A CLASS OF SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS WITH THE COSMOLOGICAL CONSTANT

J. F. PLEBAŃSKI

The Institute of Theoretical Physics of the University of Warsaw, Hoża 69, Warsaw, Poland

Abstract. Working in the signature (+ + + -) and units such that G = 1 = c, it was found a solution of Einstein-Maxwell equations with λ (without current and pseudo-current). In real coordinates $x^{\mu} = (p, \sigma, q, \tau)$ the solutions is:

$$\omega = :\frac{1}{2} (f_{\mu\nu} + \check{f}_{\mu\nu}) \, \mathrm{d}x^{\mu} \wedge \mathrm{d}x^{\nu} = - \, \mathrm{d} \left\{ \frac{e_0 + ig_0}{q + ip} \left(\mathrm{d}\tau - ipq \, \mathrm{d}\sigma \right) \right\},\tag{1}$$

$$ds^{2} = :\frac{p^{2} + q^{2}}{P} dp^{2} + \frac{P}{p^{2} + q^{2}} (d\tau + q^{2} d\sigma)^{2} + \frac{p^{2} + q^{2}}{Q} dq^{2} - \frac{Q}{p^{2} + q^{2}} (d\tau - p^{2} d\sigma)^{2}, \qquad (2)$$

where

$$P = :b - g_0^2 + 2n_0 p - \varepsilon p^2 - \frac{2}{3} p^4, Q = :b + e_0^2 - 2m_0 q + \varepsilon q^2 - \frac{2}{3} q^4,$$
(3)

 $[f^{\mu\nu} = :(i/2\sqrt{-g}) \varepsilon^{\mu\nu\varrho\sigma} f_{\varrho\sigma}$ is pure imaginary; in (1) 'd' denotes the external differential]. Not all constants m_0 , n_0 , e_0 , g_0 , b, ε , λ are physically significant: by re-scaling coordinates ε can be made equal to +1, 0, or -1. The solution is of the type D: the double Debever-Penrose vectors

ff

$$\pm k_{\mu}^{(\pm)} dx^{\mu} = : d\left(\tau \pm \int \frac{q^2 dq}{Q}\right) - p^2 d\left(\sigma \mp \int \frac{dq}{Q}\right)$$
(4)

have the common complex expansion $Z = (q + ip)^{-1}$. Among $C^{(a)}$'s only $C^{(3)}$ given by:

$$C^{(3)} = \frac{-2}{(q+ip)^2} \left\{ \frac{m_0 + in_0}{q+ip} - \frac{e_0^2 + g_0^2}{q^2 + p^2} \right\}$$
(5)

is in general $\neq 0$. The invariants of the electromagnetic field are:

$$F = :\frac{1}{4} f_{\mu\nu} f^{\mu\nu} + \frac{1}{4} f_{\mu\nu} \tilde{f}^{\mu\nu} = -\frac{1}{2} \frac{(e_0 + ig_0)^2}{(q + ip)^4}.$$
(6)

The constants contained in (1)-(6) have the interpretation of: (1) e_0 and g_0 are the electric and magnetic monopoles charges respectively, (2) m_0 and n_0 are the mass and NUT parameters (3) b is related to the Kerr constant (4) λ is cosmologic constant (5) the sign ε in the sub-family of solutions which contains Kerr metric

C. DeWitt-Morette (ed.), Gravitational Radiation and Gravitational Collapse, 188-190. All Rights Reserved. Copyright © 1974 by the IAU.

is equal to +1. [With $\varepsilon = 1$, $\lambda = 0$ the result described above amounts to the charged Kerr-Newman-NUT metric generalized by the presence of the magnetic monopole; here $b = g_0^2 - n_0^2 + a_0^2$ where a_0 is the Kerr constant.]

For a test particle of mass Δm which carries electric and magnetic charges Δe , Δg the Hamilton-Jacobi equation is separable: The solution of this equation is:

$$W = C_{\tau} \cdot \tau + C_{\sigma} \cdot \sigma + \varepsilon_{1} \int \frac{\mathrm{d}p}{\sqrt{P}} \left[C_{0} - (\Delta m)^{2} p^{2} - \frac{1}{P} \left(p^{2} C_{\tau} - p \Delta_{g} + C_{\sigma} \right) \right]^{1/2} + \varepsilon_{2} \int \frac{\mathrm{d}q}{\sqrt{Q}} \left[-C_{0} - (\Delta m)^{2} q^{2} + \frac{1}{Q} \left(q^{2} C_{\tau} - q \Delta_{e} - C_{\sigma} \right) \right]^{1/2}$$

$$(7)$$

where

 $\varepsilon_1^2 = 1 = \varepsilon_2^2, \qquad \Delta_e + i\Delta_g = : (\Delta e - i\Delta g) (e_0 + ig_0). \tag{8}$

and C_{τ} , C_{σ} , C_{0} are the separation constants.

Working together with M. Demiański we generalized these results as follows: we have a solution of Maxwell-Einstein equations with λ described by:

$$\omega = d \left\{ \frac{e + ig}{1 - ipq} \left(q \, d\tau + ip \, d\sigma \right) \right\}$$
(9)

$$ds^{2} = \frac{1}{(p+q)^{2}} \cdot \left\{ \frac{1+(pq)^{2}}{P} dp^{2} + \frac{P}{1+(pq)^{2}} (d\sigma + q^{2} d\tau)^{2} + \frac{1+(pq)^{2}}{Q} dq^{2} \equiv \frac{Q}{1 \neq j6ql^{2}} jdJ \equiv 6^{2} d\sigma l^{2} \right\}$$
(10)

$$P = :\left(\frac{-\lambda}{6} - g^2 + \gamma\right) + 2np - \varepsilon p^2 + 2mp^3 + \left(\frac{-\lambda}{6} - e^2 - \gamma\right)p^4$$

$$Q = :\left(\frac{-\lambda}{6} + g^2 - \gamma\right) + 2nq + \varepsilon q^2 + 2mq^3 + \left(\frac{-\lambda}{6} + e^2 + \gamma\right)q^4$$
(11)

endowed in continuous constants m, n, e, g, ε , γ , λ . This is also a solution of the type D with twisting double Debever-Penrose directions.

We have here:

$$C^{(3)} = :2(m+in)\left(\frac{p+q}{1-ipq}\right)^3 - 2(e^2+g^2)\left(\frac{p+q}{1-ipq}\right)^3\frac{p-q}{1+ipq}$$
(12)

$$F = :-\frac{1}{2}(e+ig)^2 \left(\frac{p+q}{1-ipq}\right)^4.$$
 (13)

The transformation $q \to -1/q$, then $(p, q) \to (1/e) (p, q)$, $\tau \to e\tau$, $\sigma \to e^3 \sigma$; $P \to e^4 P$, $Q \to e^4 Q$, $e + ig \to e^{-2}(e_0 + ig_0)$, $m + in \to e^{-3}(m_0 + in_0)$, $\varepsilon \to e^{-2}\varepsilon$, $\gamma \to e^{-4}b + (\lambda/6)$, $\lambda \to \lambda$ yields in the limit $e \to \infty$ the solution previously described by (1)-(6). Another contraction: $(p, q, \sigma, \tau) \to e^{-1}(p, q, \sigma, \tau)$, $n \to ne$, $\varepsilon \to \varepsilon e^2$, $m \to me^3$, $e + ig \to (e_0 + ig_0)e^2$, $\gamma \to \gamma + e^4g^2$, $\lambda \rightarrow \lambda$, and then $e \rightarrow \infty$ brings the solution to the Kinerseley-Walker family of solutions.

The solution described by (9)-(13) in general is not separable. Constants e, g, m, n are related to electric and magnetic charges, mass and NUT parameters; λ is the cosmological constant; it is conjected that 'kinematical constants' γ and ε are related to uniform acceleration and rotation parameters (γ in contractions corresponds to the Kerr constant).

190