
Can. J. Math., Vol. XXXIX, No. 4, 1987, pp. 893-907 

CLASSIFICATION THEORY AND STATIONARY 
LOGIC 

ALAN H. MEKLER 

0. Introduction. Stationary logic L(aa) is obtained for Lwco by adding a 
quantifier aa which ranges over countable sets and is interpreted to mean 
"for a closed unbounded set of countable subsets". The dual quantifier for 
aa is stat, i.e., stat s<p(s) is equivalent to —iaa s —\<P(S). In the study of the 
L(aa)-model theory of structures a particular well behaved class was 
isolated, the finitely determinate structures. These are structures in which 
the quantifier "stat" can be replaced by the quantifier "aa" without 
changing the validity of sentences. Many structures such as R and all 
ordinals are finitely determinate. In this paper we will be concerned with 
finitely determinate first order theories, i.e., those theories all of whose 
models are finitely determinate. 

Example 0.1. [5] The theory of dense linear orderings is not finitely 
determinate. Let S be a stationary costationary subset of co] and 

« < C 0 

where 

{ TJ if a G S 

1 + r] if a £ S. 
Then 

A \= stat s (sup s exists) A stat s —i (sup s exists). 

Example 0.2. [2] Any theory of modules is finitely determinate. 

Combase [1] realised that the second example is an instance of a deeper 
phenomenon. He proved: 

THEOREM 0.3. [1] If T is a stable non-multidimensional theory, then T is 
finitely determinate. 

That there should be a connection between the hypothesis that T is 
finitely determinate and classification theory is further suggested by the 
fact that if a theory is finitely determinate some structure is imposed on its 
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models. Suppose a structure 

A = U Ah 

where / is an ordered set and7 < j implies A( Q A-. Then 04/) /G/ is order 
indiscernible if for all 

'o < • • • < h < A + i < < Û h < 4 + i < - . . < / „ and Â e At^ 

(A, A, , . . . , A: , A: , . . . , A, , a) 

= (A, A:,. . . , A: , A, ,... 9A,, à"). 

THEOREM 0.3. [2] Suppose \A\ = ccx.A is finitely determinate if and only if 
A is the union of an order indiscernible smooth chain of countable 
submodels. 

If T is finitely determinate, then all models of regular cardinality have 
the same sort of structure. To make this statement precise for any regular 
À interpret aa^ to mean "for a closed unbounded set of subsets of 
cardinality <\". (This is how aaA is defined in [2]. This definition conflicts 
with the one in [8].) As was noted in [2] the axioms for L(aa) remain valid 
for L(aax). So if T is finitely determinate every model of T is also finitely 
determinate in the X-interpretation (i.e., where aax and statA replace aa 
and stat). Also the analogue of Theorem 0.3 is true for aax. 

THEOREM 0.4. [2] Suppose \A\ = X and X is regular. A is finitely 
determinate in the X interpretation if and only if A is the union of an order 
indiscernible smooth chain of submodels of cardinality <X. 

THEOREM 0.5. Suppose T is finitely determinate, and A 1= T, and \A\ = X 
which is regular. Then A is the union of an order indiscernible chain of 
submodels of cardinality <X. 

The division between finitely determinate theories and non-finitely 
determinate theories is a structure/non-structure division. Such divisions 
are the concern of classification theory (cf. [10] ). In this paper we shall see 
there is a relation between classification theory and stationary logic. 

In Section 1 we show 

THEOREM 1.2. If T is finitely determinate, then T is stable. 

The proof is a variant of Shelah's construction of many models [9]. 
Suppose S() < À ^ JU and X is regular. If S is a stationary subset of À, then 
Shelah constructs a model of cardinality /x which has S (modulo the ideal 
of non-stationary sets) as an isomorphism invariant. In our version S is 
essentially L(aax) definable. 

In the second section we investigate which (necessarily stable) theories 
are finitely determinate. 
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THEOREM 2.6. If T is a superstable theory with NDOP, then T is finitely 
determinate. 

The proof uses a transfer theorem for L(aa) which reduces the problem 
to showing every a-model of some regular cardinality X is finitely 
determinate in the A-interpretation. The decomposition theorem for 
a-models of a superstable theory with NDOP allows us to link the finite 
determinacy of the model with the determinacy of a representing labelled 
tree. However since an element of the model may depend on some 
finite set of elements of the tree, we need a stronger notion than finite 
determinacy. 

Definition. Suppose \A\ = X and À is a regular cardinal. A is 
co-determinate in the À interpretation if A is the union of a smooth chain 
(Av)p<x of submodels of cardinality <X such that for all 

v0 < . . . < pn < r0 < . . . < rm, v„<o0<...< o,„ and â ÉE A^ 

(A,AV(),...,AVn,ATo,...,ATm,â) 

— cxxov̂ ' Av^ . . . , AVj A0^ . . . , Aa^ a). 

In Section 3, we give a proof that the relevant trees are co-
determinate. 

This paper has been written to require only a minimum amount of 
background from the reader. All the necessary facts about stationary logic 
will be stated. Section 1 (and Section 3 which is of limited independent 
interest) should be readable by most logicians. Section 2 involves stability 
concepts such as non-forking and a-saturation. Here a familiarity with the 
elementary parts of stability theory is assumed, say the contents of 
Sections A and B of [7]. Our notation is that of [7]. We also assume the 
reader is familiar with back and forth (or game theoretic) criteria for 
elementary equivalence and equivalence in infinitary languages (of [6] ). 

We conclude the introduction with a few remarks and examples. One 
question which might be asked "why do we restrict ourselves to 
superstable theories with NDOP?" It is easy to give examples of co-stable 
theories with DOP which are not finitely determinate. 

Example 0.6. There is an co-stable theory (of Morley rank 2) which is not 
finitely determinate. (This example was also noted by Combase.) 

Construction. A model of this theory is the disjoint union of in
finite unary relations U and V. Also the model has a ternary relation 
R ç U X U X V where 

({z:R(x,y,z)))x^u 

partitions F into infinite blocks. By varying the cardinalities of the blocks, 
any graph on U can be coded (i.e., the adjacency relation is L(aa)-
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definable). So this theory has a non-finitely determinate model. 

The restriction to superstable theories is a result of ignorance. Certainly 
there are finitely determinate theories which are stable but not super-
stable. Any stable not superstable theory of modules is such an example. 
Also the theory of co infinitely refining equivalence relations is finite
ly determinate. (By Theorem 2.6 the reduct to any finite language is 
finitely determinate.) But this theory is not only unsuperstable but also 
multidimensional. 

A third question asks whether these results can be extended to infinitary 
versions of determinacy. Combase [1] shows that every to-stable non-
multidimensional theory is «-determinate for all ordinals a < coj. (In fact, 
he shows something more.) 

Example 0.7. There is a superstable non-multidimensional theory which 
is not co-determinate (in the coj-interpretation). 

Construction. We first define a model of the theory. The model is the 
disjoint union of two distinguished subsets U/ \ and V. Further for every 
s e < ( 02, there is a subset Us of U/ \ and Us is the disjoint union of Us^Qy 
and Us/\y All the above sets are infinite. Let 

V = { (Î), P):TJ, p G <°2, TJ(0) = 0 and p(0) = 1}. 

For every n > 1 there is a ternary relation 

Rn Ç U<Q> X U0} X V 

where for all (TJ, p) e V, 

{ (x, y):Rn(x, y, ft, p) ) } = %T„ X t / p K 

Suppose M is a model of this theory then M is determined by the 
following cardinal invariants: for all ?] e w2, 

I {x G M: for all « , I G % T „ ( M ) } |; 

and for all TJ, p G W2, 

I {z G M: for all n, { (x, j ) : ^ 7 (x , y, z) } = U^n X UpV,} |. 

So the theory is superstable and non-multimensional. Further with an 
infinitary formula namely 

A 
2(Us(x)^Us(y)l 

we can define the equivalence relation on U( > which says x and y realize 
the same type. Then on the types using another infinitary formula we 
can choose a model which codes any bipartite graph. 

This example can also be given in a finite language. Then the theory is 
not co 4- co — determinate. 
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1. Non-stable theories. Fix T a non-stable theory and < a definable 
anti-symmetric relation witnessing the non-stability of T. (I.e., T has a 
model M in which < linearly orders an infinite subset of Mn for some n. 
We can assume n = 1.) Expand T by Skolem functions. If / is a linear 
order, let M(I) be the Ehrenfeucht-Mostowski model of T generated by 
the order indiscernible {#,:/ e / } where ai < a if / < j . (We leave it to 
the context to make the meaning of < clear.) 

Fix S a subset of <0j with 0 e S. Let 

i = 2 /«, 

where 

J TJ, if a G S or a = co] 
a = ITJ, • Tj, if a £ S U (a)!}. 

(We will explain how to avoid the use of CH later. Also 17, - 77 denotes 17j 
copies of 17.) Call a subset J Q I full if for some limit ordinal a < <o, 

•/ = 2 •/„ + /„, 

where Jo = L if ft ^ S and ĝ = A" • 17 for some countable A" Q TJ, 
otherwise. (Of course Vg ç / « ) Almost all subsets of M (I) (i.e., a cub of 
countable subsets) are of the form M (J) for some full / . From now on J 
will always denote a full set. Further the set 

{ M(J): J = 2 Jo + 7W and a e S ! 
v /?<« ^ ' -J 

is a stationary co-stationary subset of ^ (M(I) ) (providing S is a 
stationary co-stationary subset of coj). 

Consider 

J= 2 ./„ + /„, 

a full subset of /. We will characterize in M (I) by a formula of L(aa) when 
a G S. Define 

[x, s] = {j> £ s: for all z e s, z < >' 

if and only if z < x and z > y if and only if z > x} . 

Define 

coin[x, s] = co if and only if 

a a / V j 3 z ( j G [X, S] -» (/(z) A z G [X, J ] A z < y) ). 
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(Since [x, s] is a definable relation, coin[x, s] = to can be expressed by an 
L(aa)-formula.) Suppose now / G /a , then 

co'\n[ar M (J) ] = to if and only if a G 5. 

To see this note first that for ally G /a , 

*,- G K, M(7)] . 

By the order indiscernibility of { ;̂:/ G / } , it is easy to see that if 
b G [ar M (J) ] there is j G 7ft so that a. < /?. Hence if a G 5 and so 
| / J = to, then / a witnesses 

coin[^, M {J) ] = ce. 

Also if a £ S then for all countable B Q \ar M(J) ] there is j G Ia so that 
ai < B (i.e., ^ < b for all /? G 5) . 

LEMMA 1.1. For M(7), M (J) &/7J a #s above, a <E S if and only if 

3 x(x £ M(J) A coin[x, M(J) ] = to). 

Proof Suppose a £ S but for some a G M(I)\M(J) 

coinftf, M (J) ] = to. 

For notational simplicity we will write T(/0, . . . , /„) in place of 
T(CI: , . . . , a, ). Choose terms 

rn(jnJn) G [a,M(J)] (n G to) 

so that: for all b G [#, M(J) ], 

Tn(7,rli) < b f o r S O m e "J 

for all «,7/? G J and //; G / \ y . Consider any term 

T ( J , / , , . . . , / „ ) G [a,M(J)] 

where j G J and lr £ J for all r. Choose (/Q, . . . , lv
n) (v < co,) from / 

so that: for all r, /r and lv
r make the same cut in J\ if ^ < fi and for some 

k lt. makes the same cut in J as /A, then /Jf < /£; and for all / G / \ y if Ir 

and / make the same cut in J, then lv
r < / for some v. (We assume 

/0, . . . , / „ and /Q, . . . , / ," , (f < to,) are increasing sequences.) So for all v, 

T(J, / * , . . . , o G [ Û , M ( 7 ) ] . 

Choose m so that 

T,»(7/„< O < T(7 /?>, • . . , 0 
for uncountably many v. Pick ^ so that: 

TmQnv\i) < T(7 /?),.- • , C ) ; 

and for all / G / and r = /?, if / and lv
r make the same cut in J then 
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Choose an increasing sequence j 0 , . . . , j n e J so that for all k < rjr 

makes the same cut in j m U in U j as lv
r\ j r < lr\ and if lk and /,. make 

different cuts in J, lk < j r (In other words j{), . . . , j n is obtained by 
shifting /Q, . . . , lv

n slightly into / . ) 
Using indiscernibility, we can conclude that if we have w(), . . . , un, and 

v(), . . . , V„ increasing sequences such that (1) the type of un v,. over y is 
the same as that of lr\ (2) for all r and /c if /,. and lk make the same cut 
in / , then ur < vk\ and (3) for k < r if lk makes a different cut in J than 
/,. (and hence is in a smaller cut), then vk < ur\ then 

r(J, w0, . . . , w;i) < T(J, V0, . . . ,vw) . 

Now repeat the argument above but this time choose the /ps so that 
for all r and k if /r and lk make the same cut in / then for all v < /x 
/J! < /Jf; and for all / G 7 \ / if /r and / make the same cut in / 
then for some v lv

r > /. This time we can conclude that if we have 
w0, . . . , un, and v0, . . . , vn increasing sequences such that (1) the type of 
un vr over j is the same as that of lr\ (2) for all r and k if lr and lk 

make the same cut in / , then vk < ur\ and (3) for k < r if lk makes a 
different cut in / than lr (and hence is in a smaller cut), then uk < vr; 
then 

T(J, M0,". . . , i/w) < T ( 7 v0, . . . , v;l). 

These two conclusions contradict each other. 

THEOREM 1.2. If T is finitely determinate, then T is stable. 

Proof. Assume T is not stable. Then T is consistent with 

stat s 3 x(—i (JC e s) A coin[x, 5] = co) 

A stat s —1 3 x(—1 (JC e s) A coin[x, ^] = 10). 

Since this consistency is absolute, the assumption of CH causes no 
problem. 

Remark. In the construction 17, could be replaced by any ordering 
(7, < ) (not necessarily of cardinality <o,) such that: the cofinality and 
coinitiality of y is =<0j; there is ^ a cub of subsets of y of cardinality <co, 
so that for all Z e ^ a n d j £ Z the coinitiality and cofinality of 

{u e Y\u and j ; realize the same cuts in Z} 

is i^coj. We would then modify the definition of 

J = 2 Jfi + /ttI 

being /w// to require Jg = X • 17 where X e ^and ft £ S. We will comment 
on the construction of such orders below. 
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THEOREM 1.3. [9] For any uncountable regular cardinal K and cardinal 
ix ^ K, if T is unstable then T has 2K models of cardinality ii. 

Proof. We first need to show that there is a linear ordering (7, < ) of 
cardinality /x satisfying the property above where K replaces CJ}. First we 
construct such an ordering Z of cardinality /c. Define Za(a < /c), a chain of 
linear orders of cardinality </c, by induction on a. Let Z0 be any linear 
order of cardinality </c. At limit ordinals, we take unions. Suppose Za has 
been defined. Choose Z a + 1 3 Za so that: |Za + 1| < K; for all (3 < a and 
x <£ Za — Zp there are y0, yx e Z f t + 1 which make the same cut in Z^ 
as x but y0 is less than (yx is greater than) any element of Za making the 
same cut in Z^; and there is ^0, yx so that y0 < (yx>) any element of Za. 
Let Z = UZa. It is easy to see Z is the desired linear ordering (and 
that {Za:a < K} is the desired cub). Let 

Y = (ji + /x*) • Z. 

Here it* denotes the reverse ordering of /x. 
Now for >S ç K, let 

I(S) = 2 /„ 

where 

_ f 17, if a ^ S or a = /c 
« = l y - ^ i f a ^ S ' U {/c}. 

Just as in Lemma 1.1, S is determined (up to equivalence modulo the 
non-stationary sets) in M(I(S) ) by a formula of L(aaK). So if S and S" 
are non-equivalent stationary sets, then M(I(S) ) is not isomorphic to 
M(I(Sr) ). Since there are 2K pairwise non-equivalent stationary subsets of 
K (cf. [4], p. 59), we are done. 

Superstable theories with NDOP. In this section it will be shown that 
superstable theories with NDOP have only finitely determinate models. 
Essentially the proof involves three ingredients: Shelah's tree decomposi
tion theorem for a-models; the transfer theorem for L(aa); and a result on 
the infinitary determinacy of labelled trees. The transfer theorem allows us 
to consider only a-models of some large cardinality. Shelah's tree 
decomposition theorem says that every a-model (of a superstable theory 
with NDOP) can be represented as a labelled tree. The elementary 
structure of the a-model is carried by the quantifier rank œ structure of the 
tree. Finally it is shown that labelled trees of large enough cardinality have 
a smooth quantifier rank co structure. 

The following theorem is a simple corollary of the proof of Theorem 1.3 
in [8]. 
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T H E O R E M 2.1. Suppose T is a first order theory and X- = X for some 
uncountable X. Then T is finitely determinate if and only if every à-model of 
cardinality X is a finitely determinate in the X -interpretation. 

By a tree we will mean a poset order-isomorphic to a subposet of the 
poset of finite sequences of a fixed set ordered by "initial segment of" with 
a single minimal element, ( ) . We can assume any tree is closed under 
subsequences. A tree of sets A = (A ) ^j, indexed by a tree / , is a 
collection of sets such that 17 < v implies A ç Av. 

Suppose A = (M) G / is a tree of subsets of a model. We say A is an 
independent tree if whenever J0 ^ J] n J2 and J\, J2 ^ A 

(We adopt the convention that for J Q I, 

Mj = ^ Mv.) 

We have not defined N D O P . For our purposes the conclusion of the 
following theorem can be taken as a definition of superstable theories with 
N D O P . However we need to know later that being superstable 
with N D O P has a definition which is absolute for extensions which add no 
subsets of 2 °. (In fact, Bouscaren has a characterization of being 
superstable with N D O P which shows this property is absolute.) 

D E C O M P O S I T I O N T H E O R E M 2.2. [11] or [3]. Suppose T is superstable with 

N D O P and M is an à-model of T Then there is a tree ( M ) G / of 
^.-submodels of M, such that: for all i) 

(MJ)TÏ€E/ ^ an independent tree\ and M is "à-prime over ( M ^ ) ^ , . Moreover if 
S is a non-empty subtree of I any model à-prime over Ms is in fact à-minimal 
(over Ms). 

Suppose ( M ) G / and M are as above. We first explain how to label / . 
For each 7] choose a well ordering of M^ so that if 17 < v the ordering 
on Mv is an end extension of the ordering on M . Now partition / into at 
most 2 ° blocks so that for v and 17 in the same block: v and 17 have the 
same length; and if v' = v, 17' ^ 17 and v' has the same length as TJ' then Mv, 
is isomorphic to M', via the map induced by the well orderings. We label / 
by introducing a unary relation for each block. 

We will delay the proof of the following theorem. 

T H E O R E M 3.1. There is a cardinal [i such that for all X > \i if I is a 
labelled tree with at most 22 ° unary relations and \I\ = X , then I is 
co-determinate in the X interpretation. Further in any extension of V which 
adds no subsets of \x, \x retains the property above. 
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We must also accumulate some facts about a-prime models over 
independent trees. 

LEMMA 2.3. ([7] C12 (ii) ) With M an a-model, M[C] denoting the 
a-prime model over M U C, we have: 

B X C implies B X M[C}. 
M M 

LEMMA 2.4. Suppose (A^-)/G/ is an independent tree of a.-mode Is and for 
any subtree J Q I a model a-prime over M3 is in fact a-minimal For all 
subtrees J], J2, JQ = J\ O J2 and N a-prime over Mj : 

and if N' is a-prime over Mj U N then N' is a-prime over Mj U Mj . 

Proof. We can assume J2 is finite. The proof is by induction on the 
number k of maximal elements of /0 . The case k = 0 is trivial. Suppose 
now J0 has k + 1 maximal elements. Write J0 as S3 U S4 and J2 as 
J3 U J4 where J3 n Jx = S3, J4 n Jx = S4 and S3 has 1 maximal element 
and S4 has k maximal elements (of course, S3, S4, J3 and J4 are subtrees). 
Let TV" be a-prime over iV U My . By the induction hypothesis TV" is 
a-prime over Mj VJ. So by Lemma 2.3, 

Mr X AT" 
3 Ms, 

and by monotonicity 

M, U MJ X N. 
7 3 / 4 " y 4 U MJo 

By induction 

Ms4 

and so by monotonicity 

M, U My X # . 
4 ° /̂0 

Hence by transitivity 

" MJ» 

Now suppose M is a-prime Mj yy (hence also a-minimal). By 
Proposition B.ll of [7], 

Mr < Mruf 

(actually only a special case of this is proved in [7] but the general proof is 
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much the same). A consequence of this is that any type over Mj has a 
unique non-forking extension to M3 UJ?. In M choose M' a-prime over Mj . 
Since 

Mj X M' and M, < M / L J / , 

M' and N realize the same type over Mj VJ In other words, there is an 
Mj UJ isomorphism of TV with M'. So there is an Mj UJo embedding of 
N' into M. By the a-minimality of M, this embedding is an 
isomorphism. 

LEMMA 2.5. Assume (A^-) /e / is as above and T is superstable. Suppose 

I = I„ 3 / „ _ , 2 . . . 2 /0 W A ' o C TV, ç . . . ç N„ 

with Nk a-prime over Ik for all k = n (also Nk + j is a-prime over Nk U Ik + j , 
by Lemma 2.4). Further suppose Jn Q I is finite and An is a-prime over Mj 
and for all k ^ n Ak = An n Nk is a-prime over Mj (Jk = Jn n Ik). 
Then for all finite ~c e Nn there is Jn Q Hn ç ln, Hn finite, and Bn 

a-prime over Mu so that: c e Bn\ 

B„ O Nk = Bk ^ Ak for all k ^ n; 

and Bk is a-prime over MH where Hk = Hn n Ik. Further the isomorphism 
type of (Btv Bn__l5 . . . , B0) over An depends only on the type of 
(M//n, MHn_x, . . . , M//()) over Af7n. 

Proof The proof is by induction on n. For A = 0, the a-minimality of N() 

over Mj implies N0 is also a-prime over A0 U M}. So there is a finite 
J0 Q H0 Q I0 so that the type of c over A0 U M7 is a-isolated 
over A0 U M / 7 . Now choose BQ(QN0) a-prime over A0 U Mu so 
that c G #(). By Lemma 2.4, i?0 is a-prime over M//(). 

The isomorphism type of B0 over ^40 depends only on the type of MH 

over A0. But, again by Lemma 2.4, 

Now suppose n = m + \. Since 7V/? is a-prime over An U A^ U MI , 
there is a finite K Q ln and a finite b e 7Vm so that the type of c over 
An U Nm U Mj is ^-isolated over An U b U MK. Now by induction 
choose a finite //m 2 Jm and # w 2 ^4m so that: for all k ^ m Bm n 
ÂA = #A is a-prime over MfJ where 

//A = # „ n /A; F e * „ ; and K n /„, Ç //„,. 

Let 7/w = //m U K and 5,, be a-prime over An U MA U £ / ; so that c e fl/r 

It remains to show Bn is a-prime over M7/ and that Bn n Nm = Um. 
For the first of these claims let C Q Bn be a-prime over An U Bm. We 

first show C is a-prime over Mn UJ. Let Z) be a-prime over Mu UJ . 
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Since 

A» Ù*M">, 

there is an MH UJ embedding of An into D. By monotonicity 

A m 

and so by Lemma 2.4 

A„ 1 B,„. 
A m 

Hence the embedding extends to C. As before, the a-minimality of D 
implies this embedding is an isomorphism. By Lemma 2.4 if E is a-prime 
over C U MA, then E is a-prime over 

MKuiimu./m = Mii,r 

Since 

E 3 MA- U A„V B„„ 

there is an MK U An U Bm embedding of Bn into E. The a-minimality of E 
shows Bn is a-prime over Mu . 

For the second claim, note 
M"n k N»>-

MII„, 

So 

M<l„ I Kr 
ni 

Hence 

B„ I N,„. 

So B„ n N„, = B,„. 
Finally the statement about isomorphism types is true, since 

M"» b A"' 
MJH 

We now turn to the proof of the main theorem. 

THEOREM 2.6. If T is superstable with NDOP, then T is finitely 
determinate. 

Proof. By taking a forcing extension if necessary, we can assume 

X > fi (>2*()) 

(where /x is as in 3.1) and À- = X. Now suppose M is an a-model (of T) 
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and \M\ = X . Let / be the labelled tree associated with M and 

( /«>«<\f 

a filtration of / witnessing / is co-determinate in the X+ -interpretation. 
Choose a chain of submodels 

so that Ma is a-prime over Mia as follows: let M0 be a-prime over M7 ; if Ma 

has been chosen, let Ma + 1 be a-prime over M/a + 1 U Ma (by Lemma 
2.4 Ma + X is a-prime over M7 ); if j8 is a limit ordinal let 

Mo = U M, 

(since Mg is an a-submodel of a model a-prime over M7 , Mp is a-prime 
over M7 ). As usual the a-minimality of M over M7 implies 

M = U . Ma. 

We claim that 

witnesses M is finitely determinate in the À+ -interpretation. Lemma 2.5 is 
exactly what is required to transfer the back and forth systems 
demonstrating that the 

(Ia)a<\+ 

witnesses / is co-determinate in the X -interpretation to a back and forth 
system demonstrating 

<^«>«<x+ 

is co-determinate (and so finitely determinate). 

3. Labelled trees. In this section we prove: 

THEOREM 3.1. There is a cardinal \x such that for all X > /x if I is a 
labelled tree with at most 22 ° unary relations and \I\ ~ X , then I is 
co-determinate in the X -interpretation. Further in any extension of v which 
adds no new subsets of /x, /A retains the property above. 

Proof. We calculate /x. Let L() be the language with a binary rela
tion < and 22 ° unary relations. Let S0 be the set of complete 
(LQ)^-theories. Form Lx by adding to L0 a unary predicate UK for each 
K ç S0. In general if Ln has been defined, let Sn be the set of complete 
(L,7)^w-theories and let Ln + X be the language obtained from Ln by adding 
a unary predicate UK for each K Q Sn. Let L = U Ln and let /x be the 
number of complete L^w-theories. 
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Suppose we are given / as in the statement of the theorem. We can 
assume for each n there is a unary predicate Un e L() so that / \= Un(a) if 
and only if the height of a is n. We now inductively define an L structure 
on /. Assume we have defined an Ln structure on / and / e /. Then for all 
K c sn, let / 1= UK(t) if and only if 

{<£ <= Sn:\{? e / : / ' is an immediate successor of t and 

[f] 1= 0 } | = A+} = K. 

(Here [/'] denotes {s\f ^ s}.) 
Note that for any L-structure A and X Q A there is B D X so that 

B <^A and \B\ = \X\ + /*. 

We now define a \+ -filtration 

of /. Choose (Iv)v<\+ so that: for all v, 

I < œ I-
V OOtO ' 

for all / e Iv, complete theory <I> Q L and 

X = {s: s an immediate successor of / and [s] (= O}, 

if \X\ ^ A then Iv 1 X and if |Z| = A+ then 

\xmv\=\ = \xc\ (lv+\lv)\. 
Note that if v < r and / G 7TV„ then 

(/T\/,) n [/] = lT n [/] -< £ j / ] . 

We now show 

is the desired A+ -filtration. It suffices to show that for any m < <o, 

*> < T, < < r„, ^ < a, < . . . an: 

Player II has a winning strategy for the game of m rounds where at each 
turn Player I plays a finite subtree from either (/, IT]9 . . . , Ir„) or 
(/, /a,, . . . , Ian) and Player II plays a subtree of the same cardinality from 
the other structure. Player II wins if the submodels constructed are 
isomorphic over their intersection with Iv. (I.e., the isomorphism must be 
the identity on Iv.) Rather than write down the argument in unpleasant 
and unreadable detail, we indicate the first step in a particular case. 
Suppose m and v < Tj, O] have been fixed and Player I plays 

'o < h < h < h e (I h) 
where 
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t0 e J„ tl9 t2 G / T y , and f3 G / \ / T I . 

Since ^ is an immediate successor of t0 and tx £ Iv, there are X+ 

immediate successors u of t0 so that [fj and [u] have the same (L,)^^-
theory. So we can choose such a ^ e V\A>- Now take w2

 G ^a
 s o t r i a t 

( [i/,], K„ i*2) = ^ ( [*,], / b t2) (in L,). 

Since w2
 a n d t2 belong to the same Lx unary relations, there is u3 e 7 \ / a 

so that u3 is an immediate successor of u2\ and [w3] satisfies the same 
(Z^^- theory as [t3]. So Player II plays u0, ux, u2, u3. 
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