 then S
is a strong semilattice of left cancellative monoids. In this section we describe the free
objects in 58. On any right type A semigroup 5 there is a *-congruence v which is
minimum among those *-congruences p such that Sip has central idempotents. As 38 is a
quasi-variety of *-semigroups and is contained in the quasi-variety of right type A
semigroups, it follows (as in Section 2) from Lemma 4.112 of [15] that Ax/v is the free
object in 38 on X. To obtain a more explicit description, we begin by considering some
properties of v.

For a word w in F -̂, we define alph(vi') to be the subset of X consisting of those
elements which actually occur in w. For a subset A of Fx we define

alph(/t) = U {alph(w): w e A}.

LEMMA 5.1. For each w e Fx, (1, {w})v(l, alph(w)).

Proof. We use induction on the length of w. Assuming the result for words of length
n, let w=Xi. . .xn+l.

Then (jcn+1, alph(w)) e Ax and

(xn+u alph(»v)) = (xn+u {xn+l})(l, alph(*, . . . *„))

v(l,{x!. . . xn})(xn+u {*„+,})
= (""TI + IJ {*1 • • • Xn + l})

= (xn+u{w}).

As v is a ""-congruence, we thus have (1, alph(w))v(l, {>v}) and the result follows.

COROLLARY 5.2. If(l,A)eAx then (l,A)v{l, alph{A)).

Proof. Let A = {wl,. . . , wm). Then, by Lemma 5.1,

(1, A) = (1, {w,})... (1, {wm})v(l, a l ph^ , ) ) . . . (1, alph(wm)) = (1, alph(,4)).

COROLLARY 5.3. / / (w, A), (w, B) e Ax and alph(,4) = alph(B) then (w, A)v(w, B).

Proof. Since (w,A) = (w,{w})(l,A) and (w, B) = (w, {w})(l, B), we need only
show that (I,i4)v(l, B). But this follows from Corollary 5.2 since alph(/l) = alph(fl).

For a non-empty set X, we denote the free semilattice with identity on X by Yx. The
elements of Yx are all finite subsets of X and the operation is set-theoretic union. We
define a subsemigroup S^ of the direct product Fx x (y^XIl}) as follows:

5* = {(w, T)eFxx (YX\{1):alph(iv) c T}

where alph(l) = 0 .
It is easy to verify that 5A- is right type A with central idempotents.
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PROPOSITION 5.4. The mapping xj>: Ax —» 5A- defined by

(w, A)xp = (w, alph(A))

is a surjective *-homomorphism and ker \p = v.

Proof. Let (w,A), (v, B) sAx. Then v is a final segment of some member of B and
so

alph(,4 . v A V) = a\ph(A U6) = a\ph(A) U alph(fi).

It is now easy to see that xp is a *-homomorphism. Further if (w,T)eSx then
(w, ,4.) 6 .4 A-, where

A = {w}U(T\a\ph(w))

and (w,/4)i/> = (w, T); so that i/; is surjective.
Thus ker xp is a *-congruence and /4A-/ker i/> is right type A with central idempotents;

so that v c ker xj>.
If ((»v,/4), (w, B))eker i/; then w = v and alph(/4) = alph(fi) so that, by Corollary

5.3, ker i/> c v. Thus v = ker i/; as required.

COROLLARY 5.5. The *-semigroup Sx is the free object in % on X.

We conclude by noting that we can represent 5A- as a strong semilattice of free
monoids as follows:

AeE

where E=YX\{1} and the linking homomorphisms (t>A,B'-F\^*^s a r e simply the
inclusion mappings for Ac.B.
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