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In an earlier paper [1] on groups which are the products of two finite cyclic groups with
trivial intersection, certain permutations, called " semi-special", played a certain role. The
permutation n of the numbers 1, 2, ... , n is semi-special iff im =n, and if, for every ye[ri),

TTj/x=Tr(x+y) -Try (mod n)

is again a permutation, namely a power (depending on y) of TT.
Examples of semi-special permutations are the linear permutations defined by TTX = rx

(mod n), where r is prime to n. If n is a prime number, then all semi-special permutations on
[n] are linear (see [1], Corollary 4.13). If n is composite, the determination of all semi-special
permutations is much more difficult.

The aim of the present paper is to advance their study far enough to permit their deter-
mination when n is the product of two (equal or distinct) prime factors.

Although the motivation of this investigation is group theoretical, the present paper is
only concerned with arithmetical properties of permutations, and no group theory occurs in it.
In order that it may be self-contained we put together in § 1 those notations and results of [1]
that will be required here.

Throughout this paper, congruences that occur with no modulus stated are to be under-
dx — 1

stood to be modulo n. An expression like -=—— is to be interpreted as an abbreviation for

1. Notations and preliminary results.

1.1 LEMMA: I/TTI = 1, then TT = I ([1], Lemma 3.1).
1.2 LEMMA: (nr)u is a power of TT for all rand u ([1], Lemma 3.3).
We denote (TTT)U by 7rT(r'u), where r(r, u) is determined modulo k, the order of TT.

1.3 LEMMA : With the above notation
r(r, U+V)=T(T{T, U), V) (mod k), (1.4)

r(r+s, u)=r{r, TTSU) +T(S,U) (mod k) (1.5)
l[l], Lemma 3.4).

1.6 LEMMA : With the same notation
(i) if r(r, u) =r(r, v) (mod k), then

r(r,v-u)=r (mod k); (1.7)
(ii) if r{r, u) = r (mod k), then, for all y and z,

r(r, uy + z)=T(r,z) (mod k) (1.8)
([1], Lemma 3.7).

1.9 THEOEEM : Let TT be a permutation (which is not necessarily semi-special). If TTU=TT

for some number u, then, for all y and z,

([1], Theorem 4.4).
t We write permutations as left-hand operators and denote the set of numbers 1, 2, ... , n by [n].
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ON SEMI-SPECIAL PERMUTATIONS I 19

1.10 COROLLARY : If IT is semi-special on [n] and if u is some divisor of n such that
7ru = IT, then TTU = ud, where (ud, n) = u. Moreover, n permutes multiples of u among themselves
([1], Corollary 4.8).

1.11 LEMMA : Let trbea semi-special permutation defined on [n]. If u is some divisor of n
such that 7ru=7T, then IT defines modulo u a semi-special permutation p by px^irx (mod- u)
([1], Lemma 4.9).

1.12 THEOREM : Let IT be a permutation (which is not necessarily semi-special) defined on
the range [n]. If ITU=TT for some number u which is prime to n, then -n is a linear permutation.

Conversely, if visa linear permutation, then iru=nfor every u; therefore a linear permutation
is semi-special ([1], Theorem 4.10).

1.13 THEOREM : Let w>2; then to every semi-special permutation defined on [n] there
exists an integer r which divides n, such that

l ^ r < w and TTT = TT.
([1], THEOREM 4.12).

1.14 COROLLARY: If p is an odd prime number, the semi-special permutations on [p] are
all linear ([1], Corollary 4.13).

2. Some constructive properties of semi-special permutations.
2.1 THEOREM : To every semi-special permutation defined on a given range [n], there

corresponds a number s which divides n such that the permutation induced modulo s is linear.
Proof: If TT is linear, the theorem is obvious with s = n. If 77 is not linear, then ^ & IT, by

Theorem 1.12. In this case there exists a proper divisor nx of n such that 7rnj =ir (Theorem
1.13). Moreover, by Lemma 1.11, the permutation 77(1) defined on [raj by

TT^X^TTX (mod Mi)

is semi-special. If 7r(1) is linear, the theorem is proved with s=n1; otherwise we repeat the
same process. In this way we obtain a sequence of integers n0 = n, 74, n2, ... ,n(,... together
with a sequence of permutations 7T(0) = 7T, T7(1), 7T(2) 7rw), ... defined by

7r(t+1>x = 7r(t)a; (mod ni+1),
where 77^+1 = 77«), l<ni+1<nt, ni+1\n{.

Observing that the sequence n0, nv nv ... ,«,-, ... decreases monotonically, we see that
the process may be repeated until we arrive at a linear permutation TI-O ; this happens at the
latest when nt is a prime. The theorem then follows if we take s=nt, and remark that
TT^X^TTX (mod nt).

The above theorem and Theorem 1.13 together imply the following:
2.2 CONCLUSION : The totality of semi-special permutations on a given range [n] which are

not linear can be obtained in the following manner:
(i) choose a proper divisor of n and call this r, say;

(ii) determine all the semi-special permutations n for which •nr=ir and the permutations
induced modulo r are linear;

(iii) make r take all its possible values.
From the above conclusion, we deduce the following
2.3 CONCLUSION : To every semi-special permutation on [n] which is not linear there

corresponds a number s(l<s<n) dividing n, such that irs=7r and the permutation induced
modulo s is linear.

If s is such a number, then by Theorem 1.9 it follows that IT,' =V for every multiple «' of s,
but rt is not necessarily linear modulo s'.
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20 K. R. YACOUB

• 2.4 DEFINITION : The maximal divisor s of n for tvhich TTS=TT and n is linear modulo s is
called the principal number of n.

If 7T is linear on [n], its principal number is n.
2.5 LEMMA : If -n is a non-linear semi-special permutation on [n], then it is of the form

nx=tx+sf{x)
for suitable s, t; and there is at most one -n with given values of s, t (mod n),f(l), /(2), ...,f(s)
(mod njs).

Proof: Let the principal number of -n be s. By hypothesis 77 is non-linear; therefore
s<n. Moreover, 77 is linear modulo s ; i.e., -nx = lx (mods), where t is prime to s. Thus we can
write

TTX = tx + sf(x) (2.6)

where f(x) is to be determined modulo n/s.
There is at most one -n with given values of s, t (mod n), / ( I) , /(2), ...,f(s) (mod ?i/s).

This is obvious ; for, by the definition of s, TTS = TT, and, by Theorem 1.9, it follows that

Trys^y-ns, TT{x+ys)=TTX+trys (2.7)
Then (2.6) and (2.7), taken together, define -n uniquely in terms of the given values s, t (mod n),
/ ( l ) , / (2) , ...,f(s) (mod njs). This proves the lemma.

For convenience of notation, we write N^n/s, d = t+f(s) (mod N); thenf irs=sd, and
(2.7) can be written

irys = ysd, Tr(x+ys)=Trx+ysd (2.8)
With the notation of Lemma 2.5, we prove the following results :

2.9 LEMMA : (i) / / 1 # 1 (mod s) and if h is the order of t modulo s, then

(2.10)

i-i
where F(x,j)= E d3-*-1/(<lx), g{x)=ux + F(x, h) (mod N), u being defined modulo N by

i=0

(ii) If t = 1 (mod s), then

dlz^f(x) (2.H)

Proof: (i) Let t =£ 1 (mod s). Then, by using (2.6) and (2.8), we have

772a; s 77 (77a;) s 77 (tx + sf(x)) s ntx + sdf(x) = t2x + s {f(tx) + df (x)}

By induction we find that

f { )
and, by using the notation of the lemma,

^x^Px + sF{x,3) (2.12)

Thus iPx = thx + sF{x, h)=x[l+us)+sF{x, h),

i.e., •nhx=x+sg{x) (2.13)

Moreover, a repeated application of the second formula of (2.8) gives

11* should be noted that (d, N) = l (Corollary 1.10).
I Such a number u always exists, because tA= 1 (mod a) and a divides n.
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ON SEMI-SPECIAL PERMUTATIONS I 21

•n' (X + ys) = TT'X + ysdK (2.14)
For j = h, we have

TTh(x + ys)=TThx+ysdh (2.15)

Hence •n2hx=7Th(TThx)^TTl>(x + sg(x)), by (2.13),

= trhx+sg{x)dh, by (2.15),

i.e., n2llx=x + sg(x) (l+dh).
By induction over multiples of h, we obtain

l j f - i . (2.16)

Then, combining together (2.14) and (2.16), we get

•nih+>x = 7r' (irihx) =irilx+sg(x)-

4th -1 „

which, by using (2.12), proves the first part of the lemma.
(ii) If t = 1 (mod s), the proof is obvious and will be omitted.
2.17 LEMMA : (i) / / t^= 1 (mod s) and if h is the order of t modulo s, then the quantities

r(h, 1) and T (1 , y) -1, for all y, are multiples of h. If k is the order of ir and if r(h, 1) sdh
(mod k) and T ( 1 , 1) = 1 +<f>h (mod k), then

+0 + 02 +. . . +6*-1) (mod k),

.+es-l)=0 (mod k/h) (2.18)

(ii) If t = l (mod s) and ifr(l, l)= to (mod k), then

T(l,y)=ojv, a>8 = l (mod k).

Proof: (i) Let <=£l (mod s). Then, by (2.13),
TT«h-Vx = tTh{

and, by (2.6),

hence, by (2.10), it follows tha t T (h, l ) = 0 (mod h) a n d r ( l , y) = l (modA). Thus we can write
r(h, l)=dh, T (1 , 1) = 1 +<j,h (mod k).

Now, by putting y = 1 in (2.15), we get

TTA (X + S) - TThS = 1ThX,

sho\ving that r(h, s)=fe (mod k). Hence, using lemma 1.6 (ii) with r = h, u = s, and 2 = 1, we
obtain, from (1.8),

r(h, sy + l)=r(h, 1) (modifc). (2.19)

Similarly, since T ( 1 , S) = 1 (mod k), we have, by (1.8),

r{l,sy + l)=r{l, 1) (mod A;) (2.20)
Next, by (1.5), we have

T(2h, l)=r(h, nh\)+T{h, 1) (modifc)

=r(h, 1 +^(1)) +r(h, 1) (mod k), by (2.13),

i.e., r(2h, l)=r(h, 1 )+T(A, 1 )=2T(A, 1) (mod k), by (2.19).

By induction, we obtain
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22 K. R. YACOUB

r{ih,l)svr(h,l) (mod i) (2.21)

Moreover, by (1.4) and (1.5), we have

T ( 1 , 2 ) = T ( T ( 1 , 1), l ) a r ( l +<f>h, 1) (mod i)

=r{<j>h, 1) +T(1,77**1) (mod A;)

^ ^ p j (mod A;), by (2.16),

= <fn(h, 1) + T ( 1 , 1) (mod k), by (2.21) and (2.20),

= <j>8h + l+<j>h = l+<j>h(l+6) (modi;) .

By induction, we find that

r{l,y) = l + <f>h(l +6 + 8* +... +0*-1) (modi).
Then (2.18) follows if we remark that T(1, S) = 1 (mod k).

This completes the proof of part (i) of the lemma,
(ii) Now let t = 1 (mod s). In this case (2.6) may be written

nx=x + sf{x) (2.22)
Now T(2, 1 ) S T ( 1 , TT1)+T(1, 1) (mod k), by (1.5),

BT(1 , 1 + « / ( 1 ) ) + T ( 1 , 1) (mod i), by (2.22),

S T ( 1 , 1 ) + T ( 1 , 1 ) (mod k), by (2.20) ;f
thus T ( 2 , 1 ) = 2 T ( 1 , l)=2co (modi).

By induction, we obtain
r{y, 1) =yoj (modi) (2.23)

Then, by (1.4), we have

T(1, 2 )=T(T(1 , 1), 1)E5T(«, 1)=O,2 (mod i), by (2.23).

By induction, T(1, y) =cov (mod i).
Moreover, T (1, s) = 1 (mod i) and therefore at" = 1 (mod i). This proves part (ii) of the lemma.

2.24 LEMMA : (i) / / 1 & 1 (mod s) and if

oc(y)=<f>(l +0 + 6* +... +d*-1) (modi/A),

then, with the notation of the previous lemmas,

#rzr (2l25)

dMv)_i=o (mod IV) (2.26)

(ii) Iftsl (mod s) and if r is the order of d modulo N, then

/(*+*) = / (* )+ / (» )+<*(«»- l ) | ^ / ( z ) (modtf) (2.27)

Proof: (i) Let t ̂  1 (mod s). By the preceding lemma, T (1, y) = 1 + Aa(y) (mod i) and there-
fore

ir1+ha^x=TTT{1

which, by using (2.10) and (2.6), gives

t Tt should be noted that the proof of (2.20) depends on the fact that T (1, s)s 1 (mod t) and therefore
(2.20) is still true when f = 1 (mod *).

https://doi.org/10.1017/S2040618500033396 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033396


ON SEMI-SPECIAL PERMUTATIONS I 23

dMi/) _ 1
f(x+y)-f(y)=F(x,l)+d rf> _ 1 g{x) (mod N)

and (2.25) then follows if we remark that F(x, 1) =f(x) (mod JV).

Moreover, TT1+h"^)s=TTr^-v')s=TT(s+y) -^V^TTS ;

therefore sdl+"*<!/) = sdi which proves (2.26) if we remember that (d, N) = l.
(ii) Next, let t = l (mod s). Then T(1, y) =cu« (mod &), by Lemma 2.17, and therefore

7T«1-v'>x = iT<°vx=x+s-r—.rf{x), by (2.11);
Cb — 1

on the other hand
-ny=x+s{f(x+y) -f{y)}, by (2.22) ;

thus / ( a ; + 2 / ) _ / ( 2 / ) ^ ^ ! j l l / ( a ; ) (modtf).

Moreover,

TT1""* = 77T(X> ">S = 7T (S + y) - Try = TTS ]

therefore sd0* = so!. This shows that wv = 1 (mod r), r being the order of d modulo N. Then we
have

d"v-l ,d'JI-1-l , .a!"-"-1-! d r - l

(modiV),

because cuv - 1 is a multiple of r, and dr = 1 (mod N). Therefore

f(x+y) =/(*) +/(y) + d ( ^ - 1) j £ y / ( s ) (mod Jff).

This proves part (ii) of the lemma.

2.28 THEOREM : Let n be a non-linear semi-special permutation whose principal number
is s. Let TT be written in the form.

•nx = tx+sf(x)

and let d = t+f(s) (mod N), where iV = w/«.
(i) / /1 s 1 (mod s), then the order of d modulo N divides the order of t modulo 8.

(ii) / /1 s 1 (mod s), then d = l (mod N).
Proof: (i) Let t^ 1 (mod s) and let h be, as before, the order of t modulo s. We have to

show that aV=l (mod N), i.e., that (dh-l, N)=N. Let (d A - l , N)=N'.
We first show that 2V'> 1. Suppose that N' = 1. Then, from (2.26),

i

V r r s 0 {modN)

and therefore, from (2.25),
f{x+y)=f[x)+f{y) (mod IV);

thus 7T is linear, contrary to the hypothesis of the theorem. Hence N'>1.
We now show that N' = N. Let N' = N'N" and suppose that tf" > 1. Then, from (2.26)

.and (2.25),
< ^ 1

3 0 , f(x+y)Sf(x)+f(y) (mod AT").
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24 K. R. YACOUB

From the latter it follows that/(a;) =a;/(l) (mod IV"), i.e., that/(a;) =xf{l)+N"F{z) (mod N),
say ; hence -n may be written in the form

where t' =t + sf(l) and s'=sN". Moreover, since -ns—-n, it follows from Theorem 1.9 that
•ny = 77. Hence the principal number of -n is s', a multiple of s. This contradicts the hypothesis
of the present theorem. Hence N" = 1, i.e., N' =N.

This completes the proof of part (i) of the theorem.
(ii) Let t = 1 (mod s). We have to show that (d -1, N) = IV. Let (d-l,N)= N'.
We first show that N'>1. Suppose that N' = 1 ; then

^ = J s O (mod IV),
a - 1

r being the order of d modulo JV; hence, by (2.27),
/ ( * +V) =/(«) +f(y) (mod IV),

showing that -n is linear, contrary to hypothesis. Thus iV'>l .
By following the method used in part (i), we can show that IV' =JV. This completes the

proof of part (ii).
2.29 COROLLARY : ( i ) / / M l (mod s) and if h is the order of t modulo s, then nhs=s, and

(2.30)

• =/Oe)+/(y)+^flr(1)^(1 +d + 62 + ... +0x~1)(l +0 + 62 + ... +6V-1) (mod IV). ...(2.31)

(ii) / / 1 = 1 (mod 5), then -ns = s, and

f{x + y)=f(y) + wvf(x) (mod IV) (2.32)

(N.B.: The symbols that appear here have the same significance as before.)
Proof: (i) If t^\ (mod s), then, by Theorem 2.28, dh=l (mod IV); moreover, irs = sd,

•nys^ysd and therefore -nhs^sdh=s. Furthermore, since dh = \ (mod IV), (2.16) may be
written

•nihx=x +sig(x) (2.33)
IV

Thus irililsl+sig(l)sl, if i=-^=—T-—-; hence, by Lemma 1.1, it follows that 77</11E=1 for

Nh
this value of i, and the order of -n is therefore k=j=——. • Then (2.30) follows directly

from (2.18).
Again, since dh = 1 (mod IV), then

Next 7r*(a; + l)-TTA1

which, by using (2.13) and (2.33), implies that
g(x + l)-g{l)=6g(x) (mod N). ..'. (2.35>

This obviously gives
g{x)=g(l)(l+e + 6* + ...+6*-1) (mod N) (2.36).

Then (2.31) follows from (2.25), if we use (2.34) and (2.36).
(ii) If t s 1 (mod «), then d = 1 (mod N), by the theorem, and therefore ns=s. Moreover,

as d = 1 (mod N), then r = 1, r being the order of d modulo JV ; (2.32) then follows from (2.27).
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3 . Existence criteria of non-linear semi-special permutations. In this para-
graph, we obtain necessary and sufficient conditions for the existence of non-linear semi-special
permutations.

3.1 THEOREM : (i) / / there is a non-linear semi-special permutation n on [n] with principal
number s and if n induces modulo s the identity permutation, then -n can be written in the form

Trx=x+sX(l+oj+w2 + ...+cox-l),-f (3.2)

xdhere X is a number prime to N, N= ?J/S, and where

<os-l=0 (modN), co-1^0 (modIV) (3.3)
(ii) Conversely, if X is prime to N, and if w satisfies (3.3), then (3.2) defines a non-linear

semi-special permutation of the desired type.
Proof: Assume the existence of ir. By hypothesis tr can be written in the form

TTX = x+sf{x), (3.4)
where, by Corollary 2.29, ns = s.

Let o> denote T(1 , 1) modulo k, the order of IT ; then, by (2.32),

f{x+y)=f(y)+w*f{x) (modN).
For y = 1, we have

/(a; + l)s/(l)+a>/(a;) (mod IV),
which by repeated application shows that

f{x)=f{l)(l+w+u)
2 + ...+oJ

x-1) (modiV).
Then (3.4) can be written

7ra;=a;+s/(l)(l+<u-t-aj2 + ...+coa!-1), (3.5)
where/(I) is prime to N, since otherwise the principal number of -n would be greater than s.
Moreover, since ITS = s,

/ ( l ) ( l + u + w8 + ...+o)«-1)s0 (mod IV),

where/(I) is prime to N, and therefore

l+aj+co2 + ...+a>'-1=0 (mod IV) (3.6)
We now prove the second of the conditions (3.3). Suppose that <u = l (mod IV); then

by (3.5),

for some integer t, and therefore
TTX = {1 +sf(l)}x = rx,

say. Let (r, n) = 8 ; then

Hence 7r(-J=?i. But ir(n)=rn = 0, and therefore im =w. Hence 77(^J=7m; since v is a

permutation it follows that w/8=w, i.e., that 8 = 1, i.e., that r is prime to n. Thus if
co = l (mod N), trx = rx with r prime to n, i.e., IT is linear. But -n is non-linear, so
to?* 1 (mod IV). This establishes the second of the conditions (3.3); the'first follows from (3.6).

For the converse, we start by showing that 77 is in fact a permutation. For if

x' +sX(l +co +o>8 +. . . +OJX'-1)=X+SX(1 +o> + w2 +. . . -Ho*-1) (3.7)

then x' sx (mod s). Writing x' =x+sX, (3.7) becomes

t Such permutations were first discovered by Douglas [2]. He calls them exponential substitutions.
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26 K. R. YACOUB

X + \(l+w+a>2 + ...+wx+sX-1)=\(l+w+wi + ...+o>x-1) (modN),

i.e., X+\u>x{l+w+w2 + ...+w'X-1)=0 (modiV).

But 1 + co+co8 + ... +cusX-1 = (l + to + co2 + ... +w'-x)(l + co» + to2s + ... +co<^-l)s)

=0 (mod N), in virtue of (3.3) ;

thus X =0 (mod N), and x' = x. This implies that TT is a permutation.

Next, we proceed to show that -n is semi-special. In virtue of (3.3), we can show that

77-5=5, it (x + ys) = TTX + ys (3.8)

Then, by direct calculation, we find that

OJ+UJ2 + ...+WX-1), by (3.8).
By induction, we obtain

•n"x =x +ysX{l + to + o>2 + . . . + tu*-1) (3.9)

Moreover, 7rva;=7r(x + 2/) -•ny = x+swvX{l + co + cu2 + ... +wx~l);

hence by (3.9) it is evident that TTVX = TT^X. Thus TTV is, for every y, a power of IT, and therefore
TT is semi-special. Furthermore, the second of the conditions (3.3) ensures that TT is non-linear.
To show this, suppose that n is linear. Then TTX = rx, where r is an integer prime to n. Hence,
by (3.2),

rx=x+s\(l+w +... +<JDX-1), for all x,

i.e., (r -1)X=SX(1+OJ + ...+wx~1), for all a;,
showing that s divides r -1. Let r - 1 = Ls ; then

Lx=X(l+w + ...+aja!:-1) (modiV).
Putting x = l, 2 in succession, we obtain

L=A and 2L = A(l+£o) (mod N);
therefore A(eo-l)sO (mod N) and hence co = l (mod N). Thus if TT is linear, c o - l = 0
(mod N) and hence if to - 1 ^ 0 (mod N), tr is non-linear. Moreover, the principal number of -n
is s ; this is obvious because A is prime to N. Lastly it is clear that TT induces modulo s the
identity permutation. Hence v is the desired permutation. This completes the proof of the
theorem.

3.10 THEOREM : / / there is a non-linear semi-special permutation n on [n], with principal
number s, if TT induces modulo s a linear permutation other than the identity and if TTI = t, then t is
prime to n and n can be written in the form

TTX = tX+Sif;(x), (3.11)
x-l

ivith ^(l)sO, ij)(x) =B 2 (x -i)0l~l, (mod N), x^2, where B is -prime to N, N=nJ8, and
i l

.+fl'^sO •(modiV) (3.12)
Moreover, if h is the order of t modulo s, and u is defined modulo N by thsi +us, then

h-l

K=U+ E J*-'-1^') (mod N) is prime to N ; (3.13)
i=0

u{8-l)= E <"-''-1{V'(2<')-(fl + l)<A(<<)} (mod .AT); (3.14)

A - l

E «»--1(l+0 + 02 + . . . + 0 t < - W ' ' - 0 r ) = O (modtf), r = l ,2 , ...,« (3,15)
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Conversely, if t is prime to n and R and K are both prime to N, and if 8, t and R satisfy
(3.12), (3.14) and (3.15), then (3.11) defines a non-linear semi-special permutation of the desired
type.

The proof of this theorem is somewhat long and it will be effected by means of a number
of lemmas.

First, assume the existence of n. By hypothesis, rr can be written in the form
•nx = tx+sf(x) (3.16)

where t is some number prime to s. Let k be the order of n ; then, by Lemma 2.17,
r(h,l)=8h (mod*;), T (1 , l) = l+<f>h (mod *;).

Moreover, by (2.13),
7Thx=x+sg{x) (3.17)

A - l

where g(x)=ux + 2 dh-i-1f{tix), dst+f(s) (mod N).
i=0

Furthermore, by (2.31),
f(x+y)&f(x)+f{y)+dg(\)<f>(l + 8 + 8* +... +dx~x)(l +6 + 8* +... +8*-*) (mod N). ...(3.18)

For y = 1, 2 we have respectively
=f(x) +f(l)+dg(l)<l>(l +8 + 6* +... +8*-*) (modN),

f(x)+f(2)+dg(l)</>(l +9 + 6* + ... + 8x~1)(l +8) (mod N);
from which we deduce that

/(* + 2) - / ( * +1) mf{2) - /(I) + 8{f(x +1) -f{x) -/(I)} (mod N).

Replacing x by x -1, then putting

A(x)=f(x + l)-f(x), c=/ (2)- / ( l ) -V(l ) (modJV),

we find that A (z) =c + 8A (x -1) (mod N), which, by repeated application, gives

A(z) =0(1+8 + 8* +... +8x-2) + 8x'1A(1) (mod N).

Then, by putting R =f{2) -2/(1) (mod N) and accordingly

c=R-(8-l)f(l), A{l)mB+f(l) (modN),

wehave A(x)=R(l +8 + 8* + ... +8x~1)+f(l) (mod N),

i.e., f(x + l)-f(x)^f(l)+R(l+9 + e* + ...+ex-1) (modN) (3.19)

Defining <p(x) by ip(x) =f(x) -xf(l) (mod N), (3.19) can be written

ijj(x + l)-<P(x)=R(l+8 + 8i + ...+8x-1) (mod #) (3.20)
Writing (3.20) for a; = 1,2, ...,y-l, then adding together and remembering that 0(1) = 0
(mod N), we obtain

ifi(y) =R "It (y-itf*-1 (mod N), for y^2.
i- l

Now, using the function <fi(x), (3.16) can be written

•nx = (t +sf(l))x +si/i(x).

Since t is prime to s, then so is t + sf(l); moreover t and t + sf(l) have the same order h modulo
s. Hence, without loss of generality, we can replace t + sf(l) by t, and n can be simply written
as

TTX = tx+Siji(x) (3.21)

Now the principal number of n being s, R must be prime to JV. This confirms (3.11), where t
will be shown prime to n (Corollary 3.26).
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Next, by putting x=y = l in (3.18), we get/(2) -2/(1) = dg {!)</> (mod JV), i.e., R=dg(l)<j>
(mod N). But since R is prime to N, then d, g(l) and <j> must be all prime to JV.

To confirm (3.12), we have, by (2.30),

where <f> and <7(1) were shown to be prime to JV, and therefore

l + 9 + 9 2 + ...+fl«-130 (modJV).
This shows that (3.12) is necessary.

I t remains to show that (3.13-3.15) are necessary. For this purpose we prove the two
following lemmas.

3.22 LEMMA: The function «/i(x) satisfies the following relations:
+ {x+y)-t(x)-iP{y)=R(l+0 + e* + ...+6*-i){l+e + 62 + ...+6v-1) (mod IV), ...(3.23)

ifi{rx) -r<j,(x)=R{l +9 + 8* +... +8*-1)*(r-I +(r-2)6X +... +6<r-V*) (mod AT)> r>2, ...(3.24)

Moreover, if 8 satisfies (3.12), then
>/j{ys)=O,^j{x+ys)=^{x) (mod JV) (3.25)

Proof: Since </«(l) =0 (mod JV), (3.20) may be written

iP(x + 1) -0(z) -</r(l)=iJ(l + 8 + 82 +... +6*-1) (mod 2V).

This relation shows that (3.23) is true for all x and for y = 1. We complete the proof by induc-
tion over y. Assume that (3.23) is true for a certain value of y. Then

(mod JV),
which, by assumption for the first bracket and by using (3.20) for the last two brackets, implies

(modiV);

the proof of (3.23) then follows by induction.

Next, for (3.24), we get, on putting x = y in (3.23),

0(2x) -2>l>[x)=R{\ +8 + 02 +. . . +01"1)2 (modJV).
This shows that (3.24) is true for all x, and for r = 2. The proof may be completed by induction
over r, and we omit it.

Lastly, if 8 satisfies (3.12), then 8s = 1 (mod JV) and

*l>{s)=R 'z ( s - i ) ^ - 1 ^ -B Z id1-1 (mod 2V) • •
t=l i=l

^ (modJV)

^-Al +8 + 82 +... +8'~1)^0 (mod 2V), b£(3.12).
do

By putting x = s, r=y in (3.24) and using (3.12), we deduce that

t/j(ys)^yi{>($)^0 (modJV);
moreo.ver, by putting y=s in (3.23) and using (3.12), we get

i/r(a;+s)=i/r(a;)+i/i(s)=i/i(a;) (mod JV),

and inductively >f> (x + ys) = i/i (a;) (mod JV).
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This completes the proof of the lemma.

3.26 COROLLARY : If nl =t, then t is prime to n.

Proof: By (3.21), ns = st+sip(s) =st, by (3.25) ; hence t is prime.to N, by Corollary 1.10.
But t is known to be prime to s ; therefore t is prime to n.

3.27 LEMMA : With the same notation, if 6 satisfies (3.12) and if the relation
A - l

E ^-'-^(t'x) (modN)

is satisfied for x = 1, 2, ..., s, then it is satisfied for all x.
Proof: Let l<a ;<s ; then by hypothesis

A - l

g{l)(l+6 + 62 + ...+6x-1)=ux+ E ^-'-^(t'x) (mod N) (3.28)
i-0

which, for x=s, gives, on using (3.12) and (3.25),

us=0 (modN) (3.29)
Now, let X = x + ys ; then

) (mod N), by (3.12),

= %ix+ E t^-mpx) (mod

On the other hand,

= %ix+ E t^-mpx) (mod N), by (3.28).
<o

uX + S <»-'-Y(t*X) =u{x+ys)+ ~Z i"--1^(t'x + t'ys) (mod N)
i=0 1=0

A - l

&ux+ £ p-'-mt'x) (modN),
i=0

by (3.29) and (3.25) ; thus

which proves the lemma.
We now proceed to show the necessity of (3.14) and (3.15). Following the procedure of

Lemma 2.9 and using the second formula of (3.25), we obtain

•nhx=x+sg(x),
A - l

where g(x)=ux+ Z t11''-1^(t'x) (mod N).
<=o

Moreover, by (2.36),
S-(a;)=Sr(l)(l+0 + 0!! + ...+0*-1) (mod N);

hence, by comparing the two expressions for g(x), we have

g(l)(l+8 + 82 + ...+8x-1)=ux+ £t»-i-lt(tix) (mod N), for all x ,.(3.30)
i=0

Moreover, by Lemma 3.27, we have shown, in virtue of (3.12), that the validity of (3.30) for
x = 1, 2, ..., s implies its validity for all x. Hence it is sufficient to consider the values 1, 2, ..., s
of x. For x = 1, y, y +1 we have in succession

g(l)=u+ E <»-<-^(J') (modiV), (3.31)
t=0
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h 1 (mod JV), (3.32)
t=0

+h~Zth-i-1tl>{ti(y + l)) (mod JV),
»=o

where y = l, 2 , . . . , s.
From these relations, if we eliminate u, we obtain

g(1)(0» -1) a * s V ' - i { M % +1)) -«A(<") -</-(<'«/)} (mod iV),
i=0

A - l

i.e., gr(l)(0»-l)s.R Z1 <»-'-i(l + 0 + 02 +. . . +fl«i-1)8(l + 0<*+02(< + ... + 0<»-1>«') (mod

by (3.23). Writing this relation for j / = l, 2, ..., s and then eliminating g{\) from each pair of
consecutive relations and remarking that R is prime to N, we get

A - l

E <ft-<-1(l+0 + 02 + . . .+0 '* -W' i ~0 r )=O (modtf) ,r = l, 2, . . . , « - 1 .
t-0

This confirms (3.15). [Note that (3.15), with r=s, is obvious in virtue of (3.12).] Next, to
confirm (3.14), eliminate gr(l) from (3.31) and (3.32) with y-2, obtaining

« ( J - 1 ) E V t ^ - 1 ^ ( 2 « < ) -(6 +1 )<fj(«')} (mod JV);

this confirms (3.14).
Moreover, since gr(l) is prime to JV, then so is K ; this confirms (3.13).
We have thus shown the necessity of all the conditions.
For the converse, we show that if (i) t is prime to n, (ii) R and K are prime to N and

(iii) (3.12-3.15) are satisfied, then (3.11) defines a non-linear semi-special permutation of the
type required.

We show first that n is in fact a permutation. For if

tx'+si/i(x')stx+8tli[x), (3.33)
then tx' = tx (mod s) and therefore x' =x (mod s), because t is prime to s. If x' = x + sX, then
(3.33) becomes

tX+i[i{x+sX)=ilj(x) (modiV).
But in virtue of (3.12), it was shown (Lemma 3.22, (3.25)) that

ifi[x + sX)s^i(x) (modiV);
thus tX =0 (mod JV). Since t is prime to JV, this implies that X=0 (mod JV); hence x' =x.
This shows that n is a permutation.

Next we show that 77 is semi-special. By direct calculation and by using the relation
<l>(x+ys) = \ji (x) (mod N), we obtain

v-i
TT*X=t*x + s E f-*-1^ {t*x) (mod JV).

Therefore irhx=x+sg(x), (3.34)
A - l

where g(x) =ux + E t^1-1^(t'x) (mod JV), u being defined modulo N by th = 1 + us.
i=0

We now show that, in virtue of (3.14) and (3.15),
3(z)-Sr ( l ) ( l+0 + 02 + ...+0*-1) = O (modJV).

Denoting the left hand side of this relation by r(x), we have
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r(x) s -u{(8 - 1 ) + (82 - 1 ) +. . . + (0*-1 -1)}

+ ^ <*-f-i{0(f <z) -0(<<)(1+0 + 0* + ...+ 0*-1)} (mod 2V)

= -{1 + (1 + 0) +. . . + (1 +0 + 8* +... +6*-*)} ' z ' V - * - 1 ^ ' ) -(8 +1 )<£(<<)}

+ £ p-t-^ftx) - m*) (1 + 6 + 82 +... + B*-1)} (mod N),
i=0

by substituting for u(8 -1) from (3.14),
s -{l+(l+6) + ...+(1+0 + 9* + ...+ 8*-*)} *i1«*-<-1{0 (2f) - 20 (<•)}

+ ^<»-f-1{0(«'x)-a;0(<*)} (modiV),
i-0

which, by (3.24), implies
A - l

+ ...+(l+0 + 82 + ...+8*-2)} E th-*-l(l +8 + 8* + ... +8'i-1)2

t=0
A - l

+R E th-i-1(l+8 + 82 + ...+8ii-1)2(x-l + (x-2)8ti + ...+8^-i'>ti) (mod N)

A - l

E ^ - ' ^ ( l +8 + 82 +... +6ti-1)2{(x-2)(0(<-8) + ( x - i

»=o

( ) } (
= 0 (mod N),

by (3.15), which can be shown true for all r by means of (3.12). Thus
g(x)sg(l)(l+0 + S2 +... +8x~1) (mod JV) (3.35)

and, by (3.12), one can show that
g(x+ys)=g(x) (mod N) (3.36)

Hence, by (3.34), we have
TTihX =TTh(iThX) =TTh(X+Sg(x))

=x + sg (x) + sg (x + sg (x))

s x + 2sg {x), by (3.36) ;
and inductively

Furthermore, 7r'A+1a; = v (n'^x) = n (x + isg (x))
= t(x+isg(x))+st/j(x + isg{x)), by (3.11),
= tx+s{<fi(x)+itg(x)};

thus TTil>+1x = tx + s{i/)(x)+itg(l)(l+8 + ff2 + ...dx-1)} (3.37)

Next, by direct calculation,

•n^pc = IT(x + y) - -ny s tx + s {$ (x + y) - </> (y)}

which, by (3.23), gives at once

irvxstx + s{ifi(x) +R(l +8 + 02 +... +0*"1)(1 +8 + 02 +... +8*-1)} (3.38)

Comparing (3.37) and (3.38), we see that n-v=7r<'»)ft+1, where

i(y) =RP(l+8 + 8i + ...+8^) (mod N), ptg(l)sl (mod N) ;f

thus 7T is semi-special.
t Such p exists because both t and g{l) are prime to N.
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Furthermore, it is obvious that the principal number of n is s, and that -n induces modulo
s a linear permutation other than the identity permutation.

Finally, we show that -n is non-linear. For if n is linear, then TTX = t'x, where t' is prime to
n, and therefore

t'x = tx+sip (a;), for all x ;
thus {f-t)x = si/i{x), for all a; (3.39)

For x = l, this implies that t' -tssip(l) =0, because I / I (1)=0 (mod N); hence, by (3.39),
</J(X) =0 (mod N), for all x. But, by (3.20), we have

$(x + l) -ifi(x)sR(l +6 + 0* +... +6'-1) (mod N);

therefore JR(1 +6 + 6* + ... + dx~1) =0 (mod N), for all a;.

But this cannot be satisfied since R is prime to N ; hence n is not linear.
This completes the proof of the theorem.
3.40 COROLLARY : / / N divides s and if (6 - 1 , N) = N and {t -1, N) = 1, then -n can be

•written in the form
TTX=tX + SfXX (X - 1),

where t is prime, to s, and n is prime to N and is chosen so that u — /xht*-1 is prime to N, h being
the order of t modulo s and u being defined modulo N by th = l+us.

Proof: By hypothesis, 0 = 1 (mod N) ; this obviously satisfies (3.15). Also (3.12) is
satisfied, because N divides s. Furthermore,

x-\
-l) (mod IV).

But as t is prime to N (being prime to n) and as (t -1, N) = 1, N must be odd ; moreover, since
R is prime to N, there exists a number /A, prime to N, such that 1\x, =R (mod N), and we have

if>{x)=px(x-l) (modiV) (3.41)

Next, th -1 = 0 (mod N), because h is the order of t modulo s, and s is a multiple of N. More-
th -1

over, (t-1, N) = l by hypothesis and therefore - — - =0 (mod N); this shows that 6 = 1

(mod N) satisfies (3.14). Then, by (3.11) and (3.41),

-1 ) ,
h-1

where K =U + S t11'*-1^(f) ^u-fxht*-1 (mod N) is prime to N.
i=0

This completes the proof of the corollary,

3.42 COROLLARY : If(6-l,N) = l, then (3.14) becomes

u{6-l)=Ri'>Z:ltk-i-l(6ii-l){6ii-6) + (6-l)Hh-1h\ (mod N) (3.43)
U-o J

and v can be defined by
nx = (t-sR(6-l))x+sR{6x-l), (3.44)

where t is prime to n, and R is prime to N and is chosen so that

«+.fl{2:V-<-i(0t<-i)-(0-
u-o

is prime to N, h being the order of t modulo s and u being defined modulo N by thsl+us.
Proof: By hypothesis, there exists a number A prime to N such that A (6 -1) = 1 (mod N).
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For this A,
'-1 (mod2V).

But ${i + l)-f(i)sR(l+0 + 0* + ...+8i-1) (mod N), by (3.20) ;

therefore <fi(i + l)-<li(i)sR\[8*-l) (mod JV).
By writing this relation for i = l, 2, ..., x and then adding together, we obtain

ifj(x + l)-ifj(l)=B\(e + 82 + ...+6x-x) (modiV).
But 0(1) =0 (mod N) and therefore

</-(a; + l)=2?A(l+0+02 + ... + 8X - (x + 1)) (mod N),

=RX2(6X+1 -l)-SX(x + l) (mod IV);

thus 4, (x) s RX2(8X - 1 ) - RXx (mod N).

Since R and A are prime to N, we can replace RX2 by R. Hence

<P(x)=R(6x-l)-R(8-l)x (modN), (3.45)

and, by (3.11), 77 can be written in the form

•nx s (t - sR (6 -1 ))x + sR (6X -1),

where t is prime to n, and R prime to N. Moreover
A - l

KSU+ E <"-'~V(<•) (mod N)
i=0

«A-<-1(0'1' -1 ) - (0 - l)th-lh\ (mod N)
J

is prime to N.
Finally, (3.43) follows at once if in (3.14) we substitute for </»(<*) and </r(2«') from (3.45).
This completes the proof of the corollary.
3.46 CONCLUSION : Theorems 3.1 and 3.10 supply necessary and sufficient conditions for

the existence of non-linear semi-special permutations.
Examples of such permutations will be given in the following section.

4. Examples of non-linear semi-special permutations. We conclude by con-
structing the non-linear semi-special permutations when n is the product of two (equal or
distinct) prime factors. We consider the following three cases where p, q are distinct prime
numbers.

I. n = 2p. The proper divisors of n are 2, p. There are two cases to be considered.
(i) s = 2, JV =p. In this case -n induces modulo 2 the identity permutation. By Theorem

3.1, there exists a number OJ such that
c u 2 - l = 0 (modp), w - 1 ^ 0 (mod p),

and therefore such that 10 s -1 (mod p). Hence, by (3.2), 77 is defined by
TT{2X) = 2X, 77(2a; + l)=2a; + l+2A (mod 2p),

where A is prime to p.
(ii) s =p, N - 2. We show that this is impossible.
If 77 induces modulo p the identity permutation, then, by (3.3), there is a number to such

that <op-1 =0 (mod 2), <u - 1 ^ 0 (mod 2). These congruences cannot be satisfied simul-
taneously.

C G.M.A.
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If n induces modulo p a linear permutation other than the identity one, then, by Theorem
3.10, there exists a number 0 satisfying

l + 0 + 02 + ...+0»-1=O (mod 2),

which is impossible.
Hence there is no semi-special permutation on [2p] with principal number p.
Thus we have shown the following
4.1 THEOREM : The non-linear semi-special permutations on [2p], where p is an odd prime

number, are defined by
TT{2X)=2X, 7r(2a; + l)E=2a; + l+2A (mod 2p),

idhere A is prime to p.
II . n=p2. There is just one case to be considered, namely, s =p, N = p. I t is evident

(Theorem 3.1, (3.3)) that
O J P - 1 = 0 (modp), w - 1 ^ 0 (mod p)

cannot be satisfied simultaneously. Hence, if n —p2, there is no semi-special permutation
with principal number p which induces modulo p the identity permutation.

Next, if 77 induces modulo p a linear permutation other than the identity, then, by Theorem
3.10, there must be a number 0 such that

l+6+ei + ...+9'-1=O (modp);
this implies that 0 = 1 (mod p). Hence the conditions of Corollary 3.40 will be satisfied and
therefore -n may be defined by

where t and ju, are both prime to p and are chosen so that u - fiht11'1 is prime to p, u being de-
fined modulo p by th = 1 + up (mod p2), and h is the order of t modulo p. Thus we have shown
the following

4.2 THEOREM : The non-linear semi-special permutations on [p2] can be written in the
form

nx = tx+pixx(x-l) (modp2),

where t and fi are chosen arbitrarily prime to p in such a way that u - phf1-1 is also prime to p, h
being the order of t modulo p, and u is defined modulo p by th = l +up (mod p2).

III . n =pq. The proper divisors of n are p and q and so we have two cases to consider,
(i) s =p, N = q. If 7T induces modulo p the identity permutation, then, by Theorem 3.1,

there exists a number w such that

O J P - I ^ O (mod q), co -1^0 (mod q).
These congruences cannot be simultaneously satisfied unless p divides q-l, in which case w
may be any number prime to q whose order modulo q is p, and n is defined by

•nx=x+p\{\ +OJ+UJ2 +... -far*"1) (modp<7),

where A may be any number prime to q. Since <o - 1 and A are prime to q, there exists a num-
ber prime to q such that /*(« -1) = A (mod q), and w is defined by

TTX=X+PH(U)X-1) (mod pq).

Next, if IT induces modulo p a linear permutation other than the identity one, then, by
Theorem 3.10, there exists a number 6 such that

l + 0 + 02 + ...+01)-1=O (modg);

thus 8V-1 s 0 (mod q), and 0^1 (mod q). These can only be satisfied if p divides q-l, and
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then 9 may be any number prime to q whose order modulo q is p. Moreover, (9 -1, q) = 1.
Hence, by Corollary 3.42, n may be defined by

TTX = {t-pR(9- \))x +pR [6X -1 ) (mod pq),

where t is prime to pq and R prime to q, and where /., R, 9 are chosen so that

u +R { El <*-*-i(0«' - 1) - (6 -
U=o

is prime to q (4.3)

u{9 - 1) = R {""z i " - ' - 1 ^ -1)(0( ' -0) + (0 - I J V - V A (mod q) (4.4)
lf=o J

A - 1

£ jA-i-l(1+0 + 02+ . +0t'-l)2(0r<<_0r)=O (m od j), r = 1, 2, ..., p - 1 (4.5)
t=0

(ii) s=q, N =p. In this case the procedure is exactly the same as in (i), and we omit it.
Assuming, without loss of generality, that p<q, we have shown the following
4.6 THEOREM : (i) If p is not a divisor of q-1, the semi-special permutations on [pq] are

all linear.
(ii) / / p divides q — 1, and OJ and 9 are any numbers prime to q having p as their order modulo

q, then the non-linear semi-special permutations on [pq] may be defined by
TTX=x+pfi(u>x -1 ) (modpg)

and TTX = (t-pR(9-l))x+pR(9x-l) (mod pq),
where t is prime to pq, and fx and R are prime to q, and where t, R, 9 are chosen so that (4.3-4.5)
are satisfied.
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