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Properties of the Invariants of Solvable
Lie Algebras
J. C. Ndogmo

Abstract. We generalize to a field of characteristic zero certain properties of the invariant functions of the
coadjoint representation of solvable Lie algebras with abelian nilradicals, previously obtained over the base
field C of complex numbers. In particular we determine their number and the restricted type of variables on
which they depend. We also determine an upper bound on the maximal number of functionally independent
invariants for certain families of solvable Lie algebras with arbitrary nilradicals.

1 Introduction

The invariants of the coadjoint representation of a solvable Lie algebra are still not com-
pletely determined, although these invariants are well known for semisimple Lie algebras.
In particular, for semisimple Lie algebras, they can all be chosen to be homogeneous poly-
nomial and their number is equal to the dimension of the Cartan subalgebra [14], [15],
[6]. Neither the number nor the type of functions in terms of which the invariants can be
expressed is known in the case of a general solvable Lie algebra. One of the difficulties in
this determination is due to the fact that contrary to the semisimple case, no general clas-
sification method is available for solvable Lie algebras. The problem of the determination
of these invariant functions has been treated for low dimension Lie algebras in [11] and for
certain families of solvable and other Lie algebras in [1], [8], [12], [13].

In this paper we generalize to a solvable Lie algebra L over a field K of characteristic
zero some results obtained in [10], [8] over C about the number of invariant functions of
the coadjoint representation and about the type of functions in terms of which they can
be expressed. We determine an upper bound for the number N of elements in any funda-
mental system of invariant functions for a large family of solvable Lie algebras including
solvable Lie algebras with an abelian nilradical. Some consequences of these results are dis-
cussed. We also analyze the algebraic structure of L and derive a structure theorem useful
for the classification of solvable Lie algebras and particularly for the study of the invariant
functions in which we are interested.

2 Algebraic structure

Suppose that the solvable Lie algebra L of finite dimension n over the field K of character-
istic zero admits a vector space decomposition of the form

L = M +̇ E(2.1)
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where M is the nilradical of L which we suppose to be of dimension r and E is a complement
of M in L. Consider a basis of L of the form

BL = {N1, . . . ,Nr; X1, . . .Xk}(2.2)

where {N1, . . . ,Nr} is a basis of M and {X1, . . . ,Xk} is a basis of E with k = dim E. For
each basis element Xu of E, let adM Xu denote the restriction to the nilradical M of the ad-
joint representation ad Xu of L defined by the element Xu. The following Lemma is proven
in [8].

Lemma 1

(a) The set of operators adM Xu (u = 1, . . . , k) is linearly nil-independent.
(b) If the nilradical is abelian, then the linear operators adM Xu (u = 1, . . . , k) are pairwise

commutative.

The basis elements X1, . . . ,Xk of E are also said to be linearly nil-independent, since no
non-trivial linear combination of them can be ad-nilpotent. Let Au denotes the matrix of
the linear operator adM Xu for u = 1, . . . , k. We are now interested in the effect of a change
of basis in L on the system of matrices (A1, . . . ,Ak). It is well known (see for example
[17]), that the effect of the more general change of basis in L on the system of k matrices
(A1, . . . ,Ak) when the nilradical is abelian is given by the transformation

(A1, . . . ,Ak) �→
( k∑

j=1

β1 j(T−1A jT), . . . ,
k∑

j=1

βk j(T−1A jT)
)

(2.3)

where T is the matrix of an invertible linear operator on M and B = (βu j)k
u, j=1 is an element

of GL(k,K), the group of all invertible matrices of order k over K. Furthermore, it is easy
to see that the transformation (2.3) defined on the set of k matrices (A1, . . . ,Ak) of the
algebra gl(r,K) of all square matrices of order r over K determines an equivalence relation in
[gl(r,K)]k which we denote by∼. This makes meaningful the classification of such systems
of matrices. In particular, the classification of solvable Lie algebras with a given abelian
nilradical is reduced to the determination of all classes with respect to ∼ in [gl(r,K)]k and
the determination of the corresponding commutation relations of the type [E, E].

In order to deal with the condition of linear nil-independence of the system of matrices
(A1, . . . ,Ak) we shall need the following lemma proved in [8].

Lemma 2 Let
Bu = Bu

s + Bu
n, (u = 1, . . . ,m)

denote the Jordan-Chevalley decomposition of a system (B1, . . . ,Bm) of matrices of gl(r,K),
where Bu

s and Bu
n represent the semisimple part and the nilpotent part of Bu respectively. Then

B1, . . . ,Bm are linearly nil-independent if and only if the semisimple parts Bu
s (u = 1, . . . ,m)

are linearly independent.

For the proof of our structure theorem, we shall need the following result demonstrated
in [16]. We denote by D = [D1, . . . ,Dm] a block-diagonal matrix with diagonal blocks
D1, . . . ,Dm.
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Proposition 1 Let P be an arbitrary field and Σ a set of pairwise commutative operators of
gl(r,P). Then the vector space Pr of dimension r over P can be represented as a direct sum
of subspaces Q j, ( j = 1, . . . , s), invariant with respect to Σ and such that for all f ∈ Σ, the
minimal polynomial of the restriction f|Q j

is a power of an irreducible polynomial over P.

Theorem 1 Let Σ = (B1, . . . ,Bm) be a system of linearly nil-independent and pairwise
commutative operators in gl(r,C) with m ≤ r. Suppose furthermore that Σ represents an
equivalence class with respect to∼ in [gl(r,C)]m. Then all the matrices Bu can simultaneously
be decomposed into quasi-diagonal matrices of the form

Bu = [Bu1, . . . ,Bus], (u = 1, . . . ,m)(2.4)

where

(a) The number s of blocks satisfies s ≥ m.
(b) Each block But is triangular of order nt independent of u and for u = 1, . . . ,m and t ≤ m

the semisimple part Sut of But is δt
uInt , where Int is the unit matrix of order nt .

Proof Every irreducible polynomial over C being linear, we know from the preceding
proposition that one can simultaneously decompose the Bu’s into the quasi-diagonal form

Bu = [Bu1, . . . ,Bus], (u = 1, . . . ,m)

where But is a square matrix of order nt independent of u (for t = 1, . . . , s) with
∑s

t=1 nt =
r, and has a semisimple part of the form Sut = λut Int , λut ∈ C. Again by the argument of
commutativity, all the matrices But can be chosen triangular. Using the argument of linear
nil-independence and the equivalence relation defined by (2.3) on the system (Bu)m

u=1, we
show by induction on m that s ≥ m and that we can choose the diagonal elements λut in
such a way that they satisfy λut = δ

t
u (t ≤ m). If m = 1, it is trivial that s ≥ m. Now,

B1 being triangular and non-nilpotent, we may assume that λ11 	= 0, which amounts to
supposing that λ11 = 1 (by using (2.3)). This proves the theorem for m = 1. If this result
is true for m − 1 ≥ 1, the system of matrices (Bu)m

u=1 can be simultaneously decomposed
according to Proposition 1 into a quasi-diagonal form of the type

Bu = [Bu1, . . . ,Bus], (u = 1, . . . ,m),

where But is triangular with a semisimple part Sut = λut Int (t = 1, . . . , s), λut ∈ C. By
the induction hypothesis on the system (B1, . . . ,Bm−1) we obtain that s ≥ m − 1 and
Sut = δ

t
uInt (for u = 1, . . . ,m − 1; t ≤ m − 1). By the equivalence relation ∼, we can put

Bm into a form where Smt = 0 for t = 1, . . . ,m − 1. If s = m − 1, the semisimple part
of Bm would be zero, which is a contradiction to Lemma 2. Thus s > m − 1 and since the
semisimple part of Bm is not zero and λmt = 0 for t = 1, . . . ,m − 1, we can suppose that
λmm = 1. With this last equality we can reduce λum to zero for u = 1, . . . ,m−1. We finally
obtain λut = δ

t
u for u = 1, . . . ,m and t ≤ m. This completes our proof.

We suppose for the moment that the nilradical M of L is abelian. Therefore by Lemma 1,
the matrices Au of the linear operators adM Xu, u = 1, . . . , k obviously yield the decom-
position (2.4) of Theorem 1. This theorem deeply determines the structure of L when the
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nilradical is abelian. It can be applied to the classification of solvable Lie algebras since for
a given nilradical this problem amounts to classifying the system (A1, . . . ,Ak) with respect
to ∼ and to determine the commutation relations of the [E, E] type. The fact that solvable
Lie algebras are classified so far up to just the dimension 7 (see [17], [2]) give more impor-
tance to this theorem since it can be applied to speed up this classification at least up to the
dimension 10, and particularly when n is large but the quantity r − k is relatively small. In
this respect, Theorem 1 is used to prove in [7] that any solvable Lie algebra L over C with
an abelian nilradical and for which r = k, i.e., n = 2r, is a direct sum of subalgebras

L =
⊕

r

A2,

where A2 is the solvable Lie algebra of dimension 2 with commutation relations [X,N] =
N .

3 Characterization of the Invariants of the Coadjoint Representation

Let G be the connected Lie group generated by the Lie algebra L.

Definition 1 A function F ∈ C∞(L∗), the set of all differentiable functions on the dual
space L∗ of the Lie algebra L is said to be an invariant of the coadjoint representation of L if

F(Ad∗g · f ) = F( f ), ∀g ∈ G, f ∈ L∗,

where Ad∗ : G �→ GL(L∗) : (Ad∗g f )(x) = f (Adg−1 x) (∀g ∈ G, f ∈ L∗, x ∈ L), is the
coadjoint representation of the Lie group G.

Several methods exist for the determination of these invariants. M. Perroud uses in [12]
a method called the “method of orbits” which is suitable for polynomial invariants. The
method that we shall use here is more general and standard, and consists in obtaining the
invariants as the solutions of a system of partial differential equations. Indeed, let {ei} be
a basis of L and (xi) a coordinate system associated with the dual basis {εi} of {ei} in L∗.
Then the invariants of L are the solutions of the system of partial differential equations

ẽi · F = 0, i = 1, . . . , n (n = dim L)(3.1)

where ẽi is the infinitesimal generator of Ad∗ associated with the basis element ei of L and
has the form

ẽi = −
n∑
j,k

ck
i jxk
∂

∂x j

i = 1, . . . , n,(3.2)

where ck
i j , i, j, k = 1, . . . , n are the structure constants of L defining the commutation

relations

[ei , e j] =
n∑

k=1

ck
i jek.(3.3)
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More details on the proof of (3.1) can be found in [8], [4].
Denote by S(L∗) and S(L) the symmetric algebras of L∗ and L respectively. They are

both isomorphic to the ring K[X1, . . . ,Xn] of polynomials in n indeterminates over K, and
thus S(L∗) 
 S(L). As a consequence, a polynomial invariant can be viewed as a function
on L, and by extension invariants of the coadjoint representation are all seen as functions
on L and called generalized Casimir invariants. This means that in the expression (3.2) of
the infinitesimal generators we shall consider (x1, . . . , xn) as a coordinate system on L. If
(y1, . . . , yn) is any coordinate system associated with the basis {ei} of L, then by abuse of
notation we shall write

[yi , y j] =
n∑

p=1

cp
i j yp.(3.4)

We impose the following restriction on L: L is not nilpotent (i.e., k ≥ 1). We recall that
for now the nilradical M is abelian, and the base field K is of characteristic zero. Since M
is abelian, by using the notation (3.4), the infinitesimal generator determined by a basis
element Ni of M has the form

Ñi = −
k∑

j=1

[ni , x j]∂x j , i = 1, . . . , r

where

S = (n1, . . . , nr; x1, . . . , xk)(3.5)

is a coordinate system associated with the basis of L given by (2.2). If we set ni j = [x j , ni],
then we obtain the system of equations

Ñi =
k∑

j=1

ni j∂x j , i = 1, . . . , r.(3.6)

Equation (3.6) can be seen as an equality of the form

AX = B(3.7)

where A = (ni j) i=1,...,r
j=1,...,k

, X = (∂x1 , . . . , ∂xk )T , and B = (Ñ1, . . . , Ñr)T . Furthermore the

entries ni j can be considered as linear polynomials in the r variables n1, . . . , nr, i.e., as
elements of the field R = K(n1, . . . , nr) of all rational functions in r variables over K.

Proposition 2 The rank of the matrix A = (ni j) i=1,...,r
j=1,...,k

of equation (3.7) where the entries

ni j are polynomial in the r variables n1, . . . , nr is independent of any change of basis in L.
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Proof The matrix A is completely determined in a given basis of L by the system of matrices
(A1, . . . ,Ak) and the effect of a general change of basis in L on the system is given by (2.3).
In equation (2.3), the matrix B = (βu j)k

u, j=1 representing a change of basis in E has no effect
on the rank of A since changing the basis in E is just equivalent to performing column K-
operations on A. Consequently, we just need to look at the effect of a change of basis of
the type (A1, . . . ,Ak) �→ (T−1A1T, . . . ,T−1AkT) on the rank of A, where T represents
the matrix of a change of basis in M. Note that if A j = (a j

ui)u,i=1,...,r , then ni j = [x j , ni] =∑r
u=1 a j

uinu. Now let B = (wi j) i=1,...,r
j=1,...,k

be the expression of A in the new basis {W1, . . . ,Wr}

of M. If the new coordinates in this basis are (w1, . . . ,wr), then we have wi j = [x j ,wi] =∑r
u=1 a j

uiwu. Comparing this expression with that of ni j , we see that the effect of the given
change of basis just amounts to changing coordinates and thus does not modify the rank
of the matrix. This completes our proof.

Theorem 2 Suppose that the nilradical M of L is abelian and that the base field K has char-
acteristic zero. Then the columns of A are R-linearly independent; that is, A is of maximal
rank.

Proof It suffices to prove the result for the case of an algebraically closed field. For K is
a subfield of an algebraically closed extension field Kc, for which the corresponding field
of rational functions R is denoted Rc. If the columns of A = (C1, . . . ,Ck) are Rc-linearly
independent, then the inclusion R ⊂ Rc implies that these columns are also R-linearly
independent. According to Theorem 1, when the base field is algebraically closed, the ma-
trices Au of the linear operators adM Xu can simultaneously be put into the quasi-diagonal
form

Au = [Au1, . . . ,Aus], (u = 1, . . . , k and s ≥ k)

where each diagonal block Aut , 1 ≤ t ≤ k is an upper triangular matrix such that all the
elements on its diagonal are equal to δt

u. It follows that we can find k basis elements N0
u in

M such that [X j ,N0
u] = δ j

uN0
u (u, j = 1, . . . , k). This means that in terms of coordinates

we have [x j , n0
u] = δ j

un0
u, where n0

u is the coordinate associated with the basis vector N0
u .

By rearranging the elements in the basis of M in such a way that the first k elements are
precisely N0

1 , . . . ,N
0
k in this order, we obtain the matrix A in the form

A =




n0
1 0

. . .

0 n0
1

X



,

where X is a (r− k)× k matrix over R. This proves that A is of maximal rank and since this
rank is basis-independent according to Proposition 2, our proof is complete.

We now extend the second part of Theorem 1 of [10] to a field of characteristic zero.

https://doi.org/10.4153/CMB-2000-054-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-054-0


Invariants of Solvable Lie Algebras 465

Theorem 3 Suppose that the nilradical M is abelian and that the base field K has character-
istic zero. Then

∂xi · F = 0, i = 1, . . . , k

for any invariant F of L.

Proof Since for every invariant F of L and for every infinitesimal generator Ñi of the coad-
joint representation we have Ñi · F = 0, according to equation (3.6) it suffices to show that
the matrix A of (3.7) is of maximal rank. But this is true according to Theorem 2.

Definition 2 A fundamental set of invariants is a set consisting of a maximal number of
functionally independent invariants.

As a consequence of Theorem 3, we obtain the following result.

Corollary 1 Suppose that the nilradical M is abelian and that the base field K has charac-
teristic zero. Then the invariants of L are completely determined by the operators adM Xu,
(u = 1, . . . , k). In particular, this determination does not depend on the commutation rela-
tions [Xi ,X j] (i, j = 1, . . . , k).

The proof of this corollary is similar to that given in [8].

Remark As a consequence of this corollary, any two solvable Lie algebras with abelian nil-
radicals which are not necessarily isomorphic but for which the systems of matrices (Au)k

u=1

are equivalent with respect to ∼ have the same fundamental system of invariants.

Note that according to Theorem 3, the infinitesimal generator Ñi associated with the
basis element Ni of L vanishes for i = 1, . . . , r and the remaining infinitesimal generators
determined by the basis elements X j of E have the form

X̃ j = −
r∑

i=1

ni j∂ni , j = 1, . . . , k.(3.8)

In particular, the original system of determining equations (3.1) is reduced from n to k
equations, that is at least by half since we always have as proven in [8] that r ≥ n/2.

4 The Case of an Arbitrary Nilradical

Our aim in this section is to generalize Theorem 2 and certain results of [8], namely Theo-
rem 4 of that paper to solvable Lie algebras with arbitrary nilradical and without restrictions
on the dimensions r and k of M and E respectively. However, we require that the matri-
ces Au of the linear operators adM Xu, (u = 1, . . . , k) be simultaneously triangularizable
in a basis of L. Although, the nilradical is not abelian, the transformation (2.3) will still
determine the effect of a particular change of basis in L on the matrices (Au).

Let

Γ = (C1, . . . ,Ck)(4.1)
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be a square matrix of order k over an arbitrary field P and whose columns are denoted by
C1, . . . ,Ck. Suppose that each of these columns is the sum of r other column vectors Cu

j ,
i.e.,

C j =
r∑

u=1

Cu
j , ( j = 1, . . . , k; r ≥ k),(4.2)

where each Cu
j has the form

Cu
j = (Cu

i j)
T
i=1,...,k, Cu

i j ∈ P ( j = 1, . . . , k; u = 1, . . . , r).(4.3)

Denote by∆ the Cartesian product {1, 2, . . . , r} × · · · × {1, 2, . . . , r} (k times) and let
Du1···uk represent the determinant of the matrix (Cu1

1 , . . . ,C
uk
k ), where (u1, . . . , uk) ∈ ∆.

Lemma 3 The determinant of Γ is given by the formula

detΓ =
∑

(u1,...,uk)∈∆

Du1···uk .

Proof Assume that Γ has the general form Γ = (Γi j)i, j=1,...,k. Then Γi j =
∑r

u=1 Cu
i j , and if

Sk represents the group of permutations of the set of k elements {1, . . . , k} then

detΓ =
∑
σ∈Sk

Γσ(1)1 · · ·Γσ(k)k

=
∑
σ∈Sk

( r∑
u=1

Cu
σ(1)1

)
· · ·
( r∑

u=1

Cu
σ(k)k

)

=
∑
σ∈Sk

∑
(u1,...,uk)∈∆

Cu1
σ(1)1 · · ·C

uk
σ(k)k

=
∑

(u1,...,uk)∈∆

∑
σ∈Sk

Cu1
σ(1)1 · · ·C

uk
σ(k)k

and the result follows since
∑
σ∈Sk

Cu1
σ(1)1 · · ·C

uk
σ(k)k is just Du1···uk .

Suppose that each matrix Au corresponding to the linear operator adM Xu has the form

Au = (au
i j)i, j=1,...,r u = 1, . . . , k(4.4)

and that these matrices are all (lower) triangular. Let (n1, . . . , nr) represent the coordinate
system associated with a fixed basis of the nilradical given by equation (2.2). By means of
the k matrices Au and the r independent variables n1, . . . , nr, construct the matrix A =
(ni j) i=1,...,r

j=1,...,k
of equation (3.7) with polynomial entries ni j =

∑r
v≥i a j

vinv. The u-th column

C(u,A) of A has the form

C(u,A) =




au
11n1 + au

21n2 + · · · + au
r−1,1nr−1 + au

r1nr

au
22n2 + au

32n3 + · · · + au
r2nr

. . . . . . . . . . . . . . . . . . . . . . . . . .
au

rrnr


 .(4.5)
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The submatrix B of A formed by the first k lines of A is clearly a matrix of the form
Γ defined by the equations (4.1)–(4.3). That is, it has the form B = (C1, . . . ,Ck) and
according to (4.5) the corresponding coefficients Cu

i j (for u, j = 1, . . . , k and i = 1, . . . , r)
of equation (4.3) are given by

Cu
i j = α

u
i jni+u−1, i + u− 1 ≤ r(4.6)

where αu
i j = a j

i+u−1,i with a j
pi = 0 if p > r, or equivalently, αu

i j = 0 if u + i > r + 1.

Lemma 4 Let B = (C1, . . . ,Ck) be a matrix of the form (4.1)–(4.3) for which the entries are
polynomial functions in the r variables n1, . . . , nr and such that the corresponding coefficients
Cu

i j verify as in (4.6) the condition

Cu
i j = α

u
i j · ni+u−1, i, j = 1, . . . , k; u = 1, . . . , r

where αu
i j ∈ P and ni+u−1 = 0 if i + u − 1 > r. Let d = detα1, where α1 = (α1

i j)i, j=1,...,k.
Then

(a) D1···1 = d · n1n2 · · · nk.
(b) The quantity det B − D1···1 is independent of n1n2 · · · nk. That is, the monomial in the

variable n1n2 · · · nk in det B viewed as a polynomial function is precisely D1···1.

Proof By definition and according to the notation used in (4.1)–(4.3), D1···1 is the determi-
nant of the matrix (Cu

i j)i, j=1,...,k corresponding to u = 1. The equality C1
i j = α

1
i jni readily

shows that D1···1 = d · n1n2 · · · nk. All that remains to prove is that in any determinant
Du1···uk , the term n1n2 · · · nk is a factor of a term of the form Cu1

σ(1)1 · · ·C
u j

σ( j) j · · ·C
uk
σ(k)k =

T(σ; u1, . . . , uk) if and only if u j = 1 (for all j = 1, . . . , k). Now, since each entry C
u j

σ( j) j
has the form

C
u j

σ( j) j = α
u j

σ( j) j · nσ( j)+u j−1, ( j = 1, . . . , k;σ ∈ Sk),

we see that T(σ; u1, . . . , uk) depends on the variable n1 · · · nk if and only if the mapping
τ : {1, . . . , k} −→ {1, . . . , r + k− 1} : j �→ τ ( j) = σ( j) + u j − 1 is an element of Sk. Since

for all σ ∈ Sk we have
∑k

j=1 σ( j) = k(k + 1)/2, we see that
∑k

j=1 τ ( j) = k(k + 1)/2 +∑k
j=1(u j − 1), and this shows that τ ∈ Sk if and only if u j = 1 for all j = 1, . . . , k. This

completes our proof.

Recall that the condition of the abelian nilradical on L is now dropped and replaced by
the requirement that the matrices Au are simultaneously triangularizable in the same basis
of L.

Theorem 4 Let A j = (a j
ui)u,i=1,...,r represent the matrix of the linear operators adM X j, j =

1, . . . , k, and suppose that these matrices are simultaneously triangularizable in a given basis
of L. Let A = (ni j) be the matrix of the form (3.7) associated with these matrices, with

ni j =
∑

i≤v≤r

a j
vinv.

Then A has the maximal rank k.
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Proof By the remark made in the proof of Theorem 2, we may assume that the base field
K is algebraically closed. The matrices A j , ( j = 1, . . . , k) being linearly nil-independent,
it follows from Lemma 2 that their semisimple parts represented by their diagonals
diag(a j

11, . . . , a
j
rr) are linearly independent. Thus, even if it may mean to perform some

column operations on the matrix F = (a j
ii) i=1,...,r

j=1,...,k
, which merely corresponds to a change

of basis in E (that conserves the triangular form of the matrices A j), we may assume that the
triangular matrices A j are such that the square submatrix G = (a j

ii)i, j=1,...,k formed by the
first k lines of the matrix F is non-singular. The square matrix W with polynomial entries
formed by the first k lines of the matrix A is then a matrix of the form (4.1)–(4.3) with the
coefficients Cu

i j as in equation (4.6). According to Lemma 4, the monomial in n1n2 · · · nk in

the determinant of W is d n1n2 · · · nk,where d is the determinant of the matrix (α1
i j )i, j=1,...,k

with the notation of (4.6). But this last matrix is just the matrix G. This means that d 	= 0
and W is non-singular. Thus A is of rank k, which is maximal.

Theorem 5 The system of partial differential equations

q∑
j=1

fi j
∂F

∂y j

= 0 (i = 1, . . . , p)

where fi j = fi j(y1, . . . , yq) is a function on Kq has exactly p− r(S) functionally independent
solutions, where r(S) is the rank of the matrix S = ( fi j )i=1,...,p

j=1,...,q
.

The proof of this theorem can be found in [3]. Let Ñi and X̃ j represent as usual the
infinitesimal generators respectively associated with the basis elements Ni and X j of L (for
i = 1, . . . , r and j = 1, . . . , k). The invariants of L are determined by the system of partial
differential equations

{
Ñi · F = 0, i = 1, . . . , r

X̃ j · F = 0, j = 1, . . . , k.
(4.7)

The matrix S of Theorem 5 associated with this system has the form S =
(

S1 S2
S3 S4

)
where S1, S2, S3 and S4 are submatrices defined with the notation of equation (3.4) by
S1 = ([ni , n j])i, j=1,...,r , S2 = ([ni , x j]) i=1,...,r

j=1,...,k
, S3 = −ST

2 and S4 = ([xi , x j])i, j=1,...,k. In fact,

S is just the matrix of the commutation relations of L.

Theorem 6 Assume that the non-nilpotent solvable Lie algebra L of finite dimension n over
the field K of characteristic zero has a basis of the form (2.2), where r is the dimension of its
nilradical M.

(a) If the linear operators adM Xu (u = 1, . . . , k) are simultaneously triangularizable, then
r(S) ≥ k and the maximal number N of functionally independent invariants of L satisfies
N ≤ r.

(b) If the nilradical is abelian, then N = 2r − n.
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Proof The submatrix S2 of S is just the matrix A of Theorem 4 with a change of sign. Since
the linear operators adM Xu, (u = 1, . . . , k) are simultaneously triangularizable, it follows
by Theorem 4 that S2 is of maximal rank k. Consequently r(S) ≥ k and Theorem 5 together
with the equality n = r +k leads to N ≤ r, and this proves part (a) of the theorem. To prove
part (b), we first notice that when the nilradical is abelian the matrix S2 is of maximal rank
k by Theorem 2 and so is the matrix S3 = −ST

2 . By rearranging if necessary, we can put
the matrix S into the partitioned form S =

(
0 0
0 R

)
where R =

(
0 R1

R2 S4

)
is a square matrix of

order 2k and R1 and R2 are non-singular matrices of order k. This shows that r(S) = 2k,
and the result follows by Theorem 5.

5 Applications

We give in this section a number of examples illustrating the results of Theorem 6. In [11]
invariants have been determined for all real Lie algebras of dimension less than or equal to
five and a classification of solvable Lie algebras of dimension six having nilradicals of di-
mension 4 is available in [17]. We show by a couple of examples how the maximal number
of functionally independent invariants of these Lie algebras agree with part (a) of Theo-
rem 6. The notation of the generators of a Lie algebra are those given by (2.2) and the
corresponding coordinate system is that given by (3.5).

A) Consider the four dimensional non-nilpotent algebra A4,8 of [11] with commutation
relations [N2,N3] = N1, [N2,X1] = N2, [N3,X1] = −N3. The dimension r of the nil-
radical is three 3 and the matrix of adM X1 is the triangular matrix A1 = diag{0,−1, 1}.
This Lie algebra has two functionally independent invariants F1 = n1 and F2 = n2n3−
n1x1. Thus N ≤ r, as predicted by part (a) of Theorem 6.

B) The Lie algebra N6,31 of [17] with commutation relations

[X1,N2] = N2, [X1,N3] = −N3, [N2,N3] = N1

[X2,N3] = N3, [X2,N4] = N1 + N4, [X2,N2] = N2

is a solvable Lie algebra of dimension six with a non-abelian nilradical of dimension
4. Since the linear operators adM X1 and adM X2 have the upper triangular matrices

A1 = diag{0, 1,−1, 0} and A2 =

(
1 0 0 1

0 0 0
1 0

1

)
respectively, we are in the conditions of

part (a) of Theorem 6. The infinitesimal generators of the coadjoint representation are

Ñ1 = −n1∂x2, Ñ2 = n1∂n3 − n2∂x1

Ñ3 = −n1∂n2 − n3∂x2 + n3∂x1, Ñ4 = −(n1 + n4)∂x2

X̃1 = n2∂n2 − n3∂n3, X̃2 = n1∂n1 + n3∂n3 + (n1 + n4)∂n4

solving the corresponding system ẽi ·F = 0, (i = 1, . . . , 6) of equation (3.1) we find the
two functionally independent invariants F1 = x1 + (n2n3)/n1 and F2 = n4/n1− log n1.
Consequently, as stipulated by Theorem 6, the condition N ≤ r is satisfied.

C) The algebra N6,33 of [17] with commutation relations

[X1,N1] = N1, [X1,N2] = N2, [N2,N3] = N1

[X2,N1] = N1, [X2,N3] = N3 + N4, [X2,N4] = N4
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has dimension six and a non-abelian nilradical of dimension four. It is readily verified
that the matrices of the linear operators adM Xu (u = 1, 2) are all triangular. The
infinitesimal generators of the solvable Lie algebra N6,33 are

Ñ1 = −n1∂x1 − n1∂x2, Ñ2 = n1∂n3 − n2∂x1

Ñ3 = −n1∂n2 − (n3 + n4)∂x2, Ñ4 = n4∂x2

X̃1 = n1∂n1 + n2∂n2, X̃2 = n1∂n1 + (n3 + n4)∂n3 + n4∂n4.

A simple examination of these vector fields starting with Ñ4 shows that the Lie algebra
N6,33 has no non-trivial invariant. Thus 0 = N ≤ r, which is again in accordance with
Theorem 6.

It is tempting to believe that for given values of n and r, a Lie algebra has more in-
variants when its nilradical is abelian. This would mean according to part (b) of The-
orem 6, that N ≤ 2r − n in general. But this is not true according to the following
counter-example. Let L(m, k) represent the solvable Lie algebra having as nilradical the
(2m + 1)-dimensional Heisenberg algebra H(m), and k linearly nil-independent elements
in the complement subspace E of the nilradical. The nilradical M = H(m) has standard
basis {P1, . . . , Pm; B1, . . . ,Bm; H} with commutation relations

[Pi ,Bk] = δikH, [Pi ,H] = [Bi ,H] = 0.

A basis of E is given by {X1, . . . ,Xk} with the X j satisfying

[Xi ,X j] = ri jH, i, j = 1, . . . , k, ri j ∈ K.

When k = 3, and ri j = 0 (for i, j = 1, . . . , k), L(m, 3) has 4 invariants [13], and 2r − n =
2m− 2. And for m ≤ 2 we see that 2r− n < 4, thus showing that the number of invariants
is not bounded by 2r − n in this case.

An upper bound for the dimension of the center of complex Lie algebras is determined
in [9]. We now make use of part (a) of Theorem 6 to give an analogue of this result for the
dimension of the center of the universal enveloping algebra A(L) of the Lie algebra L over
the field K of characteristic zero.

Corollary 2 Suppose that the matrices A j of the linear operators adM X j ( j = 1, . . . , k) are
all triangularizable in a basis of the solvable Lie algebra L over K. Then the dimension of the
center of the universal enveloping algebra A(L) of L admits r = dim M as upper bound.

Proof By a well known result of Gel’fand [5], there exits a one-to-one correspondence
between the elements of the center of A(L), that is, the Casimir operators of L, and the
polynomial invariants of the coadjoint representation of L. Since the maximal number of
functionally independent polynomial invariants is not greater than the maximal number
of functionally independent invariants, it then follows by part (a) of Theorem 6 that the
dimension of the center of A(L) is bounded by r.
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