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NONNEGATIVE SOLUTIONS FOR WEAKLY 
NONLINEAR ELLIPTIC EQUATIONS 

WALTER ALLEGRETTO 

Let x = (x\, . . . , xn) denote a point of Euclidean n space En and set Dl 

= 3/3xz for / = 1, . . . , n. Let Œ denote an exterior domain in En with 
smooth boundary and consider in fi the formal elliptic problem: 

n 

(1) Lu = — 2a D^dyDjU) + f(x, u)u = r(x), 
Uj=\ 

u = T on 8fi. 

We first consider the problem of finding nonnegative generalized 
solutions of (1) when T è 0, T =É 0, and r(x) = 0. Under more stringent 
conditions on the coefficients and for suitable r(x), we then show the 
existence of a locally bounded solution. Next, we show that, under 
stronger assumptions, our main criterion is also necessary. The final 
arguments are devoted to the consideration of illustrative examples. 

One of the classical procedures employed to study problem (1), and 
related problems, is the construction of a solution under the assumption 
that suitable upper and lower solutions exist. For this and related methods 
we refer in particular to [4], [5], [6], [10], [23], [18], [19], [20], [24], [27], [8], 
[25], [21], [11], [26], [3] and the numerous references therein. A general 
discussion of the various procedures employed for problem (1), and 
related equations, together with numerous references (up to the middle 
1970's) can be found, for example, in [14]. 

It is the purpose of this paper to show the existence of a nonnegative 
solution to (1) by means of a variant of the upper and lower solution 
method. Our procedure will relate the question of existence to the question 
of the solvability of a linear problem related to (1), and hence is 
apparently restricted to equations with a weak nonlinearity of type/ (x , 
u)u. However, some specific results (e.g. Theorem 4) are valid for more 
general nonlinearities if we make the assumption that upper and lower 
solutions exist. Indeed, the primary reason for our restriction to equations 
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72 WALTER ALLEGRETTO 

such as (1) is that we can then generate a positive supersolution, under 
suitable growth conditions, by solving a related linear problem. Further
more, the solvability of the linear problem will also be shown to be 
necessary for the existence of a positive solution to (1), if we seek a 
solution u whose weighted L2 norm is bounded in terms of a weighted L2 

norm of r. Finally, we deal with generalized solutions which, in particular, 
are of class H{oc (Q). Hence we do not work with Schauder spaces, nor 
with H1,/7(£2) (for/? > n), nor with iterative arguments. Such procedures, 
which have been extensively used in the literature (see, e.g. [4-6] and 
[21-27] ) will be replaced in our considerations by adaptations of more 
general bounded domain results of Hess, [18-20], and by the introduction 
of suitable spaces and local arguments recently used by the author for 
linear problems, [1], [2]. 

For convenience, we do not distinguish in notation in the sequel 
between functions and associated Nemytskii operators and we explicitly 
state our conditions and results only for n ^ 3. Constants whose precise 
value is irrelevant will be denoted by the same symbol. The same 
procedure will be applied to subsequences and subdomains. Finally, we 
will not distinguish in notation between functions and equivalence classes 
of functions. The nature of an inequality between the latter will be obvious 
from the context. 

Our basic assumptions on f(x, u), ay are as follows: There exists a 
smooth domain Q} D 12 and sequence {/m}^=2> rm T °°> s u c n that if we 
set 

Sm = {x\ \x\ = rm}\ &X
m = S21 n {*| \x\ < rm), 

Qm = 12 n {JC| |JC| < rm), S0 A 3S21, Sx A 312, 

then: 
(a) / (x, u) satisfies the Caratheodory conditions in S2j X R + ; 
(b) atj, g(x) ^ inf r^ 0 / (x , /) are of class L2(£2m); 
(c) atj = ajh (dy) is locally uniformly positive definite in 01; 
(d) for every P, bounded subdomain of S21, there is a constant K = 

K(P) > 0 such that the linear form B(g,-,-, P) defined on 
CS°(Q') by: 

B(g, 4>, *, P)= JpZ a.jDtiDjt + g # 

satisfies on C0 (P) the inequality: 

(2) B{g, 4>, <t>, P) è Kjp 4>2dx; 
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(e) each Sm has a neighbourhood Nm such that atj e L°°(7Vm), g(x) <E 
L°° (Nm); 

(f) g~ e L " / 2 ( ^ ) for each m; 
(g) Bw = Gm U Zm with Zm sets of measure zero and Gm domains such 

that if T c T c Gm then 1̂ 1 < M, g ^ V1 in T with M, y functions of 7 
and y > n. 

We do not require t ha t / ( x , r) ^ 0 for / è 0, nor that tf(x, t) be 
monotone in t. We also note that the only "growth" condition (apart from 
the assumptions that g(x) = inf^o (f(x, t) ) be reasonably well behaved 
locally) is the restriction placed on B in condition (d). All other conditions 
will be automatically satisfied if f(x, t) and ai} are locally suitably well 
behaved. These conditions are essentially special cases of the ones 
imposed in [1], [2] and consequently could be weakened somewhat at the 
expense of complicating the presentation. For example, {Sm}2 need not 
be a sequence of spheres, etc. Finally we observe that if f(x, t)t = 0 for / 
i^ 0, then we may always choose g(x) = 0. 

Let L0 denote a possible self-adjoint extension in L2 of the formal 
expression: 

L0u = - 2 D^ciijDjU) + gw, 

defined on C °̂(£2) and let O(LQ) be the spectrum of L0 . If L is viewed as a 
perturbation of L0 then clearly we may have 0 e O(LQ). Such singular 
problems have been investigated by many authors. We mention in 
particular the results in [22]. 

Let S c Q1, £ e L\S). We denote by B\%, V, ^, S) the linear form given 
by 

Bl& v, *, S) = j s 2 aijDivDfl, + [£+ + 1W, 

with domain Bl = E X Ey where 

£ = {v| v G C\S)9 B\& v, v, 5) < oo}. 

Let W(i;, S) be the completion of £ with respect to 

\\v\\(W&S)) = (**(£, v , v , S ) ) 1 / 2 . 

Analogously, we define J^(£, S) by completing C^(S), and we denote by 
Hlp(S), HUp(S) the standard Sobolev spaces with norm 

\\v\\iP(S) = fs 2 IA-VP + IvP. 

The Lp norm is denoted by || Hô OS) and we let ( , > represent the usual 
duality map. If S is obvious from the context we write W(£) for W(i;, 5), 
etc. 
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Finally, a solution of Problem (1) will mean a function v such that: 

f(x, v) G L\Qm) and v G W(f(x, v), Qm) for all m, 

and further, 

£ ( / ( * , v), v, <fc £2) = (r, <J>> for all <j> c C~(S2) 

and v = TOII 8S2. In view of the definition of Wfë, Bm), we may associate 
W(f(x, v), S2W) with a subspace of 7/1,2(S2m), and it follows that solutions 
must belong to Hl'2(£lm) for all m. 

THEOREM 1. There exists a function u G W(g, S) c HX\S) for all 
bounded domains S c S a Q} such that: B(g, w, <£) = 0 /or <f> G 
C^Q 1 ) , u^Oin Q1, u ^ 0. 

Proof Choose points xm G Sm, and constants em > 0 such that 

[x\ \x — xm\ < em} c JVW for m = 2, 3, . . . . 

By the construction of [1] there is an a.e. positive function vm G W(g, Fm) 
such that 

B(g9 vm, <#>) = 0 for $ G C ^ m ) , 

where 

i7^ = S m + i — {x| |x — xm\ < em}. 

Let x0 be a fixed point on S\. Since vm G C(iVi) for all m, see e.g. [16, p. 
192], we can normalize {vm} by setting vm(x0) = 1. The local compactness 
argument of [1] then shows that if <j> G C Q ^ S 1 ) , supp (grad <£) c LWZ-
and s, m are large, it follows that: 

\\«ys - vm)\\2(W(g, a 1 ) ) ^ AT(*)||v, - vm\\\2 (supp (grad *) ). 

Furthermore, by Harnack's inequality, {v^} will be uniformly bounded on 
supp (grad <f>). Setting vm = 0 first, we conclude that {<^} is bounded in 
W(g, Bj) and, without loss of generality, Cauchy in L?{Q}). The estimate 
then implies that {<j>vm} is Cauchy in W(g, B1). We next exhaust Q,1 with a 
family of nested compact sets {Ka}a=h and let {<j)a} denote C0 func
tions with 

supp (</>a) c Ka+l and <j*a = 1 in ira. 

The above arguments show that for any a ^ 1 there is a subsequence 
(vm}m of {va

m~l}m such that {<#>«v̂ }m converges in W(g, B1), where we 
define vm = vm. The usual diagonalization procedure then shows that the 
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sequence {<j>mvm} converges to a limit function u with the desired 
properties. 

As an immediate consequence it follows that there is a function u G 
Wloc(g, £2l) such that u ^ 0 in £2, u ^ M on 3£2 and £(g, u, <f>) = 0 for </> G 
C^°(S2). It is possible to construct examples where the above conditions are 
satisfied, 0 G op(Lo), (op = point spectrum), and all positive functions u 
such that B(g, u, <j>) = 0 in fi1, u G W\oc(gy fi

1) must actually be linear 
multiples of the lowest eigenvector of LQ. Since in these cases u = 0 on 
8fii, then problem 1 (with r = 0, r 54 0) would have no positive solution. 
The formulation of our conditions on the larger domain fi1 is designed to 
avoid such behaviour. 

COROLLARY 2. If Zm = $for all m, then u G L°°(fim). 

Indeed, condition (g) suffices for this, see e.g. [17, p. 192 and p. 197]. 
The function u plays the role of an uppersolution in the sequel. It would 

be possible to start our considerations at this point if we began with the 
assumption of the existence of an uppersolution u with the desired 
properties. 

COROLLARY 3. Assume Zm = § for all m. Let r ^ 0 be the trace of a 
nonnegative function in H ' (S2) Pi L°°(S2 ) (also denoted by r), with u = r 
on 812. If for each constant k, 

H(k, m) = sup \f(x, 01 e L\SLm\ 

then there exists a function vm G i/1,2(S2m) Pi L°°(12m) such that 0 ^ v„, = 
u\ vm = 7 on 8£2, vm = 0 on Sm; 

vm
 e W(f(x, vm\ S2m) and 

B(f(x, vm\ vm, <f>) = 0 for all <f> G C™(Qm). 

Proof Observe that u is of class L°°(£2m) as a consequence of Corollary 
2. Since zero is a lowersolution, a result of Hess, [20], shows the existence 
of a function vm G Hxa(Qm) n L°°(fim) such that 

/(*> vw)vw G L 1 ^ ) and 

B(f(x9 vm), vm9 <j>) = 0 for all 4> G C™(Qm). 

To conclude, we observe the embedding: 

H^(Qm) n L°°(fim) c W(Qm). 

Indeed, let w e //1*2(Bm) n L°°(Œm). Extending w to a larger domain and 
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using mollifiers, shows the existence of a sequence {ua} such that ua G 
C](Qm), ua —> (o in 7/1,2(12m) and, for all a, |wj < AT. We observe that 

l l«J | 2 (^ (a w ) ) = Xm 2 ClijDiUaDjU* + [/*(*, VW) + 1 ] ^ g tf 

where we used the fact that ay e L°°(Qm),f(x, vm) e L ^ ^ ) . We may 
thus assume that wa converges weakly in W, and consequently that 
{l/)8 2 a = i ua) converges strongly in W, necessarily to <o. 

THEOREM 4. Let the conditions of Corollary 3 hold. Then the problem (1), 
vwY/z r = 0, /zas « nonnegative solution v z'w fl, 0 = v ^ w. 

Proof. Without loss of generality, assume that r e J ^ i ^ ) with supp T 
c Â j and set vm = T in —12, vw = 0 in $2 — S2W. Let e > 0, ra0 be given. 
Choose <£ G C™(En) such that 

Œmo H {*| dist(x, S^) > €} C {X\ <I>(X) EE 1}, 

while 

C—Qi) U {*| \x\ > rmo} c {x\ <j>(x) = 0}. 

For m large, we then have 

<j>wm <= WX/"(x, vmX Q/MQ), where wm = vm - T. 

A direct calculation shows: 

(3) £ ( / ( * , vm), 4>ww, <£wm) ^ fc(<J>)lkJ|o,2 (supp grad <j>) 

+ I 2 < ajjDjWn, DjT >(supp 0) 

+ < / ( * , Vw )wm , T >(SUpp <f>)|, 

where we have used the condition: supp T C {X| <j>(x) = 1}. Since wm, r 
e ^(S2*) inequalities (2) and (3) lead to 

(4) B(f(x, vm\ <J)ww, <£wm) ^ /c(<f>) ||wm||o,2 (supp grad <f>) 

+ [*(/(*, vm), (J>wm, 4>wm) ]l/2[B(f(x, vm), r, T) ] 1 / 2 

where/(x, vm) is assumed extended to S21 as a function which exceeds g. 
We conclude from assumption (f) and inequality (4) that for some 
constants K, C we have 

2 
||<JwJ|, 2 = KB(g, <t>wm, <j>wm) =S KB(f(x, vm), <j>wm, <j>wm) < C. 
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We may thus conclude that {wm} converges in Lq (supp (/>) for q < In I 
(n — 2). Essentially repeating the calculations of (3) with wm — wr in place 
of wm gives 

B(g, <t>(wm ~ w r), <Hwm - wr) ) 

f 
K(4>) I km - wr||o,2 (supp grad <J>) 

V m - Wr| | ( / ( x , Vw) - g)wm - ( /(X, Vr) - g)w,| 

+ J^ |(/(X, Vm) - / ( * , V,) |T|(f)|2|Wm - Wr| 

= C{ ||wm - Wr||o,2 (SUPP </>) + Jfi *Vm ~ W r |#}. 

Since — T ^ ww, wr ë w < k on supp 0, and H e L](S2m), we conclude 
from standard measure theory arguments that {<J>wm } is Cauchy in W(g, 
12). Repeating the diagonalization procedure of Theorem 1 shows the 
existence of a function w in W(g, tis) for all s such that wm —> w in W (̂g, 
£25). We may assume that vvm —» w pointwise a.e. Î2 and if we set v = w + T 
then 0 = v ^ u. By the Caratheodory conditions, 

f(x, vm(x) )vm(x) —>/(*, v(x))v(x) pointwise, 

while/(x, vm)vm and/ (x , v)v are majorized locally by kH(k, s). It follows 
that: 

Jn <t>f(*> vm)vm -> J^ <j>f(x, v)v, for any <£> e C ^ S ) , 

and, as a consequence, that B(f(x, v), v, <£) = 0, v = T on 912. Since 

v e HX2(Slm) n L°°(aw), 

the procedure of Corollary 3 shows that v e W(/(x, v), fiw) for all m and 
the result follows. 

Added in Revision. Since the completion of the original manuscript, a 
paper of Cac, [9], has appeared which essentially contains Theorem 4. He 
considered a more general nonlinearity and boundary condition under the 
a priori assumption that upper and lower solutions exist. Though the basic 
methods used in [9] and here are similar, we left a proof of Theorem 4. 
This was done because our calculations (which are also applicable to the 
more general nonlinearity considered in [9] ) are somewhat different from 
those of [9], and furthermore, indicate clearly the bootstrap nature of the 
argument. Observe that the global uniform ellipticity, postulated in [9], is 
not needed in the arguments used. 
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Note that since u is determined by £2, (a^) and g, no conclusion can be 
drawn concerning the global integrability of H. Observe that we also allow 
H G l). Consequently, our results do not appear to be contained in the 
unbounded domain criterion mentioned by Hess at the end of [20]. 
Finally, it would be interesting to construct v iteratively. It is not clear 
how this could be done without the imposition of further restrictions on 
the coefficients. 

If we assume somewhat more about / , for example that f:L°°(S) —> 
Ly(S) for S c S c Gm with y = y(S) > n/2, then it is a consequence of 
the above arguments and of results in [17, p. 189] that the solution v is 
actually positive a.e. £2 or identically zero. 

It is not difficult to construct examples where the above assumptions 
are satisfied, r(x) > 0, but there is no positive solution. To deal with some 
of these cases we modify our assumptions as follows: 

Assume now that the form B of assumption (d) satisfies instead of (2) 
the stronger assumption: 

(5) £(g, </>, 4>) ^ (p&pï), 

where <j> G CQ°(S) and;? is a fixed C°°(£2) positive function in £2W for all m, 
and for simplicity, that T = 0. 

It is well known that there are examples of problems where (2) is 
satisfied in C0 (£2) but for which the only nonnegative p for which (5) 
holds in C0 (12) is p = 0. However, in many cases the known conditions 
for (2) actually also suffice for the stronger condition (5). The presence of 
(5) also implies that conditions (a)-(g) need only be postulated for £2, and 
mention of S21 can be removed. Let 0 ^ 8 < 1 and let rip G L2(Œ). 

Inequality (5) and the previous considerations now imply that the linear 
problem: LQU — 8p2u = r i^ 0, u = 0 on 812 has a nonnegative generalized 
solution u in i/1,2(Sw) such that pu G L2(Q). Further, from the spectral 
theorem it follows that 

IHIo,2(Q) = K[\\r/p\\oa(Q) ) with 0 < K = K(8), 

while if r G Ly/2(S2m) with y = y{m) > n then again the results of [17, p. 
184] imply that u must be locally bounded. To summarize we state: 

COROLLARY 5. Let conditions (a)-(g) and inequality (5) hold. Assume Zm 

— 4> for all m. If: 

(i) H(k9 m) G L\am); 

(ii) 0 â r G U/2(2m) with y = y (m) > n; 

(iii) rip G L2(Œ); 
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then the problem: Lv — 8p v = r, v = 0 on 8S2 has a locally bounded 
nonnegative solution v such that 

||Ho,2(Û) ^ #||r//>||o,2(Û). 
Observe that Corollary 5 gives conditions for the existence of a 

nonnegative supersolution for the somewhat more general case: h(x,u) = 
g(x)u - r. 

We now show that for a class of problems the growth condition (5) is 
also necessary for the existence of solutions with the above properties. 

THEOREM 6. Let the conditions of Corollary 5 hold except for inequality 
(5). Assume further that g(x) = f(x, 0) and that: 

f L°°(S) -> L\S) for S c S c Gm with y = y (S) > nil. 

Then the problem: Lv — 8p2v = r, v = 0 on 3S2, has locally bounded 
nonnegative solutions which satisfy the L (fi ) estimate stated in Corollary 5 / / 
and only if 

B(g, *, * ) ^ </?<?>, />*> / o r fl// <J> G CS°(S2). 

iVoo/. It suffices to show that £(g, <J>, <J>) ^ ( /?<f>, /?<f> >. Let 0 ^ S < 1 
and choose r = 0 ( ^ 0) of class C^°(fi). By assumption there exist local
ly bounded nonnegative solutions {wm} of: 

L(wm) - Sp2wm = rim, 

wm = 0 on 3S2. 

Let <J> e C^°(B) be given. Choose R > 0 such that if x G supp </> then 
^2R(X) C C >̂ where B2R(X) denotes the ball with center x and radius 2P. 
Sincef(x, wm) ^ g(x) and wm ^ 0, it follows that {wm} are subsolutions 
of the linear problems 

^oOm) - Sp2wm ^ rim. 

It follows (see e.g. [17, p. 184] ), that if x <= supp <|> then: 

sup wm ^ C[\\wJoa(B2R(x)) + — (B2R(x))]9 
BR(X) m 

where C is a constant which depends on R, the coefficients, and supp <j> but 
not on wm or r. By assumption, we have 

\\PWm\\^2(Sl) ta *||—||o,2(Û). 
pm 

Substituting into the above inequality yields: 

sup wm tk - [ ||r||o,2(Q) + IHIo,y(Q)l-
BR(X) m 
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We conclude that wm —> 0 uniformly on supp <p, and since \f(x, wm)\ = 
/ / ( T , k) on supp <j) for some constants T, k, it follows that 

Since/: L°°(S) —» Ly(S), we observe that each wm is actually positive in 
supp <£, again by [17, p. 189]. An application of a generalized Picone's 
identity (see e.g. [1] ) shows that 

(7) B(f(x, wm), 4», f) = f w2
m 2 a ^ Y - l ^ Y A ) 

+ J5 l / (x , wm) - 8p\ — , w m ) + 8(p4>,p^). 
\ wm / 

Since ww must be continuous, we conclude that <j> /wm e i/1<2 (supp <» 
and it follows that 

B(f(x,wm) - 8p2,^,wm) ^ 0 . 

From equation (7) we have: 

B(f(xywm\ <$>,<$>) ^ 8(p<t>,p<j>). 

Letting m —» oo, we obtain 

i?(g, <£, <?>) = ô {/7<f>, /?<£) for any 8 < 1, 

and therefore, 5 (g , <f>, <f>) ^ (p<t>,p<j>). 

COROLLARY 7. Under the conditions of Theorem 6, (L + /x)v = r = 0, v 
= 0 on 812 has a nonnegative solution for all r e L2(12), /x > 0, W///J ||v||o,2 = 
Al|r||o,2 fl«d K = K(ji) if and only if 'B(g, <f>, <f>) ^ 0. 

Proof (L + ju)v = r has such a solution for all /x > 0, if and only if (L + 
/x)v — S/xv = r has a solution for 0 < 8 < 1 and /x > 0. By Theorem 6 and 
the choice /? = /̂jiï, we find that this occurs if and only if B(g + /x, <J>, <£) 
^ /x <<f>, <J>), that is: if and only if B(g, <£, <f>) ^ 0. 

We briefly and heuristically remark that more properties can easily be 
obtained by the imposition of further assumptions. For example assume 
that the solution u of the linear problem: LQU — 8p2u = r, u = 0 on 812 (or 
any other suitable a priori nonnegative uppersolution of problem (1) ) is 
known to approach zero at oo then so will the solution of problem (1) 
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which we constructed. Further, it we assume that the generalized 
maximum principle is valid (in particular this requires g = 0) then such 
solutions of problem (1) must be unique, since the maximum of their 
difference in Bw will be achieved on Sm. 

We consider next some illustrative examples. Suppose first that a y = S,y, 
T = 0 , / ( JC, u) = (g(x) + g\(x)ua) with a g 0, gx{x) ^ 0 and \x\r(x) <= 
L2. Apart from the local regularity conditions for the existence of positive 
solutions as above it is necessary and sufficient that inequality (5) hold, 
with/? = c|x|_1, for some c > 0. For this it suffices, for example, that 

g- e L"/2(12) with ||g||o,„/2(a) < Z 

where 
i 21 n 

mr (n — 2) 
/r(/i/2)V 
I r(/i) J 

This is an optimum embedding constant calculated by Talenti, [28] and 
Aubin, [7]. Indeed, if <j> e C0 (fi) it follows from the Gagliardo-Niren-
berg results, [13, p. 24], that for some constant /x, 0 ^ fi < 1 we have: 

Whence we conclude that: 

<-A<fc <?>> + <g4>, 4>> ^ (1 - / iX-A*, <£>. 

The well known inequality: 

in - if 
(-A<t>,4>) 

then leads to the estimate: 

<-A$,$> + (g4>,<j>) iï 

2 

0,2 

(1 - Mn - 2)2 2 

0,2' 

Therefore inequality (5) holds with 

y r ^ M f t - 2) 

' = — w — • 
For another example, set atj = Sy, f(x, u) = [g\(x) + g2(x)eu], r as 

before. This example is related to an equation considered in [12] (where 
the functions were g\ = 0, gi = 0). If we also assume g^ = 0 but allow 
g\ to be negative then a key growth condition again becomes: 
iignio,w/2(Q) < z. 

We note as indicated above that the conditions on g(x) could be 
replaced by, or combined with, conditions from ordinary differential 
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equations. For example, more general conditions than the well known 
Kneser condition for (2), namely g(x) > — (n — 2)2/4|x|2, could combine 
with ||g~||„/2 < Z and would lead to analogous results. 

Finally, we compare the above results with some which were previously 
known. As mentioned in the introduction, many of these dealt only with 
cases of regular coefficients, C (or at least C ) solutions, and the a 
priori existence of upper and lower solutions. A quite general setting was 
considered in [12], but here coerciveness was required. This was realized 
by the assumption of uniform ellipticity and restrictions on the sign of the 
nonlinearity. Analogously, in the unbounded domain case considered [8] 
the linearity was either independent of x or, at most, depended on \x\ and 
and u. Furthermore, little consideration appears to have previously been 
given to the necessity of the assumptions that were made. A notable 
exception to this rule was the paper by Swanson, [27], where necessary and 
sufficient conditions are stated for the existence of a positive solution u 
with \x\n~2u(x) bounded, but only for equations which allow one 
dimensional argument. It appears, therefore, that our results are not 
covered by any of the above. 

In conclusion, we note that if f(x, t) is not somewhat restricted from 
below then Lu = 0 may have no positive solutions at all. We refer to [16] 
where, in particular, conditions are given so that there are no positive 
solutions in En. Other nonexistence results can be obtained by reversing 
the arguments we employed above (basically now assuming that / (x, t) ^ 
g(x) for t = 0) and using linear theory. A comparison with ordinary 
differential equations may also be used to advantage for this and related 
questions (see e.g. [27], and the references therein). 
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