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Abstract

Let g = Lie(G) be the Lie algebra of a simple algebraic group G over an algebraically
closed field of characteristic 0. Let e be a nilpotent element of g and let ge = Lie(Ge)
where Ge stands for the stabiliser of e in G. For g classical, we give an explicit
combinatorial formula for the codimension of [ge, ge] in ge and use it to determine those
e ∈ g for which the largest commutative quotient U(g, e)ab of the finite W -algebra
U(g, e) is isomorphic to a polynomial algebra. It turns out that this happens if and
only if e lies in a unique sheet of g. The nilpotent elements with this property are
called non-singular in the paper. Confirming a recent conjecture of Izosimov, we prove
that a nilpotent element e ∈ g is non-singular if and only if the maximal dimension of
the geometric quotients S/G, where S is a sheet of g containing e, coincides with the
codimension of [ge, ge] in ge and describe all non-singular nilpotent elements in terms of
partitions. We also show that for any nilpotent element e in a classical Lie algebra g the
closed subset of SpecmU(g, e)ab consisting of all points fixed by the natural action of
the component group of Ge is isomorphic to an affine space. Analogues of these results
for exceptional Lie algebras are also obtained and applications to the theory of primitive
ideals are given.

1. Introduction and preliminaries

1.1 Associated varieties and associated cycles
Let k be an algebraically closed field of characteristic 0 and let G be a simple algebraic group
of adjoint type over k. Given an element x in the Lie algebra g = Lie(G), we write Gx for the
(adjoint) stabiliser of x in G and denote by gx the Lie algebra of Gx. It is well known that gx
coincides with the centraliser of x in g.

Let U(g) for the universal enveloping algebra of g and denote by X the set of all primitive
ideals of U(g). By the PBW theorem, the graded algebra associated with the canonical filtration
of U(g) is isomorphic to the symmetric algebra S(g) which we identify with S(g∗) by using the
Killing form on g. Using commutative algebra, we then attach to I ∈ X two important invariants:
the associated variety VA(I) and the associated cycle AC(I). The variety VA(I) is the zero locus
in g of the G-stable ideal gr(I) of S(g∗), and AC(I) is a formal linear combination

∑l
i=1mi[pi]

where p1, . . . , pl are the minimal primes of S(g∗) over AnnS(g∗) gr(U(g)/I) and m1, . . . ,ml are
their multiplicities; see [Jan04, § 9], where notation is slightly different. Since the variety VA(I)
is irreducible by Joseph’s theorem [Jos85a] and hence coincides with the Zariski closure of a
nilpotent orbit O ⊂ g, we have that AC(I) = mI [J ] where mI ∈ N and J =

√
gr(I), a prime
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ideal of S(g∗). The positive integer mI is sometimes referred to as the multiplicity of O in the
primitive quotient U(g)/I and abbreviated as multO(U(g)/I). It is well known that if O = {0}
then I coincides with the annihilator in U(g) of a finite-dimensional irreducible g-module V , the
radical J =

√
gr(I) identifies with the ideal

⊕
i>0 S

i(g∗) and mI = (dimV )2.

1.2 Primitive ideals and finite W -algebras
From now on we let e be a non-zero nilpotent element of g and include it in an sl2-triple {e, h,
f} ⊂ g. Let U(g, e) be the finite W -algebra associated with the pair (g, e), a non-commutative
filtered deformation of the coordinate algebra k[e + gf ] on the Slodowy slice e + gf regarded
with its Slodowy grading. Recall that U(g, e) =

(
EndgQe

)op
where Qe stands for a generalised

Gelfand–Graev g-module associated with e; see [Pre02, GG02] for more detail. By a result of
Skryabin, proved in the appendix to [Pre02], the right U(g, e)-module Qe is free and for any
irreducible U(g, e)-module V the g-module Qe ⊗U(g,e) V is irreducible. As a consequence, the

annihilator IV := AnnU(g)

(
Qe ⊗U(g,e) V

)
is a primitive ideal of U(g).

Let O be the adjoint G-orbit of e and define XO := {I ∈ X | VA(I) = O}. By [Pre07],
IV ∈ XO for any finite-dimensional irreducible U(g, e)-module V , whilst [Gin09, Los10a, Pre10]
show that any primitive ideal I ∈ XO has the form IW for some finite-dimensional irreducible
U(g, e)-module W . As explained in [Pre10], there is a natural action of the component group
Γ = Ge/G

◦
e on the set IrrU(g, e) of all isoclasses of finite-dimensional irreducible U(g, e)-modules.

It is straightforward to check that the primitive ideal IW depends only on the isoclass of W ,
and so one can speak of a primitive ideal I[W ] where [W ] is the isoclass of W in IrrU(g, e); see
[Pre10, Corollary 4.1], for instance. In [Los11b] Losev showed that

multO(U(g)/IW ) = [Γ : ΓW ] · (dimW )2 (1)

where ΓW denotes the stabiliser of the isoclass [W ] in Γ. Furthermore, confirming a conjecture of
the first-named author, he proved that the equality I[W ] = I[W ′] holds for [W ], [W ′] ∈ IrrU(g, e)
if and only if [W ′] = γ [W ] for some γ ∈ Γ. In particular, this means that dimW is an intrinsic
invariant of the primitive ideal I = IW ∈ XO.

By Goldie’s theory, for any I ∈ X the prime Noetherian ring U(g)/I embeds into a full
ring of fractions. The latter ring is prime Artinian and hence isomorphic to the matrix algebra
Matn(DI) over a skew-field DI called the Goldie field of U(g)/I. The positive integer n = nI
coincides with the Goldie rank of U(g)/I which is often abbreviated as rk(U(g)/I).

Recall that a primitive ideal I is called completely prime if U(g)/I is a domain. It is well
known that this happens if and only if rk(U(g)/I) = 1. Classifying the completely prime primitive
ideals of U(g) is an long-standing classical (and much studied) problem of Lie theory. In general,
it remains open outside type A although many important partial results can be found in [BJ01,
Bor76, Bry03, BV85, Jos76, Jos85b, Los10b, Los11a, McG94, Mœg87, Mœg88] and references
therein. If I = IV ∈ XO, where [V ] ∈ IrrU(g, e), then the main result of [Pre11] states that the
number

qI :=
dimV

rk(U(g)/I)

is an integer, and it is also proved in the same paper that qI = 1 if the Goldie field DI is
isomorphic to the skew-field of fractions of a Weyl algebra. The integrality of qI implies that IV
is completely prime whenever dimV = 1 (this fact also follows from results of Mœglin [Mœg88]
and Losev [Los10a]).

Obviously, I = IV is completely prime if and only if qI = dimV . If Γ = {1} then, combining
(1) with Joseph’s results on Goldie-rank polynomials [Jos80] (as exposed in [Jan83, 12.7]), it
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is straightforward to see that the scale factor qI takes the same value on coherent families of
primitive ideals in XO; see [Los12, 5.3] for more detail. It seems likely that this holds without any
assumption on Γ and the entire set {qI : I ∈ X} is finite. (By a coherent family of primitive ideals
we mean any subset {I(w ·µ) : µ ∈ Λ+} of XO with µ and w satisfying the assumptions of [Jan83,
12.7].) We mention for completeness that outside type A there are examples of completely prime
primitive ideals I ∈ XO for which qI > |Γ| (see [Pre11, Remark 4.3]), but it is proved in [Los12]
for g classical (and conjectured for g exceptional) that qI = 1 whenever the central character of
I is integral.

1.3 Commutative quotients of finite W -algebras and sheets
In this paper we begin a systematic investigation of those I ∈ XO for which multO(U(g)/I) = 1;
we call such primitive ideals multiplicity-free. For g classical we impose no assumptions on e,
but for g exceptional we shall assume that the orbit O is induced in the sense of Lusztig and
Spaltenstein from a nilpotent orbit in a proper Levi subalgebra of g. The remaining case of rigid
(i.e. non-induced) orbits in exceptional Lie algebras is dealt with in [Pre14]. As we explained
earlier, any multiplicity-free primitive ideal is completely prime, but the converse may not always
be true outside type A.

Let S1, . . . ,St be all sheets of g containing O. For 1 6 i 6 t, set ri = dimSi − dimO, the
rank of Si, and define

r(e) := max
16i6t

ri.

Let ce = ge/[ge, ge]. Since any one-dimensional torus of Ge and any unipotent element u =
exp(adn) with n ∈ ge act trivially on ce, it is straightforward to see that the adjoint action of Ge
on ge induces the trivial action of the connected group G◦e on ce and hence gives rise to a natural
action of Γ. We denote by cΓe the corresponding fixed point space, i.e. the set of all x ∈ ce such
that γ(x) = x for all γ ∈ Γ. We define

c(e) := dim(ce), cΓ(e) := dim(cΓe ).

Let U(g, e)ab = U(g, e)/Ic where Ic is the two-sided ideal of U(g, e) generated by all
commutators u · v − v · u with u, v ∈ U(g, e). Our assumption on O in conjunction with
[Bry03, GRU10, Los10a] guarantees that Ic is a proper ideal of U(g, e); see [Pre10] for more
detail. We denote by E the maximal spectrum of the finitely generated commutative k-algebra
U(g, e)ab. This affine variety parameterises the one-dimensional representations of U(g, e) and
is acted upon by the component group Γ (it is known that Γ acts on U(g, e)ab by algebra
automorphisms). We denote by EΓ the corresponding fixed point set which consists of all η ∈ E
such that γ(η) = η for all γ ∈ Γ. Let IΓ be the ideal of U(g, e)ab generated by all φ − φγ with
φ ∈ U(g, e)ab and γ ∈ Γ. It is straightforward to see that EΓ coincides with the zero locus of IΓ

in E . We define U(g, e)ab
Γ := U(g, e)ab/IΓ.

It follows from (1) that I = IV is multiplicity-free if and only if dimV = 1 and ΓV = Γ.
Thus, in order to classify the multiplicity-free primitive ideals in XO we need to determine
the variety EΓ. This problem is important as solving it could eventually lead us to a complete
description of all quantisations of nilpotent orbits; see [Mœg88] and [Los10b, Theorem 1.1] for
precise statements.

Thanks to [Pre10, Theorem 1.2] we know that dim E = r(e) and the number of irreducible
components of E is greater than or equal to t. Thus, the variety E is irreducible only if e lies in a
unique sheet of g. For g = sln, this condition is satisfied for any nilpotent element e, and [Pre10,
Corollary 3.2] states that U(sln, e)

ab is a polynomial algebra in r(e) variables. Our first main
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result is a generalisation of that to all Lie algebras of classical types. We call an element a ∈ g
non-singular if it lies in a unique sheet of g. If dim ga = m and g(m) = {x ∈ g : dim gx = m}, a
locally closed subset of g, then it follows from the smoothness of sheets of classical Lie algebras
(proved by Im Hof in [ImH05]) that a is non-singular if and only if a is a smooth point of the
quasi-affine variety g(m) (hence the name).

Theorem 1. If e is a nilpotent element in a classical Lie algebra g, then the following are
equivalent:

(i) e is non-singular;

(ii) c(e) = r(e);

(iii) U(g, e)ab is isomorphic to a polynomial algebra in r(e) variables.

The equivalence of the first two statements of Theorem 1 was conjectured by Izosimov
[Izo12] for all elements in a classical Lie algebra g. In Remark 5, we use the Jordan–Chevalley
decomposition in g to show that his conjecture is an immediate consequence of Theorem 1.

Although the polynomiality of U(g, e)ab occurs rather infrequently outside type A, the
algebras U(g, e)ab

Γ exhibit a much more uniform behaviour.

Theorem 2. If e is any nilpotent element in a classical Lie algebra g, then U(g, e)ab
Γ is isomorphic

to a polynomial algebra in cΓ(e) variables. In particular, EΓ is a single point if and only if
cΓ(e) = 0.

As an obvious corollary of Theorem 2 we deduce that the variety EΓ is isomorphic to an
affine space for any nilpotent element in a classical Lie algebra and hence is irreducible.

1.4 Derived subalgebras of centralisers in classical Lie algebras
In order to prove Theorems 1 and 2 we have to look very closely at the centralisers of
nilpotent elements in classical Lie algebras. A link between completely prime primitive ideals
and centralisers of nilpotent elements originates in the fact that for any nilpotent element e ∈ g
the finite W -algebra U(g, e) is a filtered deformation of the universal enveloping algebra U(ge);
see [BGK08, Pre07].

Suppose that g is one of soN or spN . It is well known that to any nilpotent element e ∈ g
one can attach a partition λ ∈ Pε(N) where ε = 1 if g = soN and ε = −1 if g = spN . Recall that
a partition λ = (λ1, . . . , λn) of N with λ1 > · · · > λn > 1 is in Pε(N) if there is an involution
i 7→ i′ on the set of indices {1, . . . , n} satisfying i′ ∈ {i− 1, i, i+ 1} such that λi′ = λi and i′ = i
if and only if ε(−1)λi = −1 for all i. We call a pair of indices (i, i+ 1) with 1 6 i < n a 2-step of
λ if i′ = i, (i+ 1)′ = i+ 1 and λi−1 6= λi > λi+1 6= λi+2 where our convention is that λi = 0 for
i ∈ {0, n+ 1}. We denote by ∆(λ) the set of all 2-steps of λ and set

s(λ) :=

n∑
i=1

b(λi − λi+1)/2c.

We call λ exceptional if g has type D and there exists a k < n such that the parts λk, λk+1 are
odd and the parts λi with i 6∈ {k, k + 1} are all even.

It should be mentioned that for any (i, i+ 1) ∈ ∆(λ) the integers λi and λi+1 have the same
parity. If (i, i+1) ∈∆(λ) and i > 1 (respectively, i = 1), then we call λi−1 and λi+2 (respectively,
λ3) the boundary of (i, i+ 1). We say that a 2-step (i, i+ 1) is good if its boundary and λi have
the opposite parity.
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Theorem 3. Let g be one of soN or spN , where N > 2, and let e be a nilpotent element of g
associated with a partition λ ∈ Pε(N). Then the following hold:

(i) c(e) = s(λ) + |∆(λ)|;
(ii) cΓ(e) = s(λ) unless g = soN and λ ∈ P1(N) is exceptional, in which case cΓ(e) = s(λ) + 1;

(iii) e is non-singular if and only if all 2-steps of λ are good.

If λ ∈ P1(N) is exceptional, then it is immediate from the definitions that |∆(λ)| = 1 and the
only 2-step of λ is good. Therefore, any nilpotent element e ∈ g associated with λ is non-singular.
It is also straightforward to see that any such e is a Richardson element of g.

For a nilpotent element e associated with a partition λ ∈ Pε(N), we give an explicit
combinatorial formula for the number r(e); see Corollary 9. It involves the notion of a good
2-cluster of λ introduced in § 3.3.

1.5 The case of exceptional Lie algebras
Now suppose that g is an exceptional Lie algebra. In this case our results are less complete
because we have to exclude the seven induced orbits in Table 0. Using [Car85, pp. 440–445] one
observes that all orbits listed in Table 0 are non-special. (All tables have been gathered at the
end of the article, beginning on page 1542.)

Theorem 4. Let g be an exceptional Lie algebra and suppose that e is an induced nilpotent
element of g. Then the following hold:

(i) EΓ 6= ∅;

(ii) if e is not listed in the first six columns of Table 0 and lies in a single sheet of g, then
U(g, e)ab is isomorphic to a polynomial algebra in c(e) variables;

(iii) if e is not listed in Table 0, then U(g, e)ab
Γ is isomorphic to a polynomial algebra in cΓ(e)

variables.

The numbers c(e) and cΓ(e) are listed in the last two columns of Tables 1–6.

Curiously, there are instances where for an induced element e the variety EΓ is a single point.
For g exceptional there are four such cases (two in type E7 and two in type E8) and for g classical
this occurs when e is associated with a partition λ ∈ Pε(N) for which λi − λi+1 ∈ {0, 1} for all
i (we call such partitions almost rigid). The nilpotent elements from the four orbits in types E7

and E8 have already appeared in the literature under three different names: p-compact, compact
and reachable; see [BB92, EG93, deG13, Pan04, Yak10]. It is worth mentioning that almost rigid
and exceptional partitions in Pε(N) also played a special role in Namikawa’s work [Nam09] on
Q-factorial terminalisations of nilpotent orbit closures in classical Lie algebras.

In proving Theorem 4 we rely heavily on results of de Graaf [deG13] and Lawther and
Testerman [LT07] obtained by computational methods. It seems plausible that the algebra
U(g, e)ab

Γ is reduced and the variety EΓ is equidimensional in all cases, but to prove this for
the orbits listed in Table 0 one would have to use different methods (a computational approach
in the spirit of [GRU10] would certainly do the trick).

1.6 Multiplicity-free primitive ideals associated with induced orbits
The traditional way to classify the completely prime ideals I ∈ XO parallels Borho’s classification
of the sheets of g; see [Bor81]. Here one aims to show that if the orbit O is induced from a rigid
orbit O0 in a Levi subalgebra l of g, then the majority of I as above can be obtained as the
annihilators in U(g) of (not necessarily irreducible) induced g-modules

Indg
p(E) := U(g)⊗U(p) E,
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where p = l⊕ n is a parabolic subalgebra of g with nilradical n and E is an irreducible p-module
with n ·E = 0 such that the annihilator I0 := AnnU(l)E is a completely prime primitive ideal of

U(l) with VA(I0) = O0. The ideals

I(p, E) := AnnU(g)(Indg
p(E))

are referred to as induced. It should be mentioned that I(p, E) does not have to be primitive and
completely prime, in general, but this holds under the additional assumption that I0 is completely
prime thanks to Conze’s theorem [Con74] and the Dixmier–Mœglin equivalence [Dix74, 8.5.7]. It
is well known that I(p, E) coincides with the largest two-sided ideal of U(g) contained in the left
ideal U(g)(n + I0) and hence depends only on p and I0; see [BGR73, 10.4]. We shall sometimes
use a more flexible notation Igp(I0) when referring to I(p, E).

Motivated by the natural desire to keep things simple, one wants all completely prime
primitive ideals in XO to be induced, but since this fails outside type A one must find a way
to determine the non-induced ones. This is, of course, the hardest part of the problem and the
main reason why the classification remains open outside type A; see [BJ01] for more detail.

Fortunately, this issue does not arise for the multiplicity-free primitive ideals. The following
is the main result of this paper.

Theorem 5. Let I ∈ XO be a multiplicity-free primitive ideal associated with an induced
nilpotent orbitO ⊂ g. If g is exceptional, assume further thatO is not listed in Table 0. Then there
exists a proper parabolic subalgebra p of g with a Levi subalgebra l and a rigid nilpotent orbit
O0 in l such that O is induced from O0 and I = I(p, E), where E is an irreducible U(p)-module
with the trivial action of the nilradical of p. Moreover, the primitive ideal I0 = AnnU(l)E is

completely prime and VA(I0) = O0.

Theorem 5 can be regarded as a generalisation of Mœglin’s theorem [Mœg87] on completely
prime primitive ideals of U(sln). From the main body of the paper one can obtain more
information on the parabolic subalgebra p and the p-module E. It is quite possible that Theorem 5
holds for all induced orbits in g and this would follow (by the same argument) if the variety EΓ

turned out to be irreducible for all orbits listed in Table 0.

2. The derived subalgebra of a centraliser

2.1 A basis for centralisers in classical Lie algebras
Let k be an algebraically closed field of any characteristic except 2. Fix N > 2 and denote by
V an N -dimensional vector space over k. In this section we denote by G the algebraic group
GL(V ) with Lie algebra g = Lie(G) = gl(V ) and let Ψ = ( · , · ) be a symmetric or skew-symmetric
non-degenerate bilinear form on V with values in k, so that (u, v) = ε(v, u) for all u, v ∈ V where
ε = ±1. Choose a basis for V to identify gl(V ) with glN and let J be the matrix associated with
Ψ with respect to that basis. If X is an endomorphism of V then X> denotes the transpose of
X. There is a Lie algebra automorphism σ : g → g of order 2 taking X ∈ g to −J−1X>J which is
independent of our choice of basis. Then σ induces a Z2-grading g = g0

⊕
g1. Make the notation

k = g0. If ε = 1 then k is an orthogonal algebra, and if ε = −1 then k is a symplectic algebra. In
either case g1 is a k-module. Let K denote the connected component of the associated orthogonal
or symplectic group.

The conjugacy classes of nilpotent elements in g are in one-to-one correspondence with
ordered partitions ofN : we associate with a partition λ= (λ1, . . . , λn) ofN with λ1 > · · ·> λn > 1
the G-orbit of the nilpotent element in Jordan normal form with Jordan block sizes λ1, . . . , λn.
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Let e ∈ k be a nilpotent element with Jordan block sizes λ1 > · · · > λn. Since k acts naturally on
V we may decompose V uniquely into minimal e-stable subspaces V =

⊕n
i=1 V [i], and shall call

these V [i] the Jordan block spaces of e in V . Since e restricts to a regular nilpotent endomorphism
on each V [i], there exist vectors {wi} such that {eswi : 1 6 i 6 n, 0 6 s < λi} forms a basis for
V . When dealing with partitions λ as above we always assume that λ0 = 0 and λi = 0 for all
i > n.

The following condition on the Jordan block sizes can be found in [Jan04, Theorem 1.4], for
example. The final statement follows from [CM93, Theorem 5.1.6].

Lemma 1. The wi ∈ V can be chosen so that there exists an involution i 7→ i′ on the set
{1, . . . , n} such that:

(1) λi = λi′ for all i = 1, . . . , n;

(2) (V [i], V [j]) = 0 if i 6= j′;

(3) i = i′ if and only if ε(−1)λi = −1.

The lemma states that for a nilpotent element in a symplectic Lie algebra each Jordan block
of odd dimension can be paired with a different Jordan block of the same dimension; in an
orthogonal algebra each Jordan block of even dimension can be paired with a different Jordan
block of the same dimension; and that this pairing is involutory. Renumbering the vectors wi if
necessary, we may (and will) assume from now on that

i′ ∈ {i− 1, i, i+ 1} for all 1 6 i 6 n.

As an immediate consequence of this convention we have that j′ > i′ whenever 1 6 i < j 6 n and
j 6= i′. Following [CM93], we denote by Pε(N) the set of partitions of N which are associated
with nilpotent elements of k (i.e. fulfilling the parity conditions of Lemma 1).

If L is a Lie algebra and x ∈ L then we write Lx for the centraliser of x in L. Since σ(e) = e, the
centraliser of e in g is σ-stable, inducing a decomposition ge = ke⊕ (ge)1 where (ge)1 = (g1)e is a
ke-module. Thanks to [Jan04, Theorems 2.5 and 2.6] we may identify ke with Lie(Ke). We shall
normalise the basis for V . Let {wi} be chosen in accordance with the above and fix 1 6 i 6 n,
0 < s. We have (eλi−1wi, e

swi′) = (−1)s(eλi−1+swi, wi′) and eλi−1+swi = 0 so eλi−1wi
is orthogonal to all eswi′ with s > 0. There is a (unique up to scalar) vector v ∈ V [i] which is
orthogonal to all eswi′ for s < λi − 1. This v does not lie in Im(e) for otherwise it would
be orthogonal to all of V [i] + V [i′]. This is not possible since the restriction of Ψ to V [i] + V [i′]
is non-degenerate. It does no harm to replace wi by v and normalise according to the rule

(wi, e
λi−1wi′) = 1 whenever i 6 i′.

With respect to this basis the matrix of the restriction of Ψ to V [i] + V [i′] is antidiagonal with
entries ±1.

Let ξ ∈ ge. Then ξ(eswi) = es(ξwi), showing that ξ is determined by its action on the wi. If
we define

ξj,si wk =

{
eswj if i = k

0 otherwise

and extend the action to {eswi} by the requirement that ξj,si is linear and centralises e then

{ξj,λj−1−s
i : 1 6 i, j 6 n, 0 6 s < min(λi, λj)} (2)

forms a basis for ge; see [Yak06], for example. Our next aim is to describe a basis for ke.
The following approach is implicit in [Yak06], but we shall recover the details for the reader’s
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convenience. Since σ : ge → ge is an involution the maps ξ + σ(ξ), with ξ ∈ ge, span ke. Thanks

to (2) we may define ζj,si = ξ
j,λj−1−s
i + σ(ξ

j,λj−1−s
i ) and conclude that {ζj,si : 1 6 i, j 6 n,

0 6 s < min(λi, λj)} is the required spanning set for ke. This leaves us with two immediate tasks:

evaluate σ(ξ
j,λj−1−s
i ) and determine the linear relations between the ζj,si . Using the fact that ζj,si

is skew self-adjoint with respect to Ψ, we deduce that

σ(ξ
j,λj−1−s
i ) = εi,j,sξ

i′,λi−1−s
j′ (3)

where εi,j,s is defined by the relationship (eλj−1−swj , e
swj′) = −εi,j,s(wi, eλi−1wi′). This requires

a little calculation. We now have the notation

ζj,si = ξ
j,λj−1−s
i + εi,j,sξ

i′,λi−1−s
j′ .

We further write

$i6j =

{
1 if i 6 j
−1 if i > j

and, comparing with Lemma 1, we see that $i6i′$i′6i = ε(−1)λi−1, which will prove useful
in some later calculations. The next lemma settles the question of which linear relations exist
between the maps ζj,si . The proof may be found in [Top14].

Lemma 2. The following are true:

(1) εi,j,s = (−1)λj−s$i6i′$j6j′ ;

(2) εi,j,s = εj′,i′,s;

(3) the only linear relations amongst the ζj,si are those of the form ζj,si = εi,j,sζ
i′,s
j′ .

Thanks to the above lemma we may refine a basis from the spanning set of vectors {ζj,si } by

removing any zero elements and excluding precisely one of the pair (ζj,si , ζi
′,s
j′ ) when these vectors

are non-zero. With this in mind, define

H := {ζi,si : i < i′, 0 6 s < λi} ∪ {ζi,si : i = i′, 0 6 s < λi, λi − s even},
N0 := {ζi

′,s
i : i 6= i′, 0 6 s < λi, λi − s odd},

N1 := {ζj,si : i < j 6= i′, 0 6 s < λj}.

Define also

H := span(H),

N0 := span(N0),

N1 := span(N1).

If U0 and U1 are subspaces of V then End(U0, U1) shall denote the space of all linear maps
U0 → U1. We consider End(U0, U1) to be a subspace of End(V ) under the natural embedding
induced by the inclusions of U0 and U1 into V .

Lemma 3. The set H t N0 t N1 forms a basis for ke. Furthermore, we have the following
characterisation of the three spaces:

(1) H is precisely the subspace of ke which preserves each Jordan block space V [i],

H = ke ∩
(⊕

i

End(V [i])

)
;
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(2) N0 is precisely the subspace of ke which ‘interchanges’ V [i] and V [i′] for i 6= i′ and annihilates
V [i] for i = i′,

N0 = ke ∩
(⊕
i 6=i′

End(V [i], V [i′])

)
;

(3) N1 is the subspace of ke which does neither of the above,

N1 = ke ∩
(⊕

i

( ⊕
j 6∈{i,i′}

End(V [i], V [j])

))
.

Proof. First we show that all elements of H tN0 tN1 are non-zero. Clearly ζj,si = 0 if and only

if ξ
j,λj−1−s
i = −εi,j,sξi

′,λi−1−s
j′ . For this we require that i = j′ and εi,j,s = −1. For i = j′ we must

have i = i′ = j or i 6= i′ = j. In the first case, εi,j,s = (−1)λj−s which equals −1 only if λi − s
is odd. But the maps ζi,si do not occur in H when i = i′ and λi − s is odd. In the second case,

εi,j,s = (−1)λi−1−s which equals −1 only if λi − s is even. However, the maps ζi
′,s
i do not occur

in N0 when i 6= i′ and λi − s is even.

Next observe that when ζj,si 6= 0 exactly one of the two maps ζj,si and ζi
′,s
j′ occurs in H tN0t

N1, thus showing this set to be a basis by part (3) of Lemma 2. The three characterisations are
clear upon inspection of the definitions of the sets H,N0 and N1. 2

2.2 Decomposing ke
It is our intention to decompose [ke, ke] into subspaces. In order to do so we must first decompose
H and N1. Let

H0 := span{ζi,si ∈ H : λi − s even},
H1 := span{ζi,si ∈ H : λi − s odd},

so that H = H0
⊕

H1. The space H0 can be further decomposed as
⊕bλ1/2c

m=1 Hm0 where

Hm0 := span{ζi,λi−2m
i ∈ H : 1 6 i 6 n}.

Next we must decompose each Hm0 into subspaces Hm0,j for j > 1.
Fix 0 < m 6 bλ1/2c, put a1,m := 1 and let 1 = a1,m < a2,m < · · · < at(m),m 6 n + 1 be the

set of all integers such that

λaj,m−1 − λaj,m > 2m, 2 6 j 6 t(m).

For 1 6 j < t(m) we define

Hm0,j := span{ζi,λi−2m
i ∈ H : aj,m 6 i < aj+1,m}

and set

Hm0,t(m) := span{ζi,λi−2m
i ∈ H : at(m),m 6 i < n+ 1}.

Lemma 4. The following are true:

(1) if λat(m),m
< 2m then Hm0,t(m) = {0};

(2) Hm0 =
⊕t(m)

j=1 Hm0,j .
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Proof. If at(m),m = n + 1 then certainly Hm0,t(m) = 0, so assume not. If λat(m),m
< 2m then the

ordering λ1 > · · · > λn implies that λi − 2m < 0 for all i > at(m),m. Then ζi,λi−2m
i = 0 for all

ζi,λi−2m
i ∈ Hm0,t(m), proving part (1). The choice of m (and the fact that a1,m = 1) ensures that⊕t(m)
l=1 Hm0,j = span{ζi,λi−2m

i ∈ H : 1 6 i 6 n} = Hm0 , hence part (2). 2

It should be noted that if i 6= i′ then εi,i,λi−2m = 1 by Lemma 2. In this case ζi,λi−2m
i =

ζ
i′,λi′−2m
i′ by the same lemma. In order to overcome this notational problem and concisely refer

to a basis for Hm0,j it will be convenient to use an indexing set slightly different from {1, . . . , n}.
Extend the involution i 7→ i′ to all of Z by the rule i = i′ for i > n or i < 1. We adopt the
convention λi = 0 for all i > n or i < 1, which immediately implies ζi,si = 0 for any such i.
We shall index our maps and partitions by the set Z/∼ where i ∼ j if i = j′. We denote by
[i] the class of i in Z/∼. We have λi = λi′ for all i, so we may introduce the notation λ[i].

As was observed a moment ago, ζi,λi−2m
i = ζ

i′,λi′−2m
i′ . Hence we may also use the notation

ζ
[i],λ[i]−2m

[i] . Furthermore, since i′ ∈ {i− 1, i, i+ 1} we have a well-defined order on Z/∼ inherited

from Z: let [i] 6 [j] if i 6 j. As a result there exists a unique isomorphism of totally ordered sets
ψ : (Z/∼) → Z with ψ([1]) = 1. Using this isomorphism, we define analogues of addition and
subtraction +,− : (Z/∼)× Z → (Z/∼) by the rules

[i] + j := ψ−1(ψ(i) + j),

[i]− j := ψ−1(ψ(i)− j).

To clarify, [i] + 1 is the class in (Z/∼) succeeding [i] and [i]− 1 is the class preceding [i] in the
ordering.

For 1 6 j < t(m), Lemma 2(3) yields that the set{
ζ

[i],λ[i]−2m

[i] ∈ H : [aj,m] 6 [i] < [aj+1,m]
}

is a basis for Hm0,j . Using this basis we may describe an important hyperplane Hm,+0,j of Hm0,j . First

we define the augmentation map Hm0,j � k by sending ζ
[i],λ[i]−2m

[i] to 1 for all [aj,m] 6 [i] < [aj+1,m]

and extending to Hm0,j by k-linearity. Let Hm,+0,j denote the kernel of this map. It was noted in
Lemma 4 that Hm0,t(m) might be zero. If this is not the case then a basis for Hm0,t(m) is the span

of those ζ
[i],λ[i]−2m

[i] which are non-zero with [at(m),m] 6 [i] 6 [n]. Using this basis, we can define

the augmentation map Hm0,t(m) � k and hyperplane Hm,+0,t(m) of Hm0,t(m) in a similar fashion. Make

the notation

H+
0 :=

bλ1/2c∑
m=1

(t(m)−1⊕
j=1

Hm,+0,j + Hm0,t(m)

)
⊆ H0.

Before we continue we must decompose N1 into a direct sum of two subspaces. We shall need
the following definition, first stated in the introduction.

Definition 1. Given λ = (λ1, . . . , λn) ∈ Pε(N), we denote by ∆(λ) the set of all pairs (i, i+ 1)
with 1 6 i < n such that i′ = i, (i+ 1)′ = i+ 1 and λi−1 6= λi > λi+1 6= λi+2. If (i, i+ 1) ∈ ∆(λ)
then the pair will be called a 2-step of λ. If i > 1 and (i, i + 1) is a 2-step of λ then λi−1 and
λi+2 are referred to as the boundary of (i, i + 1). If (1, 2) ∈ ∆(λ) then λ3 is referred to as the
boundary of (1, 2) (if n = 2 then λ3 = 0 by convention).
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Here and throughout we adopt the convention that λ0 = λn+1 = 0. Take note that if (n− 1,
n) ∈ ∆(λ) then λn−2 and λn+1 = 0 form the boundary of (n−1, n). We define N−1 to be the span

of the basis vectors ζ
i+1,λi+1−1
i ∈ N1 such that (i, i+1) ∈∆(λ) and we let N+

1 be the complement

to N−1 in N1 which is spanned by the remaining basis vectors ζj,si ∈ N1.

2.3 Decomposing [ke, ke]
It is the intention of this section to decompose [ke, ke] into a finite collection of those subspaces of
ke defined in the previous section. Our calculations will be quite explicit and depend principally
upon the following.

Lemma 5. For all indices i, j, s and k, l, r,

[ζj,si , ζ l,rk ] = δilζ
j,r+s−(λi−1)
k − δjkζ

l,r+s−(λj−1)
i + εk,l,r

(
δk,i′ζ

j,r+s−(λi−1)
l′ − δj,l′ζ

k′,r+s−(λj−1)
i

)
.

The proof is a short calculation which we leave to the reader. The following proposition will
be central in the process of decomposing [ke, ke].

Proposition 1. The following inclusions hold:

[H,H] = {0}, [H,N0] ⊆ N0, [H,N1] ⊆ N1,

[N0,N0] ⊆ H, [N0,N1] ⊆ N1.

Furthermore, for any two elements ζj,si , ζ l,rk ∈ N1 the commutator [ζj,si , ζ l,rk ] lies in either H, N0

or N+
1 . More precisely,

[ζj,si , ζ l,rk ] ∈


N+

1 if i = l or j = k

N0 or N+
1 if k = i′ or j = l′ but not both

H if k = i′ and j = l′

0 otherwise.

Proof. We shall call on the characterisations of H,N0 and N1 given in Lemma 3. Thanks to
[Yak06, Theorem 1] we have H = k∩ (ge)α where α is a certain regular element of g∗e. By [Dix74,
1.11.7] the stabiliser (ge)α is abelian, hence [H,H] = 0. The elements of N0 are characterised
by the fact that they exchange the spaces V [i] and V [i′] with i 6= i′. Therefore the elements of
[H,N0] must exchange them also, implying [H,N0] ⊆ N0. Each ζj,si ∈ N1 transports V [i] to V [j]

and V [j′] to V [i′]. Therefore [H, ζj,si ] does likewise and [H,N1] ⊆ N1. Since each element of N0

exchanges the spaces V [i] and V [i′] with i 6= i′ and annihilates all V [i] with i = i′, the commutator
space [N0,N0] must stabilise all V [i], hence be contained in H. The inclusion [N0,N1] ⊆ N1 is

best checked using Lemma 5. Let i 6= i′ and l > k 6= l′. Then [ζi
′,s
i ζ l,rk ] is non-zero only if i = l or

i′ = k. Our restrictions on i, l and k ensure that these two possibilities are mutually exclusive.
In the first case,

[ζi
′,s
i , ζ l,rk ] = ζ

l′,r+s−(λi−1)
k − εk,l,rζ

k′,r+s−(λi−1)
l

which lies in N1. The second case is very similar.
We now consider the final claim. Suppose that j > i 6= j′ and l > k 6= l′. By Lemma 5 the

bracket [ζj,si , ζ l,rk ] is only non-zero when one or more of the following equalities hold: i = l, j = k,
i′ = k, j′ = l. We consider these four possibilities one by one.

Since the bracket is anticommutative, the reasoning in the case i = l is identical to the case
j = k and so we need to consider only the first of these two possibilities. If i = l then the
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relations i′ 6= j > i and l > k 6= l′ ensure that j 6= k, i′ 6= k and j′ 6= l. Therefore [ζj,si , ζ l,rk ]

= ζ
j,r+s−(λi−1)
k ∈ N1. In order for this map to lie in N−1 we would require j = k+ 1; however, we

have j > i = l > k which makes this impossible. Thus [ζj,si , ζ l,rk ] ∈ N+
1 .

By Lemma 2 we have ζj,si = ±ζi
′,s
j′ and ζ l,rk = ±ζk

′,r
l′ , so the reasoning in the case i = k′ is

identical to the case j′ = l. Therefore we need to consider only the first of these two possibilities.

Suppose that i = k′. Then certainly i 6= l and j 6= k. If j′ = l then

[ζj,si , ζ l,rk ] = εk,l,r(ζ
j,r+s−(λi−1)
j − ζi,r+s−(λj−1)

i ) ∈ H,

so assume henceforth that j′ 6= l. Then

[ζj,si , ζ l,rk ] = εk,l,rζ
j,r+s−(λi−1)
l′ .

If j = l then the product lies in N0. Assume that j 6= l. Thanks to the relation ζ
j,r+s−(λi−1)
l′ =

±ζ l,r+s−(λi−1)
j′ from Lemma 2 we may assume that j > l′, and from here it is easily seen that

the product lies in N1. In order for the product to lie in N−1 we require λl′−1 6= λl′ , which

implies λl < λi since i = k′ < l. From the bounds 0 6 r < λl and 0 6 s < λj we deduce that

r + s− (λi − 1) < λj − 1, which confirms that the term ζ
j,r+s−(λi−1)
l′ does not lie in N−1 . 2

Proposition 2. The following are true:

(1) N0 ⊂ [ke, ke];

(2) N1 ∩ [ke, ke] = N+
1 .

Proof. Assume that i 6= i′ and λi − s is odd. We have εi,i,s = (−1)λi−s, so

[ζi
′,s
i , ζi,λi−1

i ] = ζi
′,s
i − εi,i,λi−1ζ

i′,s
i = 2ζi

′,s
i ∈ [ke, ke].

Since char(k) 6= 2 we get N0 = [H,N0] ⊆ [ke, ke]. This proves part (1).

For the sake of clarity we shall divide the proof of part (2) of the current proposition into

subsections (i)–(ix). In parts (i)–(v) we demonstrate that N+
1 ⊆ [ke, ke] by showing that if ζj,si ∈

N1 is amongst the basis vectors spanning N+
1 then some multiple of ζj,si may be found as a

product of two basis elements in ke. Recall that these vectors are defined to be those for which

(i, i + 1) /∈ ∆(λ), or for which j 6= i + 1, or for which s < λj − 1. In parts (vi)–(viii) we show

that the reverse inclusion holds by noting that N1∩ [ke, ke] is the sum of those products [ζj,si , ζ l,rk ]

which lie in N1, and showing that all such products actually lie in N+
1 . For the remainder of the

proof we shall fix l > k 6= l′ so that min(λk, λl) = λl.

(i) If l 6= l′ or k 6= k′, then ζ l,rk ∈ [ke, ke] for r = 0, 1, . . . , λl − 1. Suppose first that l 6= l′. We

have

[ζ l,λl−1
l , ζ l,rk ] = ζ l,rk ∈ [ke, ke],

whence we obtain ζ l,rk ∈ [ke, ke] for r = 0, 1, . . . , λl − 1. Now suppose that k 6= k′. Then

[ζk,λk−1
k , ζ l,rk ] = −ζ l,rk ∈ [ke, ke],

so that ζ l,rk ∈ [ke, ke] for all r = 0, 1, . . . , λl − 1.
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(ii) If l′ = l and k = k′ then ζ l,rk ∈ [ke, ke] for r = 0, 1, . . . , λl − 2. With l and k as above,

[ζ l,λl−2
l , ζ l,rk ] = ζ l,r−1

k − εk,l,rζk
′,r−1
l′ ∈ [ke, ke].

By part (3) of Lemma 2 this final expression is (1 − εk,l,rεk,l,r−1)ζ l,r−1
k . Since εk,l,r = (−1)λl−r

this expression actually equals 2ζ l,r−1
k . Allowing r to run from 0 to λl − 1, we obtain the desired

result.

(iii) If l′ = l, k = k′ and k 6= j − 1 then ζ l,rk ∈ [ke, ke] for r = 0, 1, . . . , λl − 1. We may assume
there exists j fulfilling l > j > k. Then k 6= l and k′ 6= j 6= l′, so that

[ζ l,rj , ζ
j,λj−1
k ] = ζ l,rk ∈ [keke].

(iv) If l = l′, k = k′ and either λk = λk−1 or λl = λl+1, then ζ l,rk ∈ [ke, ke] for r = 0, 1, . . . , λl−1.
First suppose that λk = λk−1. Since k = k′ we have k − 1 = (k − 1)′, so that

[ζ l,rk−1, ζ
k,λk−1
k−1 ] = εk−1,k,λk−1ζ

l,r
k ∈ [ke, ke]

for r = 0, 1, . . . , λl − 1. Next suppose that λl = λl+1. Since l = l′ we have l+ 1 = (l+ 1)′, and so

[ζ
l+1,λl+1−1
k ζ l+1,r

l ] = −εl,l+1,rζ
l,r
k ∈ [ke, ke]

for r = 0, 1, . . . , λl − 1.

(v) N+
1 ⊆ [ke, ke]. This follows by combining the deductions of parts (i)–(iv).

(vi) [H,N1] ⊆ N+
1 . We continue to fix l > k 6= l′. The bracket [ζi,si , ζ l,rk ] is non-zero only if

i = k or i = l. Assume that i = l (the case i = k is similar). Then [ζi,si , ζ l,rk ] = ζ
l,r+s−(λi−1)
k , which

lies in either N−1 or N+
1 . In order for ζ

l,r+s−(λi−1)
k to lie in N− we must have l = l′. But in that

case i = i′, and so λi − s must be even by the definition of H. In particular, s 6 λi − 2 and
r + s− (λi − 1) 6 r − 1 < λl − 1, forcing [ζi,si , ζ l,rk ] ∈ N+

1 .

(vii) [N0,N1] ⊆ N+
1 . The product [ζi

′,s
i , ζ l,rk ] with i 6= i′ is non-zero only if i = l or i′ = k. Our

restrictions on i, l and k ensure that these two possibilities are mutually exclusive. In the case
i = l,

[ζi
′,s
i , ζ l,rk ] = ζ

l′,r+s−(λi−1)
k − εk,l,rζ

k′,r+s−(λi−1)
l = (1− εk,l,rεk,l′,r+s−(λi−1))ζ

l′,r+s−(λi−1)
k .

If ζ
l′,r+s−(λi−1)
k ∈ N−1 then l = l′ by the definition of N−1 . But then i = l = l′ yields i = i′

contrary to our assumptions. We deduce that ζ
l′,r+s−(λi−1)
k ∈ N+

1 . Now consider the case i′ = k.
A calculation similar to the above gives

[ζi
′,s
i , ζ l,rk ] = (εk,l,rεk,l,r+s−(λi−1) − 1)ζ

l,r+s−(λi−1)
i .

Since i 6= i′ we see, as before, that the right-hand side lies in N+
1 , hence (vii).

(viii) N1 ∩ [N1,N1] ⊆ N+
1 . This follows immediately from the last statement of Proposition 1.

(ix) N1∩ [ke, ke] = N+
1 . By (v) we know that N+

1 ⊆ N1∩ [ke, ke]. By Proposition 1, N1∩ [ke, ke]

is equal to the span of those products [ζj,si , ζ l,rk ] which lie in N1. By that same proposition and

parts (vi)–(viii) we see that every product [ζj,si , ζ l,rk ] which lies in N1 actually lies in N+
1 . The

claim follows. 2
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Proposition 3. The following are true:

(1) H1 ⊂ [ke, ke];

(2) H0 ∩ [ke, ke] = H+
0 .

Proof. H1 has a basis consisting of vectors ζi,si with i < i′ and λi − s odd. Fix such a choice of i
and s, and choose r such that λi − r is odd. By Lemma 5, we have that

[ζi,si′ , ζ
i′,r
i ] = (1 + εi,i′,r)(ζ

i,s+r−(λi−1)
i − ζi

′,s+r−(λi−1)
i′ ).

Since εi,i,r+s−(λi−1) = (−1)λi−(s+r−(λi−1)) = (−1)(λi−s)+(λi−r)+1 =−1 it follows that ζ
i′,s+r−(λi−1)
i′

= −ζi,s+r−(λi−1)
i by part (3) of Lemma 2. Also εi,i′,r = (−1)λi−r+1 = 1. Therefore

[ζi,si′ , ζ
i′,r
i ] = 4ζ

i,s+r−(λi−1)
i

which is non-zero since char(k) 6= 2. We make the observation that the above expression lies in
H1 for any choice of r and s with λi − r and λi − s both odd. Taking r = λi − 1, we obtain
ζi,si ∈ H ∩ [ke, ke]. Since H1 is spanned by those ζi,si such that i < i′ and λi − s is odd we have
H1 ⊆ [ke, ke]. This completes part (1).

For the sake of clarity we shall divide the proof of part (2) of the current proposition into
subsections (i)–(vii). The approach is much the same as for part (2) of Proposition 2. In parts
(i)–(iv) we show that a spanning set for H+

0 may be found in [ke, ke], and in the subsequent parts

(v)–(vii) we demonstrate that any product [ζj,si , ζ l,rk ] which lies in H0 actually lies in H+
0 .

(i) The subspace H0 ∩ [N1,N1] is spanned by all ζ
[j],λ[j]−2m

[j] − ζ [i],λ[i]−2m

[i] such that [1] 6 [i] <

[j] 6 [n] and λi−λj < 2m < λj +λi. Indeed by Proposition 1 we see that H∩ [N1,N1] is spanned

by commutators [ζj,si , ζj
′,r
i′ ] with [j] > [i]. In turn,

[ζj,si , ζj
′,r
i′ ] = εi′,j′,r[ζ

j,s
i , ζi,rj ] = εi′,j′,r(ζ

j,r+s−(λi−1)
j − ζi,r+s−(λj−1)

i ).

The reader will notice that

[ζj,si , ζi,rj ] ∈
{
H1 if λi + λj − (r + s)− 1 odd

H0 if λi + λj − (r + s)− 1 even.

As a consequence H0 ∩ [N1,N1] is spanned by all [ζj,si , ζi,rj ] with [1] 6 [i] < [j] 6 [n] and 0 6 s,
r < λi, λi + λj − (r + s) − 1 even. If we pick [1] 6 [i] < [j] 6 [n] and 0 6 s, r < λi such that
λi + λj − (r + s)− 1 = 2m then we have

[ζj,si , ζi,rj ] = εi′,j′,r

(
ζ

[j],λ[j]−2m

[j] − ζ [i],λ[i]−2m

[i]

)
.

The constraints placed on s and r are equivalent to λi − λj < 2m < λi + λj , and (i) follows.

(ii) H0 ∩ [ke, ke] = H0 ∩ [N1,N1]. By Proposition 1 we see that

H ∩ [ke, ke] = [N0,N0] + (H ∩ [N1,N1]),

whereas our observation in part (1) of the current proposition shows that [N0,N0] ⊆ H1. Since
H = H0 ⊕ H1 and

H ∩ [N1,N1] = (H0 ∩ [N1,N1])
⊕

(H1 ∩ [N1,N1])

by our discussion in (i) we obtain H0 ∩ [ke, ke] = H0 ∩ [N1,N1].
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(iii) Each spanning vector from (i) lies in a unique Hm0,l, and in particular we have that

H0 ∩ [N1,N1] =
⊕

l,m(Hm0,l ∩ [N1,N1]). Fix m in the appropriate range and suppose that 1 6 i <

at(m),m. We claim that if [j] > [i] then each ζ
[j],λ[j]−2m

[j] − ζ [i],λ[i]−2m

[i] ∈ H0 ∩ [N1,N1] lies in Hm0,l
where l is the unique integer fulfilling [al,m] 6 [i] < [al+1,m]. It will suffice to show that, given

i, j, l and m as above, we have [j] < [al+1,m]. To see this, suppose that [j] > [al+1,m]. Then by

our choice of al+1,m we have λal+1,m−1 − λal+1,m
> 2m which implies λi − λj > 2m contrary to

the restriction λi − λj < 2m noted in the statement of (i). We conclude that [al,m] 6 [i] < [j] <

[al+1,m] and that the corresponding spanning vector lies in Hm0,l. In the case at(m),m 6 i we have

ζ
[j],λ[j]−2m

[j] − ζ [i],λ[i]−2m

[i] ∈ Hm0,t(m) by definition. Thus we have shown that the spanning vectors of

H0 ∩ [N1,N1] each lie in some Hm0,l, as claimed.

(iv) The inclusion Hm,+0,l ⊆ Hm0,l∩ [N1,N1] holds for all l and m. Suppose that 1 6 i < at(m),m.

Since λat(m),m−1 − λat(m),m
> 2m we know that λat(m),m−1 > 2m and so λi > 2m. It follows

that ζ
[i],λ[i]−2m

[i] 6= 0 for all such i. Fix [i] with [al,m] < [i] < [al+1,m]. By our choice of integers

{a1,m, . . . , at(m),m} we know that λ[i]−1−λ[i] < 2m and since λ[i]−1, λ[i] > λat(m),m
> 2m we have

λ[i]−1 + λ[i] > 2m. By these remarks, using (i), it follows that ζ
[i]−1,λ[i]−1−2m

[i]−1 − ζ [i],λ[i]−2m

[i] is a

non-zero element of Hm0,l ∩ [N1,N1]. These vectors span all of Hm,+0,l so (iv) follows for l < t(m).

The argument for l = t(m) is similar. Let k = max{i : λi > 2m}. Then ζi,λi−2m
i 6= 0 if and

only if i 6 k so Hm0,t(m) = span
{
ζ

[i],λ[i]−2m

[i] : [at(m),m] 6 [i] 6 [k]
}

. Fix [i] with [at(m),m] < [i] 6 [k].

By our choice of integers {a1,m, . . . , at(m),m} we know that λ[i]−1 − λ[i] < 2m, and by our choice

of k we have λ[i]−1 + λ[i] > 2m. The argument now concludes exactly as above.

(v) The equality Hm0,l ∩ [N1,N1] = Hm,+0,l holds for all 1 6 l < t(m). The discussion in (iii)

confirms that Hm0,l ∩ [N1,N1] is spanned by all ζ
[j],λ[j]−2m

[j] − ζ [i],λ[i]−2m

[i] with [al,m] 6 [i] < [j] <

[al+1,m], λi−λj < 2m< λj+λi. This space is clearly contained in Hm,+0,l . Now (v) follows from (iv).

(vi) Hm0,t(m) ∩ [N1,N1] = Hm0,t(m). First we note that Hm,+0,t(m) ⊆ Hm0,t(m) ∩ [N1,N1] by (iv). If

λat(m),m
< 2m then Hm0,t(m) = 0 by part (1) of Lemma 4 and the statement holds trivially. So

assume that λat(m),m
> 2m and let k = max{i : λi > 2m}. Then Hm0,t(m) is spanned by all

ζ
[i],λ[i]−2m

[i] with [at(m),m] 6 [i] 6 [k]}. We claim that [k] + 1 6 [n]. If not then [k] = [n], which

implies that λk − λk+1 = λk > 2m, forcing k+ 1 ∈ {a1,m, . . . , at(m),m}. However, k+ 1 > at(m),m

and a1,m 6 · · · 6 at(m),m. This contradiction confirms the claim. By the very same reasoning we

know that λ[k]−λ[k]+1 = λk−λk+1 < 2m and the inequality [k]+1 6 n gives us λ[k]+1 > 0, which

in turn implies λ[k] +λ[k]+1 > 2m. By (i) and (iii) we have ζ
[k]+1,λ[k]+1−2m

[k]+1 − ζ [k],λ[k]−2m

[k] ∈ Hm0,t(m).

Since λk+1 < 2m we know that ζ
[k]+1,λ[k]+1−2m

[k]+1 = 0. Since ζ
[k],λ[k]−2m

[k] /∈ Hm,+0,t(m) and Hm,+0,t(m) has

codimension 1 in Hm0,t(m), statement (vi) follows.

(vii) H0 ∩ [ke, ke] = H+
0 . By (ii) and (iii) we have

H0 ∩ [ke, ke] =
⊕
l,m

(Hm0,l ∩ [N1,N1]).

The proposition now follows from (v) and (vi). 2
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Theorem 6. The derived subalgebra [ke, ke] coincides with N0
⊕

N+
1

⊕
H+

0

⊕
H1.

Proof. The sum of the above subspaces is direct by construction. By Proposition 1 we know that
[ke, ke] is the sum of the three spaces

[ke, ke] = (N0 ∩ [ke, ke]) + (N1 ∩ [ke, ke]) + (H ∩ [ke, ke]).

By Proposition 2 we have that (N0∩ [ke, ke]) + (N1∩ [ke, ke]) = N0 +N+
1 . By Proposition 3, using

the fact that H = H0 ⊕ H1, we have H ∩ [ke, ke] = H1 + H+
0 . The theorem follows. 2

2.4 A combinatorial formula for dim kab
e

As a corollary to the previous theorem we obtain an expression for the dimension of the maximal
abelian quotient kab

e := ke/[ke, ke]. Given a partition λ = (λ1, . . . , λn) ∈ Pε(N), we have defined
∆(λ) to be the set of pairs (i, i+ 1) with 1 6 i < n, i′ = i, (i+ 1)′ = i+ 1 and λi−1 6= λi > λi+1 6=
λi+2; see Definition 1. Recall that the elements of ∆(λ) are referred to as 2-steps. Now set

s(λ) :=

n∑
i=1

b(λi − λi+1)/2c.

Note that if (i, i + 1) ∈ ∆(λ) then ε(−1)λi = ε(−1)λi+1 = −1 and recall our convention that
λ0 = 0 and λi = 0 for all i > n. We may now state and prove the formula for dim kab

e .

Corollary 1. Let k be one of the classical Lie algebras soN or spN where N > 2 and suppose
that char(k) 6= 2. Then dim kab

e = s(λ) + |∆(λ)| for any nilpotent element e = e(λ) ∈ k.

Proof. Recall that ke = H
⊕

N0
⊕

N1, that N1 = N−1
⊕

N+
1 , and that H = H0

⊕
H1 with H+

0 ⊆
H0. By Theorem 6 we have that kab

e
∼= (N1/N

+
1 )
⊕

(H0/H
+
0 ) as vector spaces. We claim that

dim(N1/N
+
1 ) = |∆(λ)| and that dim(H0/H

+
0 ) = s(λ), whence the theorem shall follow. First of

all observe that dim(N1/N
+
1 ) = dim(N−1 ). By part (3) of Lemma 2 the maps ζi,λi−1

i−1 spanning

N−1 are all linearly independent. Out last remark in § 2.2 defines the set N−1 to be the space
spanned by

N−1 := {ζi+1,λi+1−1
i : (i, i+ 1) ∈ ∆(λ)}.

The map (i, i + 1) 7→ ζ
i+1,λi+1−1
i is clearly a bijection ∆(λ) ↔ N−1 . We conclude that

dim(N1/N
+
1 ) = dim(N−1 ) = |∆(λ)|.

We must now show that dim(H0/H
+
0 ) = s(λ). Observe that H0 =

⊕
l,mHm0,l (part (2) of

Lemma 4) and that each Hm,+0,l has codimension 1 in Hm0,l. Furthermore, if l < t(m) then Hm0,l 6= 0.

We conclude that dim(H0/H
+
0 ) = |D| where

D = {(l,m) : 1 6 l 6 t(m)− 1, 1 6 m 6 bλ1/2c}.

On the other hand, s(λ) = |D′| where

D′ = {(i,m) ∈ {2, . . . , n+ 1} × {1, . . . , bλ1/2c} : λi−1 − λi > 2m}.

If we construct a bijection from D to D′ then the result follows. Define a map from D to
{2, . . . , n+ 1} × {1, . . . , bλ1/2c} by the rule

(i,m) 7−→ (ai+1,m,m).

By the definition of the integers {a1,m, a2,m, . . . , at(m),m} it is a well-defined injection into D′.
Fix 1 6 m 6 bλ1/2c. Since λ0 = 0 and λ1 > · · · > λn, we have a1,m = 1 and {a2,m, . . . , at(m),m}
is the set of all integers i with 2 6 i 6 n+ 1 and λi−1−λi > 2m. Thus the map is surjective and
dim(H0/H

+
0 ) = s(λ). 2
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Remark 1. If g = slN where N > 2 and e is a nilpotent element of g corresponding to a partition
(λ1, . . . , λn) of N then dim gab

e = dim z(ge) = λ1 − 1. This follows, for instance, from results of
[Yak10]. If e is a nilpotent element in a classical Lie algebra k of type other than A then it may
happen that kab

e and z(ke) have different dimensions.

Example 1. To illustrate Corollary 1 we consider the special case where k = so4. This Lie algebra
has type D2

∼= A1×A1 and is isomorphic to a direct sum of two copies of sl2. Therefore k has three
non-zero nilpotent orbits: the orbits containing root vectors e1 and e2 of the two simple ideals of
k and the regular nilpotent orbit containing e1 +e2. It is immediate that ke1

∼= ke2
∼= sl2⊕k, whilst

ke1+e2 is abelian and has dimension 2. In particular, dim kab
e1 = dim kab

e2 = 1 and dim kab
e1+e2 = 2.

On the combinatorial side, the set P1(4) contains only two non-trivial partitions, namely,
λ = (3, 1) and µ = (2, 2). Since k is of type D and the partition (2, 2) has even parts only, there
are two nilpotent orbits in k attached to it (they are permuted by an outer automorphism of k
and assigned the Roman numerals I and II). It is straightforward to see that our root vectors
e1 and e2 correspond to the partition µ, whereas e1 + e2 is attached to λ. Since (1, 2) is the
only 2-step of λ we get |∆(λ)| = 1 and s(λ) = b(3 − 1)/2c = 1. So dim kab

e = 1 + 1 = 2 by
Corollary 1. On the other hand, ∆(µ) = ∅ and s(µ) = b(2 − 2)/2c + b(2 − 0)/2c = 1, yielding
dim kab

e1 = dim kab
e2 = 0 + 1 = 1. This agrees with our earlier deductions.

Example 2. Now suppose that k = so6, a Lie algebra of type D3
∼= A3. In this case k ∼= sl4. The

Lie algebra sl4 has four non-zero nilpotent orbits which correspond to the partitions (4), (3, 1),
(2, 2) and (2, 1, 1). Using Remark 1, we see that dim kab

e equals 3, 2, 1 and 1 in the respective
cases.

On the other hand, the set P1(6) contains four non-trivial partitions µ, namely, (5, 1), (3, 3),
(3, 1, 1, 1) and (2, 2, 1, 1) and the corresponding nilpotent orbits of k are associated with the
partitions (4), (3, 1), (2, 2) and (2, 1, 1) when regarded as elements of sl4. Since |∆(µ)| = 1 if µ is
one of (5, 1), (3, 3) or (2, 2, 1, 1) and ∆(µ) = ∅ if µ = (3, 1, 1, 1), applying Corollary 1 yields that
dim kab

e equals 3, 2, 1 and 1 in the respective cases. This agrees with our earlier deductions.

3. Applications to the theory of sheets in classical Lie algebras

3.1 The Kempken–Spaltenstein algorithm
Let G be a simple algebraic group over k and m ∈ N. We recall that a sheet of the Lie algebra
g = Lie(G) is an irreducible component of the locally closed set

g(m) := {x ∈ g : dim gx = m}.

Let N (g) denote the the variety of all nilpotent elements in g. It is well known that every sheet
of g contains a unique nilpotent orbit; see [BK79, 5.8]. However, outside type A the sheets are
not disjoint and a given nilpotent orbit of g 6∼= slN may lie in several different sheets.

Crucial for the theory of sheets in semisimple Lie algebras is the notion of a rigid element
(such elements were termed original by Borho). An element x ∈ N (g) is called rigid if the adjoint
G-orbit of x coincides with a sheet of g. Any rigid element of g is necessarily nilpotent.

Let l be a Levi subalgebra of g. The centre z(l) is a toral subalgebra of g and for any z ∈ z(l)
the centraliser gz contains l. We denote by z(l)reg the set of all z ∈ z(l) for which gz = l. This is
a non-empty Zariski open subset of z(l). Given a nilpotent element e0 ∈ [l, l], we define D(l, e0)
to be the G-stable set (AdG)

(
e0 + z(l)reg

)
and we call D(l, e0) a decomposition class of g.

Every sheet S of g is a G-stable subset of g locally closed and irreducible in the Zariski
topology of g. By a classical result of Borho [Bor81], every sheet is a finite union of decomposition
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classes and contains a unique Zariski open such class. Furthermore, a decomposition class D(l, e0)

contained in S is open in S if and only if e0 is rigid in l; see [Bor81, 3.7]. Conversely, every

decomposition class D(l, e0) with e0 rigid in l is Zariski open in a unique sheet of g. Furthermore,

the unique nilpotent orbit in that sheet is obtained from e0 by Lusztig–Spaltenstein induction.

This result of Borho gives us a very transparent way to parameterise the sheets of g.

If S is a sheet of g and D(l, e0) is its open decomposition class then dim z(l) is called the

rank of S and abbreviated as rk(S). This notion is important as it enables us to determine the

dimension of S. Indeed, suppose that S ⊂ g(m). Since the morphism

G×
(
e0 + z(lreg)

)
−→ S, (g, x) 7→ (Ad g)x

is dominant, it follows from the theorem on dimensions of the fibres of a morphism and the

theory of induced conjugacy classes that

dimS = dim g−m+ rk(S);

see [Bor81, LS79] for more detail.

In this section we deal with sheets in classical Lie algebras and we keep the notation

introduced in § 1. We shall be discussing the properties of various different nilpotent orbits

in various different classical Lie algebras simultaneously. In order to distinguish between the

various orbits we shall often appeal to their associated partitions.

Recall from § 1 the set Pε(N) of partitions of N associated with the nilpotent elements of k.

Given e ∈ N (k), we denote by λ(e) the partition in Pε(N) corresponding to e. If λ = (λ1, . . . ,

λn) ∈ Pε(N) then we write e(λ) for any element in N (k) whose Jordan block sizes (arranged

as in Lemma 1) are λ1, λ2, . . . , λn. The map e 7→ λ(e) induces a surjection from the orbit set

N (k)/K onto Pε(N). The fibres of this surjection are singletons unless g is of type D and all

parts of λ are even. In the latter case the fibre consists of two nilpotent orbits permuted by an

outer automorphism of k and the two orbits in the fibre are traditionally assigned the Roman

numerals I and II. Since the centralisers of all elements lying in the fibres of the above surjection

are isomorphic as abstract Lie algebras, the notation e(λ) is unambiguous and will cause no

confusion.

The following classification of rigid elements inN (k) was given by Kempken and Spaltenstein:

Theorem 7 (See [Kem83, Spa82]). Let λ = (λ1, . . . , λn) ∈ Pε(N). Then e(λ) ∈ N (k) is rigid if

and only if:

• λi − λi+1 ∈ {0, 1} for all 1 6 i 6 n;

• the set {(i, i+ 1) ∈ ∆(λ) : λi = λi+1} is empty.

In the above we observe the convention λ0 = 0 and λi = 0 for i > n. Note that (i, i+1) ∈∆(λ)

implies λi−λi+1 is even by Lemma 1. Therefore the two conditions for e(λ) rigid together imply

∆(λ) = ∅ and we may replace second criterion for rigidity with this apparently stronger condition.

Using our results on the derived subalgebra of ke, we recover a result of Yakimova first proven

in [Yak10, Theorem 12].

Corollary 2. [ke(λ), ke(λ)] = ke(λ) if and only if e(λ) is rigid.

Proof. Evidently [ke(λ), ke(λ)] = ke(λ) if and only if dim(kab
e(λ)) = 0. Now apply Corollary 1 and

Theorem 7. 2
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In view of Theorem 7 we have a well-defined notion of a rigid partition in Pε(N) and we
denote the set of all such partitions by P∗ε (N). Relying on results of [Kem83, Spa82], Moreau
describes an algorithm [Mor08] which takes λ ∈ Pε(N) and returns an element of P∗ε (M) for
some M 6 N . In this section we also follow [Kem83, Spa82] and present an extended version of
Moreau’s algorithm which will be used later to determine when a nilpotent element of k lies in
a single sheet and to confirm a conjecture made by Izosimov in [Izo12].

Throughout the following, i shall denote a finite sequence of integers between 1 and n. The
procedure is as follows. The algorithm commences with input λ = λ∅ ∈ Pε(N) where ∅ denotes
the empty sequence. At the lth iteration, the algorithm takes λi ∈ Pε(N − 2

∑l−1
j=1 ij) where

i = (i1, . . . , il−1) and returns λi′ ∈ Pε(N −
∑l

j=1 ij) where i′ = (i1, . . . , il−1, il) for some il. If the

output λi′ is a rigid partition then the algorithm terminates after the lth iteration with output
λi′ . We shall now explicitly describe the lth iteration of the algorithm. If after the (l − 1)th
iteration the input λi is not rigid then the algorithm behaves as follows. Let il denote any index
in the range 1 6 i 6 n such that either of the following occurs.

Case 1: λi
il
> λi

il+1 + 2.

Case 2: (il, il + 1) ∈ ∆(λi) and λi
il

= λi
il+1.

Note that no integer il will fulfil both of these criteria. If i = (i1, . . . , il−1) then define i′ = (i1,
. . . , il−1, il). For Case 1 the algorithm has output

λi′ = (λi
1 − 2, λi

2 − 2, . . . , λi
il
− 2, λi

il+1, . . . , λ
i
n),

whilst for Case 2 the algorithm has output

λi′ = (λi
1 − 2, λi

2 − 2, . . . , λi
il−1 − 2, λi

il
− 1, λi

il+1 − 1, λi
il+2, . . . , λ

i
n).

In what follows we shall often refer to the algorithm just described as the KS algorithm (after
Kempken and Spaltenstein). Due to its definition and the classification of rigid partitions the
KS algorithm certainly terminates after a finite number of steps. In the hope of avoiding any
confusion we shall use ‘Case’ when referring to Case 1 or Case 2 of the algorithm, and we shall
use ‘case’ to refer to a particular situation. We shall say that a sequence i = (i1, i2, . . . , il) is an
admissible sequence for λ if Case 1 or Case 2 occurs at the point ik for the partition λ(i1,...,ik−1)

for each k = 1, . . . , l. We shall use the notation |i| to denote the length of such a sequence. An
admissible sequence i for λ shall be called maximal admissible for λ if neither Case 1 nor Case
2 occurs for any index i between 1 and n for the partition λi. If a sequence i = (i1, . . . , il) is
admissible for λ and 1 6 j 6 l + 1 then we shall use the notation ij = (i1, . . . , ij−1). Clearly
the sequence ij is admissible for λ for any 1 6 j 6 l + 1. By convention the empty sequence is
admissible for any λ ∈ Pε(N).

Lemma 6. Let i be an admissible sequence for λ. Then i is maximal admissible if and only if λi

is a rigid partition.

Proof. In view of Theorem 7 this follows from the definition of maximal admissible sequences. 2

Remark 2. (i) Rather that defining il to be any index between 1 and n such that Case 1 or
Case 2 occurs, Moreau’s algorithm in [Mor08] defines il to be the smallest such index. This
discrepancy ensures that her algorithm is deterministic (the outcome does not depend upon a
choice of indices i1, i2, i3, . . .). In a sense, being non-deterministic is an advantage of the KS
algorithm and we shall see later that it has enough power to reach and pin down all sheets of k
containing a given nilpotent element.

1503

https://doi.org/10.1112/S0010437X13007823 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007823


A. Premet and L. Topley

Figure 1. The Young diagrams of two singular partitions in P1(15) and P−1(10). The bad
2-steps are (3, 4) and (2, 3), respectively.

(ii) The KS algorithm is transitive in the following sense: if i is an admissible sequence for
λ and j is an admissible sequence for λi then (i, j) is an admissible sequence for λ, where (i, j)
denotes the concatenation of the two sequences i and j. Furthermore, λ(i,j) = (λi)j.

3.2 Non-singular partitions and preliminaries of the algorithm
Before placing the algorithm into the geometric context for which it was intended we shall discuss
it combinatorially. We start by introducing a combinatorial notion related with the notion of a
boundary of λ ∈ Pε(N); see Definition 1.

A 2-step (i, i + 1) ∈ ∆(λ) is said to be good if λi and the boundary of (i, i + 1) have the
opposite parity. It is worth mentioning that if (i, i+1) is a good 2-step with i > 1 then both λi−1

and λi+2 must have the same parity. If a 2-step (i, i+ 1) ∈ ∆(λ) is not good then we say that it
is bad. We note that (i, i+ 1) is a bad 2-step of λ if and only if either i > 1 and λi−1 − λi ∈ 2N
or λi+1 − λi+2 ∈ 2N.

We call a partition λ ∈ Pε(N) singular if it has a bad 2-step. Naturally if all 2-steps of λ
are good then we call λ non-singular. In the next section we shall interpret these singular and
non-singular partitions in geometric terms. In particular, we shall show that singular partitions
correspond precisely to the nilpotent singular points on the varieties k(m), hence their name.

We now collect some elementary lemmas about the behaviour of the algorithm. For the rest
of this subsection we assume that λ ∈ Pε(N) has the standard ordering λ1 > · · · > λn.

Lemma 7. Suppose that i = (i) is a sequence of length 1. If Case 2 occurs for λ at index i then
∆(λi) = ∆(λ)\{(i, i+ 1)}. Furthermore, if (i, i+ 1) is a good 2-step of λ then s(λi) = s(λ).

Proof. We shall suppose that there is a 2-step

(j, j + 1) ∈ ∆(λ)\(∆(λi) ∪ {(i, i+ 1)})

and derive a contradiction. Observe that if j < i− 2 (respectively, j > i+ 2) then for k ∈ {j− 1,
j, j + 1, j + 2} we have that λi

k = λk − 2 (respectively, λi
k = λk). So (j, j + 1) ∈ ∆(λ) if and only

if (j, j + 1) ∈ ∆(λi). It remains to show that if j = i± 1 or j = i± 2 and (j, j + 1) ∈ ∆(λ) then
(j, j + 1) ∈ ∆(λi). If j = i± 1 and (j, j + 1) ∈ ∆(λ) then λi 6= λi+1, contradicting the fact that
Case 2 occurs for λ at index i.

Suppose that j = i − 2. Then (j, j + 1), (j + 2, j + 3) ∈ ∆(λ) and hence λj+1 6= λj+2 and
(j+1)′ = j+1, (j+2)′ = j+2. As a consequence λj+1−λj+2 is even, implying that λj+1−λj+2 > 2
and λi

j+1 6= λi
j+2. Since for k ∈ {j − 1, j, j + 1} the equality λi

k = λk − 2 holds, we conclude that

(j, j + 1) ∈ ∆(λi). A similar argument shows that if j = i + 2 then (j, j + 1) ∈ ∆(λ) implies
(j, j + 1) ∈ ∆(λi). We conclude that ∆(λi) = ∆(λ)\{(i, i+ 1)}.
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Now suppose that (i, i+ 1) is a good 2-step of λ. Since λi+1− λi+2 and λi−1− λi if i > 1 are
odd, we have that

b(λi
i+1 − λi

i+2)/2
⌋

= b((λi+1 − 1)− λi+2)/2
⌋

= b(λi+1 − λi+2)/2c

and

b(λi
i−1 − λi

i)/2c = b((λi−1 − 2)− (λi − 1))/2c = b(λi−1 − λi)/2c

if i > 1. As λi
j = λj for j 6∈ {i, i+ 1} it follows that s(λi) = s(λ) as claimed. 2

Lemma 8. If i is an admissible sequence for λ then ∆(λi) ⊆ ∆(λ).

Proof. In view of Lemma 7 and Remark 2(ii) it will suffice to prove the current lemma when
i = (i) and i is an index at which Case 1 occurs for λ. Suppose that (j, j+1) ∈ ∆(λi). Then since
Case 1 preserves the parity of the entries of λ (that is to say, λi

k ≡ λk mod 2 for 1 6 k 6 n),
we deduce that j′ = j and (j + 1)′ = j + 1. If j < i or j > i + 1 then λj−1 − λj = λi

j−1 − λi
j

and λj+1 − λj+2 = λi
j+1 − λi

j+2, showing that (j, j + 1) ∈ ∆(λ) in these cases. If j = i+ 1 then

λj−1 − λj = λi
j−1 − λi

j + 2 and λj+1 − λj+2 = λi
j+1 − λi

j+2. Hence (j, j + 1) ∈ ∆(λ). Finally, if

j = i then λj−1 − λj = λi
j−1 − λi

j + 2 and λj+1 − λj+2 = λi
j+1 − λi

j+2. Thus (j, j + 1) ∈ ∆(λ) in
all cases and our proof is complete. 2

Lemma 9. If (i, i + 1) is a good 2-step for λ, i is an admissible sequence and (i, i + 1) ∈ ∆(λi)
then (i, i+ 1) is a good 2-step for λi.

Proof. It suffices to prove the lemma when i = (i1) is an admissible of length 1. If Case 1 occurs
at index i1 then λi

j − λi
j+1 ≡ λj − λj+1 mod 2 for all j. Since (i, i + 1) is good for λ it follows

that λi
i−1 − λi

i is odd (or i = 1) and λi
i+1 − λi

i+2 is odd, so that (i, i + 1) is a good 2-step for
λi. Now suppose that Case 2 occurs for λ at index i1. We may assume that i1 6= i. If i1 = i− 1
or i1 = i− 2 then (i1, i1 + 1) ∈ ∆(λ) implies ε(−1)λi−1 = −1 and λi−1 − λi is even, contrary to
the assumption that the 2-step (i, i+ 1) is good for λ. Similarly, if i1 = i+ 1 or i1 = i+ 2 then
λi+1−λi+2 is even, contradicting the assumption that (i, i+ 1) is good. It follows that i1 < i− 2
or i1 > i+ 2, whence it immediately follows that (i, i+ 1) is a good 2-step for λi. 2

Corollary 3. If λ is non-singular then λi is non-singular for any admissible sequence i.

Proof. If (i, i+ 1) ∈ ∆(λi) then (i, i+ 1) ∈ ∆(λ) by Lemma 8. Since λ is non-singular, (i, i+ 1)
is a good 2-step for λ. By Lemma 9, (i, i+ 1) is good for λi. 2

3.3 The length of admissible sequences
In this section we give a combinatorial formula for the maximal length of admissible sequences
for λ. The formula shall be of central importance to our results on sheets. First we shall need
some further terminology related to partitions λ = (λ1, . . . , λn) ∈ Pε(N).

Definition 2. A sequence 1 6 i1 < i2 < · · · < ik < n with k > 2 is called a 2-cluster of λ
whenever (ij , ij + 1) ∈ ∆(λ) and ij+1 = ij + 2 for all j. Analogous to the terminology for 2-steps,
we say that a 2-cluster i1, . . . , ik has a bad boundary if either of the following conditions holds:
• λi1−1 − λi1 ∈ 2N;
• λik+1 − λik+2 ∈ 2N
(if i1 = 1 the the first condition should be omitted). A bad 2-cluster is one which has a bad
boundary, whilst a good 2-cluster is one without a bad boundary.
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Lemma 10. A good 2-cluster is maximal in the sense that it is not a proper subsequence of any
2-cluster.

Proof. If i1, . . . , ik is a good 2-cluster then λi1−1−λi1 , λik+1−λik+2 /∈ 2N. The fact that (i1, i1+1),
(ik, ik + 1) ∈ ∆(λ) means that ε(−1)λi1 = ε(−1)λik+1 = −1. Combining these few observations,
we get ε(−1)λi1−1 = ε(−1)λik+2 = 1, and so (i1−2, i1−1) /∈ ∆(λ) and (ik + 2, ik + 3) /∈ ∆(λ). 2

We introduce the notation

∆bad(λ) := {the bad 2-steps of λ},
Σ(λ) := {the good 2-clusters of λ};

and write

z(λ) = s(λ) + |∆(λ)| −
(
|∆bad(λ)| − |Σ(λ)|

)
.

It is immediate from the definitions that |∆bad(λ)| > |Σ(λ)| and |∆bad(λ)| = |Σ(λ)| if and only
if ∆bad(λ) = ∅.

Lemma 11. |Σ(λ)| > |Σ(λi)| for length 1 admissible sequences i = (i), unless Case 2 occurs at i
and

i− 4, i− 2, i, i+ 2, i+ 4

is a subsequence of a good 2-cluster, in which case |Σ(λ)| = |Σ(λi)| − 1.

Proof. We make the notation i = (i). In this first paragraph we deal with the possibility that
Case 1 occurs for λ at index i. Let us consider some necessary conditions for Σ(λ) 6= Σ(λi). We
require that (i−1, i) or (i+1, i+2) lies in ∆(λ), that the 2-steps (i−1, i) or (i+1, i+2) (or both)
constitutes a 2-step in a good 2-cluster, and that λi−λi+1 = 2. Let us assume these conditions. If
precisely one of the two pairs (i−1, i), (i+1, i+2) lies in ∆(λ) (we may assume (i−1, i) ∈ ∆(λ))
then it follows that the good 2-cluster in question has the form i1 6 · · · 6 ik = i − 1. But
λik+1 − λik+2 = 2 then implies that the 2-cluster has a bad boundary, giving a contradiction.
It follows that both (i − 1, i) and (i + 1, i + 2) lie in ∆(λ). Then we have a good 2-cluster
i1 6 · · · 6 i − 1 = il 6 il+1 = i + 1 6 · · · 6 ik. However, the sequences i1, i2, . . . , il−1 and
il+2, . . . , ik−1, ik are either of length less than or equal to 1, or are bad 2-clusters for λi, so
|Σ(λ)| = |Σ(λi)|+ 1.

Now suppose that Case 2 occurs at index i. Similar to the previous case, Σ(λ) is only affected
if (i, i+ 1) is a bad 2-step in a good 2-cluster. If precisely one of the two pairs (i− 2, i− 1) and
(i+ 2, i+ 3) lies in ∆(λ) (we may assume (i−2, i−1) ∈ ∆(λ)) then such a 2-cluster will take the
form i1, . . . , ik = i. If k > 2 then i1, . . . , ik−1 is a good 2-cluster for λi, so that |Σ(λi)| = |Σ(λ)|.
If k = 2 (we know k > 2) then the 2-cluster is eradicated by the iteration of the algorithm and
|Σ(λi)| = |Σ(λ)| − 1.

Suppose that both (i− 2, i− 1) and (i+ 2, i+ 3) lie in ∆(λ). Then Σ(λ) is unaffected unless
i1, . . . , ij = i, . . . , ik is a good 2-cluster, which we shall assume henceforth. Note that j > 2 and
k − j > 1 by assumption. If j = 2 and k − j = 1 then the good 2-cluster is no longer present for
λi and |Σ(λ)| = |Σ(λi)| − 1. If j > 2 and k− j = 1 then i1, . . . , ij−1 is a good 2-cluster for λi and
|Σ(λ)| = |Σ(λi)|. The situation when j = 2 and k− j > 1 is very similar. In the final case j > 2,
k− j > 1 and i− 4, i− 2, i, i+ 2, i+ 4 is a subsequence of a good 2-cluster, as in the statement of
the lemma. Here both i− 2j, . . . , i− 2 and i, i+ 2, . . . , i+ 2k are good 2-clusters for λi, so that
|Σ(λ)| = |Σ(λi)| − 1 as required. 2
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Figure 2. The dotted perimeter represents the Young diagram of the partition λ = (7, 7, 6, 4,
4, 2, 1, 1) ∈ P−1(32). The solid perimeter represents the profile of λ of type (3, 7).

Before continuing we shall need some notation. We define a construction which takes
λ ∈ Pε(N) to λS ∈ Pε(N − 2k) for some k > 0. It is based entirely on application of the
algorithm. The partition λS is called the shell of λ and is constructed as follows: for all 1 6 i 6 n
we apply Case 1 repeatedly; if λi − λi+1 ∈ 2N and if (i − 1, i) or (i + 1, i + 2) lie in ∆(λ) then
apply Case 1 until λi

i − λi
i+1 = 2; if we are not in the previous situation then apply Case 1 until

λi
i − λi

i+1 ∈ {0, 1}; finally apply Case 2 at every index i such that (i, i + 1) is a good 2-step.
In order to keep the notation consistent we may regard S as the admissible sequence of indices
(chosen in ascending order) used to construct λS .

Retain the convention λ = (λ1, . . . , λn) with
∑
λi = N . In order to make use of the shell λS

we shall interest ourselves firstly in the set of partitions which equal their own shell λ = λS , and
secondly in the relationship between a partition and its shell. It turns out that certain properties
of a partition λ = λS are controlled by the properties of certain special partitions constructed
from λ. A profile µ of λ is a partition constructed in the following manner: choose indices (j, k)
with 0 < j 6 k 6 n + 1 such that i = i′ for all j 6 i < k, and such that j − 1 6= (j − 1)′ (or
j − 1 = 0) and k 6= k′ (or k = n+ 1). Define µ = (µ1, . . . , µk−j) by the rule

µi = λi+(j−1) − λk.

If k < n + 1 then in order to preserve the condition i = i′ we regard µ as an element of
P1(
∑k−1

i=j λi − (k − j)λk). If k = n + 1 then λk = 0 and we may regard µ is an element of
Pε(
∑n

i=j λi). We say that the profile µ constructed in this manner is of type (j, k), and we
include Figure 2 to show what is intended by the definition.

Suppose that µ is a profile of λ of type (j, k) and i = (i1, . . . , il) is an admissible sequence
for µ. Then the j-adjust of i is the sequence

(i) = (i1 + (j − 1), i2 + (j − 1), . . . , il + (j − 1)).

It is clear that (i) is an admissible sequence for λ.

Proposition 4. Suppose that λ is equal to its shell and let µ(1), µ(2), . . . , µ(l) be a complete
set of distinct profiles for λ, with µ(m) of type (jm, km). Then the following hold:

(1) z(λ) =
∑l

i=1 z(µ(i));

(2) if i(m) is an admissible sequence for µ(m) then

(1(i(1)), 2(i(2)), . . . , l(i(l)))
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is an admissible sequence for λ, where this last sequence is obtained by concatenating the
sequences m(i(m)).

Proof. Since λ = λS , all differences λi−λi+1 are equal to 0, 1 or 2. If λi−λi+1 = 2 then necessarily
(i − 1, i) ∈ ∆(λ) or (i + 1, i + 2) ∈ ∆(λ). In either case i = i′, i + 1 = (i + 1)′ (or i = n) and it
follows that there exists a profile of type (j, k) with j 6 i and i + 1 < k (or i < k when i = n).
Then each index i for which λi − λi+1 = 2 contributes 1 to s(λ) and 1 to

∑l
j=1 s(µ(j)), so that

s(λ) =
∑l

j=1 s(µ(j)). The condition λ = λS also implies that all 2-steps are bad 2-steps, so that

|∆(λ)| = |∆bad(λ)|. Similarly, µ(m) = µ(m)S so |∆(µ(m))| = |∆bad(µ(m))| for all m, and it
remains to prove that |Σ(λ)| =

∑l
i=1 |Σ(µ(i))|. This follows from the fact that all good 2-clusters

i1 6 · · · 6 il fulfil i = i′ for all i1 6 i 6 il + 1, so for each such 2-cluster there exists a profile of
type (j, k) with j 6 i1 and il + 1 < k. Part (1) follows.

Part (2) actually holds even when λ 6= λS . For obvious reasons the indices of the distinct
profiles do not overlap, and we may assume that km < jm+1 for m = 1, . . . , l−1. Then for 16 i < l

we set j(i) = (1(i(1)), . . . , i(i(i))) and note that λ
j(i)
r = λr for all r > ji+1. Using the fact that

i+1(i(i+1)) is admissible for λ, we obtain by induction that i+1(i(i+1)) is an admissible sequence
for λj(i). By the transitivity of the algorithm, we deduce then that (1(i(1)), 2(i(2)), . . . , l(i(l)))
is admissible for λ as required. 2

Proposition 5. Let λ = (λ1, . . . , λn) be a partition and suppose that i = i′ for all 1 6 i 6 n.
Then there exists an admissible sequence for λ of length z(λ).

Proof. A partition λ fulfilling i = i′ for all 1 6 i 6 n contains a good 2-cluster if and only if
1, 3, 5, . . . , n− 1 is good 2-cluster. In this case it is the only good 2-cluster. Suppose that this is
the case. Of course this implies that n is even and ε = 1, so λn is odd. Construct a sequence i
by repeatedly applying Case 1 at indices 2i − 1 for 1 6 i 6 n/2, so that λ2i−1 − λ2i = 0 for all
such i. Then

|i| =
n/2∑
i=1

⌊
λ2i−1 − λ2i

2

⌋
.

We construct an admissible sequence i′ by subsequently applying Case 1 at indices 2i for 1 6
i 6 n, so that λ2i − λ2i+1 = 2 for all such i. Our sequence i′ has length

|i′| = s(λ)−
(
n

2
− 1

)
.

At this point we are able to say precisely what λi′ looks like. We have λi′ = λS = (n− 1, n− 1,
n− 3, n− 3, . . . , 3, 3, 1, 1). Finally, we obtain i′′ by applying Case 2 precisely once at each index
2i− 1 for 1 6 i 6 n/2. The partition λi′′ is rigid, so i′′ is maximal (Lemma 6) and

|i′′| = s(λ) + 1.

In order to complete this part of the proof we must show that z(λ) = s(λ) + 1. Notice that
our assumptions on λ imply that every 2-step is bad. Therefore |∆(λ)| = |∆bad(λ)|, and by our
original remarks z(λ) = s(λ) + 1 as required.

Now assume that λ has no good 2-clusters. Since i= i′ for all i we may apply Case 1 repeatedly
at all indices to obtain a maximal admissible partition. Clearly |i| = s(λ). Once again all 2-steps
are bad so that |∆(λ)| = |∆bad(λ)|, and by assumption |Σ(λ)| = 0. Hence z(λ) = s(λ) = |i| as
promised. 2
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Theorem 8. We have that
z(λ) = max |i|

where the maximum is taken over all admissible sequences i for λ.

Proof. We begin by showing that z(λ) > z(λi) + 1 where i = (i) is an admissible sequence of
length 1 for λ. First assume Case 1 occurs for λ at i. Then s(λi) = s(λ)− 1. Furthermore, if the
iteration at i removes a 2-step (i.e. if λi−λi+1 = 2 and either (i−1, i) ∈∆(λ) or (i+1, i+2) ∈∆(λ)
or both) then that 2-step is bad. Therefore |∆(λ)| − |∆(λi)| = |∆bad(λ)| − |∆bad(λi)|. It remains
to be seen that the number of good 2-clusters does not increase as we pass from λ to λi. This
follows from Lemma 11.

Now suppose that Case 2 occurs for λ at index i. Certainly if (i, i+ 1) is a good 2-step then
z(λi) = z(λ)− 1, so we may assume that (i, i+ 1) is a bad 2-step. Suppose first that this 2-step
has precisely one bad boundary. We may assume that λi−1 − λi is even and λi+1 − λi+2 is odd.
We can deduce at this point that s(λi) = s(λ)−1 and |∆(λi)| = |∆(λ)|−1. If (i−2, i−1) /∈ ∆(λ)
then |∆bad(λi)| = |∆bad(λ)| − 1. Similarly, if (i − 2, i − 1) ∈ ∆(λ) and λi−3 − λi−2 is even
then |∆bad(λi)| = |∆bad(λ)| − 1. In either of these two situations the number of good 2-clusters
decreases, thanks to Lemma 11. Hence z(λ) > z(λi) + 1 once again. We must now consider the
possibility that (i − 2, i − 1) ∈ ∆(λ) and λi−3 − λi−2 is odd. In this situation s(λi) = s(λ) − 1,
|∆(λi)| = |∆(λ)| − 1 and |∆bad(λi)| = |∆bad(λ)| − 2. Notice that i − 2, i is a good 2-cluster for
λ but not for λi, so that |Σ(λi)| = |Σ(λ)| − 1 and z(λi) = z(λ) − 1. A similar argument works
when λi−1 − λi is odd but λi+1 − λi+2 = 2.

Now we assume that (i, i + 1) is a bad 2-step and that both boundaries are bad. If neither
(i− 2, i− 1) nor (i+ 2, i+ 3) lies in ∆(λ) then s(−) decreases by 2, |∆(−)| decreases by 1, and
|∆bad(−)| decreases by 1 upon passing from λ to λi. Certainly |Σ(−)| may only decrease, by
Lemma 11, and so z(λ) > z(λi) + 1 in this situation. Now move on and suppose that precisely
one of i − 2 and i + 2 lies in ∆(λ). We shall examine the case (i − 2, i − 1) ∈ ∆(λ), the other
being very similar.

When λi−3−λi−2 is odd, s(λi) = s(λ)−2, |∆(λi)| = |∆(λ)|−1 and |∆bad(λi)| = |∆bad(λ)|−2
(since (i− 2, i− 1) is no longer a bad 2-step after this iteration). Furthermore, (i, i+ 1) cannot
make up a 2-step in a good 2-cluster since (i+ 2, i+ 3) /∈ ∆(λ) and λi+1−λi+2 is even, therefore
|Σ(λ)| remains unchanged. So consider the possibility that (i− 2, i− 1) has two bad boundaries:
that λi−3 − λi−2 is even. Then our conclusions are exactly the same as before, except that
|∆bad(λi)| = |∆bad(λ)| − 1. In either situation z(λi) > z(λ)− 1.

Finally, we have the situation (i−2, i−1), (i+2, i+3) ∈∆(λ). Once again we must distinguish
between the number of bad boundaries attached to the 2-steps (i − 2, i − 1) and (i + 2, i + 3).
Suppose that both of these 2-steps have a single bad boundary (they have at least one). Then
i− 2, i, i+ 2 is a good 2-cluster. It is immediately clear upon passing from λ to λi that s(λi) =
s(λ)− 2, |∆(λi)| = |∆(λ)| − 1, |∆bad(λi)| = |∆bad(λ)| − 3, and |Σ(λi)| = |Σ(λ)| − 1. Once again
z(λi) > z(λ) − 1 follows. The last two situations to consider are when precisely one of the two
2-steps (i− 2, i− 1) and (i+ 2, i+ 3) has two bad boundaries, and when both of them have two
bad boundaries.

Take the former situation. We may assume that (i − 2, i − 1) has two bad boundaries, and
(i+2, i+3) has one (the opposite configuration is similar). Upon iterating the algorithm, s(λi) =
s(λ) − 2, |∆(λi)| = |∆(λ)| − 1 and |∆bad(λi)| = |∆bad(λ)| − 2. By Lemma 11, |Σ(λi)| 6 |Σ(λ)|.
In the final case (i − 2, i − 1) and (i + 2, i + 3) both have two bad boundaries. The outcome is
that s(λi) = s(λ) − 2, |∆(λi)| = |∆(λ)| − 1 and |∆bad(λi)| = |∆bad(λ)| − 1 both decrease by 1,
and by Lemma 11 either |Σ(λi)| = |Σ(λ)| or |Σ(λi)| = |Σ(λ)|+ 1.
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We have eventually shown that z(λ) > z(λi) + 1. Recall that for any maximal admissible
sequence i the partition λi is rigid. Also notice that z(λ) = 0 for any rigid partition λ. We deduce,
for any maximal admissible sequence i of length l, that

z(λ) > z(λi2) + 1 > z(λi3) + 2 > · · · z(λil+1) + l = l.

Here ik denotes (i1, . . . , ik−1). In order to complete the proof we exhibit a maximal admissible
sequence of length z(λ). This requires some reductions.

Notice first that z(λ) decreases by 1 at each iteration when we apply Case 1 in constructing
the shell λS . Therefore we may assume that λ = λS . Let µ(1), µ(2), . . . , µ(l) be a complete set
of distinct profiles for λ, as in the statement of Proposition 4. By Proposition 5 we know that
for each 1 6m 6 l there is an admissible sequence of length z(µ(m)) for µ(m). Using part (2) of
Proposition 4 we obtain an admissible sequence for λ of length

∑l
i=1 z(µ(i)), and by part (1) of

the same proposition that length is equal to z(λ). Hence a sequence of the correct length exists,
and the theorem follows. 2

The following corollary shall be of some importance to our later work.

Corollary 4. For all λ ∈ Pε(N) the following hold:

(1) c(λ) > z(λ);

(2) c(λ) = z(λ) if and only if λ is non-singular.

Proof. Part (1) follows from the fact that |∆bad(λ)| > |Σ(λ)| for all partitions λ. For part (2) we
observe that |∆bad(λ)| − |Σ(λ)| = 0 if and only if λ is non-singular. 2

4. A geometric interpretation of the algorithm

We would like to characterise the non-singular partitions in geometric terms. This characterisation
is given in the corollary to the next theorem. The remainder of this section will be spent preparing
to prove that theorem. The symmetric group Sl acts on the set of sequences in {1, . . . , n} of
length l by the rule σ(i1, . . . , il) = (iσ(1), . . . , iσ(l)). Let

Φλ := {the maximal admissible sequences for λ}/∼

where i ∼ j if i and j have equal length l and are Sl conjugate. What follows is the main theorem
of this section.

Theorem 9. The following are true for any λ ∈ Pε(N):

(1) e(λ) lies in |Φλ| distinct sheets;

(2) |Φλ| = 1 if and only if λ is non-singular.

The next corollary explains our choice of terminology.

Corollary 5. Suppose that λ ∈ Pε(N) and dim ke(λ) = m. Then the following are equivalent:

(1) the partition λ is non-singular;

(2) c(λ) = z(λ);

(3) e(λ) lies in a unique sheet.

If the base field k has characteristic 0 or char(k) = p� 0 then (1), (2) and (3) hold if and only
if e(λ) is a non-singular point on the quasi-affine variety k(m).
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Proof. Statements (1), (2) and (3) are equivalent by Theorems 8, Corollary 4 and Theorem 9.
Now suppose that the characteristic of k is either zero or char(k) = p� 0. Then Im Hof proved
in [ImH05, ch. 6] that all sheets of k(m) are smooth algebraic varieties. (Im Hof assumes that
char(k) = 0, but his arguments extend easily to the case where char(k) is sufficiently large.) In
view of our discussion in § 3.1, Im Hof’s result implies that all irreducible components of k(m) are
smooth algebraic varieties. In this situation it follows from [Sha94, ch. II, § 2, Theorem 6] that
e = e(λ) is a non-singular point of the algebraic variety k(m) if and only if e belongs to a unique
irreducible component of k(m). This completes the proof. 2

We shall now assemble all of the necessary information required to prove Theorem 9. We
start by recalling some facts regarding sheets and induced orbits. A short survey of these topics
can be found in [Mor08]. For a full discussion in the characteristic 0 case, see [CM93] or [TY05].
Since every sheet of k contains a dense decomposition class we have the following theorem.

Theorem 10 (See [Bor81]). There is a one-to-one correspondence between the set of sheets of
k and the K-conjugacy classes of pairs (l,Ol) where l is a Levi subalgebra of k and Ol is a rigid
nilpotent orbit in l.

We shall say that a sheet S of k has data (l,Ol) if S is identified with (l,Ol) under the
above correspondence. In view of our discussion in § 3.1, this means that S contains an open
decomposition class of the form D(l, e0) with e0 ∈ Ol.

Let p = l⊕ n be a parabolic subalgebra of k with l a Levi subalgebra of k and n the nilradical
of p. Let Ol be a nilpotent orbit in l. Since the orbit set N/K is finite there exists a unique
nilpotent orbit in k which meets the irreducible quasi-affine variety Ol + n ⊂ N (k) in a dense
open subset. This orbit, denoted by Indk

l (Ol), is said to be induced from the orbit Ol.
We record three pieces of information regarding induced orbits.

Proposition 6 (See [BK79, Bor81, LS79]). The following are true:

(1) if S is a sheet with data (l,Ol) then Indk
l (Ol) is the unique nilpotent orbit contained in S;

(2) for each nilpotent orbit O ⊆ k we have that O = Indk
k(O);

(3) if l1 and l2 are Levi subalgebras of k, O is a nilpotent orbit in l1 and l1 ⊆ l2, then

Indk
l2(Indl2

l1
(O)) = Indk

l1(O).

Fix a partition λ ∈ Pε(N). We aim to classify the K-conjugacy classes of pairs (l,O) where
l ⊆ k is a Levi subalgebra and O ⊆ l is a rigid nilpotent orbit, such that Oe(λ) = Indk

l (O). In view
of part (1) of the above proposition this shall parameterise the set of sheets containing e(λ). In
order to begin this classification we shall require some general facts about Levi subalgebras of k.

Every Levi subalgebra is conjugate to a standard Levi subalgebra. If t ⊂ k is a maximal
torus and Π a fixed basis of simple roots associated with (k, t) then a standard Levi subalgebra
is constructed from a subset Π0 ⊆ Π. To each such Π0 we attach the Levi subalgebra l generated
by t and the roots spaces k±γ with γ ∈ S. Now order the simple roots in Π in the usual manner
and let i = (i1, . . . , il) be a sequence with

∑
j ij 6 rank k. Such sequences are in a bijection with

the subsets of Π by letting Πi = Π\{αi1+···+ik : 1 6 k 6 l}. It is easy to check that in types B and
C the standard Levi subalgebra constructed from Πi is isomorphic to gli1 × · · · × glil ×m where
m is a classical algebra. If

∑
j ij = rank k − 1 in type D then the Levi subalgebra constructed

from Πi is actually isomorphic to gli1 × · · · × glil−1
× glil+1. If we define another sequence i′ =

(i1, . . . , il−1, il + 1) then the Levi subalgebras constructed from i and i′ are isomorphic. When all
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terms of i′ are even, these standard Levi subalgebras are not conjugate and we shall label their
respective conjugacy classes I and II.

When we refer to a Levi subalgebra by its isomorphism type we shall implicitly be referring
to a standard Levi subalgebra constructed from a subset of Π. Let us record these conclusions
formally.

Lemma 12 (See [CM93, Kem83, Mor08]). The following are true.

(1) Every Levi subalgebra of k is K-conjugate to a Lie algebra of the form

gli ×m := gli1 ⊕ · · · ⊕ glil ⊕m ∼= gli1 × · · · × glil ×m

where i = (i1, . . . , il) is a sequence of integers with
∑

j ij 6 rank k and where m has the same
type as k and a standard representation of dimension Ri := N − 2

∑
j ij (under the restriction

that Ri 6= 2 if ε = 1). If k has type D, Ri = 0 and all parts of i are even, then there are two
K-conjugacy classes of Levi subalgebras isomorphic to gli × m. They are assigned labels I and
II. Otherwise there is a unique K-conjugacy class of Levi subalgebras isomorphic to gli ×m.

(2) If l is a Levi subalgebra as in part (1) then the rigid nilpotent orbits in l take the form

O = O0 × · · · × O0︸ ︷︷ ︸
l times

×Oe(µ)

with µ ∈ P∗ε (N − 2
∑

j ij) a rigid partition.

Let Ψλ denote the set of all K-conjugacy classes of pairs (l,O) where l = gli1⊕· · ·⊕glil⊕m ∼=
gli1 × · · · × glil × m is a Levi subalgebra of k and O = O0 × · · · × O0 × Oe(µ) a rigid nilpotent

orbit in l, such that Oe(λ) = Indk
l (O).

Lemma 13. e(λ) lies in |Ψλ| distinct sheets.

Proof. Let S be a sheet of k with data (l,O). By Theorem 10 and part (1) of Proposition 6 we
see that e(λ) ∈ S if and only if e(λ) = Indk

l (O). By Lemma 12 we have l ∼= gli1 × · · · × glil × m
and O = O0 × · · ·O0 ×Oe(µ) ⊆ l. 2

We now briefly discuss the partitions associated with induced orbits. The result stated below
may be deduced from [CM93, Corollary 7.3.3]. We warn the reader that when interpreting the
proposition for the Lie algebras of type B the unique nilpotent orbit in the trivial algebra so1

is labelled by the partition λ = (1), contrary to the common convention. Furthermore, our
description of labels attached to induced orbits does not quite agree with the description in
[CM93]; see Remark 3 for more detail.

Recall that the natural representation of k is of dimension N .

Proposition 7. Choose a positive integer i with 2i 6 N and let l = gli ⊕ m ∼= gli × m be a
maximal Levi subalgebra of k. Let O = O0×Oµ be a nilpotent orbit in l where Oµ has partition
µ ∈ Pε(N − 2i). Then Oe(λ) = Indg

l (O) has associated partition λ where λ is obtained from µ by
the following procedure: add 2 to the first i columns of µ (extending by zero if necessary); if the
resulting partition lies in Pε(N) then we have found λ, otherwise we obtain λ by subtracting 1
from the ith column and adding 1 to the (i+ 1)th.

Now suppose that we are in type D and λ is very even. Then either µ is very even or N = 2i
and rank k is even. If N > 2i then Oe(λ) inherits its label from µ, whilst if N = 2i then the
induced orbit inherits its label from l.
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Remark 3. The above proposition is based on [CM93, Theorem 7.3.3]. However, the reader will
notice that the way in which the labels are chosen does not coincide with that theorem. The
reason for this is that [CM93] contains two misprints which we must now amend.1

The first problem stems from comparing Lemma 5.3.5 and Theorem 7.3.3(ii) in [CM93].
We see, given the conventions of [CM93, Lemma 5.3.5], that [CM93, Theorem 7.3.3(ii)]
should actually state that the label of Indk

gli⊕m(O) is different from the label of O when
(rank k + rankm)/2 is odd. We could, of course, change [CM93, Theorem 7.3.3(ii)], but a better
amendment is to change [CM93, Lemma 5.3.5] so that the labelling convention for very even
orbits is independent of n: in the notation of [CM93] we take a = 2 and b = 0 regardless of n.
With this convention the statement of [CM93, Theorem 7.3.3(ii)] is correct. However, [CM93,
Theorem 7.3.3(iii)] should now state that the label of the induced orbit coincides with the label
of a Levi subalgebra from which it is induced. This is the convention we have followed in the
above proposition.

The second misprint concerns the number of conjugacy classes of maximal Levi subalgebras
in [CM93, Lemma 7.3.2(ii)]. The reader will notice that when k = so2` and ` is odd, the longest
element of the Weyl group w0 is the negative of the outer Dynkin automorphism of the root
system. Therefore if gT = w0 ∈W = NK(T )/T then Ad g exchanges the Levi subalgebras which
are labelled I and II in this case. This confirms that there is just one class of Levi subalgebras
of type gl` when ` is odd. When ` is even there are two such classes and our convention for
labelling conjugacy classes of Levi subalgebras in Lemma 12 is a natural extension of [CM93,
Lemma 7.3.2].

In light of the above proposition, we may explain the definition of the algorithm. We fix λ and
want to decide when is it possible to find a pair consisting of a maximal Levi l = gli1⊕m ∼= gli1×m
and a nilpotent orbit O = O0×Oe(µ) (with partition µ) such that Indg

l (O) = Oe(λ). It is now clear
that this occurs precisely when we have an admissible index i and a Levi subalgebra isomorphic
to gli×m. In this case µ = λ(i) and if Oe(µ) has a label then it is completely determined by that
of Oe(λ). The precise statement is as follows.

Corollary 6. Let λ ∈ Pε(N). Suppose that there exists a maximal Levi l ∼= gli ⊕m ∼= gli ×m.
Then the following are equivalent.

(1) i is an admissible index for λ. If k has type D and there are two conjugacy classes of Levi
subalgebras isomorphic to gli×m then l belongs to the conjugacy class with the same label
as Oe(λ).

(2) There exists an orbit O = O0 ×Oe(µ) with Oe(λ) = Indk
l (O).

If these two equivalent conditions hold then Oe(µ) has partition µ = λ(i). Furthermore, for every

other orbit Õ = O0 ×Oe(µ̃) in l such that Oe(λ) = Indk
l (Õ), we have (l,O)/K = (l, Õ)/K.

Proof. Assume throughout that l ∼= gli × m exists and let O = O0 × Oe(µ) ⊆ l. The previous

proposition implies that if λ is the partition of Indk
l (O0 × Oe(µ)) then λ(i) = µ. Suppose that

(1) holds. Then the partition of Indk
l (O0 × Oe(λ(i))) is λ. If λ is not very even then (2) follows.

If we are in type D and λ is very even then according to the previous proposition either λ(i) is
very even or l ∼= gli where i = N/2 = rank k is even. In the first case the orbit O0 ×Oe(λ(i)) with
the same label as Oe(λ) induces to Oe(λ), whilst in the second case there is a unique orbit of the
correct form (the zero orbit) and since the labels of l and Oe(λ) coincide, it induces up to Oe(λ).

1 We are grateful to Monty McGovern for this clarification.
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Now suppose that (2) holds. Since µ = λ(i) the index i is certainly admissible for λ. If there
are two conjugacy classes of Levi subalgebras then again l ∼= gli, and so Oe(λ) = Indk

l (O) implies
that the labels of l and Oe(λ) coincide by the last part of the previous proposition.

The statement that µ = λ(i) is immediate from the above discussion. Fix O = O0 × Oe(µ)

fulfilling Oe(λ) = Indk
l (O). We must show for every other orbit of the form Õ =O0×Oe(µ̃) fulfilling

Oe(λ) = Indk
l (Õ) that the pair (l, Õ) is K-conjugate to (l,O). Since we know that µ = λ(i) = µ̃

this is now obvious unless µ is very even and λ is not very even.

So suppose that this is the case. We claim that in this situation any admissible sequence i
for λ has an odd term. Indeed, in order to see this it suffices to assume that i = (i) has length
1. Since λi is very even or empty we conclude that (i, i+ 1) must be the only 2-step for λ. If λi

is empty then i = 1. Assume not. Since the parts of λ which precede λi are all even, they must
come in pairs and so i must be odd. The claim follows.

Since we are assuming that µ is very even and λ is not, the above shows that i is odd.
We know that rankm = (N − 2i)/2 is even. From this we can be sure that N/2 = rank k is odd.
Now from the tables in [Bou68] we see that the longest element w0 of the Weyl group W =
NK(T )/T is the negative of the outer diagram automorphism of the root system of k. Therefore
if gT = w0 then Ad g will preserve l and exchange the orbits with partition λ(i) labelled I and
II. This complete the proof. 2

The following proposition uses a similar kind of induction to that in [Mor08, Proposition 3.7]
and is central to our proof of Theorem 9.

Proposition 8. Let i = (i1, . . . , il) be a sequence of integers with
∑

j ij 6 rank k. Suppose that
there exists a Levi subalgebra l ∼= gli ×m. Then following are equivalent.

(1) i is an admissible sequence for λ. If k has type D and there are two conjugacy classes of
Levi subalgebras isomorphic to gli×m then l belongs to the conjugacy class with the same
label as Oe(λ).

(2) There exists an orbit O = O0 × · · · × O0 ×Oe(µ) with Oe(λ) = Indk
l (O).

If these two equivalent conditions hold then Oe(µ) has partition µ = λi. Furthermore, for every

other orbit Õ ⊆ l with Õ = O0×· · ·×O0×Oe(µ̃) such that Oe(λ) = Indk
l (Õ), we have (l,O)/K =

(l, Õ)/K.

Proof. The proof proceeds by induction on l. When l = 0 we have l = k and the proposition
holds by part (2) of Proposition 6 (note that λ∅ = λ). If l is a proper Levi subalgebra then l > 0.
The case l = 1 is simply the previous corollary. The inductive step is quite similar, although to
begin with we must exclude the possibility that Ri = 0 and N − 2

∑l−1
j=1 ij = 2 in type D. We

will treat this possibility at the end.

Suppose that the proposition has been proven for all l′ < l. Since we have excluded this
anomalous case in type D we may set i′ = (i1, . . . , il−1) and deduce that there exists a Levi
l′ ∼= gli′ ⊕m′ where m′ has a natural representation of dimension Ri′ and the same type as k. Let
M ′ be the closed subgroup of K with m′ = Lie(M ′). We may ensure that l ⊆ l′ by embedding
glil ⊕m in m′.

Suppose that i is admissible and, if possible, that the label of l coincides with that of Oe(λ).
We deduce that i′ is also admissible, and since Ri′ > 0 there is a unique class of Levi subalgebras
isomorphic to gli′ ⊕ m′. By the inductive hypothesis we deduce that there exists an orbit O′ =
O0×· · ·×O0×Oe(τ) ⊆ l′ with Oe(λ) = Indk

l′(O′). We also see that this orbit is unique, that it has
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partition λi′ and that if it has a label then it is the same as Oe(λ). Clearly il is admissible for λi′

and, examining our labelling conventions for Levi subalgebras described preceding Lemma 12,
we see that the label of the K-conjugacy class of l equals the label of the M ′-conjugacy class
of glil ⊕ m ⊆ m′. Therefore we can apply Corollary 6 to conclude that there exists an orbit

O = O0 × Oe(µ) with Oe(τ) = Indm′
glil
⊕m(O). We make use of Proposition 6 in the following

calculation:

Oe(λ) = Indk
l′(O′) = Indk

l′(O0 × · · · × O0 × Indm′
glil
⊕m(O0 ×Oe(µ)))

= Indk
l (O0 × · · · × O0 ×Oe(µ)).

We have shown that (1)⇒ (2). Before proving (2)⇒ (1) we shall take a quick detour to show that
the final remarks in the statement of the proposition follow from (1). We certainly have µ= τ (il) =
(λi′)(il) = λi by the transitivity of the algorithm. Suppose that Õ = O0 ×O0 ×Oe(µ̃) is another

orbit in l inducing to Oe(λ). By the inductive hypothesis the partition of Indm′
glil
⊕m(O0 × Oe(µ̃))

is λi′ and so we get µ̃ = λi = µ. The uniqueness assertion is therefore obvious unless µ is very
even and λ is not. In this case the argument used in the proof of Corollary 6 tells us that some
term of the sequence i is odd. After conjugating by some element of K, we can assume that il
is odd. The proof of uniqueness then concludes just as with the previous corollary, with glil ⊕m
playing the role of our Levi subalgebra and m′ playing the role of k.

Now we must go the other way. Keep l, l′, m′, etc as above. Suppose that there exists an orbit
O = O0×· · ·×O0×Oe(µ) ⊆ l with Oe(λ) = Indk

l (O). Then we set Oe(τ) := Indm′
glil
⊕m(O0×Oe(µ)),

O′ := O0 × · · · × O0 × Oe(τ) ⊆ l′, and conclude that Oe(λ) = Indk
l′(O′) using a calculation very

similar to the one above. Applying the inductive hypotheses, we get that i′ is admissible. There
is no label associated with l′ since Ri′ > 0. Now Corollary 6 tells us that il is an admissible index
for τ = λi′ and so i is admissible for λ. The same corollary tells us that if the M ′-conjugacy
class of the Levi subalgebra glil ⊕ m ⊆ m′ has a label then it coincides with that of Oe(τ). The
inductive hypothesis tells us that this label coincides with that of Oe(λ).

Finally, we must turn our attention to those sequences i in type D for which Ri′ = 2 (as
before, i′ stands for i with the last term removed). In this case there does not exist a Levi
subalgebra of the form gli′ ⊕ m and the induction falls down. In order to resolve this we define
i′′ = (i1, . . . , il−2) and let l′′ = gli′′ ⊕m′′. Since l has the form gli we may embed glil−1

⊕glil ⊆ m′′

to get l ⊆ l′′. Since il = 1 there is a unique conjugacy class of Levi subalgebras isomorphic to gli.
Furthermore, since the m part is zero, there is only one orbit of the prescribed form in l. We let
O equal the zero orbit in l. The proposition in this case is therefore reduced to the statement
that i is admissible if and only if Oλ = Indk

l (O).
Suppose that i is admissible for λ. Then so is i′′ and by the inductive hypothesis there exists

an orbit O′′ = O0 × · · · × O0 × Oe(τ) in l′′ with Oe(λ) = Indk
l′′(O′′). Since il−1 is an admissible

index for τ and τ (il−1) is (1, 1), we conclude that τ = (3, 1) if il = 1, that τ = (3, 3) if il = 2, that
τ = (3, 3, 2il−1) if il−1 > 2 is even or, finally, that τ = (3, 3, 2il−1−1, 1, 1) if il−1 > 2 is odd. None
of these partitions are very even, and so there is a unique orbit with partition τ . According to

[CM93, Theorem 7.2.3] the induced orbit Ind
glil−1+1

glil−1
⊕glil

(O0 × O0) is the minimal nilpotent orbit

in glil−1+1 with partition (2, 1, . . . , 1). If we induce into m′′ then [CM93, Lemma 7.3.3(i)] tells us

that Indm′′
glil−1+1

(Omin) = Oe(τ). Placing these ingredients together, we get

Indk
l (O) = Indk

l′′(Indl′′
l (O)) = Indk

l′′
(
O0 × · · · × O0 × Indm′′

glil−1
⊕glil

(O0 ×O0)
)

= Indk
l′′(O′′) = Oe(λ)
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as required. To go the other way, we assume that such an orbit O exists and go backwards
through the above deductions. We will conclude that τ has one of the prescribed forms, so that
(il−1, 1) is an admissible sequence for i′′, and conclude that i is admissible. 2

Corollary 7. Let λ ∈ Pε(N). If i = (i1, . . . , il) is an admissible sequence for λ (and Ri 6= 2 in
type D) then so is σ(i) for every σ ∈ Sl.

Proof. Since gli ×m ∼= glσ(i) ×m, this is immediate from Proposition 8. 2

We now define a partial function ϕ from the set of all admissible sequences for λ to the set
of all K-orbits of pairs (l,O) where l ⊆ k is a Levi subalgebra of k and O ⊂ l is a nilpotent
orbit. The map will remain undefined on sequences i with Ri = 2 in type D. Let i = (i1, . . . , il)
be an admissible sequence for λ. Let l be a Levi subalgebra isomorphic to gli × m. If there are
two K-conjugacy classes of such Levi subalgebras then λ is very even and we require that l
has the same label as Oe(λ). Let ϕ(i) = (l,O)/K be the unique pair described in Proposition 8.
The reader should take note that the admissible sequences upon which ϕ is undefined are not
maximal, so the following makes sense.

Corollary 8. The restriction of ϕ to the set of maximal admissible sequences for λ descends
to a well-defined bijection from Φλ onto Ψλ. In particular, |Φλ| = |Ψλ|.

Proof. First of all, we show that ϕ maps the set of maximal admissible sequences for λ to Ψλ.
Take i maximal admissible and ϕ(i) = (l,O)/K with O = O0×· · ·×O0×Oe(µ). By Proposition 8

we have µ = λi and so, by Lemma 6, Oe(µ) is rigid. By part (2) of Lemma 12 the orbit O is also

rigid. Furthermore, we have that Oe(λ) = Indk
l (O). Hence ϕ(i) ∈ Ψλ.

We now claim that the map is well defined on Φλ, that is to say that ϕ(i) = ϕ(j) whenever
i ∼ j. Let ϕ(i) = (l1,O1)/K and ϕ(j) = (l2,O2)/K where l1 ∼= gli ×m1 and l2 ∼= glj ×m2. Since
i = σ(j) for some σ ∈ S|i| and the labels of l1 and l2 are the same (if they exist), we conclude
that they are K-conjugate by part (1) of Lemma 12. Thus we may assume that l1 = l2. Now the
uniqueness statement at the end of Proposition 8 asserts that (l1,O1)/K = (O2, l2)/K. For the
rest of the proof ϕ shall denote the induced map Φλ → Ψλ.

Let us prove that ϕ is surjective. Suppose that (l,O) ∈ Ψλ with l and O as in the definition of
Ψλ. Then by Proposition 8 the sequence i = (i1, . . . , il) is admissible for λ and by Lemma 6 it is a
maximal admissible. Therefore ϕ(i) = (l, Õ)/K for some orbit Õ. Since O = O0×· · ·×O0×Oe(µ)

by construction, the uniqueness statement in Proposition 8 tells us that (l,O)/K = (l, Õ)/K.
Hence ϕ sends the equivalence class of i in Φλ to (l,O)/K.

In order to prove the corollary we must show that ϕ is injective. Suppose that i and j are
maximal admissible for λ and ϕ(i) = ϕ(j). Again we make the notation ϕ(i) = (l1,Oe(λi))/K and
ϕ(j) = (l2,Oe(λj))/K. Since l1 and l2 are K-conjugate, the sequences (i1, . . . , il(1)) and (j1, . . . ,
jl(2)) corresponding to isomorphisms

l1 ∼= gli1 ⊕ · · · ⊕ glil(1) ⊕mi
∼= glj1 ⊕ · · · ⊕ gljl(2) ⊕mj

∼= l2

must be of the same length l = l(1) = l(2) and Sl-conjugate. This completes the proof. 2

Part (1) of Theorem 9 follows quickly from the above and Lemma 13. We now prepare to
prove part (2) of that theorem. Before we proceed we shall need two lemmas. Define a function
κ : Pε(N) −→ (Z/2Z)N by setting

κ(λ)i := λi − λi+1 mod 2 for all i > 0.

The reader should keep in mind here that λi = 0 for all i > n by convention.
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Lemma 14. Let M,N ∈ N. If µ ∈ P∗ε (M) and λ ∈ P∗ε (N) then µ = λ if and only if κ(µ) = κ(λ).

Proof. Evidently µ = λ if and only if µi − µi+1 = λi − λi+1 for all i > 0. Since λ is rigid

λi − λi+1 ∈ {0, 1}; see Theorem 7. The statement follows. 2

Lemma 15. Suppose that λ is non-singular and that i < j are admissible indices for λ. Then i

is admissible for λ(j).

Proof. If Case 1 occurs for λ at index i then λ
(j)
i −λ

(j)
i+1 = λi−λi+1 > 2 unless j = i+1 and Case

2 occurs for λ at index j. In this situation it follows from the non-singularity of λ that Case 1

occurs for λ(j) at index i.

Now suppose that Case 2 occurs for λ at index i. Then (i, i + 1) ∈ ∆(λ) and λi = λi+1 by

definition. It follows immediately that λ
(j)
i = λ

(j)
i+1. We shall show that (i, i + 1) ∈ ∆(λ(j)) and

conclude that Case 2 occurs for λ(j). If Case 1 occurs for λ at index j then (i, i + 1) ∈ ∆(λ(j))

by the non-singularity of λ. If Case 2 occurs at j for λ then the same conclusion follows from

Lemma 7. This completes the proof. 2

Proposition 9. |Φλ| = 1 if and only if λ is non-singular.

Proof. Suppose that λ is non-singular. We shall show that all maximal admissible sequences for

λ have the same length and are conjugate under the symmetric group. Let i and j be two such

sequences. Note that if the type is D then we can be certain that Ri 6= 2 and Rj 6= 2. Therefore,

in any type, we might apply Corollary 7 and assume that they are both in ascending order. It is

not hard to see that they are both still maximal after reordering. We shall show that they are

now equal. Suppose not. Then either there exists an index k such that ik 6= ij or one sequence is

shorter than the other, say |i| < |j| and ik = jk for k = 1, . . . , |i|. In the latter situation i clearly

fails to be maximal, so assume that we are in the former situation. We may assume without loss

of generality that ik < jk. Now we may apply Lemma 15 and conclude that j is not maximal. This

contradiction confirms that i = j and that all maximal admissible sequences for λ are conjugate

under the symmetric group.

In order to prove the converse we assume that λ is singular. Let (i, i + 1) be a bad 2-step

with i maximal. We shall exhibit two maximal admissible sequences, i and j, for λ such that

κ(λi)i+1 6= κ(λj)i+1. In view of Lemma 14 the proposition shall follow. There are two possibilities:

either λi+1 − λi+2 is even, or i > 1 and λi−1 − λi is even. Assume the first of these possibilities,

so that λi+1 − λi+2 is even. Let

i′ = (i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
(λi+1−λi+2)/2 times

).

We have λi′
i+1 = λi′

i+2. Let i be any maximal admissible sequence for λ extending i′. Then

κ(λi)i+1 = 0. Now let j′ = (i) so that κ(λj′)i+1 = 1. Let j be any maximal admissible sequence

extending j′. By Lemmas 7 and 8, Case 2 does not occur for λjk at any index jk = i with

k > 1 and since (i, i + 1) is a maximal bad 2-step Case 2 cannot occur at index jk = i + 2.

So κ(λj)i+1 = κ(λj′)i+1 = 1 which enables us to conclude that κ(λi) 6= κ(λj), λi 6= λj. Hence

|Φλ| > 1.

The other case is quite similar. This time we assume that i > 1, that λi−1 − λi is even

and λi+1 − λi+2 is odd. Our deductions will depend upon whether or not (i − 2, i − 1) ∈ ∆(λ).
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Let us first assume that i− 2 /∈ ∆(λ). We take

i′ = (i− 1, i− 1, . . . , i− 1︸ ︷︷ ︸
(λi−1−λi)/2 times

).

Let i be any maximal admissible sequence extending i′. Much as before, κ(λi)i−1 = 0. Now let

j′ = (i) and let j be a maximal admissible extension of j′. Since (i− 2, i− 1) /∈ ∆(λ), Lemma 8

shows that Case 2 does not occur for λjk at index jk = i − 2 for any k. Since the same can be

said for jk = i at any index k > 1, we deduce that κ(λj)i−1 = κ(λ)i−1 − 1 = 1. But then λi 6= λj

and so |Φλ| > 1 as desired.

To conclude the proof we must consider the final possibility: i > 1, λi−1−λi even, λi+1−λi+2

odd and (i−2, i−1) ∈∆(λ). We let i′ and i be defined exactly as it was in the previous paragraph.

We have λi′
i−1 = λi′

i , so that Case 2 cannot occur at index ik = i for any k. Since (i, i + 1) is a

maximal bad 2-step for λ we know that (i+ 2, i+ 3) /∈ ∆(λ). Then Lemma 8 implies that Case

2 cannot occur at index ik = i+ 2 for any k, yielding κ(λi)i+1 = κ(λ)i+1 = 1. Let

j′ = (i, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
(λi+1−λi+2)/2 times

)

and j be any maximal admissible sequence extending j′. Since λi+1 − λi+2 is odd, λ
j2
i+1 − λ

j2
i+2 is

even, and λj
i+1 = λj

i+2. Hence κ(λj) = 0 and |Φλ| > 1 as before. 2

We can finally complete the proof of Theorem 9.

Proof. Part (1) follows directly from Corollary 8 and Lemma 13. For part (2) use part (1) along

with Proposition 9. 2

Let S be a sheet with data (l,O). Recall that the rank of S is defined to be dim z(l). The

importance of the rank is illustrated by the formula

dim(S) = rank(S) + dim Indk
l (O).

It should be mentioned here that [Mor08, Remark 3] claims that all sheets of k containing a

given nilpotent element have the same rank (hence the same dimension). However, the example

given in Remark 4 shows that in general this is incorrect. A corrigendum has been published in

[Mor13]. The error may be traced to [Mor08, Proposition 3.11]. Using the Kempken–Spaltenstein

algorithm, we can amend that proposition as follows. First of all, note that if (l,O) is the data

associated with a sheet S then (l,O) ∈ Ψλ, so Corollary 8 tells us that ϕ−1(l,O) is a well-defined

equivalence class in Φλ. Clearly all admissible sequences in that equivalence class have the same

length, which we may denote by |ϕ−1(l,O)|.

Proposition 10. Let S be a sheet of k with data (l,O). Then

rank(S) = |ϕ−1(l,O)|.

Proof. If l = gli1 ⊕ · · · ⊕ glik ⊕ m as in Lemma 12 then clearly rank(S) = dim z(l) = k. On the

other hand, ϕ−1(l,O) is just the equivalence class of the maximal admissible sequence (i1, . . . , ik)

which itself has length k. 2
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Corollary 9. If λ ∈ Pε(N) and e = e(λ) then

r(e) = max
e∈S

rank(S) = z(λ)

where the maximum is taken over all sheets of k containing e.

Proof. Use the above proposition and Theorem 8. 2

Remark 4. Some sheets of different ranks in Lie algebras of type B,C or D may share the same
nilpotent orbit. Indeed, the partition λ = (4, 2, 2) ∈ Pε(−1) affords three maximal admissible
sequences (1, 3), (3, 1) and (2) of lengths 2, 2 and 1, respectively, which lead to two rigid partitions
(0) and (2, 1, 1). So it follows from Proposition 10 that the nilpotent element e(λ) ∈ sp8 lies in
two sheets S1 and S2 of sp8 with rk(S1) = 2 and rk(S2) = 1. Note that s(λ) = 2, Σ(λ) = ∅ and
|∆(λ)| = |∆bad(λ)| = 1. Hence e(λ) is singular and

z(λ) = s(λ) + |∆(λ)| − (|∆bad(λ)| − |Σ(λ)|) = 2 + 1− (1− 0) = 2.

This example shows that different sheets of classical Lie algebras containing a given nilpotent
element may have different dimensions.

Remark 5. Suppose that char(k) = 0 and let x be an arbitrary element of k. Then it is immediate
from Theorem 9 and Corollary 5 that the following are equivalent:

(i) x belongs to a unique sheet of k;

(ii) x is a smooth point of the quasi-affine variety k(m) where dim kx = m;

(iii) the maximal rank of the sheets of k containing x equals dim(kx/[kx, kx]).

Indeed, if x = xs + xn is the Jordan–Chevalley decomposition of x then it is well known (and
easy to see) that l := kxs is a Levi subalgebra of k and dim(kx/[kx, kx]) = dim(lxn/[lxn , lxn ]). On
the other hand, it follows from our discussion in § 3.1 and the description of the Zariski closure
of a sheet given in [BK79, Theorem 5.4] that there is a rank-preserving bijection between the
sheets of k containing x and the sheets of l containing xn. So the problem reduces quickly to the
case where x = xn, and since all simple ideals of l are Lie algebras of classical types, Theorem 9
and Corollary 5 apply to xn and give the desired result. This confirms the first part of Izosimov’s
conjecture; see [Izo12, Conjecture 1]. The second part of his conjecture (which is also interesting
and plausible) remains open. We mention for completeness that the three statements above hold
true for all x in sln and gln; see [Izo12, Proposition 3.3].

5. Commutative quotients of finite W -algebras and sheets

5.1 Finite W -algebras and related commutative algebras
From now on we assume that k is an algebraically closed field of characteristic 0 and G is a
connected reductive k-group. Let g = Lie(G) and let e be a non-zero nilpotent element in g.
We include e in an sl(2)-triple {e, h, f} ⊂ g and consider the Slodowy slice Se := e + gf , an
affine subspace of g transversal to the adjoint G-orbit of e. The finite W -algebra U(g, e) is a
non-commutative filtered deformation of the algebra k[Se] of regular functions on Se endowed
with the Slodowy grading; see [Pre02, 5.1] for more detail. By using the Killing form of g we
may identify k[Se] with the symmetric algebra S(ge).

The action of adh gives g a Z-graded Lie algebra structure g =
⊕

i∈Z g(i) and we have
that e ∈ g(2) and ge =

⊕
i>0 ge(i) where ge(i) := ge ∩ g(i). Let v1, . . . , vr be a basis of ge
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such that vi ∈ gi(ni) for some ni > 0. According to [Pre02, Theorem 4.6] the finite W -algebra
U(g, e) has a k-basis consisting of all monomials va = va11 · · · varr with ai ∈ Z>0, and assigning to
va filtration degree |ae| :=

∑r
i=1 ai(ni + 2) gives U(g, e) an algebra filtration called the Kazhdan

filtration of U(g, e). Furthermore, the corresponding graded algebra, grK U(g, e), is isomorphic to
the symmetric algebra S(ge) with vi having Kazhdan degree ni + 2, and the following relations
hold in U(g, e) for all 1 6 i < j 6 r:

vi · vj − vj · vi = [vi, vj ] + qij(v1, . . . , vr) + terms of lower Kazhdan degree, (4)

where qij is a polynomial of Kazhdan degree ni + nj + 2 whose constant and linear parts are
both zero (here [vi, vj ] is the Lie bracket of vi and vj in ge). We write Kl U(g, e) for of the lth
component of the Kazhdan filtration of U(g, e).

It is well known that the group C(e) := Ge ∩ Gf is reductive and its finite quotient Γ :=
C(e)/C(e)◦ identifies canonically with the component group of AdGe. Besides, Lie(C(e)) = ge(0).
As explained in [Pre07, 2.2, 2.3], the group C(e) acts on U(g, e) by algebra automorphisms and
preserves all components of the Kazhdan filtration of U(g, e). Moreover, there exists an injective
C(e)-module homomorphism Θ: ge → U(g, e) with the property that Θ(ge) generates U(g, e) as
an algebra and grK Θ(ge) ∼= ge[2] as C(e)-modules, where ge[2] stands for the AdC(e)-module
ge with all degrees shifted by 2. To be more precise, the group C(e) ⊂ Gh preserves both the
Slodowy grading of S(ge) and the grading of S(ge) given by total degree. In view of [Pre02,
Lemma 4.5] this implies that the graded linear map grK Θ(ge) → ge[2] sending grK Θ(v) ∈ S(ge)
to its linear part is an isomorphism of C(e)-modules. In what follows we shall denote by gr0

K Θ(v)
the linear part of grK Θ(v).

To ease notation we shall sometimes suppress the notion of Θ and assume from now on
that the above-mentioned identification of grK U(g, e) and S(ge) is C(e)-equivariant. Thanks to
[Pre07, Lemma 2.4] we then have that vi · vj − vj · vi = [vi, vj ] for all vi, vj ∈ ge(0), where the
products of vi and vj are taken in U(g, e) and the Lie bracket [vi, vj ] is taken in ge.

To shorten notation we write ce for gab
e = ge/[ge, ge]. Since [ge(0), ge] ⊂ [ge, ge] and ge(0) =

Lie(C(e)), it follows from Weyl’s theorem that C(e)◦ acts trivially on ce. This gives rise to a
natural linear action of the component group Γ = Ge/G

◦
e on the vector space ce. We denote by

cΓe the fixed point space of this action and set

c(e) := dim ce and cΓ(e) := dim cΓe .

Let S1, . . . ,St be all pairwise distinct sheets of g containing e. As we explained in § 3.1,
every sheet Si contains a unique Zariski open decomposition class D(li, ei) = (AdG)(ei+ z(li)reg)
characterised by the property that ei is rigid in li. We write ri = dim z(li) for the rank of Si.
It is well known that the set Xi := Si ∩ (e + gf ) is a connected affine variety acted upon by
the reductive group C(e). Working over complex numbers, Katsylo proved in [Kat83] that the
subgroup C(e)◦ operates trivially on Xi, the induced action of Γ = C(e)/C(e)◦ on the irreducible
components of Xi is transitive, and the morphism

G×Xi → Si, (g, x) 7→ (Ad g) · x

is smooth, surjective of relative dimension dim ge. Moreover, Katsylo showed that it gives rise to
an open morphism ψi : Si → Xi/Γ with the following properties:

(i) the fibres of ψi are G-orbits;

(ii) for any open subset X of Xi/Γ the induced algebra map k[U ] → k[ψ−1
i (U)]G is an

isomorphism.
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In brief, each morphism ψi is a geometric quotient and dim(Si/G) = dim(Xi/Γ) = ri. A purely
algebraic proof of Katsylo’s results can be found in [ImH05].

Denote by U(g, e)ab the largest commutative quotient of U(g, e) (it has the form U(g, e)/Ic
where Ic is the two-sided ideal of U(g, e) generated by all commutators u · v − v · u with u,
v ∈ U(g, e)). This finitely generated k-algebra is important because its maximal spectrum, E ,
parameterises the one-dimensional representations of U(g, e). According to [Pre10, Theorem 1.2],
for any induced nilpotent element e of g the Krull dimension of U(g, e)ab equals r(e) := max{r1,
. . . , rt} and the number of irreducible components of E is greater than or equal to the total
number of all irreducible components of the Xi. If g = sln then every nilpotent element e ∈ g

lies in a unique sheet S = S(e). Since every nilpotent element of sln is Richardson, the sheet
S(e) contains a dense decomposition class of the form (AdG)(z(l)reg). Using Remark 1, it is easy
to see that dim ce = dim z(l). On the other hand, it was proved in [Pre10] that for g = sln the
algebra U(g, e)ab is isomorphic to a polynomial algebra in r(e) = dim z(l) variables. The proof
relied heavily on the explicit presentation of finite W -algebras of type A obtained by Brundan
and Kleshchev in [BK06].

In this section we make an attempt to classify those induced nilpotent elements e ∈ g for
which U(g, e)ab is isomorphic to a polynomial algebra. In view of the above discussion, this can
happen only if e lies in a unique sheet of g, which makes one wonder to what extent the converse
is true. For g classical, we shall apply our results on non-singular nilpotent elements to show that
this is always the case (even for e rigid!), whilst for g exceptional we shall rely on de Graaf’s
computations in [deG13] to show the same is true for almost all induced induced orbits.

Since the group C(e) operates on U(g, e) by algebra automorphisms, it acts on the variety E
which identifies naturally with the set of all ideals of codimension 1 in U(g, e). Since the group
C(e)◦ preserves any two-sided ideal of U(g, e) by [Pre07, p. 501], it must act trivially on E . We
thus obtain a natural action of Γ = C(e)/C(e)◦ on the affine variety E . We denote by EΓ the
corresponding fixed point set and let IΓ be the ideal of U(g, e)ab generated by all φ − φγ with
φ ∈ U(g, e)ab and γ ∈ Γ. It is clear that EΓ is contained in the zero locus of IΓ. Conversely, if
η ∈ E is such that φ(η) = 0 for all φ ∈ IΓ, then γ(η) = η for all γ ∈ Γ. Indeed, otherwise η
and γ−1

0 (η) would be distinct maximal ideals of U(g, e)ab for some γ0 ∈ Γ and we would be able
to find an element φ ∈ U(g, e)ab with φ(η) = 0 and φ(γ−1

0 (η)) 6= 0. But this would imply that
(φ − φγ0)(η) 6= 0, a contradiction. As a result, EΓ coincides with the zero locus of IΓ in E . We
denote by U(g, e)ab

Γ the finitely generated k-algebra U(g, e)ab/IΓ. The above discussion shows
that

EΓ = SpecmU(g, e)ab
Γ .

In this section we aim to show that in most cases U(g, e)ab
Γ is isomorphic to a polynomial

algebra in cΓ(e) variables. As will be explained later, the polynomiality of U(g, e)ab
Γ can be used to

classify those primitive ideals I of U(g) whose associated variety VA(I) appears with multiplicity
1 in the associated cycle AC(I). Detailed information on such ideals is very important because
the primitive quotients U(g)/I extend to the Dixmier algebras quantising the nilpotent orbits of
g in the sense of [Los10b, 5.1 and 5.3].

5.2 A sufficient condition for polynomiality

The goal of this subsection is to give a sufficient condition of polynomiality of U(g, e)ab and
U(g, e)ab

Γ for an arbitrary simple Lie algebra g and use it to classify those nilpotent elements in
the Lie algebras of classical groups for which U(g, e)ab is a polynomial algebra. In view of our
discussion in § 5.1 we may (and will) identify ge with a C(e)-submodule of U(g, e) containing a
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PBW basis of U(g, e). For k, l ∈ Z>0, we set S6l(ge) :=
⊕

i6l S
i(ge) and denote by S〈k〉(ge) the

linear span of all monomials va := va11 · · · varr in S(ge) with |a|e = k.

Lemma 16. Let I be a proper two-sided ideal of U(g, e) and let VI and V ′I be two C(e)-
submodules of ge, identified with Θ(ge), such that ge[2] = gr0

K(VI)⊕ gr0
K(V ′I ) as graded AdC(e)-

modules. Suppose further that

grK(v) ∈ (grK(I) + S>2(ge)) ∩ S〈i〉(ge)

for all v ∈ (VI ∩ Ki U(g, e))\Ki−1 U(g, e), where i ∈ Z>0. Then the unital algebra U(g, e)/I is
generated by the subspace V ′I .

Proof. Since ge[2] = gr0
K(VI) ⊕ gr0

K(V ′I ), it is easy to see that ge = VI ⊕ V ′I . Let π : ge � VI
and π′ : ge � V ′I be the C(e)-equivariant projections induced by the direct sum decomposition
ge = VI ⊕ V ′I , and denote by A the k-span in U(g, e) of all π′(v)i := π′(v1)i1 · · ·π′(vr)ir with
i ∈ Zr>0. We shall prove by induction on k that every monomial va ∈ U(g, e) with |a|e = k lies in
A+ I. Then the lemma will follow.

The statement is obviously true for k = 0. Suppose that it holds for all k < m. If |a| > 1
then the statement follows by induction on k. Hence we may assume further that |a| = 1, so that
va = vs for some s ∈ {1, . . . , r} and k = ns + 2. Thanks to our assumption on VI we have that

π(vs) = us +
∑

|i|e=ns+2, |i|>2

λs,iv
i + terms of lower Kazhdan degree (5)

for some us ∈ I and λs, i ∈ k. Therefore,

π(vs) ≡
∑

|i|e=ns+2, |i|>2

λs,iv
i mod (A+ I)

by the induction assumption. Our aim is to show that vi ∈ A+ I for all i such that |i|e = ns + 2
and we shall use downward induction on the total degree of i (this is possible since there are
only finitely many i ∈ Zr>0 for which |i| = ns + 2). If j is such that |j|e = ns + 2 and |j| > |i|
whenever |i|e = ns + 2, then

vj =
r∏
i=1

(π(vi) + π′(vi))
ji ≡ π′(v)j mod

(
A+ I + Kns+1 U(g, e)

)
thanks to (5) and (4). This takes care of the induction base. Now suppose that vi ∈ A + I for
all i with |i|e = ns + 2 and |i| > d, and take any j ∈ Zr>0 with |j|e = ns + 2 and |j| = d. Since

vj =
∏r
i=1(π(vi) + π′(vi))

ji , combining (5) and (4) yields that

vj ≡ π′(v)j +
∑

|i|e=ns+2, |i|>d

µj, i v
i mod (A+ I + Kns+1 U(g, e))

for some µj, i ∈ k. As Kns+1 U(g, e) is spanned by all vb with |b|e < ns + 2, we know that
Kns+1 U(g, e) ⊆ A+ I. Then our present induction assumption gives vj ∈ A+ I, as claimed. But
then π(vs) ∈ A+ I in view of (5). Since vs = π(vs) + π′(vs) and π′(vs) ∈ A by the definition of
A, we deduce that vs ∈ A+ I, finishing the proof. 2

It should be stressed at this point that in Lemma 16 we do not require VI to be contained
in I.
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Proposition 11. Let e be any nilpotent element of g. Then the following are true:

(i) if E 6= ∅, then the unital algebra U(g, e)ab is generated by c(e) elements;

(ii) if EΓ 6= ∅, then the unital algebra U(g, e)ab
Γ is generated by cΓ(e) elements.

Proof. Due to the possibility of confusion, in this proof we shall distinguish between ge = S1(ge)⊂
S(ge) and its isomorphic copy Θ(ge) ⊂ U(g, e).

(i) The defining ideal Ic of U(g, e)ab contains all commutators [Θ(u),Θ(v)] with u, v ∈ ge.

Since C(e) is a reductive group, ge contains a graded AdC(e)-submodule of dimension c(e)

complementary to the derived subalgebra [ge, ge]. Let M be such a submodule and recall the

C(e)-equivariant isomorphism Θ(ge)
∼−→ gr0

K Θ(ge) = ge[2] described in § 5.1. We choose for VIc
and V ′Ic the preimages under this isomorphism of [ge, ge] and M , respectively. It is immediate

from (4) and our earlier remarks in this proof that the C(e)-submodules VIc and V ′Ic of Θ(ge)

satisfy all conditions of Lemma 16. Since dimV ′Ic = dimM = c(e), the first statement follows.

(ii) Let Ĩc be the preimage of the ideal IΓ of U(g, e)ab under the canonical homomorphism

U(g, e)� U(g, e)ab. Then Ĩc is a two-sided ideal of U(g, e) and U(g, e)/Ĩc ∼= U(g, e)ab
Γ as algebras.

Since [ge(0),M ] ⊆ [ge, ge] and M ∩ [ge, ge] = 0, it follows from Weyl’s theorem that the connected

reductive group C(e)◦ acts trivially on M . Therefore, M has the natural structure of a Γ-module.

There exists a Γ-submodule M ′ of M complementary to MΓ := {x ∈M : γ(x) = x}. We choose

for V
Ĩc

and V ′
Ĩc

the preimages in U(g, e) of M ′ ⊕ [ge, ge] and MΓ under the above-mentioned

isomorphism Θ(ge)
∼−→ gr0

K Θ(ge) = ge[2] of C(e)-modules. Note that V
Ĩc

= VIc ⊕N ′ where N ′ is

the preimage of M ′ in Θ(ge). Due to our choice of M ′ the group C(e)◦ acts trivially on N ′ ∼= M ′

and N ′ is spanned by the elements of the form u− γ(u) with u ∈ N ′ and γ ∈ Γ. The definition

of IΓ implies that N ′ ⊂ Ĩc. As I ⊆ Ĩ, our discussion in part (i) now shows that the modules V
Ĩc

and V ′
Ĩc

satisfy all conditions of Lemma 16. Since dimV ′
Ĩc

= dimMΓ = cΓ(e) we obtain (ii). 2

Corollary 10. Let e be an induced nilpotent element of g. Then the following hold:

(i) if c(e) = r(e), then U(g, e)ab ∼= S(ce) as k-algebras and Γ-modules and U(g, e)ab
Γ
∼= S(cΓe ) as

k-algebras;

(ii) if EΓ 6= ∅ and dim EΓ > cΓ(e), then U(g, e)ab
Γ
∼= S(cΓe ) is a polynomial algebra in cΓ(e)

variables.

Proof. (i) Combining [Pre10, Theorem 1.2] with the main results of [GRU10], we see that

dimU(g, e)ab = r(e) (in particular, E 6= ∅). On the other hand, since V ′Ic is a C(e)-submodule

of U(g, e) isomorphic to ce, Proposition 11(i) implies that there exists a natural surjective

C(e)-equivariant algebra homomorphism ψ : S(ce) � U(g, e)ab. If c(e) = dimS(ce) equals

r(e) = U(g, e)ab, the map ψ must be injective. Since C(e)◦ acts trivially on ce we deduce that

U(g, e)ab ∼= S(ce) as k-algebras and Γ-modules. But then E ∼= c∗e as Γ-varieties, implying that

EΓ ∼= (c∗e)
Γ. Since the defining ideal in S(ce) ∼= k[c∗e] of the linear subspace (c∗e)

Γ is generated by

all f − fγ with f ∈ S(ce) and γ ∈ Γ, its image under ψ coincides with IΓ. This implies that

S(cΓe ) ∼= U(g, e)ab
Γ as k-algebras.

(ii) As EΓ 6= ∅, it follows from Proposition 11(ii) that there is a surjective algebra

homomorphism S(V ′
Ĩc

) � U(g, e)ab
Γ . As a consequence, cΓ(e) = dimV ′

Ĩc
> dimU(g, e)ab

Γ . If

dimU(g, e)ab
Γ = dim EΓ > cΓ(e), then it must be that U(g, e)ab

Γ
∼= S(V ′

Ĩc
) ∼= S(cΓe ) as k-

algebras. 2
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5.3 Further results on polynomiality of commutative quotients
In this subsection we apply our results on non-singular nilpotent elements to give a complete
description of those nilpotent elements e in classical Lie algebras g for which U(g, e)ab is a
polynomial algebra. For induced nilpotent orbits in exceptional Lie algebras, we apply de Graaf’s
computations in [deG13] to obtain strong partial results in this direction which will leave
undecided only six such orbits, one in type F4, one in type E6, one in type E7 and three in
type E8. The very challenging case of rigid nilpotent orbits in exceptional Lie algebras requires
completely different methods and is dealt with in [Pre14].

Theorem 11. Let e be a nilpotent element in a classical Lie algebra g. Then the following are
equivalent:

(1) e belongs to a unique sheet of g;

(2) U(g, e)ab is isomorphic to a polynomial algebra in c(e) variables.

Proof. If e belongs to a unique sheet of g, then c(e) = r(e) by Corollary 5 and Theorem 8. Since
g is classical, it follows from [Bry03, KP82, Los10b] that E 6= ∅. But then Corollary 10(i) shows
that U(g, e)ab ∼= S(ce) as unital k-algebras.

If U(g, e)ab is isomorphic to a polynomial algebra, then the variety E is irreducible. If e is
induced, then applying [Pre10, Theorem 1.2] yields that e belongs to a unique sheet. If e is rigid,
this holds automatically as (AdG) e is a sheet of g. This completes the proof. 2

Remark 6. (a) Suppose that g is a classical Lie algebra and e is a rigid nilpotent element of g.
Then it follows from Theorem 11 and Corollary 2 that the algebra U(g, e) admits a unique
one-dimensional representation.

(b) Suppose that g is a classical Lie algebra and e = e(λ) is a nilpotent element of g

associated with a non-singular partition λ. Then, combining [Pre10, Theorem 1.2] with part (2)
of Corollary 4 and (the proof of) Theorem 11, we deduce that e belongs to a unique sheet S(e)
of g and the variety (e + gf )∩S(e) is irreducible. Of course, the uniqueness of S(e) also follows
from Proposition 9 which we proved by purely combinatorial arguments. The irreducibility of
the variety (e+ gf ) ∩ S(e) is actually a consequence of the following more general result which
follows from Im Hof’s theorem on smoothness of sheets in classical Lie algebras: for any sheet S
containing a nilpotent element e ∈ g the affine variety X = S∩(e+gf ) is smooth and irreducible.

Indeed, it is immediate from Katsylo’s results mentioned in § 5.1 that dimS = dimX +
dim(AdG) e. Since S contains both X and (AdG) e the tangent space Te(S) contains Te(X) +
Te
(
(AdG) e

)
. Since Te(X) ⊂ Te(e + gf ) = gf and Te

(
(AdG) e

)
= [e, g], it follows that Te(S)

contains Te(X)⊕ [e, g]. As the variety S is smooth and dim
(
Te(X)⊕ [e, g]

)
> dimS it must be

that Te(S) = Te(X) ⊕ [e, g] and dimTe(X) = dimX. As a consequence, e is a smooth point of
X. But then e belongs to a unique irreducible component of X; see [Sha94, ch. II, § 2, Theorem
6]. On the other hand, there is a regular k×-action on X attracting every point x ∈ X to e.
Therefore, all irreducible components of X contain e and hence the variety X is irreducible.
Since the singular locus Sing(X) of X is Zariski closed and invariant under the above k×-action,
this argument also shows that X is a smooth variety.

Our next result relies heavily on Losev’s work [Los11a]. Together with Corollary 10(ii), it
will enable us to describe the variety EΓ for many induced nilpotent elements e ∈ g.

Proposition 12. Let P = LU be a proper parabolic subgroup of G, where L ⊂ G is a
Levi subgroup and U = Ru(P ), and suppose that a nilpotent element e = e0 + e1 ∈ Lie(P )
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with e0 ∈ l = Lie(L) and e1 ∈ Lie(U) is induced from e0 in such a way that Ge ⊂ P . Let

E0 = SpecmU([l, l], e0)ab, and suppose further that EΓ0
0 6= ∅ where Γ0 = Le0/(Le0)◦. Then EΓ 6= ∅

and dim EΓ > dim z(l) where z(l) denotes the centre of the Levi subalgebra l = Lie(L).

Proof. (a) Let (e0, h0, f0) be an sl2-triple of l containing e0 (if e0 = 0 then (e0, h0, f0) is the

zero triple). By the sl2-theory, the reductive group C(L, e0) := Le0 ∩ Lh0 is a Levi subgroup of

the centraliser Le0 . We include e in an sl2-triple (e, h, f) of g and denote by λe the cocharacter

in X∗(G) with h ∈ Lie(λe(k×)). Note that C(e) = Ge ∩ Gh = Ge ∩ ZG(λe). Since C(e) ⊂ P

by our assumption on e, it follows from [Los11a, Proposition 6.1.2(4)] that the reductive group

λe(k×)C(e) is contained in P . Since any reductive subgroup of P is conjugate under P to a

subgroup of L by Mostow’s theorem, we may assume without loss of generality that λe(k×)C(e)⊆
L. Since C(e) ⊆ L∩Ge preserves both l and Lie(U), it must be that C(e) ⊆ Le0 . Since the group

C(e) is reductive, it follows from Mostow’s theorem that it is conjugate under L to a subgroup

of C(L, e0). Thus no generality will be lost by assuming further that C(e) ⊆ C(L, e0).

(b) In [Los11a, 6.3], Losev used the techniques of quantum Hamiltonian reduction to define

a completion U(l, e0)′ of the finite W -algebra U(l, e0) and an injective algebra homomorphism

Ξ: U(g, e) → U(l, e0)′. By construction, the reductive group C(L, e0) acts on U(l, e0)′ by algebra

automorphisms. Since C(e) ⊆ C(L, e0), one can see by inspection that all maps involved in

Losev’s construction are C(e)-equivariant (a related discussion can also be found in [Los12, 2.5]).

This implies, in particular, that in our situation Losev’s homomorphism Ξ is C(e)-equivariant.

Here C(e) operates on U(g, e) as in § 5.1, and the action of C(e) on U(l, e0)′ is given by inclusion

C(e) ⊆ C(L, e0).

(c) Given an associative algebra A over k and a positive integer d, we denote by A(d) the

quotient of A by its two-sided ideal generated by all s2d(a1, a2, . . . , a2d) with ai ∈ A, where

s2d(X1, X2, . . . , X2d) =
∑
σ∈S2d

sgn(σ)Xσ(1)Xσ(2) · · ·Xσ(2d).

According to [Los11a, Proposition 6.5.1], the inclusion U(l, e0) ↪→ U(l, e0)′ induces an algebra

isomorphism U(l, e0)′(d) ∼= U(l, e0)(d). Therefore, for every d ∈ N the map Ξ gives rise to a

C(e)-equivariant algebra homomorphism U(g, e)(d)
→ U(l, e0)(d). Since U(g, e)(1) ∼= U(g, e)ab

and U(l, e0)(1) ∼= U(l, e0)ab as algebras, we thus obtain a C(e)-equivariant algebra homomorphism

ξ : U(g, e)ab
→ U(l, e0)ab.

Let Ẽ0 = SpecmU(l, e0)ab. According to [Los11a, Theorem 6.5.2] the morphism of affine

varieties ξ∗ : Ẽ0 → E associated with ξ is finite. In particular, it has finite fibres. Since ξ is

C(e)-equivariant and C(e)◦ acts trivially on both U(g, e)ab and U(l, e)ab, the morphism ξ∗ maps

ẼΓ
0 into EΓ. It follows that

dim ẼΓ
0 = dim ξ∗(ẼΓ

0 ) 6 dim EΓ.

(d) Write z for the centre z(l) of the Levi subalgebra l. Clearly, z is a toral subalgebra

of g and l = z ⊕ [l, l]. It follows that U(l, e0) ∼= S(z) ⊗ U([l, l], e0). This, in turn, implies that

U(l, e)ab ∼= S(z) ⊗ U([l, l], e0)ab as algebras. Since the subalgebra U([l, l], e0) of U(l, e0) is stable

under the action of C(e) on U(l, e0), we have a natural action of Γ of the affine variety

E0 := SpecmU([l, l], e0)ab. Since C(e) ⊆ C(L, e0), and C(L, e0)◦ acts trivially on E0, the variety

EΓ
0 = {η ∈ E0 : γ(η) = η for all γ ∈ Γ} contains EΓ0

0 and hence is non-empty by our assumption

on e.
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Note that L acts trivially on the centre z of Lie(L) and hence so does C(e) ⊂ L. It follows
that ẼΓ

0
∼= z∗ × EΓ

0 as affine varieties. In particular,

dim Ẽ Γ
0 = dim EΓ

0 + dim z > dim z.

But then EΓ ⊇ ξ∗(ẼΓ) 6= ∅ and dim EΓ > dim ẼΓ
0 > dim z(l) as claimed. 2

Remark 7. It is established in [Pre14] that the variety EΓ is non-empty for any nilpotent element
in a finite-dimensional simple Lie algebra over C. This implies, among other things, that the
condition that EΓ0

0 6= ∅ imposed in the statement of Proposition 12 can be dropped.

5.4 Describing the varieties EΓ for classical Lie algebras
In this subsection we assume that g is either soN or spN and e is an arbitrary nilpotent element
of g. It is quite surprising that in this setting we have a very uniform description of the algebra
U(g, e)ab

Γ . We call a partition λ = (λ1, . . . , λn) ∈ P1(N) exceptional if there exists a k 6 n such
that the parts λk, λk+1 are odd and the parts λi with i 6∈ {k, k + 1} are all even. Note that
∆(λ) = {(k, k + 1)} and ∆bad(λ) = ∅, which shows that all exceptional partitions in P1(N) are
non-singular. Using the KS algorithm, it is straightforward to see that any nilpotent element of
g associated with an exceptional partition λ is Richardson (i.e. is induced from 0).

We call a nilpotent element e ∈ g almost rigid if the partition λ = (λ1, . . . , λn) ∈ Pε(N)
of e has the property that λi − λi+1 ∈ {0, 1} for all i 6 n (recall that λj = 0 for j > n by
convention). Since any such partition has no bad 2-steps, all almost rigid nilpotent elements of
g are non-singular.

Theorem 12. Let λ = (λ1, . . . , λn) ∈ Pε(N) and let e = e(λ) be a nilpotent element of g
associated with λ. Then U(g, e)ab

Γ is isomorphic to a polynomial algebra in s(λ) variables unless
g is of type D and λ ∈ Pε(N) is exceptional, in which case U(g, e)ab

Γ is a polynomial algebra in
s(λ) + 1 = (λ1 − λn + 1)/2 variables.

Proof. We denote by O the G-orbit of e = e(λ), adopt the notation of § 2.1 pertaining to ge,
and choose the subspaces V [i], 1 6 i 6 n, as in the proof of Lemma 1. In proving the theorem
we may and will assume that G = SL(V ) ∩G(Ψ) where G(Ψ) is the stabiliser in GL(V ) of the
bilinear form Ψ = ( · , · ).

(a) Let I = {1 6 i 6 n : i′ = i, λi > λi+1} and set ν(λ) := |I|. Note that ν(λ) is the
number of distinct λi with i = i′. For i ∈ I we let gi denote the involution in G(Ψ) such that
gi(e

svj) = (−1)δi,jes(wj) for all 1 6 j 6 n and 0 6 s 6 λj , where δi,j is the Kronecker delta, and

define Γ̃ := 〈gi : i ∈ I〉, a subgroup of G(Ψ). As the involutions gi pairwise commute, Γ̃ is an
elementary abelian 2-group of order 2ν(λ). Using [Jan04, 3.8, 3.13], it is straightforward to see
that the centraliser Ge is generated by Γ̃ ∩ SL(V ) and G◦e (see also [McG94, Theorem 2.7′]).

Let H0 denote the image of H0 in ce = ge/[ge, ge]. Since H0 is spanned by elements that
preserve every subspace V [i] with 1 6 i 6 n, direct verification shows that the group Γ̃ acts
trivially on H0. Since G◦e acts trivially on ce and Ge =

(
Γ̃∩SL(V )

)
·G◦e by our preceding remark,

we now deduce that H0 ⊆ cΓe . In view of Corollary 1, this yields

dim cΓe > dim(H0/H
+
0 ) = s(λ).

The proof of Corollary 1 also shows that the images of ζ
i+1,λi+1−1
i with (i, i + 1) ∈ ∆(λ) in

the quotient space ce := ce/H0 form a k-basis of ce. Note that gi+1 ∈ Γ̃ for every 2-step (i, i+ 1)
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of λ and, moreover, gi, gi+1 ∈ Γ̃ if (i, i+1) is a 2-step of λ such that λi 6= λi+1. If (j, j+1) ∈ ∆(λ)
then direct computation shows that

gi(ζ
j+1,λj+1−1
j ) =

{
ζ
j+1,λj+1−1
j if j /∈ {i− 1, i}
−ζj+1,λj+1−1

j if j ∈ {i− 1, i}.
(6)

Let ζ̄
i+1,λi+1−1
i denote the image of ζ

i+1,λi+1−1
i in ce and suppose that

gigj

( ∑
(k,k+1)∈∆(λ)

akζ̄
k+1,λk+1−1
k

)
=

∑
(k,k+1)∈∆(λ)

akζ̄
k+1,λk+1−1
k (∀ i, j ∈ I)

for some ak ∈ k. Set α :=
∑

(k,k+1)∈∆(λ) akζ̄
k+1,λk+1−1
k . If ak1 6= 0 and ak2 6= 0 for some (k1,

k1 + 1), (k2, k2 + 1) ∈ ∆(λ) with k1 + 1 < k2, then it follows from (6) that gk1+1gk2+1(α) 6= α, a
contradiction. If ak 6= 0 and ak+1 6= 0 for some (k, k+ 1), (k+ 1, k+ 2) ∈ ∆(λ), then λk−1 > λk >
λk+1 > λk+2 > λk+3 if k > 1 and λ1 > λ2 > λ3 > λ4 if k = 1, which implies that gk, gk+2 ∈ Γ̃.

Since gkgk+2(α) 6= α by (6), we now deduce that α = akζ̄
k+1,λk+1−1
k for some (k, k + 1) ∈ ∆(λ).

If ak 6= 0 and I is not contained in {k, k+ 1} then it is straightforward to see that gigk+1(α) 6= α
for any i ∈ I\{k, k+ 1}. Therefore, α 6= 0 implies that I ⊆ {k, k+ 1} where (k, k+ 1) is a 2-step
of λ.

If g is not of type C and α 6= 0, then the above implies that ∆(λ) = {(k, k + 1)} for some
k < n and all λi with i 6∈ {k, k + 1} are even. So λ is exceptional and h has type D in this case.
Finally, if g is of type C then det(gi) = 1 for all i ∈ I and hence Γ̃ = Γ̃∩ SL(V ). Furthermore, if
(k, k + 1) is a 2-step of λ then gk+1(α) = −α by (6). So in type C it must be that α = 0.

As a result of these deliberations we obtain that cΓe = H0 and dim cΓe = s(λ) unless λ is an
exceptional partition in P1(N), in which case dim cΓe = s(λ) + 1.

(b) Suppose that λk − λk+1 > 2 for some k ∈ {1, . . . , n}. For each i ∈ {1, . . . , k} we denote
by V ′[i] the linear span of all es(wi) with 1 6 s 6 λi − 2 and set

Vk :=

( k⊕
i=1

V ′[i]

)⊕(⊕
i>k

V [i]

)
,

a non-degenerate subspace of V with respect to Ψ. The stabiliser Lk of Vk in G is a Levi subgroup
of G and lk := Lie(Lk) is isomorphic to glk×mk where mk is a Lie algebra of the same type as g.

Let tk be the semisimple element of g with Ker tk = Vk such that tk(wi) = −wi and
tk(e

λi−1wi) = eλi−1wi for all 1 6 i 6 k. It is straightforward to see that tk spans the one-
dimensional centre of the Lie algebra lk. Let ek be the nilpotent element of lk with the property
that ek(wi) = ek(e

λi−2wi) = ek(e
λi−1wi) = 0 for 1 6 i 6 k and ek(e

swi) = es+1wi for all (i, s)
with i > k and 0 6 s 6 λi − 1 and all (i, s) with 1 6 i 6 k and 1 6 s 6 λi − 3. By construction,
ek ∈ mk.

In view of Corollary 6, passing from (g, e) to (lk, ek) corresponds to applying Case 1 of the
KS algorithm at index k. Hence the orbit O lies in the Zariski closure of the decomposition class
(AdG) · (ek + k×tk) and e ∈ Indg

lk
(Ok) where Ok is the Lk-orbit of ek.

Let Wk be the span of all eλi−1wi with 1 6 i 6 k and set Ṽk := Vk ⊕ Wk. Let Pk be
the parabolic subgroup of G which stabilises the partial flag V ⊃ Ṽk ⊃ Wk in V . Using the
description of ge in § 2.1 it is immediate that ge ⊂ Lie(Pk) which, in turn, implies that G◦e ⊂ Pk.
Since Lk is contained in Pk as well and Γ̃ ∩ SL(V ) ⊂ Lk by the definition of Γ̃, we now obtain
Ge = (Γ̃ ∩ SL(V )) ·G◦e ⊂ Pk.
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(c) The maximality of Lk in the class of Levi subgroups of G yields that Lk is a Levi subgroup
of Pk and Pk = LkUk where Uk = Ru(Pk). Furthermore, our discussion in part (b) implies that
e ∈ Lie(Pk) is induced from ek ∈ lk and Ge ⊂ (Lk)ek · Uk.

Continuing the process described in part (b) as many times as possible and using the
transitivity of induction stated in Proposition 6(3), we shall eventually arrive at a parabolic
subgroup P = LU ofG and a nilpotent element e0 ∈ l = Lie(L) such thatGe ⊂ P and e ∈ Indg

l (O0)
where O0 = (AdL)e0. From the description in part (b) it follows that l ∼= l̄⊕m where m has the
same type as g and l̄ is a Lie algebra direct sum of s(λ) copies of various glki with ki ∈ N. Since
the process terminates at the s(λ)th step, the nilpotent element e0 ∈ m must be almost rigid
and hence non-singular.

Let M be the special orthogonal or symplectic group with Lie(M) = m and denote by Γ(0)
the component group Me0/M

◦
e0 . Let λ0 be the partition of e0 ∈ m. If λ0 is not exceptional, then,

combining Corollary 5 with Corollary 10(i), we deduce that U(m, e0)ab
Γ(0)
∼= S

(
c
Γ(0)
e0

)
. Since in the

present case c
Γ(0)
e0 = {0} by our discussion in part (a) (applied to e0 ∈ m) we conclude that the

maximal spectrum of U(m, e0)ab
Γ(0) is a single point! Note that U([l, l], e0) ∼= U([̄l, l̄])⊗U(m, e0) as

k-algebras and both tensor factors are stable under the natural action of the reductive part of
Le0 on U([l, l], e0). Proposition 12 now yields that EΓ 6= ∅ and dim EΓ > dim z(l). On the other
hand, dim z(l) = s(λ) = dim cΓ(e) by our discussion in part (a) applied to e ∈ g. In this situation
Corollary 10(ii) yields that U(g, e)ab

Γ
∼= S(cΓe ) ∼= k[X1, . . . , Xs(λ)].

(d) Finally, suppose that λ0 is exceptional. Since we only applied Step 1 of the KS algorithm
to reach e0, so must be λ. In particular, g is of type D. Since e0 is almost rigid and λ0 is
exceptional, we have that λ0 = (2, . . . , 2, 1, 1). Then Γ(0) = {1} which enables us to apply Step 2
of the KS algorithm. After doing so we arrive at a parabolic subgroup P ′ = L′U ′ ⊂ P such that
the centre of Lie(L′) has dimension s(λ) + 1 and e ∈ Lie(U ′) is a Richardson element of Lie(P ′).
Since Γ(0) = {1} and e0 is a Richardson element of l ∩ Lie(P ′), we also have that

Ge ⊂ Le0U = L◦e0U ⊂ (L ∩ P ′) · U ⊆ P ′.

Let l′ = Lie(L′) and adopt the notation of Proposition 12. Since the augmentation ideal of
the finite W -algebra U([l′, l′], 0) = U([l′, l′]) is (AdL′)-stable, we have that EΓ0

0 6= ∅. Applying
Proposition 12 now yields that EΓ 6= ∅ and dim EΓ > dim z(l′) = s(λ) + 1. As dim EΓ = cΓ(e) by
our discussion in part (a), Corollary 10(ii) applies to e, showing that U(g, e)ab

Γ is isomorphic to
a polynomial algebra in s(λ) + 1 variables.

The proof of the theorem is now complete. 2

5.5 Describing the varieties EΓ for exceptional Lie algebras
In this subsection, G is an exceptional algebraic group of adjoint type and g = Lie(G), a Lie
algebra of type G2, F4, E6, E7 or E8. We assume that e is an induced nilpotent element of g and
we embed it into an sl2-triple {e, h, f} ⊂ g. By the sl2-theory, all eigenvalues of adh are integers
and ge =

⊕
i>0 ge(i) where g(k) denotes the k-eigenspace of adh and ge(k) = ge ∩ g(k). Since

the derived subalgebra of ge is (adh)-stable, the vector space ce = ge/[ge, ge] carries a natural
Z>0-grading:

ce =
⊕
i>0

ce(i), ce(i) ∼= ge(i)/[ge, ge] ∩ g(i).

Let P (e) be the parabolic subgroup of G with p(e) :=
⊕

i>0 g(i). It is well known that P (e) is the
optimal parabolic subgroup for the G-unstable vector e ∈ g in the sense of the Kempf–Rousseau
theory; see [Pre03], for example. In particular, Ge ⊂ P (e).

1528

https://doi.org/10.1112/S0010437X13007823 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007823


Derived subalgebras of centralisers and finite W -algebras

Recall that e is called even if all eigenvalues of adh are in 2Z. It follows from the sl2-theory
that any even e ∈ g is a Richardson element of p(e). For e even, we denote by d(e) the number
of 2s on the weighted Dynkin diagram of e (see the second column of the tables in [Car85,
pp. 401–407]). It is well known (and easy to see) that d(e) coincides with the dimension of the
centre of the Levi subalgebra g(0) of g.

In what follows we shall rely on the detailed information on the centralisers of nilpotent
elements obtained by Lawther and Testerman in [LT11]. In fact, we shall require the extended
version of [LT11] which, due to its size, is only available as a preprint; see [LT07]. We shall also
rely on de Graaf’s computation of c(e) = dim ce in [deG13] and the explicit description of sheets
in exceptional Lie algebras obtained by Borho [Bor81] (in type F4) and Elashvili [Ela84] (in type
E) and recently double-checked by computational methods in [deGE09].

The number of sheets containing an induced nilpotent element is given in the third column
of Tables 1–6, whilst their ranks can be found in the fourth column. The numbers c(e) are listed
in the fifth column. This information is taken from the tables in [deGE09, deG13] and included
for the reader’s convenience. We should stress at this point that the last column of Tables 1–6
contains new information which will only become available after we establish the main results of
this subsection.

From now on we shall use freely the notation from the tables of [LT07].

Proposition 13. If g is an exceptional Lie algebra and e is an even nilpotent element of g, then
d(e) = cΓ(e) and U(g, e)ab

Γ
∼= S(cΓe ) is isomorphic to a polynomial algebra in d(e) variables.

Proof. (a) Since e is a Richardson element of p(e) and Ge ⊂ P (e), Proposition 12 implies that
in the present case EΓ 6= ∅ and dim EΓ > d(e).

(b) If e lies in a single sheet of g then inspecting Tables 1–6 reveals that c(e) = r(e) in all
cases. Since e is even we must have r(e) = d(e). Applying Corollary 10(i) then yields that there
is a Γ-equivariant algebra isomorphism U(g, e)ab ∼= S(c) and U(g, e)ab

Γ
∼= S(cΓe ) as algebras. On

the other hand, EΓ 6= ∅ and dim EΓ > d(e) by part (a). From this it follows that cΓe = ce, that is,
Γ acts trivially on ce, forcing

U(g, e)ab ∼= U(g, e)ab
Γ
∼= k[X1, . . . , Xd(e)].

From now on we assume that e lies in more than one sheet of g. According to Tables 1–6, in
this case we always have that Γ 6= {1}. By part (a) and our discussion in § 3.1, at least one of
the sheets containing e must have rank d(e) but it may happen that r(e) > d(e).

(c) In this part we assume that Γ ∼= S2. Inspecting Tables 1–6, one finds out that in this
case c(e)− d(e) ∈ {1, 2} (the values of d(e) can be found in [Car85, pp. 401–407], for example).
If c(e) = d(e) + 1, then combining Tables 1–6 with [Car85, pp. 405–407], one observes that the
Dynkin label of e is one of E8(b4), D7(a1), E6(a1), D5 + A2, E6(a3) if g is of type E8, one of E7(a4),
E6(a3), A4 if g is of type E7, and one of F4(a1), F4(a2) if g is of type F4.

Suppose that g is of type E8. If e has type E8(b4) then ce(4) is one-dimensional by [deG13].
Then [LT07, p. 290] yields that Γ is generated by the image of h4(−1) and ce(4) is spanned by the
image of v3. As (Ad c)(v3) = −v3 we deduce that Γ acts non-trivially on ce so that cΓ(e) 6 d(e).
Combining Corollary 10(ii) and part (a), we now deduce that U(g, e)ab

Γ is a polynomial algebra
in d(e) variables.

If e has type D7(a1) or D5 + A2 then ce(0) is one-dimensional by [deG13]. On the other hand,
it follows from [LT07, pp. 263, 277] that ge(0) is a one-dimensional toral subalgebra of g upon
which Γ acts non-trivially. Then again cΓ(e) 6 d(e) and we can argue as before to conclude that
U(g, e)ab

Γ is a polynomial algebra in d(e) variables.
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Now suppose that e has type E6(a1). This case is more subtle due to the complicated nature
of the generator of Γ. From [deG13] we know that ce(4) is one-dimensional, whilst [LT07, p. 261]
yields that ge(0) is simple and the largest trivial (ad ge(0))-submodule of ge(4) is spanned by v8.
From this it follows that ce(4) is generated by the image of v8. By [LT07, p. 261], the group Γ is
generated by the image of

c = n012
1

2210n112
1

2110n122
1

1110h1(−1)h2(−1)h3(−1)h5(−1)h6(−1)h8(−1).

Since the roots 012
1

2210 , 112
1

2110 , 122
1

1110 and 011
0

1000 are pairwise orthogonal, we have that
(Ad c)(e011

0
1000 ) =−e011

0
1000 . Since e011

0
1000 occurs with a non-zero coefficient in the expression

of v8 via Chevalley generators of g, this implies that (Ad c)(v8) = −v8. But then cΓ(e) 6 d(e)
and we can argue as in the previous cases to establish the polynomiality of U(g, e)ab

Γ .
If e has type E6(a3) then [deG13] says that ce = ce(2) is three-dimensional. In view of [LT07,

p. 234] this means that ce ∼= ge(2) as Γ-modules (in the present case the group C(e)◦ acts trivially
on ge(2)). As (Ad c)(v1) = −v1 we see that Γ acts non-trivially on ce, implying cΓ(e) 6 d(e). But
then again U(g, e)ab

Γ is a polynomial algebra in d(e) variables.
Suppose that g is of type E7. If e is of type E7(a4) then ce = ce(2) is four-dimensional by

[deG13]. As dim ge(e) = 4 by [LT07, p. 155], the image of v1 in ce is non-zero. Since Γ is generated
by the image of c = h4(−1) and (Ad c)(v1) = −v1 by loc. cit., we argue as before to deduce that
U(g, e)ab

Γ is a polynomial algebra in d(e) variables. The case where g is of type E7 and e is of
type E6(a3) is very similar. Here ce = c2(2) is two-dimensional by [deG13], the group Γ is again
generated by the image of c = h4(−1), the image of v1 in ce is non-zero and (Ad c)(v1) = −v1 by
[LT07, p. 149].

If e is of type A4 then d(e) = 2 and ce = ce(0) ⊕ ce(2) ⊕ ce(6) and all non-zero ce(i) are
one-dimensional; see [deG13]. By [LT07, p. 133], the group Γ is generated by the image of

c = n011
1

110n111
0

110n122
1

211n124
2

321h2(−1)h3(−1)h4(−1)h6(−1),

and ge(0) = [ge(0), ge(0)]⊕ Lie(T1) with [ge(0), ge(0)] ∼= sl3 and Lie(T1) spanned by the element
t ∈ Lie(T ) such that αi(t) = δ6,i for all 1 6 i 6 7. Direct computation shows that Ad c negates
t. But then d(e) = 2 > cΓ(e) and we can proceed as before.

Suppose that g is of type F4. If e is of type F4(a1) then dim ce(4) = 1 by [deG13]. In view of
[LT07, p. 81], this shows that the image of v2 in ce is non-zero. Since Γ is generated by the image
of c = h4(−1) and (Ad c)(v2) = −v2 by loc. cit., the result follows. If e is of type F4(a2) then
c2 = ce(2) is three-dimensional by [deG13]. As dim g2(2) = 3, the image of v1 in ce is non-zero.
It remains to note that Γ is generated by the image of c = h2(−1) and (Ad c)(v1) = −v1; see
[LT07, p. 80].

If c(e) = d(e) + 2, then combining Tables 1–6 with [Car85, pp. 405–407], one observes that
the Dynkin label of e is one of E8(a3), E8(a4), E8(a5) if g is of type E8, one of E7(a3), E6(a1) if g
is of type E7, and E6(a3) if g is of type E6.

Suppose that g is of type E8. If e has type E8(a3) then [deG13] says that both ce(8) and
ce(16) are one-dimensional. In view of [LT07, p. 295] this implies that the images of v3 and v7

in ce are linearly independent. Since loc. cit. also shows that Γ is generated by the image of
c = h4(−1) and (Ad c)(vi) = −vi for i = 3, 7, we deduce that cΓ(e) 6 d(e). Arguing as before, we
now conclude that in the present case U(g, e)ab

Γ is a polynomial algebra in d(e) variables.
If e has type E8(a4) then [deG13] shows that both ce(4) and ce(8) are one-dimensional. Thanks

to [LT07, p. 293] this yields that the images of v2 and v4 in ce are linearly independent. Since
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loc. cit. also shows that Γ is generated by the image of c = h4(−1)h8(−1) and (Ad c)(vi) = −vi
for i = 2, 4, we deduce that cΓ(e) 6 d(e). The result then follows as in the previous case.

Now suppose that e is of type E8(a5). In this case we have to work harder. First note
that ce = ce(2) ⊕ c2(10) and dim ce(10) = 2 by [deG13]. Since e is distinguished, ge(2) maps
isomorphically onto ce(2). By [LT07, pp. 288, 289], the group Γ is generated by the image of
c = h4(−1)h7(−1) and ge(2) has basis {v1, v2, e} such that (Ad c)(v1) = −v1 and (Ad c)(v2) = v2.
Since ge(i) ⊂ [ge, ge] for i = 4, 6, 8 by [deG13], it follows from [LT07, p. 288] that the subspaces
ge(4) = kv4, ge(6) = kv5 and ge(8) = kv6 are spanned by [v1, v2], [v2, [v2, v1]] and [v2, [v2, [v2,
v1]]], respectively (one should keep in mind here that (Ad c)(v4) = −v4, (Ad c)(v5) = v5 and
(Ad c)(v6) = −v6, which is immediate from [LT07, p. 289]). Also, [v1, [v1, v2]] = 0. Since

g(10) ∩ [ge, ge] = [ge(2), ge(8)] + [ge(4), ge(6)],

the left-hand side is spanned by u1 := [v1, [v2, [v2, [v2, v1]]]], u2 := [v2, [v2, [v2, [v2, v1]]]] and u3 :=
[[v1, v2], [v2, [v2, v1]]]. As [v1, [v2, v1]] = 0, the Jacobi identity yields u3 = u1 − [v2, [v1, [v2, [v2,
v1]]]] = u1. In view of [deG13] this implies that u1 and u2 form a basis of g(10) ∩ [ge, ge].
Note that (Ad c)(u1) = u1 and (Ad c)(u2) = −u2. Since it follows from [LT07, p. 289] (with the
misprint in the expression for v7 corrected in [LT11, p. 179]) that the kernel of (Ad c+Id)|ge(10) is
two-dimensional, we are now able to conclude that cΓ(e) 6 d(e), which yields the desired result
in the present case.

Suppose that g is of type E7. If e has type E7(a3) then dim ce(4) = dim ce(8) = 1 by [deG13],
whilst [LT07, p. 160] says that ge(4) = kv3, ge(8) = kv6 and Γ is generated by the image of
c = h4(−1). Since (Ad c)(v3) = −v3 and (Ad c)(v6) = −v6, this implies that cΓ(e) 6 d(e) as
desired.

If g is of type E7 and e has type E6(a1) then d(e) = 3 by [Car85, p. 404] and dim ce(0) =
dim ce(4) = 1 by [deG13]. By [LT07, p. 158], we have that the reductive part ge(0) = Lie(C(e))
is one-dimensional and Γ is generated by the image of

c = n012
1

221n112
1

211n12 2
1

111h1(−1)h2(−1)h3(−1)h5(−1)h6(−1).

Direct computation shows that Ad c acts as −Id on the one-dimensional toral subalgebra ge(0)
and the basis vectors v2, v3 ∈ ge(4) have non-zero weights with respect to the adjoint action of
the torus C(e)◦. Since dim ge(4) = 3, it follows that the image of v4 in ce is non-zero. As the roots
012

1
221 , 112

1
211 , 122

1
111 and 011

0
1000 are pairwise orthogonal, it must be that (Ad c)(e011

0
10 0 ) =

−e011
1

100 . As e011
0

100 occurs with a non-zero coefficient in the expression of v4 via Chevalley

generators of g we deduce that (Ad c)(v4) = −v4. But then cΓ(e) 6 d(e) and we can argue as in
the previous cases to establish the polynomiality of U(g, e)ab

Γ .
If g is of type E6 and e has type E6(a3) then dim ce(2) = 3 and dim ce(4) = 2 by [deG13],

whilst [LT07, p. 100] shows that Γ is generated by the image of c = h4(−1) and ge(2) has basis
{v1, v2, e} such that (Ad c)(v1) = −v1 and (Ad c)(v2) = v2. It is also immediate from loc. cit. that
[g2(e), g2(e)] has dimension 1. Since Ad c negates both v5 and v6 and these vectors are linearly
independent in ge(4), we get cΓ(e) 6 d(e), which yields the desired result in the present case.

(d) Next we assume that Γ ∼= S3. In this case e is one of E8(b5), E8(b6) or D4(a1) if g is of
type E8, one of E7(a5) or D4(a1) if g is of type E7, has type D4(a1) if g is of type E6 and has type
G2(a1) if g is of type G2.

If e is of type E8(b5) then d(e) = 3 and ce = ce(2) ⊕ ce(4) ⊕ ce(10) where dim ce(2) = 4,
dim ce(6) = 2 and dim ce(10) = 1; see [deG13]. On the other hand, [LT07, pp. 285, 286] shows
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that dim ge(2) = 4 and dim ge(6) = 2, implying that the canonical homomorphism ge → ge/[ge,
ge] is bijective on ge(2) ⊕ ge(6). It also follows from loc. cit. that Γ contains the image of
c1 = h1(ω)h2(ω)h5(ω2) where ω is a third primitive root of 1. Direct computation shows that
(Ad c1)(v1) = ωv1, (Ad c1)(v2) = ω2v2, (Ad c1)(v6) = ω2v6 and (Ad c1)(v7) = ωv7. From this it
is immediate that cΓ(e) 6 7− 4 = d(e). So we can argue as before to deduce the polynomiality
of U(g, e)ab

Γ .
If e is of type E8(b6) then d(e) = 2 and ce = ce(2) ⊕ ce(4) where dim ce(2) = 4 and

dim ce(4) = 1; see [deG13]. By [LT07, p. 275], dim ge(2) = dim ge(4) = 4 and Γ is generated
by c1 = h1(ω)h2(ω)h5(ω2), where ω is a third primitive root of 1, and by

c2 = n100
0

0000n000
1

0000n000
0

1000h2(−1)h3(−1)h4(−1)h5(−1)h8(−1).

Direct verification shows that (Ad c1)(v1) = ωv1, (Ad c1)(v2) = ω2v2 and (Ad c1)(v3) = v3, which
in view of loc. cit. implies that dim ce(2)Γ 6 2. Similarly, (Ad c1)(v6) = ωv6, (Ad c1)(v7) = ω2v7,
(Ad c1)(v5) = v5 and (Ad c1)(v8) = v8. Since {v1, v2, v3, e} and {v5, v6, v7, v8} are bases of ge(2)
and ge(4), respectively, and dim ce(4) = 1 by our earlier remark, the vectors [v1, v2], [v1, v3] and
[v2, v3] must form a basis of g2(4)∩ [ge, ge]. Comparing the respective eigenvalues for Ad c1 yields
v6, v7 ∈ [ge, ge]. Using the explicit formulae for v1 and v2 in [LT07, p. 276], one observes that
e122

1
2210 occurs with coefficient ±3 in the expression of [v1, v2] via Chevalley generators of g. As

a consequence, v5 + λv8 ∈ [ge, ge] for some λ ∈ k, implying that ce(4) is generated by the image
of v8 = e122

1
1000 . Since the roots

100
0

0000 , 000
1

0000 , 000
0

1000 , 122
1

1000

are pairwise orthogonal, we have that (Ad c2)(v8) = −v8. But then cΓ(e) = dim ce(2)Γ 6 2 = d(e)
and we can argue as in the previous cases.

Now suppose that e has type D4(a1). Then d(e) = 1 by [Car85, pp. 402, 403, 405]. If g is of
type E8 then ce = ce(2) has dimension 3 by [deG13] and [ge(0), ge(2)] has codimension 3 in ge(2)
by [LT07, pp. 190, 191]. This implies that ce is generated by the images of v25, v26 = e2 + e5 and
v27 = e. By loc. cit., the group Γ is generated by the images of c1 = n111

1
0000n111

0
1000h2(−1)

and c2 = (n122
1

1100n112
1

2100h1(−1)h2(−1)h6(−1))g where

g = x001
0

0000 (1
3)n001

0
0000h1(4)h2(−4)h3(16)h4(−48)h5(16)h6(−8)x001

0
0000 (−1

3).

Since Ad c1 fixes e and permutes the lines ke2 and ke5, it must permute e2 and e5. But then
(Ad c1)(v26) = v26. Similarly, Ad c1 must permute e001

1
0000 and e001

0
1000 . Since the roots 111

1
0000 ,

111
0

1000 , 011
0

0000 are pairwise orthogonal and e011
0

0000 occurs with a non-zero coefficient in the

expression of v25 via Chevalley generators of g, it must be that (Ad c1)(v25) = −v25± 2v26. Note
that (Ad g)(e2) is a linear combination of e2 and e001

1
0000 and (Ad g)(e5) is a linear combination

of e5 and e001
0

1000 . From this it is immediate that (Ad c2)(v26) is a linear combination of e2,

e001
1

0000 , e3 and e011
0

0000 . In particular, (Ad c2)(v26) 6= v26. In conjunction with our earlier

remarks, this implies that cΓe is spanned by the image of e. Therefore, cΓ(e) = d(e) and we can
argue as before to deduce the polynomiality of U(g, e)ab

Γ .

1532

https://doi.org/10.1112/S0010437X13007823 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007823


Derived subalgebras of centralisers and finite W -algebras

The cases where e is of type D4(a1) and g is of type E6 or E7 are very similar because here
e, c1 and c2 have the same expressions as in the previous case; see [LT07, pp. 93, 124]. If g is of
type E7, then ce = ce(2) is three-dimensional, whilst in type E6 we have that ce = ce(0) ⊕ ce(2)
where dim ce(2) = 3 and ce(0) ∼= ge(0) as vector spaces; see [deG13]. Arguing as in the E8-case,
we obtain that ce(2)Γ is generated by the image of e. This takes care of the E7-case and reduces
the E6-case to verifying that the group generated by c1 and c2 acts fixed point freely on the
two-dimensional toral subalgebra ge(0). Since ge(0) is described explicitly in [LT07, p. 93], the
latter is easily seen by a direct computation (we leave the details to the interested reader).

Finally, suppose that g is of type G2 and e has type G2(a1). Then ce = ce(2) is three-
dimensional by [deG13] and Γ contains the image of c1 = h1(ω) where ω is a primitive third
root of 1; see [LT07, p. 66]. Since ce(2) ∼= ge(2) has basis {e11, e21, e} and e11, e21 are short root
vectors, it is straightforward to see that cΓe is spanned by the image of e. Then cΓ(e) = d(e) and
we can argue as in the previous cases.

(d) If Γ ∼= S4 then g is of type F4 and e has type F4(a3). In this case ce =
ce(2) ∼= ge(2) is six-dimensional, whilst Γ ∼= C(e) is generated by c1 = h1(ω)h3(ω), c2 =
n1000n0010 h2(−1)h3(−1) and c3 = (n0011 h3(−2

3)h4(2
3))u where ω is a third primitive root of

1 and u = x0011 (−1
2)x0001(1)x0010(−1); see [LT07, p. 77]. Straightforward verification shows

that (Ad c1)(vi) = ωvi for i = 2, 4, (Ad c1)(vi) = ω−1vi for i = 1, 3 and (Ad c1)(v5) = v5. Since
ge(2) has basis {v1, v2, v3, v4, v5, e}, it follows that ge(2)Γ ⊆ span {v5, e}. By [LT07, p. 77],
e = e0100 + e1120 + e1111 + e0121 and v5 = e0100 + e1120. Since c2 ∈ Ge and Ad c2 permutes the
lines ke0100 and ke1120, it must be that (Ad c2)(v5) = v5.

Unfortunately, this means that we have to examine (Ad c3)(v5) which is rather more
complicated. Suppose for a contradiction that (Ad c3)(v5) = v5. Then (Ad c3)(e1111 + e0121) =
e1111 + e0121. Note that (Adu)−1(e1111 + e0121) ≡ e1111 + e0121 mod V where V = span {e0122,
e1121, e1122}. It follows that

Ad
(
n0011 h3(−2

3)h4(2
3)u−1

)
(e1111 + e0121) ≡ λe1111 + µe0110 mod n0011 (V )

for some λ, µ ∈ k×. Since n0011 (V ) = span {e0100, e1110, e1100} we have that

Ad
(
u−1c3

)
(e1111 + e0121) = λe1111 + µe0110 + ae0100 + be1110 + ce1100

for some a, b, c ∈ k. If a 6= 0 then e0100 would occur with a non-zero coefficient in the expression
of (Ad c3)(v5) = (Adu)(λe1111 + µe0110 + ae0100 + be1110 + ce1100) via Chevalley generators of
g contrary to our assumption that Ad c3 fixes v5. Hence a = 0. But then e0110 occurs with
coefficient µ 6= 0 in the expression of (Ad c3)(v5) via Chevalley generators of g, a contradiction.
We thus conclude that ge(2)Γ = ke, which yields cΓ(e) = 1 = d(e).

(e) Finally, suppose that Γ ∼= S5. Then g is of type E8 and e has type E8(a7). By [LT07,
p. 251], the group Γ ∼= C(e) contains c1 = h2(ζ)h3(ζ4)h4(ζ)h6(ζ4)h7(ζ)h8(ζ2), where ζ is a fifth
primitive root of 1, and

c2 = n010
0

0000n001
0

0000n000
1

0000n000
0

0100n000
0

0010n000
0

0001h,

where h = h1(−1)h3(−1)h5(−1)h6(−1)h8(−1). By [deG13], we have that ce = ce(2) ∼= ge(2).
Direct computation shows that the basis {v1, v2, . . . , v9, e} of ge(2) described in [LT07, p. 256]
consists of eigenvectors for Ad c1. More precisely, one has (Ad c1)(vi) = ζvi for i = 2, 5,
(Ad c1)(vi) = ζ2vi for i = 1, 8, (Ad c1)(vi) = ζ3vi for i = 3, 6, (Ad c1)(vi) = ζ4vi for i = 4, 7
and (Ad c1)(v9) = v9. Therefore, ge(2)Γ ⊆ span {v9, e}. Since

v9 = e000
0

1000 + e112
1

1100 + e111
0

1111 + e112
1

1110 ,
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we see that (Ad c2)(v9) is a non-zero linear combination of e011
0

1100, e111
1

1110 , e122
1

1000 and

e111
1

1111 . But then (Ad c2)(v9) 6= v9, forcing ge(2)Γ = ke and implying that cΓ(e) = 1 = d(e).

So we can argue as before to show that U(g, e)ab
Γ is a polynomial algebra in d(e) variables. The

proof of the proposition is now complete. 2

Next we shall investigate the case where e is an induced nilpotent element of g which is not
even and lies in a single sheet of g.

Proposition 14. Suppose that e is not even, induced, and lies in a single sheet S(e) of g.
Assume further that e is not of type E7(a2) or E6(a3) +A1 if g is of type E8, not of type D6(a2) if
g is of type E7 or E8, not of type A3 + A1 if g is of type E6, and not of type C3(a1) if g is of type
F4. Then c(e) = rk S(e) and U(g, e)ab is a polynomial algebra in c(e) variables. Furthermore,
U(g, e)ab

Γ
∼= S(cΓe ) as algebras and the value of cΓ(e) = dim cΓe is given in the sixth column of

Tables 1–6.

Proof. If e satisfies the above conditions then c(e) = rk S(e) by [deG13, Proposition 2].
Corollary 10(i) then shows that U(g, e)ab ∼= S(ce) and U(g, e)ab

Γ
∼= S(cΓe ) as k-algebras. Since

the value of c(e) is computed in [deG13] in all cases, it remains to determine the value of cΓ(e).
We thus may assume from now on that Γ 6= {1}. Inspecting Tables 1–6, one observes that this
happens only if g is of type E8 or E7 and Γ ∼= S2.

(a) Suppose that g is of type E8. Then e is one of E7(a3), E6(a1) + A1, D6(a1), A4 + 2A1,
D5(a1) or A4 + A1.

If e is of type E7(a3) then [deG13] shows that ce = ce(2)⊕ce(4)⊕ce(6)⊕ce(8) and each non-zero
ce(i) is one-dimensional. Since [ce(1), ce(1)] is one-dimensional by [deG13], using the explicit
expressions for the vi given in [LT07, p. 272] it is straightforward to see that [v1, v2] ∈ k×v3

and [v3, v5] = ±v9. This implies that ce has basis consisting of the images of e, v5, v8 and v10.
By [LT07, p. 271], the group Γ is generated by the image of c = h4(−1). As (Ad c)(v5) = −v5,
(Ad c)(v8) = v8 and (Ad c)(v10) = −v10 we deduce that cΓ(e) = 2 in the present case.

If e is of type E6(a1) + A1 then [deG13] shows that ce = ce(0)⊕ce(2)⊕ce(4) and each non-zero
ce(i) is one-dimensional. It follows from [LT07, pp. 271, 272] that ge(0) is a one-dimensional toral
subalgebra spanned by the element t ∈ Lie(T ) such that αi(t) = δ7,i for 1 6 i 6 8. The explicit
expressions for the vi in loc. cit. show that [v1, v2] = ±v3, [v1, v6] = ±v7 and [v2, v5] = ±v8. It
follows that the images of t, e and v9 form a basis of ce. It is also shown in loc. cit. that Γ is
generated by the image of

c = n124
2

4321n134
2

3321n234
2

3221h1(−1)h2(−1)h3(−1)h5(−1)h6(−1)h8(−1).

It is straightforward to see that (Ad c)(t) = −t. Since the roots 124
2

4321 , 134
2

3321 , 234
2

3221 and
011

0
1000 are pairwise orthogonal, we have that (Ad c)(e011

0
1000 ) = −e011

0
1000 . Since e011

0
1000

occurs with a non-zero coefficient in the expression of v9 via Chevalley generators of g, this
implies that (Ad c)(v9) = −v9. As a result, cΓe is spanned by the image of e and hence cΓ(e) = 1.

If e is of type D6(a1) then [deG13] shows that ce = ce(2) ⊕ ce(10) where dim ce(2) = 2 and
dim ce(10) = 1. By [LT07, pp. 256, 257], the Lie algebra ge(0) is semisimple and ge(2)ad ge(0)

is spanned by v5 and e, whilst ge(10) is spanned by v26 and v27. Since it is easy to see that
[v1, v20] = ±v26, the images of e, v5 and v27 form a basis of ce. By loc. cit., the group Γ is
generated by the image of c = n001

1
1111n011

0
1111h2(i)h3(i), where i is a fourth primitive root
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of 1, and Ad c fixes v27. Note that v5 = e2 + e3 and Ad c permutes the lines ke2 and ke3. As
e = e2 + e3 + (sum of other root vectors) and c fixes e, it must be that (Ad c)(v5) = v5. This
shows that cΓ(e) = c(e) = 3.

If e is of type A4 + 2A1 then ce = ce(0) is one-dimensional by [deG13]. On the other hand, it
is immediate from [LT07, p. 221] that ge(0) = [ge(0), ge(0)] ⊕ Lie(T1) where [ge(0), ge(0)] ∼= sl2
and Lie(T1) is a one-dimensional toral subalgebra spanned by the element t ∈ Lie(T ) such that
αi(t) = δ5,i for all 1 6 i 6 8. This implies that ce is spanned by the image of t. Since Γ is generated
by the image of

c = n122
1

2210n122
1

2111n135
3

4321n235
2

4321h1(−1)h3(−1)h4(−1)h6(−1),

it is straightforward to check that (Ad c)(t) = −t. So cΓ(e) = 0 in the present case and hence
U(g, e)ab

Γ
∼= k (i.e. EΓ is a single point!).

If e is of type D5(a1) then [deG13] shows that ce = ce(2)⊕ce(4) and dim ce(2) = dim ce(4) = 1.
It follows from [LT07, pp. 219, 220] that ge(0) ∼= sl4, the subspace ge(2)ad ge(0) has basis {v15, e},
and ge(4) is spanned by v17. Direct computation shows that [v1, v8] = ±v15, implying that
the images of e and v17 span ce. By [LT07, p. 219], the group Γ is generated by the image of

c= n123
1

3210n123
2

2210h1(−1)h2(−1)h4(−1). Since the roots 123
1

3210 , 123
2

2210 , 111
0

0000 are pairwise

orthogonal, (Ad c)(e111
0

0000 ) = −e111
0

0000 . Since v17 = e111
0

0000 + (sum of other root vectors),

we have (Ad c)(v17) = −v17. As a result, cΓ(e) = 1.
If e is of type A4 + A1 then ce = ce(0) is one-dimensional by [deG13]. On the other hand,

[LT07, p. 214] shows that ge(0) = [ge(0), ge(0)] ⊕ Lie(T1) where [ge(0), ge(0)] ∼= sl3 and Lie(T1)
is spanned by the element t ∈ Lie(T ) such that α5(t) = 3, α7(t) = −5 and αi(t) = 0 for i = 1, 2,
3, 4, 6, 8. Since Γ is generated by the image of

c = n011
1

1110n111
0

1110n122
1

2100n124
2

3210h1(−1)h3(−1)h4(−1)h6(−1)h8(−1),

it is straightforward to check that Ad c negates t. We thus deduce that cΓ(e) = 0 and hence EΓ

is a single point!
(b) Now suppose that g is of type E7. Then e is one of D5(a1), A4 + A1, D4(a1) + A1 or

A2 + A1.
If e is of type D5(a1) then ce = ce(0)⊕ce(2)⊕ce(4) and all non-zero ce(i) are one-dimensional;

see [deG13]. By [LT07, p. 140], we have that ge(0) = [ge(0), ge(0)]⊕Lie(T1), where [ge(0), ge(0)] ∼=
sl2, and ge(2)ad ge(0) has basis {e, v7}. It is also shown in loc. cit. that Γ is generated by the image
of c = n123

1
321n123

2
221h1(−1)h2(−1)h4(−1) and ge(1) is spanned by v23 which is fixed by the

adjoint action of Ge. It is straightforward to see that Lie(T1) is spanned by the element t ∈ Lie(T )
such that αi(t) = δ6,i for 1 6 i 6 7 and [v1, v4] = ±v7. Since Ad c negates t we deduce that cΓe is
spanned by the images of e and v23 and so cΓ(e) = 2.

If e is of type A4 + A1 then ce = ce(0) is two-dimensional by [deG13]. On the other hand it
is immediate from [LT07, p. 138] that ge(0) is a two-dimensional subalgebra of Lie(T ) spanned
by t1 and t2 such that αi(t1) = δ5,i and αi(t2) = δ7,i for 1 6 i 6 7. Since in the present case Γ is
generated by the image of

c = n011
1

111n111
0

111n121
1

210n124
2

321h3(−1)h4(−1)h6(−1),

one checks by direct computation that Ad c negates both t1 and t2. Therefore, cΓ(e) = 0 and
hence EΓ is a single point!
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If e is of type D4(a1) + A1 then ce = ce(2) is two-dimensional by [deG13]. By [LT07, pp. 129,
130], we know that ge(0) is semisimple, ge(2)ad ge(0) has basis {v9, v10, v11, e}, and Γ is generated
by the image of c = n111

1
000n111

0
100h2(−1). It also follows from loc. cit. that [ge(1), ge((1)]ad ge(0)

is spanned by [v1, v2] and [v3, v4]. Since dim ce(2) = 2, the above yields that [v1, v2] and [v3, v4] are
linearly independent. It is straightforward to see that (Ad c)(v1) ∈ k×v3 and (Ad c)(v2) ∈ k×v4.
So Ad c must permute the lines k×[v1, v2] and k×[v3, v4]. Since Ad c acts on ge(2)ad ge(0) as
an involution, this implies that it has eigenvalues ±1 on the subspace [ge(1), ge((1)]ad ge(0) =
k[v1, v2] ⊕ k[v3, v4]. Since the roots 111

1
000 , 111

0
100 , 000

0
001 are pairwise orthogonal, Ad c fixes

v11 = e7. Since Ad c also fixes e = e2 + e5 + (sum of other root vectors) and permutes the lines
ke2 and ke5, it must be that (Ad c)(e2 + e5) = e2 + e5. So Ad c fixes v10 = e2 + e5. But then
the (−1)-eigenspace of Ad c on ge(2)ad ge(0) is one-dimensional. In conjunction with our earlier
remarks, this gives c(e) = cΓ(e) = 2.

If e is of type A2 + A1 then ce = ce(0) is one-dimensional by [deG13], whilst [LT07, p. 112]
shows that ge(0) = [ge(0), ge(0)] ⊕ Lie(T1) where [ge(0), ge(0)] ∼= sl4 and Lie(T1) is spanned by
the element t ∈ Lie(T ) such that αi(t) = δ4,i for 1 6 i 6 7. Furthermore, the group Γ is generated
by the image of

c = n112
1

111n112
1

210n134
2

321h3(−1)h5(−1)h7(−1).

Direct verification shows that Ad c negates t. Since ce is spanned by the image of t we conclude
that cΓ(e) = 0 in the present case and hence EΓ is a single point!

This completes the proof of the proposition. 2

Now we deal with those non-even, induced nilpotent elements which lie in more than one
sheet of g. We first recall that if a nilpotent orbit O ⊂ g is induced from a nilpotent orbit
OL ⊂ Lie(L), where P = LU is a proper parabolic subgroup of G with unipotent radical U , then
the adjoint action of G induces a surjective morphism

π : G×P
(
OL + Lie(U)

)
→ O, (g, x) 7−→ (Ad g)x,

sometimes referred to as a generalised Springer map; see [Fu10] for more detail. It is immediate
from [Los11a, Proposition 6.1.2(4)] that π is birational (that is, generically injective) if and only
if Ge ⊂ P for some e ∈ O ∩ (OL + Lie(U)).

Proposition 15. Suppose that e is not even, induced, and lies in more than one sheet of g.
Assume further that e is not of type E7(a5) if g is of type E8. Then the following hold:

(i) there exists a parabolic subgroup P = LU of G such that the pair (P, e) satisfies all
conditions of Proposition 12 and the centre of L has dimension r(e);

(ii) U(g, e)ab
Γ is isomorphic to a polynomial algebra in r(e) = cΓ(e) variables.

Proof. Inspecting Tables 1–6, one observes that if e not even, induced, and lies in more than one
sheet of g then g has type E8 or E7 and all sheets containing e have the same rank equal to r(e).
Part (i) then follows from [Fu10, Proposition 3.1], which implies that in our situation there exists
at least one birational morphism π : G×P

(
OL + Lie(U)

)
→ O with e ∈ O (the proof of [Fu10,

Proposition 3.1] relies on Fu’s earlier results obtained in [Fu07]). In view of Proposition 12 and
part (ii) of Corollary 10, it thus suffices to show that the inequality r(e) > cΓ(e) holds for all
nilpotent elements e as above and EΓ0

0 6= ∅ (the notation of Proposition 12).
Suppose that g is of type E8. Then e is one of E7(a4), D7(a2), A3 + A2.

1536

https://doi.org/10.1112/S0010437X13007823 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007823


Derived subalgebras of centralisers and finite W -algebras

If e has type E7(a4) then r(e) = 2 by [deGE09] and ce = ce(2) is three-dimensional by [deG13].
According to [LT07, pp. 259, 260], the reductive group C(e)◦ acts trivially on ge(2) which has
basis {v3, v4, v5, e}, and Γ is generated by the image of c = h4(−1) which negates v1, v2, v3

and fixes v4, v5 and e. It is also immediate from loc. cit. that [ge(1), ge(1)] = k[v1, v2]. Since
dim ce(2) = 3 and dim ge(2) = 4 it must be that [v1, v2] 6= 0. Since Ad c fixes [v1, v2] we now
deduce that the image of v3 in ce is non-zero and hence cΓ(e) = r(e) = 2. By [Fu10, 3.4], we
can take for P = LU a parabolic subgroup of G with DL of type D6 and for e0 ∈ Lie(L) a rigid
nilpotent element associated with the partition (3, 22, 15). But then EΓ0

0 = E0 6= ∅ because E0 is
a single point by Remark 6(a).

If e has type D7(a2) then r(e) = 2 by [deGE09], whilst [deG13] shows that ce = c(0) ⊕
ce(2) ⊕ ce(6) and all non-zero ce(i) are one-dimensional. On the other hand, [LT07, pp. 267,
268] yields that Γ is generated by the image of c = n235

3
4321n245

2
4321h4(−1)h5(−1) and ge(0) is

spanned by the element t ∈ Lie(T ) such that αi(t) = δ1,i for all 1 6 i 6 8. It is straightforward
to see that Ad c negates t. It follows that r(e) = 2 > cΓ(e). By [Fu07, Example 5.12], e is
Richardson and we can take for P = LU a parabolic subgroup of G with DL of type A3 + A3

and for e0 the zero nilpotent element of l = Lie(L). Then EΓ0
0 contains the augmentation ideal

of U([l, l], e0) = U([l, l]). In particular, EΓ0
0 6= ∅.

If e has type A3 + A2 then r(e) = 1 and ce = ce(0) ⊕ ce(2) where dim ce(0) = dim ce(2) = 1;
see [deGE09, deG13]. By [LT07, p. 201], the group Γ is generated by the image of

c = n001
1

1100n011
0

1100n012
1

2110h4(−1)h5(−1)h6(−1)h7(−1)

and ge(0) = [ge(0), ge(0)] ⊕ Lie(T1) where [ge(0), ge(0)] ∼= so5. Furthermore, Lie(T1) is spanned
by the element t ∈ Lie(T ) such that α1(t) = −3, α5(t) = 2, α8(t) = −2 and αi(t) = 0 for
i = 2, 3, 4, 6, 7. It is straightforward to check that Ad c negates t. But then r(e) = 1 > cΓ(e).
By [Fu10, 3.4], we can take for P = LU a parabolic subgroup of G with DL of type D7 and for
e0 ∈ Lie(L) a rigid nilpotent element associated with the partition (22, 110). Then Remark 6(a)
yields EΓ0

0 6= ∅.
Now suppose that g is of type E7. Then e has type A3 + A2. This case is almost identical to

the previous case. Here we again have that r(e) = 1 and ce = ce(0) ⊕ ce(2) where dim ce(0) =
dim ce(2) = 1; see [deGE09, deG13]. Also, [LT07, p. 131] shows that the group Γ is generated by
the image of

c = n001
1

110n011
0

110n012
1

211h4(−1)h5(−1)h6(−1)h7(−1),

ge(0) = [ge(0), ge(0)]⊕ Lie(T1) where [ge(0), ge(0)] ∼= sl2, and Lie(T1) is spanned by the element
t ∈ Lie(T ) such that α1(t) = −3, α5(t) = 2 and αi(t) = 0 for i = 2, 3, 4, 6, 7. As before, we check
that Ad c negates t, yielding r(e) = 1 > cΓ(e). By [Fu10, 3.3], we can take for P = LU a parabolic
subgroup of G with DL of type D6 and for e0 ∈ Lie(L) a rigid nilpotent element associated with
the partition (3, 22, 15). Then Remark 6(a) shows that EΓ0

0 6= ∅. This completes the proof. 2

For the remaining seven induced orbits in the Lie algebras of exceptional types our results
are weaker. It turns out that the variety EΓ is non-empty in all cases and we can determine its
dimension, but our methods seem insufficient for describing the irreducible components of EΓ.
We state our results as a remark:

Remark 8. (a) If g has type F4 and e is of type C3(a1) then [deGE09] shows that e lies in a
single sheet of rank 1. So dim E = 1 by [Pre10, Theorem 1.2]. On the other hand, ce = ce(2) is
three-dimensional by [deG13] whilst [LT07, p. 76] yields that ce ∼= ge(2) and Γ ∼= S2 is generated
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by the image c = h4(−1). Also, ge(2) has basis {v1, v2, e} and Ad c negates v1 and fixes v2.

This gives cΓ(e) = 2. It follows from [Fu10, 3.1] that e is induced from a Levi subalgebra l of

g with [l, l] of type B3 and a nilpotent element e0 ∈ [l, l] corresponding to the rigid partition

(22, 13) ∈ P1(7). Moreover, the conditions of Proposition 12 are satisfied and EΓ0
0 6= ∅ by

Theorem 12. Therefore, EΓ 6= ∅ and dim EΓ > z(l) = 1. As a consequence, dim EΓ = dim E = 1. In

view of Proposition 11(ii), the variety EΓ is isomorphic to a non-empty one-dimensional closed

subset of the affine plane A2.

(b) If g has type E6 and e is of type A3 + A1 then Γ = {1} and e lies in a single sheet of rank

1 by [deGE09]. Then EΓ = E 6= ∅ and dim E = 1 thanks to [Pre10, Theorem 1.2]. By [deG13],

we have that ce = ce(0)⊕ ce(2) is two-dimensional. As in the previous case we now deduce that

EΓ = E is isomorphic to a non-empty one-dimensional closed subset of the affine plane A2.

(c) If g has type E7 and e is of type D6(a2) then Γ = {1} and e lies in a single sheet of rank 2;

see [deGE09]. On the other hand, ce = ce(2) is three-dimensional by [deG13]. In view of [Pre10,

Theorem 1.2] and Proposition 11(ii), this means that EΓ = E is isomorphic to a non-empty closed

two-dimensional subset of the affine space A3.

(d) If g has type E8 and e is of type E6(a3) + A1 then e lies in a single sheet of rank 1 by

[deGE09] and ce = ce(2) is three-dimensional by [deG13]. On the other hand, [LT07, pp. 245,

246] yields that Γ ∼= S2 is generated by the image of c = h4(−1), the subspace ge(2) has basis

{v5, v6, v7, e}, and v7 = ±[v1, v4]. From this it is immediate that the images of v5, v6 and e under

the natural epimorphism ge(2)� ce form a basis of ce. Direct computations show that c negates

v5 and fixes v6, yielding cΓ(e) = 2.

By [Pre10, Theorem 1.2] the variety E is non-empty and has dimension r(e) = 1, whereas

[Fu10, 3.4] implies that e is induced from a Levi subalgebra l of g with [l, l] of type E7 and a

nilpotent element e0 ∈ [l, l] of type 2A2 + A1 in such a way that all conditions of Proposition 12 are

satisfied (one should keep in mind here that Γ0 = {1} by [Car85, p. 403] and E0 6= ∅ by [GRU10]).

Hence dim EΓ > 1. We conclude that EΓ is isomorphic to a non-empty one-dimensional closed

subset of the affine plane A2.

(e) If g has type E8 and e is of type D6(a2) then again e lies in a single sheet of rank 1

by [deGE09] and ce = ce(2) is three-dimensional by [deG13]. It follows from [Fu10, 3.4] and

Theorem 12 that e is induced from a Levi subalgebra l of g with [l, l] of type D7 and a nilpotent

element e0 ∈ [l, l] attached to the rigid partition (3, 24, 13) ∈ P1(14) in such a way that all

conditions of Proposition 12 are satisfied. This implies that EΓ 6= ∅ and dim EΓ > dim z(l) = 1.

On the other hand, combining [deG13] and [LT07, pp. 243, 244], we deduce that ce = ce(2)∼= ge(2)

and the images of v1, v2 and e form a basis of ce.

The group Γ ∼= S2 is generated by the image of c = n001
1

1111n011
0

1111h4(−1)h5(−1) and

it is straightforward to see that Ad c permutes the lines k2 and ke3 and fixes e001
0

1000 . Since

e = e2 +e3 +(sum of other root vectors), Ad c must permute e2 and e3. From this it is immediate

that Ad c negates v1 and fixes v2. As a consequence, cΓ(e) = 2. Since dim E = 1 by [Pre10,

Theorem 1.2], our earlier remarks now show that EΓ is isomorphic to a non-empty closed one-

dimensional subset of the affine plane A2.

(f) If g has type E8 and e is of type E7(a5) then e lies in two sheets both of which have rank

1; see [deGE09]. Also, ce = ce(2) is six-dimensional by [deG13]. It follows from [Fu10, 3.4] that

e is induced from a Levi subalgebra l of g with [l, l] of type E6 + A1 and a nilpotent element

e0 ∈ [l, l] of type 3A1 + 0 in such a way that all conditions of Proposition 12 are satisfied (it

is important here that Γ0 = {1} by [Car85, p. 402] and E0 6= ∅ by [GRU10]). This implies
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that EΓ 6= ∅ and dim EΓ > dim z(l) = 1. Since dim E = r(e) = 1 by [Pre10, Theorem 1.2] this
yields dim EΓ = dim E = 1.

By [LT07, pp. 247, 248], the subspace ge(2) ∼= ce is spanned by v1, v2, v3, v4, v5 and e, and
Γ ∼= S3 is generated by the images of c1 = h2(ω)h3(ω)h5(ω) and c2 = nα2nα3nα5h3(−1)h4(−1)
where ω is a primitive third root of 1. Direct computations show that (Ad c1)(vi) = ω−1vi for
i = 1, 4, (Ad c1)(vi) = ωvi for i = 2, 3, and (Ad c1)(v5) = v5. Since v5 = e4 + e011

1
1000 and Ad c2

permutes the lines ke4 and ke011
1

1000 and fixes e = e4 + e011
1

1000 + (sum of other root vectors),

it must be that (Ad c2)(v5) = v5. But then cΓ(e) = 2 and we conclude that EΓ is isomorphic to
a non-empty one-dimensional closed subset of the affine plane A2.

(g) If g is of type E8 and e has type E7(a2) then Γ = {1} and e lies in a single sheet of rank 3;
see [deGE09]. Since ce = cΓe is four-dimensional by [deG13] and E 6= ∅ has dimension r(e) = 3 by
[Pre10, Theorem 1.2] we conclude that EΓ = E is isomorphic to a non-empty three-dimensional
closed subset of the affine space A4.

5.6 Applications to completely prime primitive ideals
Let e be an induced nilpotent element of g and let XO be the set of all primitive ideals I of the
universal enveloping algebra U(g) with VA(I) = O. Here O is the adjoint G-orbit of e and VA(I)
denotes the associated variety of I, i.e. the zero locus in g of the ideal gr(I) of S(g) = gr(U(g))
where, as usual, we identify the maximal spectrum of S(g) with g by means of the Killing form
of g.

Let J denote the defining ideal ofO. Since A := S(g)/gr(I) is a finitely generated S(g)-module
and J is the only minimal prime ideal of S(g) containing the annihilator AnnS(g)A by Joseph’s
theorem, it follows from [Mat89, Theorem 6.4], for instance, that there exist prime ideals p1, . . . , pl
containing J and a finite chain {0} = A0 ⊂ A1 ⊂ · · · ⊂ Al = A of S(g)-submodules of A such
that Ai/Ai−1

∼= S(g)/pi for 1 6 i 6 l. The multiplicity of O in U(g)/I, denoted multO (U(g)/I),
is defined as

multO (U(g)/I) := Card {i : 1 6 i 6 l, pi = J}.

It is well known that this number is independent of the choices made; see [Jan04, 9.6] for more
detail. The results of the previous subsection can be applied to characterise those primitive ideals
I ∈ XO for which multO(U(g)/I) = 1; we call such ideals multiplicity-free. The characterisation
we obtain can be regarded as a generalisation of Mœglin’s theorem [Mœg87] on completely
prime primitive ideals of U(sln) to simple Lie algebras of other types (that theorem was recently
reproved by Brundan [Bru11] by using the theory of finite W -algebras).

The rest of this subsection is devoted to proving Theorem 5. First we note that for g = sln
the statement of Theorem 5 is equivalent to Mœglin’s theorem thanks to (1) and the main results
of [Pre11].

(a) Suppose that g is one of soN or spN and e is associated with a partition λ ∈ Pε(N). In
what follows we shall use the notation introduced in the course of proving Theorem 12.

Repeating the construction used in part (b) of the proof of Theorem 12 as many times as
possible, we arrive at a pair (p, e0), where p is a parabolic subalgebra of g with a Levi subalgebra
l = l̄⊕m and e0 is an almost rigid nilpotent element of m, such that e is induced from e0 (regarded
as an element of l). Let P be the parabolic subgroup of G with Lie(P ) = p.

Recall Losev’s homomorphism Ξ: U(g, e) → U(l, e0)′ from part (b) of the proof of
Proposition 12. Since I ∈ XO is multiplicity-free, we have that I = Qe ⊗U(g,e) kη for some one-
dimensional Γ-invariant representation of η of U(g, e). By [Los11a, Theorem 6.5.2], the morphism
ξ∗ : SpecmU(l, e0)ab

→ SpecmU(g, e)ab induced by Ξ is finite. As explained in the proof of
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Proposition 12, the inclusion Ge ⊂ Pe implies that Γ acts on Ẽ0 = SpecmU(l, e1)ab and ξ∗ maps
the Zariski closed subset ẼΓ0

0 into EΓ (as before, Γ0 stands for the component group of Le0). Since

the variety EΓ is irreducible of dimension s(λ) by Theorem 12 and dim(Ẽ Γ0
0 ) > dim z(l) = s(λ),

we deduce that ξ∗
(
Ẽ Γ0

0

)
= EΓ (one should keep in mind here that, being a finite morphism,

ξ∗ is closed and has finite fibres). As (Ker η)/Ic lies in EΓ, we obtain that η = η0 ◦ ξ for some
one-dimensional Γ0-invariant representation η0 of U(l, e0) where ξ : U(g, e)ab

→ U(l, e0)ab is the
homomorphism of k-algebras induced by Ξ.

Let I0 ⊂ U(l) be the annihilator of Ẽ := Q0 ⊗U(l,e0) kη0 where Q0 is a generalised Gelfand–
Graev l-module associated with e0. By construction, I0 is a multiplicity-free primitive ideal of
U(l). Since η = η0 ◦ ξ, it follows from [Los11a, Corollary 6.4.2] that I is obtained from I0 by
parabolic induction. More precisely,

I = AnnU(g)(U(g)⊗U(p) Ẽ)

where we regard Ẽ as a p-module with the trivial action of the nilradical of p.
(b) Suppose that λ is not exceptional. As any almost rigid nilpotent element of m is non-

singular, combining Corollary 5 with Borho’s classification of sheets, one observes that there
exists a unique (up to conjugacy in P ) parabolic subalgebra p1 = l1⊕ n1 of g contained in p and
a rigid nilpotent element e1 ∈ l1 such that e0 ∈ l is induced from e1 (here n1 is the nilradical of p1

and l1 is a Levi subalgebra of p1 contained in l). Then e is induced from e1 by Proposition 6(3).
Let Ξ0, ξ∗0 and ξ0 be the analogues of the maps Ξ, ξ∗ and ξ associated with the finite

W -algebras U(l, e0) and U(l1, e1). It follows from Theorem 11 that

U(l, e0)ab ∼= U(l)ab ⊗ U(m, e0) ∼= S
(
z(l)
)
⊗ U(m, e0)ab

is a polynomial algebra, hence a domain. By [Los11a, Theorem 6.5.2], the morphism
ξ∗0 : SpecmU(l1, e1)ab

→ SpecmU(l, e0)ab induced by Ξ0 is finite, hence closed and has finite
fibres. As SpecmU(l, e0)ab is an irreducible variety, the map ξ∗0 must be surjective. So there
exists a one-dimensional representation η1 of U(l1, e1) such that η0 = η1 ◦ ξ0.

Let I1 be the annihilator in U(l1) of E := Q1 ⊗U(l1,e1) kη1 , where Q1 denotes a generalised
Gelfand–Graev l1-module associated with e1, a completely prime primitive ideal of U(l1). Since
η0 = η1 ◦ ξ0, applying [Los11a, Corollary 6.4.2] once again, we deduce that I0 = AnnU(l)(
U(l) ⊗U(p1) E

)
where E is regarded as a p1-module with the trivial action of n1. In a slight

abuse of the notation introduced in § 1.6, we then have

I = Igp(I0) = Igp
(
Ipp1(I1)

)
= Igp1(I1)

where the last equality follows from [BGR73, 10.4] (which, in turn, follows from transitivity of
induction). As a consequence, I = AnnU(g)

(
U(g) ⊗U(p1) E

)
, proving Theorem 5 in the present

case.
(c) Now suppose that λ is exceptional. In this case, we choose for p1 the parabolic subalgebra

Lie(P ′) where P ′ is the parabolic subgroup introduced in part (d) of Theorem 12. Then e0 is a
Richardson element of p1 and the map ξ∗0 : SpecmU(l1, 0)ab

→ SpecmU(l, e0)ab is still surjective
(here l1 is a Levi subalgebra of p1). Therefore, η0 = η1◦ ξ0 for some one-dimensional representation
of U(l1, 0) = U(l1). Applying [Los11a, Corollary 6.4.2] and repeating almost verbatim the
argument from part (b) we now obtain that I = Igp1(I1) for some ideal I1 of codimension 1
in U(l1). In other words, I = AnnU(g)

(
U(g)⊗U(p1) kλ

)
for some one-dimensional representation

λ of p1.
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(d) Finally, suppose that g is exceptional. If e is even, then we choose for p the Jacobson–
Morozov parabolic subalgebra p(e) and for e0 the zero element of the Levi subalgebra of l = g(0)
of p(e). Since U(l, e0) = U(l) and it follows from Proposition 13 that ξ∗ is still surjective, we
argue as in part (a) to deduce that I = Igp(e)(I0) for some ideal I0 of codimension 1 in U(l). As a

consequence, I = AnnU(g)

(
U(g)⊗U(p(e)) kλ

)
for some one-dimensional representation λ of p(e).

If e satisfies the conditions of Proposition 14 then it lies in a unique sheet S(e) which contains
an open decomposition class D(l, e0) such that e0 is a rigid nilpotent element of l = Lie(L).
Furthermore, we may assume that there exists a parabolic subalgebra p = l⊕ n, where n is the
nilradical of p, such that e ∈ p is induced from e0 ∈ l. In view of Proposition 14 we can now
repeat verbatim our arguments from part (b) to deduce that the map ξ∗ : SpecmU(l, e0)ab

→ E
is surjective. Thanks to [Los11a, Corollary 6.4.2] this yields that I = Igp(I0) for some completely

prime primitive ideal I0 of U(l) with VA(I0) = (AdL) e0.
Finally, if e satisfies the conditions of Proposition 15 then we choose a Levi subalgebra

l = Lie(L) and e0 ∈ l according to the recipe described in Fu’s paper [Fu10] (see the proof of
Proposition 15 for detail). Then there exists a parabolic subalgebra p = l ⊕ n such that e0 is
rigid in l and e ∈ p is induced from e0. Since the map ξ : SpecmU(l, e0)ab

→ E is Γ-equivariant
by our choice of p and e0, combining [Los11a, Theorem 6.5.2] with Proposition 15 yields that
ξ∗
(
ẼΓ0
)

= EΓ. Then, arguing as in part (a), we obtain that I = Igp(I0) for some multiplicity-free

primitive ideal I0 of U(l) with VA(I0) = O0, where O0 = (AdL) e0.
This completes the proof of Theorem 5. We note that for g = sln one can argue as in part (c)

(with l1 replaced by g) to obtain yet another proof of Mœglin’s theorem.
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Table 0. Unresolved cases.

F4 E6 E7 E8 E8 E8 E8

C3(a1) A3 + A1 D6(a2) E6(a3) + A1 D6(a2) E7(a2) E7(a5)

Table 1. Data for the induced orbits in type E8.

Dynkin label Type of Γ Number of sheets Ranks of sheets dim ce dim cΓe

E8 1 1 (even) 8 8 8
E8(a1) 1 1 (even) 7 7 7
E8(a2) 1 1 (even) 6 6 6
E8(a3) S2 2 (even) 6,5 7 5
E7 1 1 4 4 4

E8(a4) S2 2 (even) 5,4 6 4
E8(b4) S2 2 (even) 4,3 5 4
E7(a1) 1 1 5 5 5
E8(a5) S2 2 (even) 4,3 5 3
E8(b5) S3 3 (even) 4,4,3 7 3
D7 1 1 2 2 2

E7(a2) 1 1 3 4 4∗

E8(a6) S3 3 (even) 3,3,2 6 2
D7(a1) S2 2 (even) 3,2 4 3
E6 + A1 1 1 2 2 2
E7(a3) S2 1 4 4 2
E8(b6) S3 3 (even) 2,2,1 5 2

E6(a1) + A1 S2 1 3 3 1
A7 1 1 1 1 1
E6 1 1 (even) 4 4 4

D7(a2) S2 2 2,2 3 2
D6 1 1 2 2 2

E6(a1) S2 2 (even) 3,3 4 3
D5 + A2 S2 2 (even) 2,1 3 2
E7(a4) S2 2 2,2 3 2
A6 + A1 1 1 1 1 1
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Table 2. Data for the induced orbits in type E8 (continued).

Dynkin label Type of Γ Number of sheets Ranks of sheets dim ce dim cΓe

D6(a1) S2 1 3 3 3
A6 1 1 (even) 2 2 2

E8(a7) S5 4 (even) 2,2,1,1 10 1
D5 + A1 1 1 2 2 2
E7(a5) S3 2 1,1 6 2∗

D6(a2) S2 1 1 3 2∗

E6(a3) + A1 S2 1 1 3 2∗

D5 1 1 (even) 3 3 3
E6(a3) S2 2 (even) 2,2 3 2
D4 + A2 S2 1 (even) 2 2 2

A5 1 1 1 1 1
D5(a1) + A1 1 1 1 1 1
A4 + A2 + A1 1 1 1 1 1

A4 + A2 1 1 (even) 1 1 1
A4 + 2A1 S2 1 1 1 0
D5(a1) S2 1 2 2 1
A4 + A1 S2 1 1 1 0
D4 + A1 1 1 1 1 1

D4(a1) + A2 S2 1 (even) 1 1 1
A4 S2 1 (even) 2 2 2

A3 + A2 S2 2 1,1 2 1
D4 1 1 (even) 2 2 2

D4(a1) S3 2 (even) 1,1 3 1
2A2 S2 1 (even) 1 1 1
A3 1 1 1 1 1
A2 S2 1 (even) 1 1 1
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Table 3. Data for the induced orbits in type E7.

Dynkin label Type of Γ Number of sheets Ranks of sheets dim ce dim cΓe

E7 1 1 (even) 7 7 7
E7(a1) 1 1 (even) 6 6 6
E7(a2) 1 1 (even) 5 5 5
E7(a3) S2 2 (even) 5,4 6 4
E6 1 1 (even) 4 4 4
D6 1 1 3 3 3

E6(a1) S2 2 (even) 4,3 5 3
E7(a4) S2 2 (even) 3,2 4 3
D6(a1) 1 1 4 4 4
D5 + A1 1 1 3 3 3

A6 1 1 (even) 2 2 2
D5 1 1 (even) 3 3 3

E7(a5) S3 3 (even) 3,3,2 6 2
D6(a2) 1 1 2 3 3∗

E6(a3) S2 2 (even) 2,2 3 2
A5 + A1 1 1 1 1 1

(A5)
′ 1 1 1 1 1

D5(a1) + A1 1 1 (even) 2 2 2
D5(a1) S2 1 3 3 2
A4 + A2 1 1 (even) 1 1 1
A4 + A1 S2 1 2 2 0
(A5)

′′ 1 1 (even) 3 3 3
D4 + A1 1 1 1 1 1

A4 S2 2 (even) 2,2 3 2
A3 + A2 + A1 1 1 (even) 1 1 1

A3 + A2 S2 2 1,1 2 1
D4(a1) + A1 S2 1 2 2 2

D4 1 1 (even) 2 2 2
A3 + 2A1 1 1 1 1 1
D4(a1) S3 2 (even) 1,1 3 1

(A3 + A1)
′′ 1 1 (even) 2 2 2

A3 1 1 1 1 1
2A2 1 1 (even) 1 1 1

A2 + 3A1 1 1 (even) 1 1 1
A2 + A1 S2 1 1 1 0

A2 S2 1 (even) 1 1 1
(3A1)

′′ 1 1 (even) 1 1 1
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Table 4. Data for the induced orbits in type E6.

Dynkin label Type of Γ Number of sheets Ranks of sheets dim ce dim cΓe

E6 1 1 (even) 6 6 6
E6(a1) 1 1 (even) 5 5 5
D5 1 1 (even) 4 4 4

E6(a3) S2 2 (even) 4,3 5 3
D4 + A1 1 1 1 1 1

A5 1 1 2 2 2
D5(a1) 1 1 3 3 3
A4 + A1 1 1 2 2 2

A4 1 1 (even) 3 3 3
D4(a1) S3 3 (even) 2,2,1 5 1
A3 + A1 1 1 1 2 2∗

A3 1 1 2 2 2
A2 + 2A1 1 1 1 1 1

2A2 1 1 2 2 2
A2 + A1 1 1 1 1 1

A2 S2 1 (even) 1 1 1
2A1 1 1 1 1 1

Table 5. Data for the induced orbits in type F4.

Dynkin label Type of Γ Number of sheets Ranks of sheets dim ce dim cΓe

F4 1 1 (even) 4 4 4
F4(a1) S2 2 (even) 3,3 4 3
F4(a2) S2 2 (even) 2,2 3 2
B3 1 1 (even) 2 2 2
C3 1 1 2 2 2

F4(a3) S4 3 (even) 2,1,1 6 1
C3(a1) S2 1 1 3 2∗

B2 S2 1 (even) 1 1 1

Ã2 1 1 (even) 1 1 1
A2 S2 1 (even) 1 1 1

Table 6. Data for the induced orbits in type G2.

Dynkin label Type of Γ Number of sheets Ranks of sheets dim ce dim cΓe

G2 1 1 (even) 2 2 2
G2(a1) S3 2 (even) 1,1 3 1
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Bou68 N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV, V, VI (Hermann, Paris, 1968).

Bru11 J. Brundan, Mœglin’s theorem and Goldie rank polynomials in Cartan type A, Compositio Math.
147 (2011), 11741–11771.

BGK08 J. Brundan, S. M. Goodwin and A. Kleshchev, Highest weight theory for finite W -algebras, Int.
Math. Res. Not. 15 (2008), Art. ID rnn051.

BK06 J. Brundan and A. Kleshchev, Shifted Yangians and finite W -algebras, Adv. Math. 200 (2006),
136–195.

Bry03 R. Brylinski, Dixmier algebras for classical complex nilpotent orbits via Kraft–Procesi models I,
Progress in Mathematics, vol. 213 (Birkhäuser, Boston, 2003), 49–67.
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