## A Problem of Robert Simson's.

By Dr G. Philip.

(Read 14th February 1913. Received 20th May 1913.)

The following problem appears in Robert Simson's "Opera Quaedam Reliqua," pp. 472-504:
" Si a duobus punctis datis $\mathrm{A}, \mathrm{B}$ ad circulum positione datum CDE inflectantur utcumque duae rectae $\mathrm{AC}, \mathrm{BC}$ circumferentiae rursus in $\mathrm{D}, \mathrm{E}$ occurrentes; juncta DE vel continebit datum angulum cum recta ad datum punctum vergente; vel paraliela erit rectae positionae datae; vel verget ad datum punctum:" i.e. if from two given points A and B any two straight lines $\mathrm{AC}, \mathrm{BC}$ are drawn to a circle CDE given in position, and they meet the circumference again in D and E , then the straight line DE (I.) will make a constant angle with a straight line passing through a fixed point, or (II.) will be parallel to a straight line given in position, or (III.) will pass through a given point. This final form of the result was only arrived at by Simson after he obtained the aid of Matthew Stewart.

As indicated, the discussion of the problem by Simson occupies over thirty pages quarto, but the proof may be given as follows:

Case I.(a). When AB does not pass through the centre of the given circle. This is the most general case. Find K (Fig. 1) on AB, such that $A B \cdot A K=A C$. AD, then $K$ is a definite point. Join $S$, the centre of the circle, to K , and find F the harmonic conjugate of K with respect to the circle ; then $\mathrm{SF} . \mathrm{SK}=\mathrm{ST}^{2}$. Let AF meet the circle in L and M , then KL and KM cut off equal arcs MP and QL.

If BL be joined and cut the circle again in N , NP will be parallel to AB . (For $\mathrm{AK} . \mathrm{AB}=\mathrm{AM}$. AL, and therefore LMKB is a cyclic quadrilateral. Hence $\angle \mathrm{AKM}=\angle \mathrm{MLB}=\angle \mathrm{MPN}$ ). Similarly if CB cuts the circle in E, EH is parallel to AB. Hence $P N \| H E$, and therefore arc $\mathrm{PH}=\operatorname{arc} \mathrm{EN}$. Again, if

DF meet the circle in u , KG and KD cut off equal arcs, i.e. arc $\mathrm{HD}=\operatorname{arc} \mathrm{GR}$.


Fig. 1.
Now KP $=\mathrm{KL}$ (Pappus' Lemma), and therefore $\angle \mathrm{PSK}=\angle \mathrm{LSK}$, and arc $\mathrm{TP}=$ arc TL. Similarly, since arc $\mathrm{HD}=$ arc GR, $\mathrm{KH}=\mathrm{KG}$ and $\operatorname{arc} \mathrm{TH}=\operatorname{arc} \mathrm{TG}$. Hence $\operatorname{arc} \mathrm{GL}=\operatorname{arc} \mathrm{PH}=\operatorname{arc}$ EN, and $\operatorname{arc} \mathrm{GE}=\operatorname{arc}$ NL. Thus

$$
\angle \mathrm{EDF} \text { or } \angle \mathrm{EDG}=\angle \mathrm{NML}=\text { constant } .
$$

Case I.(b). When AB passes through the centre. Find K (Fig. 2) in $A B$ such that $A B \cdot B K=C B . B E$. Then since $\angle A B C=\angle K B E$, and the triangles $\mathrm{ABC}, \mathrm{KBE}$ are thus similar, $\angle \mathrm{ACE}=\angle \mathrm{BKE}$. Then find F in AB such that $\mathrm{SF} . \mathrm{SK}=\mathrm{ST}^{2}$. Let ES cut the circle in $G$, then $\mathrm{SF} . \mathrm{SK}=\mathrm{SG}^{2}=\mathrm{SG}$. SE and $-\mathrm{GSF}=\angle \mathrm{KSE}$. Therefore the triangles GSF, KSE are similar, and $\angle \mathrm{FGS}=\angle \mathrm{SKE}=\angle \mathrm{ACE}$. If $F G$ cuts the circle in $D^{\prime}$ and $A C$ in $D$, we have $\angle D^{\prime} G E=\angle D C E$, wherefore arc $\mathrm{ED}^{\prime}=\operatorname{arc} \mathrm{ED}$ and D and $\mathrm{D}^{\prime}$ coincide. Hence FDG are collinear, and $\angle F D E$ is a right angle, and therefore constant.

Case II. When A and B are inverse points with respect to the circle. Let AB cut the circle in Y . Then $\angle \mathrm{DCY}=\angle \mathrm{YCE}$, and therefore $Y$ is the middle point of the arc $D E$, and $A B$ is perpendicular to DE. Thus. DE is parallel to a fixed line.


Fig. 2.
Case 1II. When A and B are diagonal points of any cyclic quadrilateral DCUE. Then DE passes through $F$ the pole of AB with respect to the given circle, i.e. through a fixed point.

By reciprocation of Simson's result with respect to a circle whose oentre is F , we obtain the following proposition: Let S be a conic with focus $F$, and $a, b$ be two straight lines in the plane of the conic. If any tangent meet these lines in $U$ and $V$, and if from these points tangents $d, e$ be drawn to the conic and intersect at a point $x$, then the angle that $F x$ makes with either tangent $d$ or $e$ is constant.

