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1. Introduction. The Eckman-Hilton duality [4] reverses arrows in diagrams, turns
products to co-products, and multiplications to co-multiplications, etc. In accordance with
this process, Kan [5] obtained the dual of a monoid structure in the category of groups. In this
way, we obtain co-monoid structures on topological groups. The main result of this paper is
that for ka groups (see §2), we obtain a one-to-one correspondence between the co-monoid
structures, and the free topological bases of the group (§3), thus obtaining topological analogues
of the main results of [5].

In [7] a free topological subgroup of the free product of two ka groups was discovered. In
this paper it is proved that if G' and G" are two copies of a free ka group, then the diagonal of
G' x G" can be embedded in G' * G" to give a free topological basis of a free topological sub-
group. This subgroup is used in the proof of the main results, which have as application a
description of the Pontryagin algebra of a connected group with a co-monoid structure.

I would like to thank Professor Israel Berstein for helpful conversations and suggestions. I
am also grateful to the referee whose detailed comments led to considerable improvement in the
exposition of this paper.

2. Preliminaries. This work is done in the category of Hausdorff topological groups (TG).
For the convenience of the reader we shall state some basic definitions and results in this
category, which will be used later on. We start with a theorem of Kan's about co-monoid
structures in the category of groups. The co-monoid structures are essentially those of
definition 1 of §3, provided we strip off the topologies involved.

THEOREM A (See [5].). Let G be a group. Then, there is a one-to-one correspondence
between the free bases of G and its co-monoid structures.

DEFINITION A. (a) A ka space is a Hausdorff topological space X with compact subsets Xn,
00

such that: (i) X = \J Xn, (ii) Xn+1 => Xn, and (iii) a subset A of X is closed if and only if
n = l

AnXn is compact for all n.
00

(b) By a ka decomposition X = (J Xn we mean that Xn have properties (i), (ii) and (iii).
n=i

(c) A ka group is a topological group which is also a ka space.

DEFINITION B (See [2].). The topological group F(X) is a free topological group with a
basis, a pointed topological space (X, e), if it has the following properties: (i) X is a subspace of
F(X), (ii) X-e generates F(X) freely as a group, and e is the identity of F(X), and (iii) for any
continuous map I: X-+G such that G is a topological group and l(e) equals the identity of G, /
extends uniquely to a homomorphism of topological groups L: F(X) -* G.
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00

THEOREM B (See [6].)- Let X = \J Xn be a km decomposition ofX. Then F(X) exists and

oo

has the following km decomposition: F(X) = \J Fn(Xn), where Fn(Xn) consists of all reduced
n = l

words in elements of Xn with length less than n+l.

DEFINITION C (See [3].). Let Gx and G2 be topological groups. Then Gt * G2 is their
free product if it satisfies the following: (i) Gt and G2 are topological subgroups of Gt * G2,
(ii) the underlying group of Gr * G2 is the free product of the underlying groups of Gj and G2,
and (Hi) if yl:Gl-*H,i=l,2, are homomorphisms of topological groups, then they extend
uniquely to a homomorphism of topological groups T: Gt * G2 -+H.

This definition extends to any finite number of groups. We use this notation " * " also for
the free product of groups.

THEOREM C. (a) (See [3].) Let Gu ...,Gn be topological groups. ThenG1*...*Gnexists.
00

(b) (See [*]•) Let Gf = M G-j be km decompositions for Git i = \,2, ...,n. Then

00

Gt * . . . * Gn = \J h((G{ v . . . v Gjj)J) is a km decomposition, where h sends an n-tuple to the

corresponding reduced word in Gt* ...* Gn, and v is the disjoint union identifying the identities.
(c) (See [7].) For Gj and G2 topological groups, Gx x G2 is embedded in Gx * G2 via the map

(01,02) -» 9102-

3. Statement of results. Throughout this paper we use the following notation: Let G' and
G" be copies of a topological group G via i': G -• G', i" : G -> G", and let j ' : G-+G'* G",

j " : G -*G' *G" be the natural inclusions induced by /', i", respectively. Denote by D the
following set:

. D = {g'g"eG'*G"\3geG which satisfies g' = i'{g),g" = i"(g)}.

THEOREM 1. Consider G' and G" with the topologies stripped off, and suppose they are free.
Then D is a free basis for a subgroup in G' * G".

THEOREM 2. Let G' and G" be free k^ groups. Then D is a closed free topological basis for a
closed subgroup E in G' * G".

DEFINITION 1. The homomorphism ¥ : G -* G' * G" is a co-monoid structure (c.m.s.) on G
if it satisfies the following:

(i) (co-associativity) (1G • ¥ ) ¥ = ( ¥ • l cyp, and
(ii) (co-units) (C* 1G)*F = l c and (1 G * C)*F = 1C) where C : G -* Q is the homomorphism

into the topological group which consists of one element and where we identify G with G*Q.

THEOREM 3. Let G be a free topological group with basis X. Then the map ¥ : X -* G' * G"
such that Wipe) =j'(x)j"(x), extends uniquely to a c.m.s. 4* on G.
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THEOREM 4. Let Wbea c.m.s. on a ka group G. Then the set X = {g e G \ *¥(g) = j'igYia)}
with the subspace topology ofG, is a free topological basis for G. The set X will be called the
corresponding basis for ¥ .

An immediate consequence of these theorems is the main result of this paper:

COROLLARY. IfG is a km group then there is a one-to-one correspondence between the c.m.s.
on it and its free bases.

The proof of Theorem 1 which is purely algebraic is given in §5. The proofs of Theorems
2-4 which are mainly topological are given next in §4.

4. Proofs of Theorems 2-4. We fix ka decompositions for the groups involved. We may
assume (see [8]) that the group G of the beginning of §3 has the following km decomposition:

G = 0 Gh where G, = Gr1 and Gfij <= G,+J. Let G'= \J G\ and G" = (J GJ' be the cor-
i = l i = l i = l

responding ka decompositions given by V and /" (see §3).

Proof of Theorem 2. We are required to prove that E and F(D) are isomorphic, and that E
is closed in G' * G". For this it will be convenient to have a ka structure on F(D). This is
achieved by showing first that D is a closed subset of G' * G". The embedding of G' x G" in
G' * G" given by Theorem C(c), maps the diagonal of G' x G", which is a closed subset, onto the
set D. Thus it is enough to show that the image of G' x G" in G' * G" under the embedding is
also closed. Let Abe a map which appoints to each tuple in elements of G' v G" the corre-
sponding reduced word in G' * G". By Theorem C(b) and Definition A(a) (iii), we have to show
that h(G' x G")nfc((G'j x GJ')') is compact for all i. This follows from the equality:

h(G' x G'^nhWiVG1;)') = ^(GOVKCGD'"1 x Gf)u...uA(G{ x (G?)'~1)u*((<j?)').

because each of the elements in the union is compact. We conclude that D is a km space and can
00

be given the following ka decomposition: D = [j Dn where Dn = Dn/ i ( (G^v6J) . Now we
n = l

are ready to complete the proof of the theorem. Since the group structure is clear it is sufficient
to show that for any k there is an /, both being integers, such that

Let weli((G[vG;)')nE. Then w = gji2g3...ht, where ^ - e G ^ / i y e G ^ and t<k. We
can express w in the following form:

w = igJhXh^^g^. ..) = (glh1)(h:1h2g;1g2)(g21glg3hi. ..) = ...

• 9,-A~-\K-\ • • • '̂ ""'Ms • • • ht-1)

where ( i ' ) " 1 ^ ) = O'")"1^). i = 1,2, . . . , / , and gl s A, are possibly e.
The last equality is obtained by induction and the last bracket contains e, because w e E. If

we take / to equal fc3 we get w

Proof of Theorem 3. It is enough to show that ¥ is a continuous map. Because if this is
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proved, from the universal property of free topological groups, *F extends uniquely to a
continuous homomorphism *? : G-*G' * G", which is easily seen to be a c.m.s. However the
continuity of *P follows from observing that *P is the composition of the following continuous
maps:

X i+X x Xlilli G x G(U2> (C*G") x (G'* G")Z. G'* G",

where d is the diagonal map, / the inclusion of X in G, and m the multiplication of G' * G".

00

Proof of Theorem 4. We start the proof by assigning toXakm decomposition X = (J Xn

where Xn = ZnGn. This is possible if we show that X'\s closed in G. However, by the proof of
Theorem 2, D is closed in G' * G" and since Z = ¥ " *(/)) the result follows. To complete the
proof we have to show that F(X) is isomorphic to G. To do this it suffices to show that for any
k there is an / such that Gk a F^X,). Since Gk is compact ^(G*) c Ft(Dt) for some integer t
by Theorem 2. Let w e G*. Then T(»v) = d1d2...ds where rf; = (^fy)1 1 for # ; 6 G;2, hj e GJi,
O'')"1^") = ('")~1(^j) a n ( i •y = '• Since A" is the algebraic basis corresponding to *F (Theorem
A), we have w = xt ...xr, xseX v X'1 and >P(w) = ^(xO . . . »P(xr) with *¥(xj)eD. Because
D is free we conclude that r ~ s, dj = *P(x,) and #; = XjeX(2. Thus, wejF,2(X(2) and if / = t2

we get Gk

5. Proof of Theorem 1. The proof is somewhat lengthy. We introduce some notation and
definitions to state the theorem in a more convenient way.

NOTATIONS AND DEFINITIONS, (a) Let FY and Fz denote the underlying groups of F(Y)
and F(Z), respectively. Let Z be a copy of Y and 6 : Fy -> F z the identity isomorphism induced
by the identity map from Y to Z. For any yt G ¥( = Y v Y~ *), let z, = 9(y{).

(b) Jn = {yt ... ynzx ... zneFYvZ}, where j t . . . y n is a reduced word in elements of y.
n

(c) Kn=U/.-

(d) X = 0 *„.
n = 1

(e) For any weF K v Z , /(w) will denote the length of the reduced word in elements of Y v Z.
(f) Since an element of K is a word in elements of Y v Z, a word «in elements of A"is also

a word in elements of Y v Z. Thus, its length is well defined. Let u = vt ... vn, vt ^ vf+\,
i = 1 , . . . , n— 1, be a word in elements of AT. Then u is called a simple wordii /(«) = max {/(«()}.

Since the free product of the free groups FY and Fz is the free group FYvZ, Theorem 1 can
be stated as follows:

RESTATEMENT OF THEOREM 1. K is a free subset ofFYvZ.
This will be proved by the aid of the following propositions.

PROPOSITION 1. Let u1...,«" be simple words in elements ofK, such that l(u'ui+1) > /(«'),
/(«'+1), 1 S i ^ n-1. Then /(M1 . . . « " ) > / (u 1 ) , . . . , l(u").
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PROPOSITION 2. Let u = v1...vq,vi^ vf+\, 1 ^ i ;£ q — l,bea word in elements ofK. Then
its factors can be bracketed so that u = ul ... uk, where ul are simple words and l(uiu'+1) > /(«'),
l(ul+1), l ^ i ^ k - l .

The proofs of the propositions are transferred to the end of this section.

Proof of Theorem 1. Let u = i>t... vn, vt # vf+\, i = 1 , . . . , n — 1, be a word in elements of
K. To prove the theorem it is enough to show that /(«) > 1, and thus K'\s free. By Proposition
2 we can bracket u into simple words w = u1 ...uk, such thatl(u'ui+1) > /(«'),/(u'+1), 1 ^ i^
k—\. NOWM1, ...,uk satisfy the conditions of Proposition 1, and since /(«') ^ 2, 1 ^ i: ^ k, we
get that /(w)> 1.

Proo/ of Proposition 1. The proof is by induction on the number of the simple words.
Suppose n — 2, /(w1) = la, l(u2) = 2b and c = min{a, b}. In the reduced form of u V at most
2(c— 1) elements are cancelled out, for if more elements are cancelled out it contradicts the fact
that l(ulu2) > /(M1), 1{U2). Furthermore, the first a+1 elements and the last b+l elements of
u^u2 are the first a+1 elements of u1 and the last b +1 elements of u2. We conclude that the
last b+l elements of uxu2 equal the last b + l elements of u2 and that /(MJM2) > /(M1), l(u2).
We now assume that the conclusion holds for n ^ 2, and consider the case for w + 1. Let
/(«") = 2d, /(«n+1) = 2/and g = min {</,/}. As in the case for n = 2, at most 2(#-1) elements
are cancelled out in the reduced form of M V + 1 , leaving the first d+1 elements of u" and the last
/ + 1 elements of w"+1 unaffected. As a consequence we get /(w1 . . . « " ) < /(M1 . . . un+1). We
now consider two cases.

(i) g = d. In this case Ku1 ... un+1) ^ /(M1 . . . «n)-2(rf- 1 ) + / ( M " + 1 ) > /(M"+ 1) , KU1 ...
M"+1) > /(M1 . . . « " ) > /(«'), 1 ̂  i ^ n, which follows from the induction assumption and the
previous mentioned consequence.

(ii) g = / . Because of the previous mentioned consequence and the induction assumption
/(«') < /(u1 . . . « " ) < /(M1 . . . un+1), l g / g n . However, since /(M"+x) ^ /(«") we have
/(M"+ 1) ^ /(M") < /(w1

 . . . M " + 1 ) . This completes the induction step and the proposition is proved.

Proo/ of Proposition 2. The proof is by induction on the sets Kn. The proposition is
trivial for n = 1. We assume that it is correct for n and prove it for n +1. This will be done via
two lemmas which will be proved under the induction assumption.

LEMMA 1. Let vi...vkbe a simple word in elements of Kn. Then every word of the form
Uj . . . vs or vs... vk, 1 < s < k, is also simple.

Proof. We prove the lemma only for words of the first form. Words of the second form
can be treated analogously. Suppose the lemma is not correct. Then there exists s such that
i?! . . . vs is not simple, while vt ... vs+l is simple. By the induction assumption we have:
«! . . . vs = M1 . . . ur, r > 1, where ul are simple words and l(tt'ui+1) > l(u'), l(ui+1), 1 ̂  i: g r— 1.
We consider several possibilities.

(i) /(M'I;5+X) > /(«'). l(vs+1). Since vs+1 is a simple word Proposition 1 can be applied and
we obtain that /(w1... t/vs+1) > /(M1), . . . , /(«'), or l(vt ...vs+1)> / ( t^ ) , . . . , l(vs+1), which
contradicts the fact that vt... vs+1 is a simple word.
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(ii) l(urvs+1) = max {/(«r). l(vs+1)}. In this case ifus+ x is a simple word and Proposition 1
applies to u\...,if-\ urvs+1. Thus, /(M1 . . . urvs+1) > /(w1), . . . , l(j/~l), l(u%+1) or
/(»! ...vs+l)> l(v,),..., l(vs+1), which is again a contradiction to the fact that vt ...vs+l is
simple.

(iii) /(u't , s+1)

In this case l(i/vs+1) is smaller than the length of the element of Kn in urvs+l with maximal
length. By the induction assumption the elements of Kn in urvs+1 can be bracketed so to fulfil
the conditions of Proposition 1. The application of Proposition 1 leads to a contradiction.
These contradictions prove the lemma.

LEMMA 2. Every simple word in elements of Kn has only one element, say v, of Kn with
maximal length. The central two elements of the simple word equal the central two elements ofv.

Proof. Throughout the proof we use the previous lemma without mentioning it explicitly.
To prove the first part of the lemma it is enough to obtain a contradiction to the assumption
that the simple word consists of two elements of maximal length and elements of smaller length
in between. Let this simple word be ot . . . wm where v1=yl... ypz1 ...zp. Since u1t)2 is a
simple word, v2 must be of the form z~1. ..z~}a+1y~l ...y~}a+1 with 0<a<p and
viv2 = y1...yp...y~1 ...y~la+i. Assume that for i ^ 2 , / ( u ^ ) >/(uj), and v1...vl =
y1...yp...zl...zl+b_1 or vl...vi = y1...yp...yr1...yrJb+l where l(v,) = 2b. We now
prove the induction step. Let the first of the possibilities in the induction assumption hold (the
other possibility can be treated analogously). Since vt... vi+x is a simple word, vi+1 must be
of the form vl+1 = z,+6-i • • • Zj+i-cVf+t-i • • • )>7+b-c> 0< c<b, and we get l(vt) >l(vi+1),
vl...v[+1 = yt... yp... j'/Vi-1 • • • yT+b-c- This completes the induction and we conclude that
Kvi) > Kvi) > ••• > l(vm) or /(t^) >l(vm), which is a contradiction. The proof of the second
part of the lemma follows easily from the proof of the first part.

Completion of the proof of Proposition 2. Let w be a word in elements of Kn+l. We can
express w as a product of words in Kn and words in Jn+1 so that the two kinds of words alter-
nate. Every one of the words in Kn can be bracketed to satisfy the result of the proposition by
the induction assumption. As for the words in Jn+j their elements already satisfy the result of
the proposition, because each element is simple and if «1,»2e/B+i> vi *£ V21^tnen ^1^2) >
/(t^), l(v2). Let w = M1 . . . us be the word with the bracketing mentioned above. We prove that
we can add some new brackets and obtain the result of the proposition. The proof is by
induction on the number of the simple words. For k = 1 there is nothing to prove. We
assume that the proposition holds for k ^ 1 and prove that it holds also for k+1. Suppose that
brackets were introduced in u1... uk to obtain a1 ...a1 with the properties of the proposition.
We prove that this can be done also for u1... ui+1. Several cases are to be considered:

(i) uk, uk+1 are both words in elements of Kn or uk, uk+1eJn+1. The required form is
a1...aV+1.

(ii) uk is a word in elements of Kn,u
k+1 e Jn+l and l(ukuk+x) > /(«*), l(uk+i). Therequired

form is a1... aluk+1. (The same holds if uk and uk+1 reverse roles.)
(iii) uk is a word in elements of Kn,u

k+1eJn+1 and l(ukuk+1) = l(uk+1). We introduce one
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bracket which turns a1 and uk+1 into a simple word, and the result a1 ... al~\alukJri) has the
required properties. (The same holds if uk and uk+i reverse roles.)

(iv) uk is a word in elements of Kn, u
k+1eJn+l and / («V + 1 ) < /(M"+ 1) . We prove that this

case is impossible. By Lemma 2 the central two elements of uk equal the central two elements
of an element in Kn. Thus one of them belongs to ?and the other to Z. Since l(ukuk+i) <
l(uk+ *) those two elements must get cancelled out by the first n +1 elements of uk+*. But all the
first M + 1 elements of uk+l belong to F o r to Z, and thus they cannot cancel out the above
specified two elements. This produces a contradiction. (The same holds if uk and uk+1

reverse roles.) This completes the induction step and proves the proposition.

6. Applications, (a) Theorems 3 and 4 give us many c.m.s. on a group once one is
given. This follows from the remark in [2, p. 23] that from a given topological free basis of a
group we can construct many bases. There it was done for disconnected bases. However, this
procedure extends also to connected spaces of the following form. Let X± and X2 be compact
sets such that Xir\X2 = e. Then XlvalX2 is a basis of F{XY v X2) for any ax eXv

(b) We demonstrate how to use a c.m.s. to prove a statement about free bases. This is
done for a theorem in [2, pp. 38-41].

THEOREM. Let X and B be free topological bases of G. If X is compact so is B.

Proof. Assume B is not compact. There then exists a sequence {bn} c B such that the
length of {bn} in elements of Zis unbounded. Define the sequence {xn} <= Zas follows: xn is a
product of bn and other elements of B. This is possible since both X and B are bases. Let O be
a c.m.s. corresponding to B. Then by Propositions 1 and 2 we conclude that the length in
elements of Y v Z, of the elements in the sequence { 0 0 0 } xs unbounded. By standard pro-
cedure, we can extract an infinite subset of {$(xn)} which is a discrete set. The corresponding
subset {xn} is also a discrete infinite subset of X, because $ is a monomorphism. This contra-
dicts the fact that X is compact.

(c) We would like to remark that once a group has a c.m.s. on it, its homology structure is
known.

THEOREM. Let the group G of Theorem 4 be connected. Then the homology ofG over afield
is a connected free tensor algebra.

Proof. Theorem 4 provides G with a subset X, so that G is topologically isomorphic to
F(X). Define r ' : X-* F{X) so that r'(x) = x'1 for xeX. This function is obviously con-
tinuous. Let r : F{X) -> F(X) be the unique extension of r'. This map is called the inverse
function for the c.m.s., and turns G into a co-group (see [1]). Since the homology functor with
field coefficients from TG to the category of connected graded algebras (C.G. A.) preserves co-
products, it turns G into a co-group in the category of C.G.A. Thus Theorem 1.2 of [1] can be
applied and the theorem follows at once.
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