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Abstract. Fix a prime numberp > 5 and a positive integerN prime top. We consider the projective
limits of p-adic étale cohomology groups of the modular curvesX1(Np

r) andY1(Np
r) (r > 1),

which are denoted byESp(N)Zp andGESp(N)Zp , respectively. Lete�0 be the projector to the
direct sum of the!i-eigenspaces of the ordinary part, fori 6� 0;�1 modp � 1. Our main result
states thate�0GESp(N)Zp has a goodp-adic Hodge structure, which can be described in terms
of �-adic modular forms, extending the previously known result fore�0ESp(N)Zp . We then apply
the method of Harder and Pink to the Galois representation one�0ESp(N)Zp to construct large
unramified Abelianp-extensions over cyclotomicZp-extensions of Abelian number fields.

Mathematics Subject Classifications (1991):11F33, 11F67.
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Introduction

Let � = �1(M) be the usual congruence subgroup of SL2(Z). For each integer
d > 0, we have the well-known Eichler–Shimura isomorphisms

H1
P (�; S

d(C)) �= Sd+2(�)� Sd+2(�); (i)

H1(�; Sd(C)) �=Md+2(�)� Sd+2(�): (ii)

Here,Sd(C) is C�(d+1) on which� acts via the symmetric tensor representation of
degreed,H1

P means the parabolic cohomology, and other symbols are the standard
ones. It follows that the cokernel of the natural mappingiC : H1

P (�; S
d(C)) ,!

H1(�; Sd(C)) is isomorphic to the space of Eisenstein series of weightd+ 2 with
respect to�, and the exact sequence

0! H1
P (�; S

d(C))
iC- H1(�; Sd(C))! Coker(iC)! 0;

canonically splits as modules over the Hecke algebra. In this sense, the ‘difference’
betweenH1

P (�; S
d(C)) andH1(�; Sd(C)) is well-understood. However, if we

take the integral structure in consideration, replacingC by Z or Zp, the situation
becomes subtle. Namely, the exact sequence

0! H1
P (�; S

d(Zp))
iZp- H1(�; Sd(Zp))! Coker(iZp)! 0;
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usually does not split as modules over the Hecke algebra. In fact, whenM = 1 and
d is even, Harder and Pink [HP] started with the fact that the special value of the
Riemann zeta function appears as the ‘denominator of the Eisenstein cohomology
class’, and then used it to construct and study large enough unramified Abelian
p-extensions ofQ(�p).

In our previous work [O2], we have shown that there is a goodp-adic analogue
of (i) for a subspace of the ‘p-adic Eichler–Shimura cohomology group’. We fix a
prime numberp > 5, and a complete subfieldK of Cp whose ring of integers we
denote byo. LetN be a positive integer prime top, and set

ESp(N)o :=

0@lim
 �
r>1

H1(X1(Npr);Zp)

1A b
Zpo

using the modular curvesX1(Np
r) over Q attached to�1(Np

r), and theétale
cohomology groups of their base extensions toQ. The Hecke operatorT �(p) acts
on this space, and we can consider the associated idempotente� of Hida. Let
e�0 be the projector to the direct sum of the!i-eigenspaces fori 6� 0;�1 mod
p� 1 of e�ESp(N)o with respect to an action of the group(Z=pZ)�, ! being the
Teichm̈uller character. Bothe�ESp(N)o ande�0ESp(N)o are known to be free
modules of finite rank over the Iwasawa algebra�o �= o[[T ]]. On the other hand,
let S(N ;�o) be the space of�o-adic cusp forms of levelN . We can also define
idempotentse ande0 from the Hecke operatorT (p) in a similar manner. LetIp be
the inertia group of Gal(Qp=Qp), and put

A1;o := e�0ESp(N)
Ip
Zp
b
Zpo;

B1;o := e�0ESp(N)o=A1;o:

Then the main result of [O2] states that, whenK is sufficiently large, we have
canonical isomorphisms

B1;o
�= e0S(N ;�o)(�1);

A1;o
�= Hom�o

(B1;o;�o):
(I)

Note that these isomorphisms preserve the integral structure. The purpose of the
present paper is to pursue the same subject for the following bigger group, called
thegeneralizedp-adic Eichler–Shimura cohomology group of levelN :

GESp(N)o :=

0@lim
 �
r>1

H1(Y1(Npr);Zp)

1A b
Zpo:

Here,Y1(Np
r) is the canonical model of the open curve�1(Np

r)nH overQ. Thus
there is a natural injective homomorphismi�o

: ESp(N)o ,! GESp(N)o and we
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want to understand (the ordinary part of) the nature of this mapping. LetM(N ;�o)
be the space of�o-adic modular forms of levelN . We can define the idempotents
e� ande�0 (resp.e ande0) acting onGESp(N)o (resp.M(N ;�o)) in the same way
as above. The following theorem is our main result of this paper, which gives a
p-adic analogue of (ii) fore�0GESp(N)o, and extends (I):

THEOREM. e�GESp(N)o is a free�o-module of finite rank. Thus we have

e�0GESp(N)
Ip
Zp = A1;Zp and whenK contains all the roots of unity, there is

a canonical isomorphism

e�0GESp(N)o=A1;o
�- e0M(N ;�o)(�1): (II)

The idea of the proof of this theorem is basically the same as that of (I).
Namely, we letMk(�; Z) be the subspace ofMk(�) consisting of elements having
q-expansions with coefficients inZ at i1 and setMk(�;R) := Mk(�; Z) 
Z R
for any ringR. We consider the space

M
�
k(N ; o)

:= lim
 �
r>1

(
f 2Mk(�1(Np

r); Cp) j f j

"
0 �1

Npr 0

#
2Mk(�1(Np

r); o)

)
;

where the projective limit is taken with respect to the natural trace mappings. Again,
we have idempotentse� ande�0 attached toT �(p) acting on this space and, as in the
case of cusp forms, we have a canonical isomorphismeM(N ;�o) �= e�M�k(N ; o);
for each integerk > 2. The main part of the proof consists in showing that there is
a canonical isomorphism

e�0GESp(N)o=A1;o
�- e�0M�2(N ; o)(�1); (II)�

which together with the above isomorphism gives (II).
Our results reduce the study of the ‘difference’ betweene�0ESp(N)o and

e�0GESp(N)o to that betweene0S(N ;�o) ande0M(N ;�o), which is much sim-
pler. Indeed, we can analyse the latter using the�o-adic Eisenstein series. To state
the result, let us assume thatp - '(N), and fix an even primitive Dirichlet character
� defined moduloNp whose restriction to(Z=pZ)� is neither!0 nor!�1. Let r
be the ring generated by the values of� overZp: Then taking the�-eigenspaces,
we get fromi�r

an exact sequence

0! e�ESp(N)(�)r

i
(�)
�r- e�GESp(N)(�)r ! Coker(i(�)�r

)! 0:

Further localizing this sequence at the ‘Eisenstein maximal ideal’ of thep-adic
Hecke algebra acting one�GESp(N)

(�)
r , we obtain an exact sequence which we
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simply write 0! X ! Y
�- Z ! 0 (see 5.2 of the text for details). The fol-

lowing theorem asserts that the ‘denominator of thep-adic Eisenstein cohomology
class’ is essentially thep-adicL-function

THEOREM. Z is a free module of rank one over�r. The above exact sequence
of �r-modules canonically splits when tensored with the quotient fieldL of �r. If
s:Z 
�r

L ! Y 
�r
L gives the splitting, then we have

�(Y \ s(Z)) =

(
G(T; �!2)�Z when � 6= !�2;

Z when � = !�2:

Here,G(T; �!2) is a twist of the Iwasawa power series giving the Kubota–Leopoldt
p-adicL-function; preciselyG(us � 1; �!2) = Lp(�s� 1; �!2); with a suitable
choice of a topological generatoru of 1+ pZp.

After this theorem, we can directly apply the method of [HP], replacing the
classical Eichler–Shimura cohomology group by the aboveX (and henceZp by
�r). As a consequence, we can give a fairly explicit construction of large enough
unramified Abelianp-extensions over cyclotomicZp-extensions of Abelian number
fields, under some assumptions. In the particular case where� ranges over even
powers of the Teichm̈uller character, this result gives a new (and simple) proof of the
Mazur–Wiles theorem [MW1] (the Iwasawa main conjecture) for such characters.

The organization of this paper is as follows: The first four sections are devoted
to the proof of our main theorem. In doing this, we need tools which are well-
known for studying cusp forms; but could not be found in the literature to treat
modular forms. We thus supply them in Sections 1–3. In Section 1, we study the
structure of the ordinary generalizedp-adic Eichler–Shimura cohomology groups
and the ordinaryp-adic Hecke algebras attached to modular forms. In particular, we
show that they are controllable (in the sense of Hida’s theory) via the action of the
Iwasawa algebra. In Section 2, we study the spaceseM(N ;�o) ande�M�k(N ; o).
Aside from the knowledge of similar spaces corresponding to cusp forms, we need
the explicit description of enough�o-adic Eisenstein series here.

In our study [O2] of cusp forms, an essential role was played by the Jacobians
of modular curves; especially their ‘good quotients’ and the associatedp-divisible
groups. In the present treatment of modular forms, rather than cusp forms, we
need the corresponding theory for thegeneralized Jacobians(of reduced cuspidal
moduli) of modular curves. In Section 3, we collect some general facts about
generalized Jacobians for later use. After these three preliminary sections, we
carry out the construction of ourp-adic period mapping (II) in Section 4, and
complete the proof of the main theorem. As in the case of cusp forms, a hard point
here is the surjectivity of (II)�. We get over this difficulty by reducing the problem
to an integrality property of the residues of ordinary modular forms (of weight 2),
with the aid of the known result for cusp forms.
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Section 5 is an application of our cohomology theory to the theory of cyclotomic
fields. The second theorem above is proved in Subsection 5.2 and with this we can
proceed in a completely parallel way, as in [HP], to construct large unramified
Abelianp-extensions.

Notation and conventions

Since this paper is a continuation of the previous work [O2], we use the same
terminology as in loc. cit. In particular

� H := fz 2 C j Im(z) > 0g.
� �1(M) and�0(M) denote the usual congruence subgroups of SL2(Z) defined

by

�1(M) :=

("
a b

c d

#
2 SL2(Z) j

"
a b

c d

#
�

"
1 �

0 1

#
mod M �M2(Z)

)
;

�0(M) :=

("
a b

c d

#
2 SL2(Z) j

"
a b

c d

#
�

"
� �

0 �

#
mod M �M2(Z)

)
:

� Cp := (the completion ofQp).
� We fix embeddings ofQ into C andCp, once and for all.
� If A is a module over a ringR, andr (resp.I) is an element (resp. an ideal) of
R, we often writeA=r (resp.A=I) for A=rA (resp.A=IA).

1. Generalizedp-adic Eichler–Shimura cohomology groups andp-adic
Hecke algebras

1.1. GENERALIZED p-ADIC EICHLER–SHIMURA COHOMOLOGY GROUPS

As in [O2], we fix a prime numberp > 5, and a complete subfieldK of Cp, with
its ring of integerso. We also fix a postive integerN not divisible byp. We set

Nr := Npr and �r := �1(Nr) for r > 1 (1.1.1)

and write

Xr := X1(Nr); Yr := Y1(Nr) (1.1.2)

for the canonical models of�rnH [P1(Q) and�rnH overQ, respectively. (As in
[O2], the cuspi1 is aQ-rational point ofXr.)

For any commutative ringR with unity, we putSd(R) := R�(d+1) and let

�d : GL2(R)! GL(Sd(R)) (1.1.3)

be the symmetric tensor representation of degreed(> 0), realized as in Shimura [Sh]
8.2. To this representation, we can associate a twisted constantp-adic étale sheaf
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FSd(Zp) on Yr; and we have canonical isomorphisms betweenétale cohomology
groups and classical group cohomologies:

H1(Y r; FSd(Zp))
�= H1(�r; S

d(Zp));

H1(Xr; jr�FSd(Zp))
�= H1

P (�r; S
d(Zp));

(1.1.4)

where the bar means the base change fromQ to Q, jr: Yr ,! Xr is the injection
morphism, andH1

P is the parabolic cohomology (cf. [O2] 1.2). We will frequently
identify the groups in both hand sides.

DEFINITION (1.1.5). We set

GESp(N)Zp := lim
 �
r>1

H1(Y r;Zp);

GESp(N)o := GESp(N)Zp b
Zpo;

the projective limit being taken relative to the trace mappings. We call these groups
the generalized p-adic Eichler–Shimura cohomology groups of level N overZp

or o, respectively. Similarly, usingH1(Xr;Zp) instead ofH1(Y r;Zp), we define
the p-adic Eichler–Shimura cohomology groupsESp(N)Zp andESp(N)o ([O2]
(1.2.13)).

As in [O1] 7.3 and 7.4, the Hecke operatorsT �(n) andT �(q; q) act on the
groups in (1.1.4) and (1.1.5). Especially, we have Hida’s idempotent

e� := lim
n!1

T �(p)n! (1.1.6)

acting on these groups.

1.2. SOME LEMMAS

We writeUr for the multiplicative group 1+ prZp for r > 1. For the moment, we
fix integerss > r > 1 andd > 0. Set

�r
s := �r \ �0(p

s): (1.2.1)

Thus�r � �r
s B �s, and we have the following disjoint decomposition:

�r =
a

06j6ps�r�1

�j�
r
s with �j :=

"
1 0

Nrj 1

#
; and (1.2.2)

�r
s =

a
�2Ur=Us

���s
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with

�r 3 �� �

"
��1 �

0 �

#
mod ps�M2(Z): (1.2.3)

Let Y r
s be the canonical model of�r

snH over Q so thatYs ! Y r
s ! Yr is

defined overQ. Then it is known that the following diagram commutes:

H1(Y s; FSd(Zp))
Tr- H1(Y

r
s; FSd(Zp))

Tr- H1(Y r; FSd(Zp))

(1:2:4)

H1(�s; S
d(Zp))

?
o

Cor
- H1(�r

s; S
d(Zp))

?
o

Cor
- H1(�r; S

d(Zp))

?
o

where Tr (resp. Cor) means the trace mapping (resp. the corestriction), and the
vertical isomorphisms are given by (1.1.4) (and similarly for�r

s); cf. [O1] (2.5.4).
The Hecke operators as in 1.1 act compatibly on these groups. For example, the
operatorT �(pt) onH1(�r

s; S
d(Zp)) is described as follows: First we have

�r
s

"
1 0

0 pt

#
�r
s =

a
06i6pt�1

�i�
r
s with �i :=

"
1 0

Nsi pt

#
: (1.2.5)

T �(pt) then sends a cohomology classcl(u) of a 1-cocycleu to cl(u0) where

u0(
) =
pt�1X
i=0

�d(�i)u(
i) for 
 2 �r
s

if 
�1�i = �i0

�1
i with 
i 2 �r

s: (1.2.6)

We have a similar diagram as (1.2.4) after applying the operatore� = lim
n!1

T �

(p)n! . The following two lemmas are variants of Hida’s results in [H3], for which
we give direct proof for the convenience of the reader.

LEMMA (1.2.7) (cf. [H3] Lemma 4.6).e�H1(�r; S
d(Zp))ande�H1(�r

s; S
d(Zp))

are freeZp-modules.
Proof. We give the proof only for the latter group. It is finitely generated over

Zp. Take an integerM so large thatpM annihilates its torsion subgroup. Then from
the long exact sequence of cohomology groups obtained from:

0! Sd(Zp)
pM- Sd(Zp)! Sd(Z=pMZ)! 0;

comp4193.tex; 21/07/1995; 13:12; v.7; p.7

https://doi.org/10.1023/A:1000556212097 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000556212097


248 MASAMI OHTA

we have a surjective homomorphism

H0(�r
s; S

d(Z=pMZ))! H1(�r
s; S

d(Zp))tors:

Now it is easy to see that the endomorphism ofH0(�r
s; S

d(Z=pMZ)) = Sd(Z=pM

Z)�
r
s defined bym 7!

Ppt�1
i=0 �d(�i)m is compatible withT �(pt) onH1(�r

s; S
d

(Z=pMZ)). If t >M , we see that

�d(�i) =

2666664
1 0 � � � 0

Nsi 0 � � � 0
...

...
...

...

(Nsi)
d 0 � � � 0

3777775 :

It follows that if t > M andt is divisible byM , then
Ppt�1

i=0 �d(�i)m = 0, which
proves our assertion. 2

In general, if� and�0 are congruence subgroups of SL2(Z) and�0 � ����1

with � 2 GL2(Q), we can define the operator

‘ j �’ : H1(�0; Sd(R))! H1(�; Sd(R)) (1.2.8)

by the formula

cl(u0) j � = cl(u) with u(
) = �d(�
�1)u0(�
��1) for all 
 2 �; (1.2.9)

provided thatR is a Q-algebra, or��1 2 M2(Z). This operator preserves the
parabolic part; and coincides with the usual operator ‘j �’ (cf. (1.5.1) below) on
modular forms via the Eichler–Shimura isomorphism when det(�) > 0:

LEMMA (1.2.10) (cf. [H3] Lemma 4.3 and page 570).Put � :=
h

1
0

0
ps�r

i
. Then

we clearly have��1�r
s� � �r; and the following diagram commutes:

H1(�r
s; S

d(Zp))
Cor- H1(�r; S

d(Zp))

=�
�
�
�
�
�

‘ j��1’
H1(�r

s; S
d(Zp))

T �(ps�r)

?

Cor
- H1(�r; S

d(Zp)):

?
T �(ps�r)

Proof. Takecl(u) 2 H1(�r
s; S

d(Zp)) and let Cor(cl(u)) j ��1 =: cl(u0). Then

a simple calculation shows that, for any
 2 �r
s, u
0(
) =

Pps�r�1
j=0 �d(��j)u(
j)
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if 
�1��j = ��j0

�1
j with 
j 2 �r

s for each indexj. Since��j is equal to�j with
t = s� r, the upper triangle commutes. The commutativity of the lower triangle
can be proved in a similar manner. 2

COROLLARY (1.2.11).The corestriction:e�H1(�r
s; S

d(Zp)) ! e�H1(�r; S
d

(Zp)) is an isomorphism.

We can letU1=Us act one�H1(�s; S
d(Zp)) by� 7! ‘ j ��1

� ’ with �� 2 SL2(Z)
satisfying�� �

h
��1

0
�
�

i
mod ps � M2(Z) (for the moment; later we will use

different action ofU1).

LEMMA (1.2.12). The corestriction induces an isomorphism

e�H1(�s; S
d(Zp))Ur=Us

�- e�H1(�r; S
d(Zp));

where the subscript means the coinvariant.
Proof. By the corollary above, it is enough to show that the mapping induced

from the corestrictionH1(�s; S
d(Zp))Ur=Us ! H1(�r

s; S
d(Zp)); is an isomor-

phism.
For this, letN be the Pontryagin dual ofSd(Zp). Let ( ; ) be the canonical

pairing betweenSd(Zp) andN , and considerN as a�r
s-module by(x; y) =

(
x; 
y) for 
 2 �r
s: Denoting byFN the sheaf on�r

snH (or its pull-back to
�snH) attached toN , the Poincaŕe duality implies that the Pontryagin dual of the
mapping above is identified with the canonical mapping

H1
c (�

r
snH;FN )! H1

c (�snH;FN )
Ur ;

But from the argument of [O1] 7.3, we may interpret this as the natural mapping

Hom�rs(D0;N )! Hom�s(D0;N )Ur ;

whereD0 is the degree 0 part of the free Abelian group onP1(Q), the set of cusps
of �s or�r

s. This is clearly an isomorphism becauseUr=Us �= �r
s=�s (�$ ��).2

1.3. PASSING TO THE PROJECTIVE LIMIT

We denote by�Zp (resp.�o) the completed group algebra ofU1 overZp (resp.o),
and write

� : U1 ,! �Zp � �o; (1.3.1)

for the obvious inclusion. As usual, we fix a topological generatoru of U1, and
identify�Zp (resp.�o) with the formal power series ringZp[[T ]] (resp.o[[T ]]) via
�(u)$ 1+ T . We put

!r;d := �(up
r�1

)� udp
r�1

= (1+ T )p
r�1

� udp
r�1
; (1.3.2)
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for integersr > 1 andd > 0.
Now set

Xd;Zp := lim
 �
r>1

e�H1(Y r; FSd(Zp))
�= lim
 �
r>1

e�H1(�r; S
d(Zp)) (1.3.3)

where the projective limits are taken relative to the trace mappings and the co-
restrictions, respectively. We also set

Xd;o := Xd;Zp
b
Zpo: (1.3.4)

Thus,X0;o = e�GESp(N)o. As we explained before (1.2.12), we may consider
Xd;Zp as a�Zp-module and, hence,Xd;o as a�o = �Zp

b
Zpo-module also.

THEOREM (1.3.5).For eachd > 0, Xd;o is a free�o-module of rank

rank�o
e�ESp(N)o +

p� 1
2

X
0<tjN

'(t)'

�
N

t

�
=: r(N);

where' is the Euler function. Moreover, via the natural projection, we have an
isomorphism

Xd;o=!r;0
�- e�H1(Y r; FSd(Zp))
Zp o

�= e�H1(�r; S
d(o))

for eachr > 1.
Proof. For integerss1 > s2 > r > 1, we have a commutative diagram:

e�H1(�s1 ;S
d(Zp))

!r;0- e�H1(�s1 ;S
d(Zp))

Cor- e�H1(�r ;Sd(Zp)) - 0

e�H1(�s2 ;S
d(Zp))

Cor

?

!r;0
- e�H1(�s2 ;S

d(Zp))

Cor

?

Cor
- e�H1(�r ;Sd(Zp))

wwwwwwwww
- 0

with exact horizontal lines by (1.2.12). Thus taking the projective limit, we obtain

an isomorphismXd;Zp=!r;0
�- e�H1(�r; S

d(Zp)): Especially,Xd;Zp is a finitely
generated�Zp-module.

Now e�H1(�r; S
d(Zp)) is free overZp by (1.2.7); and let us now com-

pute its rank. First, we already know that theZp-rank of e�H1
P (�r; S

d(Zp)) is
equal topr�1rank�Zp

e�ESp(N)Zp by [O2] (1.4.3). On the other hand, the oper-

ator ‘=
h

0
Nr

�1
0

i
’ interchangesT (p) andT �(p) on H1(�r; S

d(Qp)) and, hence,

e�H1(�r; S
d(Qp))=e

�H1
P (�r; S

d(Qp)) has the same dimension aseH1(�r; S
d
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(Qp))=eH
1
P (�r; S

d(Qp)), wheree is the idempotent attached toT (p). It then fol-
lows from [H3] Lemma 5.3 (which we recall in (2.3.2) below) and Corollary 5.6
that the common dimension of these spaces is('(pr)=2)

P
0<tjN '(t)'(N=t): (We

will give another proof of this dimension formula in 4.3.) We therefore see that
Xd;Zp=!r;0 is a freeZp-module of rankpr�1r(N) for eachr > 1. Using the well-
known structure theorem of finitely generated�Zp-modules, we easily see that
Xd;Zp is free of rankr(N) over�Zp .

This proves our result wheno = Zp; and the general case follows from this.2

1.4. SPECIALIZATI ONS OFe�GESp(N)o.

Recall that we have thespecialization mapping

spr;d : GESp(N)o ! H1(�r; S
d(o)) (1.4.1)

for each integersr > 1 andd > 0 (cf. [O2] 1.3). It commutes with the Hecke
operatorsT �(n) andT �(q; q). In view of this, from now on, we change theU1-
module structure ofH1(�r; S

d(o)) newly defining the action of� 2 U1 by�d � ‘ j
��1
� ’. The resulting new�o-module structure ofXd;o is the twist of the previous

one by the character:U1 3 � 7! �d and, hence, (1.3.5) remains valid if we
replace!r;0 by !r;d in the statement. The specialization mapping above is then a
homomorphism of�o-modules (loc. cit.).

One can prove the following theorem in a similar manner as in [O2] (1.4.3).
(From (1.3.5), we know that the both sides below are freeo-modules of the same
rank and, hence, we only need to show the surjectivity ofspr;d wheno = Zp:)
But a much more general result had been obtained by Ash and Stevens, cf. [AS],
Theorem 5.1.

THEOREM (1.4.2). For eachr > 1 andd > 0, spr;d induces an isomorphism

e�GESp(N)o=!r;d
�- e�H1(�r; S

d(o)):

Now whens > r > 1, for the same reason as [O2] (1.4.4), the following triangle
commutes:

GESp(N)o
sps;d- H1(�s; S

d(o))

spr;d

@
@
@
@
@R
H1(�r; S

d(o)):

?

Cor (1.4.3)

From this, we obtain the following corollary:
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COROLLARY (1.4.4). For each integerd > 0, the mappingsspr;d induce an

isomorphism of�o-modulese�GESp(N)o
�- Xd;o.

1.5. p-ADIC HECKE ALGEBRAS

As usual, we denote byMk(�) (resp.Sk(�)) the space of holomorphic modular
forms (resp. cusp forms) with respect to a congruence subgroup� of SL2(Z).
In this paper, we consider only forms of weightk > 2. For f 2 Mk(�) and


 =
h
a
c

b
d

i
2 GL2(R) with positive determinant, we set

(f j 
)(z) := det(
)(cz + d)�kf

�
az + b

cz + d

�
: (1.5.1)

DEFINITION (1.5.2). We denote byHk(�r; Z) theZ-subalgebra of EndC(Mk(�r))
generated by all the Hecke operatorsT (n) and T (q; q). Similarly we define
H�k(�r; Z) � EndC(Mk(�r)) usingT �(n) andT �(q; q) (cf. [O1] 7.3). The Hecke
algebras corresponding toSk(�r) are denoted byhk(�r; Z) andh�k(�r; Z), respec-
tively. For any commutative ringR with unity, we setHk(�r;R) := Hk(�r; Z)
Z
R and likewise for other algebras.

If we put

�r :=

"
0 �1

Nr 0

#
for r > 1; (1.5.3)

then we have

‘ j �r’ � T (n) = ‘ j �r’ � T �(n);

‘ j �r’ � T (q; q) = ‘ j �r’ � T �(q; q);
(1.5.4)

both onMk(�r) andSk(�r). ThusHk(�r;R) andH�k(�r;R) are canonically
isomorphic via the correspondence:T (n)$ T �(n) andT (q; q)$ T �(q; q).

We set

Hk(N ;R) := lim
 �
r>1

Hk(�r;R);

H�k(N ;R) := lim
 �
r>1

H�k(�r;R);
(1.5.5)

relative to the natural homomorphisms (T (n) 7! T (n) andT (q; q) 7! T (q; q)
etc.); and we definehk(N ;R) andh�k(N ;R) in a similar manner. The element of
Hk(N ;R) corresponding to the sequence ofT (n) 2 Hk(�r;R) will be denoted
by the same symbolT (n); and similarly forT �(n), etc.
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Via the Eichler–Shimura isomorphism, we may identifyHk(�r; Z) andH�k
(�r; Z) with the subalgebras of EndQ(H

1(�r; S
d(Q))) defined in the same way as

(1.5.2), wherek = d + 2. By (1.2.7), we may considerXd;o as ane�H�d+2(N ; o)-
module.

Now we let (Z=NrZ)� 3 q modNr act onH2(�r;R) (resp.H�2(�r;R)) as
multiplication byT (q; q) (resp.T �(q; q)). Thus if we set

ZN := lim
 �
r>1

(Z=NrZ)� �= (Z=NZ)� � Z�p ; (1.5.6)

H2(N ;R) andH�2(N ;R) are naturally equipped with the structure ofR[[ZN ]]-
(and, hence,R[[U1]]-)algebras.

Remember thate (resp.e�) stands for the idempotent attached toT (p) (resp.
T �(p)). The following result is essentially due to Hida; the corresponding assertion
for hk(N ; o) andh�k(N ; o) being well-known:

THEOREM-DEFINITION (1.5.7). (i)Via the natural correspondenceT (n) $
T (n) and T (q; q) $ T (q; q), we have isomorphisms of algebraseH2(N ; o) �=
eHk(N ; o); for all k > 2; and similarly we havee�H�2(N ; o) �= e�H�k(N ; o):

In what follows, we identify these isomorphic algebras, and write themeH(N ; o)
and e�H�(N ; o), respectively. We make the same convention fore h(N ; o) and
e�h�(N ; o).

(ii) eH(N ; o) ande�H�(N ; o) are free�o-modules of finite rank. The rank is
given by

rank�o
e h(N ; o) +

p� 1
2

X
0<tjN

'(t)'

�
N

t

�
:

(iii) Via the natural correspondence, we have isomorphisms

eH(N ; o)=!r;d
�- eHd+2(�r; o);

e�H�(N ; o)=!r;d
�- e�H�d+2(�r; o);

for every integersr > 1 andd > 0.

Unfortunately, in [H3], Hida proves the result only for the Hecke algebras
attached to cusp forms. Thus we outline the proof for the convenience of the
reader. We may assume thato is finite overZp.

Letk = d+2 > 2: As we noted above, we can considerXd;o as ane�H�k(N ; o)-
module. Moreover, by (1.3.5), this is in fact a faithfule�H�k(N ; o)-module. We then
obtain an injective homomorphism:e�H�k(N ; o) ,! End�o

(Xd;o) �= Mr(N)(�o),
the matrix algebra of sizer(N) over�o. It is easy to see that this mapping is
continuous and, hence, we may identifye�H�k(N ; o) with the o-subalgebra of
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End�o
(Xd;o) topologically generated by allT �(n) andT �(q; q). The assertion (i)

then follows from (1.4.4). It also follows thate�H�(N ; o) is finite over�o.
The freeness in (ii) is more difficult and so we follow Hida’s method. Consider

Mk(�r) as a subspace ofC[[q]] via the usualq-expansion and let

Mk(�r; Z) :=Mk(�r) \ Z[[q]];

Mk(�r;R) :=Mk(�r; Z)
Z R ,! Z[[q]]
Z R:
(1.5.8)

We then set

M j(�r; o) := �j
k=2Mk(�r;K) \ o[[q]] (j > 2);

M1(�r; o) :=
S
j>2M

j(�r; o) in o[[q]];
(1.5.9)

and letM(�r; o) denote the completion ofM1(�r; o) with respect to the natural
norm ono[[q]]. Then Hida proved that this subset ofo[[q]] is independentof r > 1
([H2] Corollary 1.2) and we writeM(N ; o) for this space.

We denote byHj(�r; o) andH�j(�r; o) the Hecke algebras forM j(�r; o)
defined similarly as before. Then by the above-mentioned result, the algebras

lim
 �
j>2

Hj(�r; o); lim
 �
j>2

H�j(�r; o); (1.5.10)

are seen to be ‘independent ofr > 1’ in the obvious sense ([H2] (1.15 a)), which
we denote byH0(N ; o) andH�0(N ; o), respectively. These are�o-algebras in a
natural manner.

Now from the inclusionMk(�r; o) ,!M (N ; o) we get homomorphisms

�r;k : eH0(N ; o) � eHk(�r; o);

�1;k : eH0(N ; o) � eHk(N ; o) = eH(N ; o);
(1.5.11)

as in [H3] Section 1. Clearly,�1;k is independent ofk and, hence, we write it�1.
Similarly, we obtain a homomorphism

��1 : e�H�0(N ; o) � e�H�(N ; o): (1.5.12)

By virtue of [H2], Theorem 3.1,e�H�0(N ; o) is free of finite rank over�o. Let us
now look at the homomorphisms induced from��1:

e�H�0(N ; o)=!1;n � e�H�(N ; o)=!1;n (n > 0): (1.5.13)

These algebras act one�H1(�1; S
n(o)) �= e�GESp(N)o=!1;n by (1.4.2). But by

[H2] Corollary 3.2, we know that

e�H�0(N ; o)=!1;n
�- e�H�n+2(�1; o) for n > p� 1: (1.5.14)
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It follows that this isomorphism must factor throughe�H�(N ; o)=!1;n, showing
that (1.5.13) is an isomorphism whenevern > p�1. The freeness in question then
follows from the above-quoted theorem and [H3] Lemma 6.3; and it also follows
that��1 and�1 are isomorphisms.

As for (iii), we have a natural surjective homomorphism:e�H�(N ; o)=!r;d �
e�H�k(�r; o) by (1.4.2). Thus it is enough to show that these twofree o-modules
have the same rank.

For this, we recall the well-known duality: In general, let

mk(�r; o) := ff 2Mk(�r;K) j a(n; f) 2 o for all n > 1g; (1.5.15)

wherea(n; f) denotes the coefficient ofqn in f . Then the pairing

( ; ) : mk(�r; o)�Hk(�r; o)! o; (1.5.16)

given by(f; t) := a(1;f j t) sets up a perfect duality of freeo-modules (cf. [H2]
Proposition 2.1).

From this, (1.5.14), and the remark after it, we have

r := rank�o
e�H�(N ; o) = rankoeHl(�1; o) = ranko eml(�1; o); (1.5.17)

for l > p+ 1. By [H3] Lemma 5.3, we see that

r = dimK e Sl(�1;K) +
p� 1

2

X
0<tjN

'(t)'

�
N

t

�
: (1.5.18)

Similarly, we have

rankoe�H�k(�r; o)

= dimK eSk(�r;K) +
'(pr)

2

X
0<tjN

'(t)'

�
N

t

�
: (1.5.19)

Since we already know that

dimK e Sk(�r;K) = pr�1rank�o
e h(N ; o)

= pr�1dimK e Sl(�1;K) (1.5.20)

the assertion (iii) follows. The formula of the rank in (ii) is also clear.
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2. �o-adic modular forms and projective systems of modular forms

2.1. �o-ADIC MODULAR FORMS

As in [O2], we write dU1=Ur for the set ofQ
�

-valued characters ofU1=Ur (identified
with the characters ofU1 trivial onUr), and put

cU1;f :=
[
r>1

dU1=Ur: (2.1.1)

When" 2 cU1;f , we denote byo" (resp.K") the ring generated by the values of
" overo (resp.K), and define an elementP";d 2 �Zp" by

P";d := �(u)� "(u)ud = T � ("(u)ud � 1); (2.1.2)

for each integerd > 0. Also, we define an integerr" > 1 by Ker(") = Ur" .
LetLK be the quotient field of�o. If F =

P1
n=0 a(n;F)qn 2 �o[[q]]
�o

LK �
LK [[q]]; we set

F";d :=
1X
n=0

a(n;F)("(u)ud � 1) � qn 2 K"[[q]]; (2.1.3)

whenever the right-hand side is meaningful and note that this is the case except
possibly for finitely many pairs of" andd.

For" 2 dU1=Ur, we set

Mk(�r; "; o")

:= ff 2Mk(�r; o") j f j �� = "(�)f for all � 2 U1g: (2.1.4)

Here,�� is an element of�1 congruent to
h
��1

0
�
�

i
mod pr � M2(Z), and the

operator ‘j ��’ is deduced from (1.5.1) (see [O2] 2.1 for further explanation about
such symbols).

We are now going to define and study the spaces of�o-adic modular forms. As
in [O2], for the reason that will be clear later, it is convenient for us to start with
such forms of afixed weight.

DEFINITION (2.1.5). For each integerk = d + 2 > 2, we define two types of
spaces of�o-adic modular forms of weight k and levelN by

Mk(N ;�o)

:= fF 2 �o[[q]] j F";d 2Mk(�r" ; "; o") for all " 2 cU1;fg;

M 0k(N ;�o)

:= fF 2 �o[[q]] j F";d 2Mk(�r" ; "; o") for almost all " 2 cU1;fg:
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These spaces are�o-modules in the obvious manner.
If F =

P1
n=0 a(n;F)qn belongs to either one of these spaces, we setF j

T (p) :=
P1

n=0 a(np;F)q
n:Then it is clear that(F j T (p))";d = F";d j T (p)when-

everF";d 2Mk(�r" ; "; o"); and henceF j T (p) belongs to the same space. One can
define the idempotente = limn!1 T (p)

n! on each of the spaces above. The spaces
Sk(N ;�o) of �o-adic cusp forms are defined similarly; and we already know that
e Sk(N ;�o) is independent ofk > 2 (cf. [O2] (2.5.5)).Let us henceforth denote
this space bye S(N ;�o): Later, we will show thateMk(N ;�o) = eM 0k(N ;�o);
and that this is independent ofk > 2.

2.2. PROJECTIVE SYSTEMS OF MODULAR FORMS

Let �r be as in (1.5.3), and put

M�k (�r; o) := ff 2Mk(�r; Cp) j f j �r 2Mk(�r; o)g: (2.2.1)

If we denote by Trr: Mk(�r+1; Cp)!Mk(�r; Cp) the natural trace mapping, then
one can show that it sendsM�k (�r+1; o) toM�k (�r; o) as in [O2] 2.3.

DEFINITION (2.2.2). For eachk > 2, we set

M�k(N ; o) := lim
 �
r>1

M�k (�r; o)

the projective limit being taken relative to Trr.

SinceMk(�r; o) is stable under allT (n) andT (q; q), one sees from (1.5.4) that
M�k (�r; o) is stable under allT �(n) andT �(q; q). Also, Trr commutes with these
operators. It follows that we can considerM�k(N ; o) as a module overH�k(N ; o)
(1.5.5). We can then considere�M�k(N ; o) as a module overe�H�(N ; o) or�o (cf.
(1.5.7)).

THEOREM (2.2.3).For eachk = d + 2 > 2, we have an isomorphism of�o-
moduleseMk(N ;�o) �= e�M�k(N ; o); given explicitly as follows:

If F 2 eMk(N ;�o), we send this element tof = (fr)r>1 2 e�M�k(N ; o)
defined by

fr :=
1

pr�1

0B@ X
"2 dU1=Ur

F";d j T (p)
�r

1CA j ��1
r :

If f = (fr)r>1 2 e�M�k(N ; o), we send this element to the uniqueF 2
eMk(N ;�o) satisfying

F";d =
X

�2U1=Ur

"(�)(fr j �r j T (p)
r j ��1

� );
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for all " 2 cU1;f . Here,r is any integer such thatr > r".
Proof.The proof given for cusp forms ([O2] 2.4) works without any change in

the present case and, hence, we do not repeat it here. 2

Via this theorem and the canonical isomorphism:eH(N ; o) �= e�H�(N ; o)
(T (n) $ T �(n); T (q; q) $ T �(q; q)), we henceforth considereMk(N ;�o) as
an eH(N ; o)-module. One easily checks that the resulting�o-module structure
coincides with the obvious one and also that

(F j T (n))";d = F";d j T (n);

(F j T (q; q))";d = F";d j T (q; q);
(2.2.4)

for all F 2 eMk(N ;�o) and" 2 cU1;f .

2.3. �o-ADIC EISENSTEIN SERIES

Let u, v andc be positive integers; and let� and be Dirichlet characters defined
modulou andv, respectively. Then we set

Ek(�; ; c)

:= �( )L1(1� k; �) +
1X
n=1

0@X
0<tjn

�(t) 

�
n

t

�
tk�1

1A qcn; (2.3.1)

whereL1(s; �) is the DirichletL-function; and�( ) is 1=2 if  is the trivial
character, and 0 otherwise. When� is a Dirichlet character modulou, we denote
by�1 the character modulo LCM(u; p) induced from�. We then haveL1(s; �1) =
(1� �(p)p�s)L1(s; �):

Let Eisk(�r) be the orthogonal complement ofSk(�r) in Mk(�r) with respect
to the Petersson metric.

LEMMA (2.3.2) ([H3] Lemma 5.3 and its proof).Suppose thatk > 2 and
r > 1, and let Eisk(�r; Q) be the set of all elements ofEisk(�r) having Q-
rational q-expansions. ThenEisk(�r; Q) spansEisk(�r); and the idempotente
attached toT (p) acting onEisk(�r; Q) 
Q Cp leavesEisk(�r; Q) stable. The
seriesEk(�1;  ; c) with �, andc satisfying the following three conditions give a
basis ofeEisk(�r):

(i) � (�1) = (�1)k andcuv dividesNr;
(ii) � and are primitive Dirichlet characters modulou andv, respectively;
(iii) v andc are prime top.

Moreover, we have

dimC eEisk(�r) =
'(pr)

2

X
0<tjN

'(t)'

�
N

t

�
:
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We are going to construct enough elements ofeMk(N ;�o)=e Sk(N ;�o) using
this lemma. To do this, we first recall well-known facts aboutp-adicL-functions
(cf. Washington [Wa] Section 7.2): Let� be an even primitive Dirichlet character
of the first kind. Then there is a unique element

F (T; �) 2

8<: �Zp� if � 6= 1;

1
(1+T )�u�Zp if � = 1;

(2.3.3)

such thatF (us�1; �) = Lp(s; �), the Kubota–Leopoldtp-adicL-function attached
to �. Here, and henceforth, we denote by1 the trivial character.

We may consider an" 2 cU1;f as a (primitive) Dirichlet character of the second
kind. It is then known that, moreover, we have

F ("(u)us � 1; �) = Lp(s; �"
�1): (2.3.4)

We set

G(T; �) := F (u�1(1+ T )�1 � 1; �); (2.3.5)

so that we have

G("(u)ud � 1; �) = Lp(1� k; �") = L1(1� k; (�"!�k)1); (2.3.6)

for k = d + 2 > 2: Here,! is the Teichm̈uller character; and, as in [Wa], we
consider�"!�k as a primitive Dirichlet character.

On the other hand, we can write everya 2 Z�p as

a = !(a)hai; (2.3.7)

with hai 2 U1. If t is a positive integer prime top, we set

At(T ) := t(1+ T )s(t) = t
1X
i=0

 
s(t)

i

!
T i if hti = us(t): (2.3.8)

Then using the same convention as above, we have

At("(u)u
d � 1) = td+1"!�d(t); (2.3.9)

for any" 2 cU1;f .

THEOREM–DEFINITION (2.3.10).Let� and be primitive Dirichlet characters
defined modulou andv, respectively; and letc be a positive integer. We assume
that� (�1) = 1; v andc are prime top; andcuv dividesN1 = Np. Set

E(�;  ; c) := �( )G(T; �!2) +
1X
n=1

0BBB@X
0<tjn
p-t

�(t) 

�
n

t

�
At(T )

1CCCA � qcn:
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Then, for any" 2 cU1;f andd > 0, we have

E(�;  ; c)";d = Ed+2((�"!
�d)1;  ; c):

Whenevero contains the values of� and  , we have:E(�;  ; c) 2
T
k>2

eMk(N ;�o) unless� = !�2 and  = 1; and ((1 + T ) � u�2)E(!�2;1; c)
has the same property.

When�, andc satisfying the above conditions vary, ando contains the values
of all � and , we obtain((p�1)=2)

P
0<tjN '(t)'(N=t) such�o-adic Eisenstein

serieswhich are linearly independent over�o moduloe S(N ;�o):
Proof. First note that�!2 is of the first kind. Then from (2.3.6) and (2.3.9),

we see thatE(�;  ; c)";d coincides withEk((�"!
�d)1;  ; c) with k = d + 2 for

everyd > 0 and" 2 cU1;f . It is clear that, under our assumption,�"!�d,  andc
satisfy the conditions (i)–(iii) of (2.3.2). Now assume thatK contains the values of
� and . Then we have shown thatEk((�"!

�d)1;  ; c) belongs toeMk(�r;K").
But it is well known that the Nebentypus character of this form is (the one induced
from) (�"!�d)1 . We conclude thatE(�;  ; c)";d 2 eMk(�r; "; o")
o" K" for all
" 2 cU1;f andd > 0. This proves the first part of the theorem.

That the number of the�o-adic Eisenstein series is given by the above formula
is a special case of (2.3.2); and the linear independence follows by looking at the
specialization. 2

2.4. THE STRUCTURE OFeMk(N ;�o)

Let " 2 dU1=Ur be a character whose values are contained ino. We then denote
byHk(�r; "; o) theo-subalgebra of Endo(Mk(�r; "; o)) generated by allT (n) and
T (q; q). We also set

mk(�r; "; o)

:= ff 2Mk(�r; "; o) 
o K j a(n; f) 2 o for all n > 1g: (2.4.1)

We can define a pairing

( ; ) : mk(�r; "; o) �Hk(�r; "; o)! o; (2.4.2)

as in (1.5.16), which gives a perfect duality of freeo-modules. It follows from
(1.5.7) (iii) that we have a canonical isomorphism

eH(N ; o)=P";d
�- eHd+2(�r; "; o); (2.4.3)

for all d > 0 and" as above. We therefore have the equalities:

ranko emk(�r; "; o) = ranko eMk(�r; "; o) = rank�o
eH(N ; o): (2.4.4)
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Now the purpose of this subsection is to prove the following

THEOREM-DEFINITION (2.4.5)The subspaceeMk(N ;�o) of �o[[q]] is inde-
pendent ofk > 2: Moreover, it is a free�o-module whose rank is equal to
rank�o

eH(N ; o). We hereafter denote this space byeM(N ;�o):

For the proof, we follow the method of Hida [H4] 7.3. As usual, putk =
d+ 2 > 2.

LEMMA (2.4.6) eM 0k(N ;�o) is a finite and free�o-module.
Proof. We first show that, ifo0 is the ring of integers of a finite extensionK0 of

K, theneM 0k(N ;�o0) = eM 0k(N ;�o)
o o0. (The same holds foreMk(N ;�o):)
For this, we assume for the moment thatK0 is a Galois extension ofK whose
Galois group isf�1; : : : ; �mg. Let f!1; : : : ; !mg be a basis ofo0 overo. Then we
may write everyF 2 eM 0k(N ;�o0) asF =

Pm
i=1!iFi with Fi 2 �o[[q]]. If we

let Gal(K0=K) act on the coefficients of�o0[[q]] = o0[[T; q]], then it is easy to
see that eachF�j is an element ofeM 0k(N ;�o0). Since the matrix(!�ji )16i;j6m
is invertible, we can expressFi as a linear combination ofF�j ’s. This shows
thatFi 2 eM 0k(N ;�o0) \ �o[[q]] = eM 0k(N ;�o) and, hence,eM 0k(N ;�o0) �
eM 0k(N ;�o)
o o0. The converse inclusion is obvious.

In the general case, we letK1 be the Galois closure ofK0=K, and denote byo1

its ring of integers. We then obtain the desired equality by taking the Gal(K1=K0)-
invariants from the equality:eM 0k(N ;�o1) = eM 0k(N ;�o)
o o1.

After this remark, the proof goes as that of [H4] 7.3 Theorem 1 as follows:

� Let fF1; : : : ;Frg � eM 0k(N ;�o) be a maximal set of�o-linearly indepen-
dent elements. This is a finite set; and in factr is bounded by rank�o

eH(N ; o)
by (2.4.4). Then there is a nonzeroD(T ) 2 �o such thateM 0k(N ;�o) �
(1=D(T ))(�oF1 + � � � +�oFr).
� We may therefore take an" 2 cU1;f so thatF";d 2 eMk(�r" ; "; o") for all

F 2 eM 0k(N ;�o). By the first remark, we may assume thato" = o to prove our
lemma.
� One sees that

P";d � eM
0
k(N ;�o) = fF 2 eM 0k(N ;�o) j F";d = 0g:

(Note here that the corresponding assertion foreMk(N ;�o) is far from being
trivial.) Thus the correspondenceF 7! F";d gives an injection

eM 0k(N ;�o)=P";d ,! eMk(�r" ; "; o):

If fF1; : : : ;Frg � eM 0k(N ;�o) gives ano-basis ofeM 0k(N ;�o)=P";d when
reduced moduloP";d, then it is a free basis ofeM 0k(N ;�o) over�o: 2
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LEMMA (2.4.7). eM 0k(N ;�o) � �o[[q]] is independent ofk > 2. Moreover, its
�o-rank is equal torank�o

eH(N ; o).
Proof. It follows from the proof of the lemma above that

rank�o
eM 0k(N ;�o) 6 rank�o

eH(N ; o):

However,eM 0k(N ;�o) containse S(N ;�o), which is�o-free, and the�o-adic
Eisenstein series constructed in (2.3.10). Therefore, we have

rank�o
eM 0k(N ;�o) > rank�o

e S(N ;�o) +
p� 1

2

X
0<tjN

'(t)'

�
N

t

�
:

By (1.5.7) (ii) and [O2] (2.5.3), the right-hand side is equal to rank�o
eH(N ; o).

This proves our assertion concerning the rank.
We have also shown thateM 0k(N ;�o)
�o

LK is spanned overLK bye S(N ;�o)
and the�o-adic Eisenstein series in (2.3.10). It is therefore independent ofk > 2
and, hence, so iseM 0k(N ;�o) = (eM 0k(N ;�o)
�o

LK) \ �o[[q]]: 2

In the following, we writeeM 0(N ;�o) for the common space in the lemma
above.

LEMMA (2.4.8). Let" 2 dU1=Ur take values ino. Then for anyg 2 eMk(�r; "; o),
there is anF 2 eM 0(N ;�o) such thatF";d = g:

Proof (cf. [H4] p. 215). We considerE(!�2;1; 1) given in (2.3.10). Its ‘con-
stant term’ isG(T;1)=2, and we recall thatG(us � 1;1) = �p(�s � 1) ((2.3.4),
(2.3.5)), where�p is the p-adic Riemann zeta function. PutE 0 := ((1 + T ) �
u�2)E(!�2;1; 1), which belongs toeMl(N ;�o) for all l > 2: ThenE 0 jT=u�2�1=
(2u2)�1(p�1 � 1) logp u =: C is a constant which is in fact ap-adic unit. Let
E 00 be the element of�o[[q]] obtained fromC�1E 0 by the change of variable
T 7! "(u)�1u�k(1+ T )� 1.

Now for g as above, it is easy to see thatg � E 00 2 �o[[q]] belongs toM 0l (N ;�o)
for anyl > k + 2; and also that(g � E 00)";d = g: It follows thatF := e(g � E 00) has
the desired property. 2

Theorem (2.4.5) would follow from what we said above, and the following
lemma:

LEMMA (2.4.9). eMk(N ;�o) = eM 0(N ;�o).
Proof (cf. [H4] loc. cit.). Assume otherwise and take an elementF 2 eM 0(N ;

�o) � eMk(N ;�o): Then there is an" 2 cU1;f such thatF";d 62 eMk(�r" ; "; o").
It follows from this and (2.4.8) that

ranko"eM
0(N ;�o")=P";d > ranko"eMk(�r" ; "; o") = rank�o

eH(N ; o)
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which contradicts (2.4.7). 2

As a consequence of (2.2.3) and (2.4.5), we record:

COROLLARY (2.4.10).For anyk andk0 > 2, e�M�k(N ; o) ande�M�k0(N ; o) are
canonically isomorphic ase�H�(N ; o)-modules; and these are free�o-modules of
finite rank.

2.5. SPECIALIZATIONS

As for the specializations ofeM(N ;�o), we obtain the following result immedi-
ately from the argument of 2.4:

PROPOSITION (2.5.1).Let " 2 cU1;f take values ino. Then for every integer
k = d+ 2 > 2, the correspondence:F 7! F";d gives an isomorphism:

eM(N ;�o)=P";d
�- eMk(�r" ; "; o):

Next, for" 2 dU1=Ur with values ino, we set

M�k (�r; "; o) := ff 2Mk(�r; Cp) j f j �r 2Mk(�r; "; o)g: (2.5.2)

We can then define

p" : e�M�k(N ; o)! e�M�k (�r" ; "; o) (2.5.3)

byp"((fr)r>1) :=
P

�2U1=Ur"
"(�)fr" j ��, which factors throughe�M�k(N ; o)=P";d.

One then obtains the following result in the same manner as in the case of cusp
forms (cf. [O2] (2.6.4)):

PROPOSITION (2.5.4).Let the notation be as above. Then we have the following
commutative diagram:

e�M�k(N ; o) �

(2:2:3)
- eM(N ;�o)

e�M�k(N ; o)=P";d

can

?
�

(2:2:3)
- eM(N ;�o)=P";d

?

can

e�M�k (�r" ; "; o)

p"

?
� - eMk(�r" ; "; o);

o

?

(2:5:1)
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if we define the bottom horizontal arrow byf 7! f j �r" j T (p)
r" . In particular,p"

induces an isomorphisme�M�k(N ; o)=P";d
�- e�M�k (�r" ; "; o):

In concluding this section, we add the following remark:

Remark(2.5.5). Setem(N ;�o) := (eM(N ;�o)
�o
LK)\ (LK + q�o[[q]]):

Then we can show that the pairingem(N ;�o) � eH(N ; o) ! �o defined by
(F ; t) := a(1;F j t) sets up a perfect duality of free�o-modules; and also that
eM(N ;�o) is a faithfuleH(N ; o)-module. Especially, we can identifyeH(N ; o)
with the�o-subalgebra of End�o

(eM(N ;�o)) generated by allT (n). This point
of view was taken up as the definition ofeH(N ; o) in [H4].

3. Preliminaries on generalized Jacobians

3.1. GENERALIZED JACOBIANS

In this section, we recall and study some properties of generalized Jacobians of
Rosenlicht and Serre. Basic references are Serre [Se] and Bosch–Lütkebohmert–
Raynaud [BLR].

For simplicity, we assume that our base fieldF is of characteristic 0; and consider
only the generalized Jacobians ofreducedmoduli. Now letY be a geometrically
connected and smooth curve overF , andX its smooth compactification. We
considerC := X � Y as the reduced closed subscheme ofX. We henceforth
assume thatC is nonempty.

Recall that, for anF -schemeS, an invertible sheaf onXS (the base change of
X fromF to S) rigidified alongCS is a pair(L; �), whereL is an invertible sheaf

onXS and� is an isomorphism:OCS

�- L jCS . The functor

(PicX=F ; C) : (Sch=F )0 ! (Sets) (3.1.1)

assigning to eachS 2 (Sch=F )0 the set of isomorphism classes of(L; �) as above,
is represented by a commutative group scheme locally of finite presentation over
F . We denote this group scheme byPY . Its identity component

P 0
Y =: GJY (3.1.2)

is thegeneralized Jacobianof X with the modulusC.
For anyF -schemeS ands 2 Y (S), we may considers as a section ofYS over

S and, hence, also as an effective relative Cartier divisorDs of degree 1 onXS over
S. The correspondence:s 7! (OX(Ds) together with its canonical rigidification)
gives anF -morphism

�Y : Y ! PY ; (3.1.3)
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thecanonical morphismof Y toPY . If we fix a rational pointx0 2 Y (F ), we also
have a morphism

�Y;x0 : Y ! GJY ; (3.1.4)

by �Y;x0(s) = �Y (s) � �Y (x0;S) for s 2 Y (S) as above, wherex0;S is the base
change of the sectionx0 to S. We may consider�Y and�Y;x0 as rational mappings
from X to PY andGJY , respectively; and they enjoy the universal property of
‘Albanese type’ ([BLR] 10.3 Theorem 2, [Se] V n�9 Théor̀eme 2).

Let PX be the usual Picard scheme ofX overF , andJX := P 0
X the usual

Jacobian variety ofX. Then there is a natural homomorphism ‘forgetting the
rigidification’: PY ! PX and, hence, alsoGJY ! JX : We have a natural exact
sequence of commutative group schemes overF :

0! V �X ! V �C ! PY ! PX ! 0; (3.1.5)

whereV �X (resp.V �C ) represents the functor(Sch=F )0 ! (Sets) which associates
eachS with the group�(XS ;O

�
XS

) (resp.�(CS ;O
�
CS
)) ([BLR] 8.1). We recall that

the middle arrow sendsu 2 �(CS ;O�CS ) to the pair(OXS
(the multiplication byu))

2 PY (S): In our situation, we clearly have�(XS ;O�XS
) = �(S;O�S) and, hence,

V �X = Gm. On the other hand, it is also clear thatV �C = RC=F (Gm), the Weil
restriction ofGm. Thus, if we set

TY := Ker(PY ! PX) = Ker(GJY ! JX); (3.1.6)

we have a canonical isomorphism

TY �= Coker(Gm ! RC=F (Gm)); (3.1.7)

where the morphism corresponds to the natural�(S;O�S)! �(CS;O�CS ):
We denote by Cot(PY ) =Cot(GJY ) the cotangent space at the origin ofPY

or GJY , and identify it with the space of translation invariant differential forms
onPY orGJY . We also identify it with theF -dual of the Lie algebra Lie(PY ) =
Lie(GJY ). LetF ["] be the ring of dual numbers overF , and setS["] := S
F F ["]
for anF -schemeS. LetOX["](1 onC["])� be the subsheaf ofO�X["] whose sections
take value 1 onC["], and defineOX(1 onC)� in a similar manner. Then the exact
sequence of sheaves onX:

0! OX(�C)! OX["](1 onC["])� ! OX(1 onC)� ! 0; (3.1.8)

yields the canonical isomorphism

H1(X;OX (�C)) �= Ker(PY (F ["])! PY (F )) = Lie(PY ): (3.1.9)
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With these notations, we have the following important compatibility (Deligne [D]
2.3; one can prove this in a similar manner as Mazur [M]x2 e)): The diagram

Lie(PY )
_ ��Y - H0(Y;
1

Y=F )

(3:1:10)

H1(X;OX (�C))
_

o

?
�

Serre
- H0(X;
1

X=F (C));

6
can

commutes, where the superscript ‘_’ means theF -dual, and the bottom horizontal
arrow comes from the Serre duality. (It is Proposition 5 of [Se] V n�10 that the
image of��Y isH0(X;
1

X=F (C)).)
Next assume that all the points ofC areF -rational. LetC = fc1; : : : ; ckg and

let ij : Spec(F )! X correspond tocj . Then the exact sequence

0! OX(�C)! OX ! �k
j=1ij�(F )! 0; (3.1.11)

obtained by ‘evaluation atcj ’ gives the exact sequence

0! F
diag- �cj2C F ! H1(X;OX (�C))! H1(X;OX )! 0: (3.1.12)

On the other hand,RC=F (Gm) is the product ofk copies ofGm, which are indexed
byC in this case.

LEMMA (3.1.13). (i) The notation being as above, the following diagram com-
mutes:

0 - F
diag - �cj2CF

- H
1(X;OX(�C)) - H

1(X;OX) - 0

0 - Lie(Gm)

?
-

Y
cj2C

Lie(Gm)

?
- Lie(PY )

(3:1:9)

?
o

- Lie(PX)
?
o

- 0;

if we define the left two isomorphisms in a natural manner (F 3 1 is sent to
1 + " 2 Ker(Gm(F ["]) ! Gm(F )), which corresponds toXd=dX if Gm =
Spec(F [X;X�1])). Here, the bottom horizontal sequence is obtained from(3.1.5).

(ii) TheF -dual of the sequence(3.1.12)is identified with

0! H0(X;
1
X=F )! H0(X;
1

X=F (C))
�jRescj- �cj2C F

sum- F ! 0

via the Serre duality, the middle arrow being the mapping ‘taking residues atcj ’.
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Proof.As for the first assertion, it is enough to show the commutativity of the
middle square. Thus take and fix(aj)16j6k 2 �cj2CF = H0(X;�k

j=1ij�(F )):

Its image inH1(X;OX (�C)) is the class of theOX(�C)-torsor consisting of
local sections ofOX whose values atcj are aj . Take an open affine covering
fUig of X so that this torsor admits a sectionpi on eachUi. Then the image of
the above class inH1(X;OX["](1 onC["])�) is represented by the�Cech 1-cocycle
f1+(pj jUi\Uj �pi jUi\Uj )" 2 �(Ui\Uj ;OX["](1 onC["])�)g:On the other hand,
if we start with(aj)16j6k and go anticlockwise, then we get(L; �) 2 PY (F ["])
with L = OX["] and� given by multiplication by(1 + aj")16j6k. It is easy to
see that this corresponds to the above cohomology class, which proves the first
assertion. The second assertion follows from the explicit description of the Serre
duality ([Se] II n�8). 2

3.2. FUNCTORIALITY OF GENERALIZED JACOBIANS

Let Y1 andY2 be smooth and geometrically irreducible curves overF and letXi

andCi have the same meaning as in 3.1 forYi (i = 1;2). We assume that we are
given anF -morphism

f : X1 ! X2 such thatf�1(C2) = C1 (set theoretically): (3.2.1)

Its restriction toY1 will be also denoted byf .
For an isomorphism class of(L; �) in PY2(S), we can naturally attach its

pull-back(f�S(L); (fS jC1;S )
�(�)). This correspondence yields homomorphisms of

F -group schemes

f� :

(
PY2 ! PY1;

GJY2 ! GJY1:
(3.2.2)

Also, from the ‘Albanese type’ universality referred to in 3.1, we see that there
are uniqueF -homomorphisms

f� :

(
PY1 ! PY2;

GJY1 ! GJY2;
(3.2.3)

such that the following diagram commutes:

Y1
�Y1 - PY1

Y2

f

?

�Y2

- PY2:
?

f� (3.2.4)
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From this, we clearly have the commutative diagram

H0(X1;

1
X1=F

(C1)) �
� Cot(PY1)

H0(X2;

1
X2=F

(C2))

f�
6

�
� Cot(PY2);

6
Cot(f�) (3.2.5)

where the vertical arrows are obtained by pulling back differentials.
As for (3.2.2), we have the following commutative diagram:

H0(X1;

1
X1=F

(C1)) �
� Cot(PY1)

H0(X2;

1
X2=F

(C2))

trace

?
�
� Cot(PY2):

?

Cot(f�) (3.2.6)

In fact, the compatibility (3.1.10) easily reduces this to the commutativity of the
diagram below whenF is algebraically closed:

H0(X1;

1
X1=F

(C1))
_ �

Serre
- H1(X1;OX1(�C1))

H0(X2;

1
X2=F

(C2))
_

(trace)_
6

Serre
�
- H1(X2;OX2(�C2)):

6
can (3.2.7)

This amounts to the formula in Lemme 4 (cf. also remark 1) on the subsequent
page) of [Se] II n�12, via the explicit description of the Serre duality.

Next, we look at the torus parts of the generalized Jacobians. For this, we assume
that bothC1 andC2 consist ofF -rational points; and writeC1 = fc1; : : : ; ckg and
C2 = fd1; : : : ; dlg. Then, from the definitions, we see that the following diagram
commutes:

Gm
-

Y
ci2C1

Gm
- GJY1

- JX1

Gm

wwwwwwwww
-

Y
dj2C2

Gm

6

- GJY2

6
f�

- JX2;

6
f� (3.2.8)
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where the horizontal arrows come from (3.1.5), and the middle left morphism is

given by:Gm
diag- Q

ci2f�1(dj) Gm on thejth factor of
Q
dj2C2

Gm. Also, we
have the following commutative diagram:

Gm
-

Y
ci2C1

Gm
- GJY1

- JX1

Gm

deg(f)

?
-

Y
dj2C2

Gm

?
- GJY2

?

f�

- JX2:
?

f� (3.2.9)

Here, the left vertical morphism isx 7! xdeg(f). The middle left morphism sends
x 2 Gm(S) in the ith factor toxe(ci=dj) in the jth factor, if f(ci) = dj and the
ramification index ofci overdj is e(ci=dj). To see this, we only need to check
the commutativity of the middle square. Since we are in characteristic zero, it is
enough to prove that the square obtained by taking ‘Cot’ is commutative. In view
of (3.2.5) and (3.1.13), this reduces to the obvious commutativity:

�ci2C1F
��iResci H0(X1;


1
X1=F

(C1))

�dj2C2F

6

�
�jResdj

H0(X2;

1
X2=F

(C2))

6
f� (3.2.10)

where the left arrow sendsa in thejth factor to�ci2f�1(dj )e(ci=dj)a:

3.3. ÉTALE COHOMOLOGY GROUPS AND GENERALIZED JACOBIANS

In this subsection, all the cohomology groups will be theétale cohomology. LetX,
Y andC be as in 3.1; and indicate by bar the base extension fromF to its algebraic
closureF . Then the ‘Kummer theory’ provides us with the canonical isomorphism

H1
c (Y ;�n)

�= nGJY (F ); (3.3.1)

for any positive integern, where the subscript ‘n’ in the right-hand side means
the kernel of multiplication byn ([SGA4] XVIII 1.6.4). This in turn gives us an
isomorphism

H1
c (Y ;Zp(1)) �= Tp(GJY ); (3.3.2)

Tp being the usualp-adic Tate module. Combining these with the Poincaré duality,
we obtain the following canonical isomorphisms:

H1(Y ;Z=nZ) �= Hom(nGJY (F );Z=nZ);

H1(Y ;Zp) �= Hom(Tp(GJY );Zp):
(3.3.3)
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Now we consider the situation as in 3.2. We then first see that the diagram:

H1(Y 1;Zp)
�- Hom(Tp(GJY1);Zp)

H1(Y 2;Zp)

Trf

?

�
- Hom(Tp(GJY2);Zp);

?

Hom(f�;Zp) (3.3.4)

commutes, where the left vertical arrow is the trace mapping with respect tof .
This indeed follows from the well-known fact that the Poincaré dual of Trf is the
canonical mapping:H1

c (Y 2;Zp(1)) ! H1
c (Y 1;Zp(1)): The commutativity of the

following diagram seems less obvious to us:

H1(Y 1;Zp)
�- Hom(Tp(GJY1);Zp)

H1(Y 2;Zp)

can

6

�
- Hom(Tp(GJY2);Zp):

6
Hom(f�;Zp) (3.3.5)

For this, we show the commutativity of the diagram

H1(Y 1;Z=nZ) �- Hom(nGJY1(F );Z=nZ)

H1(Y 2;Z=nZ)

can

6

�
- Hom(nGJY2(F );Z=nZ)

6
Hom(f�;Z=nZ) (3.3.6)

for any positive integern. We may assume thatF = F and, hence, drop the bar
for the simplicity of the notation in the following. We fix anF -rational pointx1 of
Y1 and putx2 := f(x1), so that the diagram

Y1
�Y1;x1- GJY1

Y2

f

?

�Y2;x2

- GJY2

?

f� (3.3.7)

commutes. Consider the exact sequence

0! nGJYi ! GJYi
n- GJYi ! 0 (3.3.8)
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of commutative group schemesoverF for i = 1 or 2. We can then view (the middle)
GJYi as annGJYi-torsor on (the right)GJYi , which determines a cohomology
class inH1(GJYi ; nGJYi). (Note thatnGJYi is a constant group scheme under
our assumption.) Now takeu 2 Hom(nGJYi(F );Z=nZ). Changing the structural

group byu, we obtain aZ=nZ-torsorGJYi
nGJYi
^ Z=nZ (the contracted product via

u) onGJYi ; and then taking its inverse image under�Yi;xi , we get a cohomology
class inH1(Yi;Z=nZ): In this way, we obtain a mapping

'i : Hom(nGJYi(F );Z=nZ)! H1(Yi;Z=nZ): (3.3.9)

It is then known that�'i is inverse to one of the horizontal mappings in (3.3.6)
([SGA41=2] Arcata VI (2.3.3)). Therefore, starting withu 2 Hom(nGJY2(F );
Z=nZ), it is enough to show that the twoZ=nZ-torsors on

GJY1: (f�)
�(GJY2

nGJY2
^ Z=nZ)

�= (f�)
�GJY2

nGJY2
^ Z=nZ and GJY1

nGJY1
^ Z=nZ

are isomorphic; the latter being defined bynGJY1(F )
f�-

nGJY2(F )
u- Z=nZ:

But we have the following obvious commutative diagram:

0 -
nGJY1

- GJY1

n - GJY1
- 0

0 -
nGJY2

?

f�

- GJY2

?

f�

n
- GJY2

?

f�

- 0:

(3.3.10)

Since the multiplication byn onGJY2 is étale,(f�)�GJY2 is represented by the
fibre productGJY2 �GJY2

GJY1 obtained from the right square above. We thus
have a morphism:GJY1 ! (f�)

�GJY2 over GJY1, which commutes with the
action ofnGJY1 andnGJY2 viaf�. We conclude that there is a morphism ofZ=nZ-

torsors:GJY1

nGJY1
^ Z=nZ ! (f�)

�GJY2

nGJY2
^ Z=nZ; which is automatically an

isomorphism. This completes the proof of the commutativity of (3.3.6) and (3.3.5).

3.4. MODULAR GENERALIZED JACOBIANS AND HECKE OPERATORS

Suppose that we are given a congruence subgroup�of SL2(Z)and an� 2 GL2(Q)
with positive determinant. If we set�0 := �\ ��1��, then we have the following
morphisms of Riemann surfaces:

�nH �
can

�0nH
�- �nH; (3.4.1)
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where the left (resp. the right) arrow is the natural projection (resp. given byz
mod�0 7! �(z) mod�). Assume that we are given a model of this situation

Y �
p

Y 0
q- Y; (3.4.2)

all defined over a subfieldF of C. This extends to a diagram between smooth
compactifications overF

X �
p

X 0
q- X: (3.4.3)

As before, we setC := X �Y andC 0 := X 0�Y 0. Then using (3.2.2) and (3.2.3),
we can define endomorphisms ofGJY overF in two ways:

T := q� � p
�; T � := p� � q

�: (3.4.4)

Now we have canonical isomorphisms:

Cot(GJY )
F C �=
(3:1:10)

H0(X;
1
X=F (C))
F C �=M2(�); (3.4.5)

the latter being the usual one:fdq=q $ f . Let

��� =
a
i

��i =
a
j


j�; (3.4.6)

be disjoint. Then, from the commutativity of (3.2.5) and (3.2.6), one easily derives
the following:

LEMMA (3.4.7). Via (3.4.5), the endomorphismCot(T ) (resp.Cot(T �)) corre-
sponds to the usual operator ‘j [���]’ (resp. ‘ j [���]�’) on M2(�); that is,

f j [���] =
X
i

f j �i; f j [���]� =
X
j

f j 
�1
j :

EXAMPLE (3.4.8). We assume that� is�1(M) and thatY is the canonical model
of �nH overQ.

(i) Let � :=
h

1
0

0
l

i
with a prime numberl. Then we can takeF to beQ, and

obtain endomorphisms ofGJY defined overQ by (3.4.4). They will be denoted by
T (l) andT �(l), respectively.

(ii) Let q be a positive integer prime toM . If we take� to be an element of
SL2(Z) congruent to

h
q�1

0
�
q

i
modM �M2(Z), we again obtainQ-endomorphisms

of GJY , which will be denoted byT (q; q) andT �(q; q), respectively.

(iii) Let � =
h

0
M
�1
0

i
=: �: In this case, we get an involution ofGJY defined

overQ(e2�i=M ):
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By (3.4.7), the endomorphisms in (i) and (ii) above induce the operators of the
same name on Cot(GJY ) 
Q C �= M2(�). Thus the subalgebra of EndQ(GJY )
generated by allT (l) andT (q; q) (resp.T �(l) andT �(q; q)) is canonically isomor-
phic to the Hecke algebra overZ attached toM2(�) of the same sort. By (3.3.4)
and (3.3.5), the isomorphisms in (3.3.3) are also compatible withT (l) andT �(l)
etc. Similarly, the automorphism defined in (iii) corresponds to ‘j � ’ on M2(�).
Conjugation by this involution interchangesT (l) andT �(l); and alsoT (q; q) and
T �(q; q) (cf. (1.5.4)).

Finally, we wish to write down the effect of the endomorphismsT andT � above
on the torus partTY (3.1.6) ofGJY . This is equivalent to describe the induced
endomorphisms of the Tate moduleTp(TY ). However, for later use via (3.3.3), it
is rather convenient to describe the adjoint action on the dual group. To do this, let
us denote byZp[C] the freeZp-module generated by the elements ofC(Q), the
latter being identified with�nP1(Q). It is clear from (3.1.7) that we have an exact
sequence

0! Zp(1)
diag- Zp[C](1)! Tp(TY )! 0: (3.4.9)

The pairing

Zp[C]� Zp[C]! Zp;

0B@ X
c2C(Q)

ac�c;
X

c2C(Q)

bc�c

1CA :=
X

c2C(Q)

acbc (3.4.10)

obviously gives a perfect duality ofZp-modules. In the following, we identify
Hom(Zp[C];Zp) with Zp[C] by this pairing. We therefore obtain from (3.4.9) the
exact sequence:

0! Hom(Tp(TY );Zp)! Zp[C](�1)
sum- Zp(�1)! 0: (3.4.11)

PROPOSITION (3.4.12).The notation being as above,TY is stable underT and
T �; andHom(T;Zp) andHom(T �;Zp) onHom(Tp(TY );Zp) are induced from the
Zp-linear endomorphisms ofZp[C] determined by(i) and (ii) below via(3.4.11),
respectively.

(i) Zp[C] � C(Q) 3 c 7!
P

j 

�1
j � c,

(ii) Zp[C] � C(Q) 3 c 7!
P

i �i � c.

(Thus they look likeT � andT , respectively!)
Proof.We may fix an isomorphism:Zp(1) �= Zp, and neglect the Tate twist to

prove our proposition. Define aZp-linear endomorphismt� of Zp[C] by

C(Q) 3 c 7!
X

d2q�1(c)

e(d=p(d)) � p(d);
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where the sum ranges over alld 2 C 0(Q) such thatq(d) = c. Then by (3.2.8)
and (3.2.9), it induces the action ofT � on Tp(TY ) via (3.4.9). If we define an
endomorphismt_ of Zp[C] by (t�(c); c0) = (c; t_(c0)), we have

t_(c0) =
X

d2p�1(c0)

e(d=c0) � q(d):

A simple group theoretical argument shows that this coincides with the endomor-
phism given by (ii), which proves our assertion forT �.

The proof of the assertion forT (which actually will not be used in what follows)
is similar. 2

4. Thep-adic Hodge structure ofe�0GESp(N )o

4.1. GOOD QUOTIENTS OF MODULAR GENERALIZED JACOBIANS

We now return to the situation of 1.1. We set

Cr := Xr � Yr (4.1.1)

(the reduced cuspidal subscheme ofXr), and write

GJr := GJYr ; Jr := JXr ; Tr := TYr (4.1.2)

for the generalized Jacobian ofXr with the modulusCr, the Jacobian ofXr, and
the torus part ofGJr, respectively. They are all defined overQ. The purpose of
this subsection is to construct certain quotient ofGJr following Mazur and Wiles
[MW1] and Tilouine [Ti].

Recall that�r�1
r = �r�1\�0(p

r), andY r�1
r is the canonical model of�r�1

r nH
overQ (1.2). We have natural morphisms

Yr
�r- Y r�1

r
�r- Yr�1: (4.1.3)

(Here,�0
1 = �1(N) \ �0(p) andY0 = Y1(N):) We define the quotient group

schemes

�r : GJr ! Qr; (4.1.4)

inductively as follows: First we define

Q1 := GJ1=�
�
1(GJY 0

1
): (4.1.5)

If we have already constructed�r�1: GJr�1 ! Qr�1 (r > 2), we put

Kr := Ker(�r�1 � �r� : GJY r�1
r

! Qr�1);

Qr := GJr=(�
�
r (Kr))

0:
(4.1.6)
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Note that we are taking quotients byconnectedsubgroup schemes.
Recall also that we have canonical isomorphisms (3.4.5):

Cot(GJr)
Q C �= H0(Xr;

1
Xr=Q(Cr))
Q C �=M2(�r): (4.1.7)

PROPOSITION (4.1.8).The notation being as above, the image of

Cot(�r) : Cot(Qr)
Q C ,! Cot(GJr)
Q C;

corresponds, via(4.1.7), to the following subspace ofM2(�r), for eachr > 1:

�r
i=1 �" ff 2M2(�i) j f j �a = "(a)f for all a 2 (Z=NiZ)�g =: Mr:

Here, the inner sum ranges over all the Dirichlet charactersmodNi whose conduc-
tors are divisible bypi, and�a 2 SL2(Z) is congruent to

h
a�1

0
�
a

i
modNi �M2(Z).

Proof. We proceed by induction onr. First note that the kernel of��r :
GJY r�1

r
! GJr is finite. Forr = 1, we have a commutative diagram with exact

horizontal lines:

0 - Cot(Q1)C
Cot(�1)- Cot(GJ1)C

Cot(��1 )- Cot(GJY 0
1
)C - 0

M2(�1)
?

o

trace
- M2(�

0
1)

?
o

- 0;

by (3.2.6), where the subscript ‘C’ means ‘
QC’. The trace mapping is given by
M2(�1) 3 f 7!

P
a f j �a (resp. 2�1P

a f j �a) if N > 3 (resp. otherwise),
the sum ranging over alla 2 (Z=pZ)� ,! (Z=N1Z)�. Our assertion forr = 1
therefore follows.

Next suppose thatr > 1. We have an exact sequence

0 -Cot(Qr)
Cot(�r)-Cot(GJr) -Cot(Kr) - 0;

and also a commutative diagram

Cot(GJr)C
Cot(��r )- Cot(GJY r�1

r
)C �

Cot(�r�) Cot(GJr�1)C

M2(�r)
?

o

trace
- M2(�

r�1
r )

?
o

�
can M2(�r�1);

?

o
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by (3.2.5) and (3.2.6). But by the induction hypothesis, there is a commutative
diagram with exact horizontal lines

0 - Cot(Qr�1)C
Cot(�r�1��r�)- Cot(GJY r�1

r
)C - Cot(Kr)C - 0

0 -Mr�1

?

o

can
- M2(�

r�1
r ):

?
o

Combining these, we conclude thatf 2 M2(�r) �= Cot(GJr)C lies in the
image of Cot(Qr)C if and only if its trace toM2(�

r�1
r ) belongs toMr�1. Our

result follows easily from this. 2

COROLLARY (4.1.9). Ker(�r) = (��r (Kr))
0 is stable under allT (l) andT (q; q)

(cf. (3.4.8) for these endomorphisms ofGJr).
Proof. It is enough to prove that Lie(Ker(�r)) is stable under such operators.

By (4.1.8) and the remark after (3.4.8), we are reduced to show thatMr is stable
under the Hecke operatorsT (l) andT (q; q), which is clear. 2

It follows that the action of the Hecke algebraH2(�r; Z) onGJr (cf. the remark
after (3.4.8)) induces a homomorphism:H2(�r; Z)! EndQ(Qr) for eachr > 1.

LetBr be the ‘good quotient’ ofJr defined in a same manner as above ([Ti] Sec-
tion 2). Here, as before, we assume that the kernel of the quotient homomorphism:
Jr ! Br is connected. Then, from the construction, it is easy to see that there is a
uniqueQ-homomorphism:Qr ! Br making the following square commutative:

GJr
�r - Qr

Jr
?

- Br:
?

(4.1.10)

It is also easy to see that the kernel of this homomorphism is a quotient ofTr and,
hence, it is a torus.

4.2. p-DIVISIBLE GROUPS ATTACHED TO MODULAR GENERALIZED JACOBIANS

We have seen in 1.5 thateH(N ; o) ande�H�(N ; o) are naturally equipped with the
structure ofo[[ZN ]]-algebras (cf. (1.5.6) and (1.5.7)). Especially, we can decompose
them as:

eH(N ; o) = �imodp�1 eH(N ; o)(i);

e�H�(N ; o) = �imodp�1 e
�H�(N ; o)(i);

(4.2.1)
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where the superscript ‘(i)’ means the!i-eigenspace with respect to the action of
(Z=pZ)� � ZN .

DEFINITION (4.2.2). As in [O2], we denote bye0 (resp.e�0) the idempotent of
eH(N ; o) (resp.e�H�(N ; o)) corresponding to the projector to�i6�0;�1 eH(N ; o)(i)

(resp.�i6�0;�1 e
�H�(N ; o)(i)). We use the same symbol to denote its homomorphic

image to other algebras (e.g.eHk(�r; o) (resp.e�H�k(�r; o)) via (1.5.7) (iii)).

See [O2] (3.2.7) for the reason why we have to exclude the!0- and the!�1-
eigenspaces. (Actually, the argument of this subsection works without excluding
the!�1-eigenspace.)

In general, ifG is a group scheme over a schemeS which is an extension of an
abelian scheme by a torus, then the kernels of multiplication bypn: (pnG) form a
p-divisible group overS. We denote thisp-divisible group byG(p).

PROPOSITION (4.2.3).The quotient homomorphism�r induces an isomorphism

of p-divisible groups overQ: e0 �GJr(p)
�- e0 �Qr(p):

Proof. Write Lr (resp.L0r) for the kernel ofGJr ! Qr (resp.Jr ! Br); and
let L00r be the kernel of the natural surjective homomorphism:Lr ! L0r: Then
we know thate0 � pnL0r(Q) = f0g ([Ti]; cf. also [O2] 3.2). It follows that we

have an isomorphism:e0 � pnL00r(Q)
�- e0 � pnLr(Q) for eachn > 1. To prove

thate0 � Lr(p) is trivial, it is enough to show thatT (p) has no unit eigenvalue on
Tp(L

00
r )

(i) 
Zp Qp wheni 6� 0 modp � 1. But sinceL00r is isomorphic to a sub-
group scheme of the torusTr, this is equivalent to saying that the same holds for
(Lie(L00r)
Q Qp)

(i). Thus, we need to show that, fori 6� 0 modp�1,T (p) has no
(p-adic) unit eigenvalue on(Cot(L00r)
Q C)(i), which is isomorphic to a quotient of
(M2(�r)=Mr)

(i) by (4.1.8). This is a consequence of Hida [H1] Proposition 4.1.2

Next, let us denote bywr the automorphism ofGJr induced by�r =
h

0
Nr

�1
0

i
(3.4.8). It is defined overQ(�Nr), where�Nr is a primitiveNrth root of unity. If
� 2 Gal(Q(�Nr)=Q) and��Nr

= �aNr
with a positive integera, then we have

w�
r = wr � T (a; a) = T �(a; a) � wr: (4.2.4)

We define

Q�r := GJr=wr(Ker(�r)): (4.2.5)

From the above relation, we see thatwr(Ker(�r)) is Q-rational; and henceQ�r is
defined overQ. We also see that there is a natural homomorphism:H�2(�r; Z) !
EndQ(Q

�
r): We thus obtain the following obvious corollary:

COROLLARY (4.2.6). The quotient homomorphism induces an isomorphism of

p-divisible groups overQ: e�0 �GJr(p)
�- e�0 �Q�r(p):
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Let B�r be the quotient ofJr defined in a similar manner as (4.2.5). We then
have an exact sequence of commutative group schemes overQ in which we define
Nr:

0! Nr ! Q�r ! B�r ! 0: (4.2.7)

It is well-known thatB�r has good reduction overQ(�pr) at the prime abovep.
On the other hand, by (3.1.7),Tr splits overQp(�Nr), an unramified extension of
Qp(�pr); and hence so isNr. Let us now denote byQ�r=Zp[�pr ]

the ‘Néron lft-model’

ofQ�r overZp[�pr ] ([BLR] 10.1); and similarly forNr andB�r . They exist by [BLR]
10.2 Theorem 2. Since the formation of Néron lft-models commutes with́etale base
changes,N0

r=Zp[�pr ]
is a torus which splits overZp[�Nr ], by [BLR] 10.1 Example

5. It then follows from the argument of the proof of [BLR] 10.1 Proposition 7 that
(4.2.7) extends to an exact sequence of commutative group schemes overZp[�pr ]:

0 - N0
r=Zp[�pr ]

- Q�0r=Zp[�pr ]
- B�r=Zp[�pr ]

- 0: (4.2.8)

The Hecke algebraH�2(�r; Z) acts on these group schemes compatibly; and we
can make the following

DEFINITION (4.2.9). We define thep-divisible groups overZp[�pr ] by

Hr := e�0 �N0
r=Zp[�pr ]

(p);

eGr := e�0 �Q�0r=Zp[�pr ]
(p); Gr := e�0 �B�r=Zp[�pr ]

(p);

so that we have an exact sequence ofp-divisible groups overZp[�pr ]

0 - Hr
- eGr

- Gr
- 0:

4.3. ORDINARY CUSPIDAL GROUPS

As before, we identifyCr(Q) with �rnP1(Q). The correspondence: SL2(Z) 3h
a
c

b
d

i
7! a=c 2 P1(Q) gives a bijection:

�rnSL2(Z)=U1
�- �rnP1(Q); (4.3.1)

whereU1 = f�
h

1
0
�
1

i
2 SL2(Z)g is the stabilizer subgroup of the cuspi1. For

a positive integerM , we put

AM :=
��

x
y

�
2 (Z=MZ)�2 j (x; y) = 1 in Z=MZ

�
= � (4.3.2)
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where
h
x
y

i
�
h
x0

y0

i
if and only if y = y0 andx � x0 mody(Z=MZ): Then it is well

known that there are bijections:

�rnSL2(Z)=U1
�- ANr=f�1g

�- (AN �Apr)=f�1g: (4.3.3)

Here, the first arrow sends
h
a
c

b
d

i
to the class of

h
a
c

i
modNr, and the second one

is induced from the natural mapping:�
x

y

�
7!

��
x

y

�
modN;

�
x

y

�
modpr

�
:

The image of
h
a
c

b
d

i
2 SL2(Z) in the middle (resp. the right) set will be denoted

by
h
a
c

i
Nr

�
resp:

�h
a
c

i
N
;
h
a
c

i
pr

��
. We henceforth identifyCr(Q) with the sets in

(4.3.3).
There is a natural action of the operatorT (p)n on Zp[Cr]. Namely, it sends the

class ofx 2 P1(Q) to the formal sum of the classes of(x + i)=pn 2 P1(Q) for
i = 0; : : : ; pn � 1: In view of (3.4.12) (cf. also (4.3.6) below), we denote bye� the
idempotent attached to thisT (p) acting onZp[Cr].

PROPOSITION (4.3.4).LetDr be the submodule ofZp[Cr]generated by all
h
a
c

i
Nr

such thatp j c: ThenDr is stable underT (p), ande�Dr = f0g:Moreover, we have

an isomorphisme�Zp[Cr]
�- Zp[Cr]=Dr:

Proof. Take
h
a
c

i
Nr

2 ANr=f�1g with p j c: Then sincep - a, we see that

T (p)n
ha
c

i
Nr

=
pn�1X
i=0

ha+ ic

pnc

i
Nr

:

This shows thatDr is stable underT (p). If n > r andpn � 1 modN , we have

�
a+ ic

pnc

�
Nr

=

 �
a

c

�
N
;

�
a+ ic

0

�
pr

!
:

It then follows that

T (p)n
�
a
c

�
Nr

= pn�r
pr�1X
i=0

 �
a
c

�
N

;

�
a+ ic

0

�
pr

!

and, hence,e� = lim
k!1

T (p)k! annihilatesDr:
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On the other hand,Zp[Cr]=Dr is generated by
h
a
c

i
Nr

with p - c: Take and fix

ann such thatpn � 1 modN . We may changea and assume thata is divisible by
pn. We then see that:

T (p)n
�
a
c

�
Nr

�

�
a=pn

c

�
Nr

=

�
a
c

�
Nr

mod Dr:

It follows thate�(Zp[Cr]=Dr) = Zp[Cr]=Dr: 2

COROLLARY (4.3.5). rankZp e
�Zp[Cr] =

1
2'(p

r)
P

0<tjN '(t)'(N=t):
Proof.The rank in question is equal to the cardinality of( �

a1

c1

�
N

;

�
0
c2

�
pr

!
2 (AN �Apr)=f�1g

)
: 2

Recall thatH1(Y r;Zp) is canonically isomorphic to Hom(Tp(GJr);Zp) (3.3.3).
We henceforth consider the latter group as a module overH�2(�r; Zp) through
this isomorphism. Thus, as we noted after (3.4.8), for example, the action of
T �(l) 2 H�2(�r; Zp) on Hom(Tp(GJr);Zp) is induced from the endomorphism
T �(l) of GJr (3.4.8). On the other hand, from (3.4.11), we have an isomorphism

Hom(e�Tp(Tr);Zp)
�- e�Zp[Cr](�1); (4.3.6)

by (3.4.12). These groups then inherit the structure ofe�H�2(�r; Zp)-modules.
We therefore have the following diagram ofe�H�2(�r; Zp)-modules with exact
horizontal lines:

0 - e�H1(Xr;Zp)
can - e�H1(Y r;Zp)

0 - Hom(e�Tp(Jr);Zp)

o

?
- Hom(e�Tp(GJr);Zp)

o

?

(3:3:3)

- e�Zp[Cr](�1) - 0:

(4.3.7)

Here, the left vertical arrow is the usual one (cf. [O2] (3.1.4)). One checks that the
square above commutes, in a similar manner as (3.3.5).

Recall also thate�H�2(�r; Zp) is aZp[(Z=NrZ)�]-algebra; and thate�H�(N ; Zp)
is aZp[[ZN ]]-algebra (1.5). From now on, we denote by the same letter� as before
the natural mappings

� :

(
(Z=NrZ)� ,! Zp[(Z=NrZ)�] (! e�H�2(�r; Zp));

ZN ,! Zp[[ZN ]] (! e�H�(N ; Zp)):
(4.3.8)
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For� 2 (Z=NrZ)�, the action of�(�) one�Zp[Cr](�1) is obtained from (the Tate
twist of) the following action:

Zp[Cr] � Cr(Q) 3 c 7! ���c; (4.3.9)

where�� 2 SL2(Z) is congruent to
h
��1

0
�
�

i
modNr �M2(Z), by (3.4.12).

PROPOSITION (4.3.10).ConsiderZp[Cr] as aGal(Q=Q)-module via the natural
action onCr(Q). Then(4.3.6) is an isomorphism ofGal(Q=Q)-modules. If� 2
Gal(Q=Q(�N )) satisfies��pr = ��pr with � 2 (Z=prZ)� � (Z=NrZ)�, � acts as
�(�)�1 one�Zp[Cr]:

Proof. It is easy to see that the exact sequence (3.4.9) forYr is Gal(Q=Q)-
equivariant; and the pairing (3.4.10) clearly satisfies(x�; y�) = (x; y) for all
x; y 2 Zp[Cr] and� 2 Gal(Q=Q): Therefore, (3.4.11) forYr is an exact sequence
of Gal(Q=Q)-modules. We also see thatT (p) onZp[Cr] commutes with the action
of Gal(Q=Q); and hence the first assertion follows.

Next,Dr, being the kernel ofe�, is a Galois submodule ofZp[Cr]. Thus for the
second assertion, with the same notation as above, it suffices to show that

�
a
c

��
Nr

= ��1
� �

�
a
c

�
Nr

;

if p - c. LetX be the canonical model overQ(�N ) of the modular curve attached
to�(N)\�1(p

r) of which the cuspi1 is rational overQ(�N ). �0(p
r) normalizes

the above group; and it acts asQ(�N )-automorphisms ofX. It follows that all the

cusps of the form(
h
�
�

i
N
;
h
�
0

i
pr
) onXr areQ(�N )-rational. But a cusp

h
a
c

i
Nr

with

p - c is obtained from a cusp of the above type by applying�r. The formula to be
proved results from the well-known property of the automorphism ofXr attached
to �r (cf. (4.2.4)). 2

Whens > r > 1, we have the commutative diagram (3.3.4) for the natural
morphismf sr : Xs ! Xr: But by (3.2.8), the diagram:

Hom(Tp(Ts);Zp)
(3:4:11)- Zp[Cs](�1)

Hom(Tp(Tr);Zp)

Hom(fs�r ;Zp)

?

(3:4:11)
- Zp[Cr](�1);

?

(4.3.11)
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commutes, if we define the right vertical arrow from the (set theoretical) projection:
Cs(Q)! Cr(Q): Thus, taking the projective limits with respect to Hom(f s�r ;Zp)
and (4.3.11), (4.3.7) yields the following commutative diagram:

0 - e�ESp(N)Zp
- e�GESp(N)Zp

0 - lim
 
r>1

Hom(e�Tp(Jr);Zp)

o

?
- lim

 
r>1

Hom(e�Tp(GJr);Zp)
?

o

- lim
 
r>1

e�Zp[Cr](�1) - 0:

(4.3.12)

Now set

Cp(N)Zp := lim
 
r>1

e�Zp[Cr]; Cp(N)o := Cp(N)Zp b
Zpo: (4.3.13)

These are modules overZp[[ZN ]] or o[[ZN ]] (and hence over�Zp or �o), respec-
tively.

PROPOSITION (4.3.14).Cp(N)o is a free�o-module of rank((p�1)=2)
P

0<tjN
'(t)'(N=t): Moreover, for eachr > 1, the projection mapping induces an isomor-

phismCp(N)o=!r;0
�- e�Zp[Cr]
Zp o =: e�o[Cr]:

Proof. It is enough to prove our assertion wheno = Zp: If � 2 U1, the action
of �(�) onZp[Cr] is given by

Cr(Q) 3

 �
a1

c1

�
N

;

�
a2

c2

�
pr

!
7!

 �
a1

c1

�
N

;

�
��1a2

�c2

�
pr

!
:

Therefore, as a�Zp-module,e�Zp[Cr] is isomorphic to the submodule ofZp[Cr]

generated by all the elements of the form(
h
a1
c1

i
N
;
h

0
c2

i
pr
), by (4.3.4). Namely, it is

canonically isomorphic to the freeZp-module generated by(AN�(Z=prZ)�)=f�1g
as a�Zp-module; the�Zp-module structure of the latter being the evident one. Our
conclusion is now obvious. 2

4.4. THE MAPPING:e�0GESp(N)o ! e�0M�2(N ; o)(�1)

We now come to our main step. By virtue of what we have said so far, we can proceed
in a parallel way as in [O2] 3.3 to construct the mapping above, as follows: LeteG0
r and eG�et

r be the connected part and the maximalétale quotient of thep-divisible
group eGr (4.2.9), respectively; and likewise forGr: SinceHr is of multiplicative
type, it is contained ineG0

r and, hence,eG�et
r = G�et

r : Put

Ar := Hom(Tp(G
�et
r );Zp);

8<: eBr := Hom(Tp( eG0
r);Zp);

Br := Hom(Tp(G0
r);Zp):

(4.4.1)
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Then we have an exact sequence ofe�0H�2(�r; Zp)-modules:

0! Ar ! e�0H1(Y r;Zp)! eBr ! 0; (4.4.2)

by (3.3.3) and (4.2.6).
Let Ip be the inertia group of Gal(Qp=Qp), and

� :

8<:Gal(Q=Q)! Z�p or

Gal(Qp=Qp)! Z�p ;
(4.4.3)

thep-cyclotomic character. Then we have:

Ar = e�0H1(Y r;Zp)
Ip = e�0H1(Xr;Zp)

Ip ;

Ip 3 � acts as�(�)�1�(�(�))�1 on eBr:
(4.4.4)

In fact, we know by (4.3.10) (resp. [O2] (3.2.11)) that the action ofIp on eBr=Br

(resp.Br) is as stated as above. But it is easy to see that the exact sequence
of Gal(Qp=Qp)-modules: 0 - Br

- eBr
- eBr=Br

- 0 splits when
tensored withQp, using an appropriate element ofe�0H�2(�r; Zp):

From this, we see that (4.4.2) is a split exact sequence ofe�0H�2(�r; Zp)-modules.
The splitting is noncanonical, but can be made functorial when we letr vary.
Therefore, if we set

A1 := lim
 �
r>1

Ar;

8>>><>>>:
eB1 := lim

 �

r>1

eBr;

B1 := lim
 �

r>1

;Br;
(4.4.5)

we have a split exact sequence ofe�0H�(N ; Zp)-modules

0 - A1 - e�0GESp(N)Zp - eB1 - 0: (4.4.6)

It follows from (1.3.5) that bothA1 andeB1 are free�Zp-modules. Moreover, we
see that, via the projection mappings

A1=!r;0
�- Ar; eB1=!r;0 �- eBr; (4.4.7)

for all r > 1. For each pair of integersr > 1 andd > 0, set

Ar;d := e�0H1(Y r; FSd(Zp))
Ip ;eBr;d := e�0H1(Y r; FSd(Zp))=Ar;d:

(4.4.8)
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Then, by (1.4.2), we also see that the specialization mappingspr;d induces the
following isomorphisms:

A1=!r;d
�- Ar;d; eB1=!r;d �- eBr;d: (4.4.9)

If we put

Ar;o := Ar b
Zpo; eBr;o := eBr b
Zpo; (4.4.10)

for 1 6 r 61, and similarly forAr;d and eBr;d, (4.4.2), (4.4.6), (4.4.7) and (4.4.9)
remain valid for these modules,e�0H1(Y r;Zp)
Zp o, ande�0GESp(N)o.

From now on, we assume thato contains all the roots of unity. Then applying the
argument of Tate [Ta] Section 4 to theordinaryp-divisible groupeGr overZp[�pr ],
we have canonical isomorphisms:

Ar;o
�= Lie(( eG�et

r=o)
0) = Lie(( eGr=o)

0);

Br;o
�= Cot(G0

r=o)(�1) = Cot(Gr=o)(�1) �= e�0Cot(B�r=o)(�1);

eBr;o
�= Cot( eG0

r=o)(�1) = Cot( eGr=o)(�1) �= e�0Cot(Q�r=o)(�1);

(4.4.11)

where the subscript ‘=o’ means the base extension fromZp[�pr ] to o, and ( )0

signifies the Cartier dual. From (4.4.2), we obtain the following exact sequence:

0! Lie(( eGr=o)
0)! e�0H1(Y r;Zp)
Zp o! Cot( eGr=o)(�1)! 0: (4.4.12)

Especially, we have constructed homomorphisms ofe�0H�2(�r; o)-modules:

e�0H1(Y r;Zp)
Zp o! eBr;o
�= e�0Cot(Q�r=o)(�1) ,!M2(�r;K)(�1): (4.4.13)

PROPOSITION (4.4.14).The image of the natural mapping:e�0Cot(Q�r=o) ,!
M2(�r;K) is contained ine�0M�2 (�r; o) \M2(�r; o):

Proof. The proof is similar to that of [O2] (3.3.6), as follows. LetYr=Zp[�Nr ] be
the normalization of the affinej-line overZp[�Nr ] in Yr
QQp(�Nr), andY smooth

r=Zp[�Nr ]
its smooth locus overZp[�Nr ]:Also, letGJr=Zp[�Nr ] be the Ńeron left-model ofGJr
overZp[�Nr ]: There is an unramified extension ofQp(�Nr) over whichYr admits a
rational pointx0. We then obtain the morphism�Yr;x0 (3.1.4) over this field, which
extends to the base extensions ofY smooth

r=Zp[�Nr ]
andGJr=Zp[�Nr ] to its ring of integers.

Therefore, further extending the base too, we obtain�Yr;x0: Y
smooth
r=o ! GJr=o:

Thus, we have the situation as in loc. cit.

Spec(o((q)))! Y smooth
r=o

�Yr;x0- GJr=o ! Q�r=o;
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from which we conclude that the image in question lies inM2(�r; o): The image
also lies inM�2 (�r; o) because the automorphismwr of GJr overQ(�Nr) extends
toGJr=o: 2

It follows that (4.4.13) gives

e�0H1(Y r;Zp)
Zp o! eBr;o ! e�0M�2 (�r; o)(�1): (4.4.15)

Whenr varies, the trace mappings ofétale cohomology groups and the natural
trace mappings of modular forms are compatible, by (3.3.4) and (3.2.6). Taking the
projective limit, we finally obtain a homomorphism ofe�0H�(N ; o)-modules:

e�0GESp(N)o ! eB1;o ! e�0M�2(N ; o)(�1): (4.4.16)

THEOREM (4.4.17).The mapping:eB1;o
- e�0M�2(N ; o)(�1) above is an

isomorphism.

We will complete the proof of this theorem in the next subsection. Let us give
here some preliminary remarks. The two modules in question are both free of finite
rank over�o and, hence, the mapping above is an isomorphism if it is so after
reducing modulo!1;0 = T: So, by (2.5.4) and (4.4.7), we just need to show that
the mapping

e�0Cot(Q�1=o) - e�0M�2 (�1; o) (4.4.18)

is an isomorphism.
For this, we recall that there is a canonical isomorphism:Tr
QK �= Coker(Gm

diag- Q
c2Cr(Q) Gm):This trivially extends to the group scheme Coker(Gm

diag-Q
c2Cr(Q) Gm) =: Tr=o overo of whichN0

r=o is a quotient. The Hodge–Tate theory
for the associatedp-divisible group is of the following very elementary nature:
Namely, the diagram

Hom(Tp(Tr=o); o)
can- �c2Cr(Q)Hom(Tp(Gm); o) �

�
�c2Cr(Q)o(�1)

Cot(Tr=o)(�1)

Tate

?

o

can
- �c2Cr(Q)Cot(Gm)(�1):

?

o (4.4.19)

commutes if we define the right vertical arrow fromo �
�! Cot(Gm) sending 1 to

dX=X: (Here and in the diagram, we are of course consideringGm overo.) The
action ofT �(p) onTr clearly extends toTr=o; and the above compatibility means
that the isomorphism (4.3.6) when tensored witho coincides with the one obtained
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from the Hodge–Tate theory ofTr=o, via o �= Cot(Gm). Consider the following
commutative diagram with exact horizontal lines:

0 - Hom(Tp(Gr); o) - Hom(Tp(eGr); o) - Hom(Tp(Hr); o) - 0

0 - Br;o

can

?
- eBr;o

can

?
- Hom(Tp(Hr); o)

wwwwww
- 0

0 - e
�0Cot(B�r=o)(�1)

(4:4:11)

?
o

- e
�0Cot(Q�r=o)(�1)

o

?
(4:4:11)

Res(�1)- e
�0o[Cr](�1)

?
o

- 0

0 - e
�0
S
�
2 (�r; o)(�1)
?

can
- e

�0
M
�
2 (�r; o)(�1):
?
(4:4:14)

(4.4.20)

Here, the upper horizontal line comes from (4.2.9), and the right vertical arrow is
obtained from (4.3.6) through the quotient morphism:Tr ! Nr. By the remark
above, using (3.1.13) and the compatibility (3.1.10), we now see that the mapping
labelled as ‘Res(�1)’ is indeed the Tate twist of thesum of residuesgiven by:

Res(!) =
X

c2Cr(Q)

Resc(!)�c; (4.4.21)

for ! 2 e�0Cot(Q�r=o) ,! H0(Xr 
Q K;
1
Xr
QK=K(Cr)): Namely, we have

proved thesurjectivity of Res : e�0Cot(Q�r=o) ! e�0o[Cr] via the Hodge–Tate
theory. As for (4.4.18), we already know that the mapping:e�0Cot(B�1=o) !
e�0S�2(�1; o) is an isomorphism ([O2] (3.4.9)). Our Theorem (4.4.17) will therefore
follow from the following proposition whose proof we give in the next subsection:

PROPOSITION (4.4.22).For f 2 e�M�2 (�r; o),we let!f := fdq=q be the corre-
sponding differential onXr 
Q K: ThenRes(!f ) 2 e�Zp[Cr]
Zp K actually lies
in e�o[Cr]:

4.5. COMPLETION OF THE PROOF OF OUR MAIN THEOREM

We begin with an elementary observation: In general, let� be a congruence sub-
group of SL2(Z), and fix a cusps 2 P1(Q): Then there is a� 2 SL2(Z) such that
�(s) = i1: If we denote by�(s) the stabilizer subgroup ofs in �, we have

��(s)��1 � f�1g =

(
�

"
1 h

0 1

#m
j m 2 Z

)
(4.5.1)
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with a positive integerh. Forf 2M2(�), its Fourier expansion ats (which depends
on the choice of�) is given by:

f j ��1 =
1X
n=0

anq
n=h (q1=h = e2�iz=h); (4.5.2)

(cf. [Sh] 2.1). The differential!f = f dq=q satisfies!f � ��1 = (f j ��1)dq=q;
and it follows easily from this that:

!f = h

 
1X
n=0

an e2�i(n�1)�(z)=h

!
de2�i�(z)=h: (4.5.3)

Since e2�i�(z)=h is a local parameter ats of the Riemann surface�nH [ P1(Q)
([Sh] 1.5), we conclude that:

Ress(!f ) = ha0: (4.5.4)

We now wish to prove (4.4.22). To do this, we use the algebraic theory of
modular forms (Katz [Ka1]). In [O2] 3.6, we reviewed this theory and we now
use the same terminology as in loc. cit. Recall thatRk(B;�00(M)arith) denotes the
space of�00(M)arith modular forms of weightk (2 Z) over a ringB, which consists
of certain functionsF on the�00(M)arith-test objects(E;!; i) overB-algebras.
There is a natural injection

Mk(�1(M)) ,! Rk(C;�00(M)arith): (4.5.5)

Namely, if we set

E2�i;2�iz := C=2�iZ + 2�izZ;

i(�nM ) :=
2�in
M

(�M = e2�i=M );
(4.5.6)

thenFf 2 Rk(C;�00(M)arith) corresponding tof 2Mk(�1(M)) satisfies

f(z) = Ff (E2�i;2�iz; du; i) (4.5.7)

with u the variable onC. The q-expansion off (at the cuspi1) is given by
evaluatingFf at the Tate curve; precisely, it is equal toFf (Tate(q); !can; ican):

Put
 = ��1 =
h
a
c

b
d

i
so that
(i1) = s =

h
a
c

i
Nr

. Then we see that

(f j 
)(z) = (cz + d)�kFf (E2�i;2�i
(z);du; i)

= Ff (E2�i;2�i
(z); (cz + d)du; i): (4.5.8)
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The multiplication by(cz + d)�1 onC induces an isomorphism:

E2�i;2�iz
�(cz+d)�1

- E2�i;2�i
(z): (4.5.9)

If we define the�00(M)arith-structurei0 on the left-hand side by

i0(�nM ) :=
2�i(cz + d)n

M
; (4.5.10)

then this is compatible withi on the right-hand side. We therefore have

(f j 
)(z) = Ff (E2�i;2�iz;du; i0): (4.5.11)

This in turn gives us the following purely algebraic description of the Fourier
expansion ats:

f j 
 =
1X
n=0

anq
n=h = Ff (Tate(q); !can; i

00); (4.5.12)

where we definei00 by i00(�M ) := �dMq
c=M (cf. Katz [Ka2] 2.4). Especially, when

B is a subring ofCp, this formula makes sense forf 2 Mk(�1(M);B) (which is
defined as in (1.5.8)); and (4.5.4) remains valid ifk = 2.

LEMMA (4.5.13). LetB be a subring ofC or Cp, and take anf 2M2(�1(M);B).
Assume thatM =M1M2 with relatively prime positive integersM1 andM2; and
that
 2 �0(M1): Then the Fourier expansion off at s = 
(i1) (with respect to
� = 
�1) belongs toB[�M2;1=M2][[q

1=M2]]:
Proof. First note thath dividesM2. i00 being as above, we see that the following

diagram commutes:

�M
i00 -

MTate(q)

�M1
� �M2

o

?
i1�i2-

M1Tate(q)�M2Tate(q);
?

o

if we definei1 (resp.i2) by i1(�M1) := �dM1
(resp.i2(�M2) := �dM2

qc=M2). (Here, of

course,�Mj = e2�i=Mj 2 Q.) Thus the�00(M)arith-test object(Tate(q); !can; i
00) is

defined overB[�M2;1=M2]((q
1=M2)): By theq-expansion principle,Ff belongs to

Rk(B;�00(M)arith); and hence it takes the value inB[�M2;1=M2]((q
1=M2)) when

evaluated at the triple above. 2
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Proof of(4.4.22). By (4.3.4), we can take a basis ofe�Zp[Cr] of the form

(�
a
c

�
Nr

+ da;c j p - c

)
;

with a suitableda;c 2 Dr for each
h
a
c

i
Nr

. It is therefore enough to show that

Resh
a
c

i
Nr

(!f ) 2 o wheneverp - c.

Applying the previous lemma tog := f j �r 2 M2(�r; o), we see that:
g j 
 2 o[[q1=N ]] for any
 2 �0(p

r): It follows from (4.5.4) that Ress(!g) 2 o for

each cusps of the form
�h
�
�

i
N
;
h
�
0

i
pr

�
. But we clearly have:!g = !f � �r, and

hence Ress(!g) = Res�r(s)(!f ). This concludes the proof of (4.4.22). 2

We have thus completed the proof of (4.4.17). This, together with (2.2.3) and
(2.4.5), also gives the isomorphism (II) in the introduction.

5. Application to the theory of cyclotomic fields

5.1. THE GALOIS REPRESENTATION ONe�ESp(N)Zp

In this subsection, for simplicity, we set

� := �Zp ; L := LQp
(= (the quotient field of�));

e h(N ; Zp)L := e h(N ; Zp)
� L;

e�h�(N ; Zp)L := e�h�(N ; Zp)
� L:

(5.1.1)

LEMMA (5.1.2). e�ESp(N)Zp 
� L is a freee�h�(N ; Zp)L-module of rank 2,
ande S(N ;�) 
� L is a freee h(N ; Zp)L-module of rank 1.

Proof. The proof is standard, as follows (cf. [H3] Lemma 8.1): LetQ :=
(!1;0) = (T ) � �, and indicate by the subscript ‘Q’ the localization atQ. By

[H3] (cf. (1.5.7) above), we know thate�h�(N ; Zp)=Q
�- e�h�2(�1; Zp); while

we also havee�ESp(N)Zp=Q
�- e�H1

P (�1;Zp); ([O2] (1.4.3)). But it is well
known thate�H1

P (�1;Qp) is a freee�h�2(�1; Qp)-module of rank 2. It follows from
Nakayama’s lemma that there is a surjective homomorphism:

e�h�(N ; Zp)
�2
Q

- (e�ESp(N)Zp)Q;

of e�h�(N ; Zp)Q- (and hence�Q-) modules. Since the two�Q-modules above are
free of the same rank, the first assertion follows.
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The second assertion can be proved in a similar manner, using that we have an

isomorphisme S(N ;�)=Q
�- e S2(�1; Zp); (cf. [O2] (2.6.1)). 2

As for e�0ESp(N)Zp , we moreover have the following

LEMMA (5.1.3). A1 
� L andB1 
� L are freee�0h�(N ; Zp)L-modules of
rank1.

Proof. Actually, it is known thatA1 itself is a freee�0h�(N ; Zp)-module of rank
1 ([H3], [MW2], [Ti]; cf. also Saby [Sa] Th́eor̀eme 2.3.5). Then by dualities (cf.
[O2] (4.3.1), (2.5.3)), we have isomorphismsB1 �= Hom�(A1;�) �= e0S(N ;�)
compatible with the action ofe�0h�(N ; Zp) �= e0h(N ; Zp) (T �(�)$ T (�)). The
assertion forB1 
� L follows from the lemma above. (We could also derive this
lemma from the main result of [O2].) 2

By (5.1.2), fixing ane�h�(N ; Zp)L-basis ofe�ESp(N)Zp
�L, we may regard
the Galois representation one�ESp(N)Zp as

�N : Gal(Q=Q) - GLe�h�(N ;Zp)(e
�ESp(N)Zp)

,! GL2(e
�h�(N ; Zp)L): (5.1.4)

Especially, we may consider the trace tr�N (�) and the determinant det�N (�),
both belonging toe�h�(N ; Zp)L, for each� 2 Gal(Q=Q). The representation�N
is unramified outsideNp by a well-known result of Igusa.

For a prime numberl, we denote by�l ageometricFrobenius atl in Gal(Q=Q)
or in Gal(Ql=Ql).

THEOREM (5.1.5).If l does not divideNp, we have

det(1� �N (�l)X) = 1� T �(l)X + lT �(l; l)X2:

Proof. The proof is also standard: First, we have the congruence relation
T �(l) = �l+ lT �(l; l)��1

l ; one�ESp(N)Zp ([O1] (7.6.1)). There is anL-bilinear
form, denoted byf ; g in [O2] (4.1.17), one�ESp(N)Zp 
� L. We know that
T �(n) andT �(q; q) are self-adjoint; and that the adjoint of�l is lT �(l; l)��1

l ,
with respect to this pairing ([O2] (4.2.8)). Moreover, this pairing is nondegenerate.
Indeed, using the same terminology as in the proof of (5.1.2), the reduction modulo
Q of f ; g on(e�ESp(N)Zp)Q is a nondegenerateQp-bilinear form, by [O2] (4.2.5).
Thus the correspondence� 7! (the adjoint of � with respect tof ; g) gives an
anti-automorphism of thee�h�(N ; Zp)L-algebra Ende�h�(N ;Zp)L(e

�ESp(N)Zp
�

L) �= M2(e
�h�(N ; Zp)L). Considering the regular representation on this algebra,

we conclude that�l andlT �(l; l)��1
l , viewed as elements of Ende�h�(N ;Zp)L(e

�

ESp(N)Zp 
� L), have the same characteristic polynomial. The congruence rela-
tion above then implies that

det(1� �N (�l)X)2 = (1� T �(l)X + lT �(l; l)X2)2 2 e�h�(N ; Zp)L[X];
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which proves our assertion. 2

It follows from this and theČebotarev density theorem that tr�N and det�N
take values ine�h�(N ; Zp).

5.2. SOME PROPERTIES OFp-ADIC EISENSTEIN COHOMOLOGY CLASSES

From now on, until the end of this paper, we assume that

(p; '(N)) = 1; (5.2.1)

and fix anevenandprimitive Dirichlet character� of conductorN1 = Np such
that

� j(Z=pZ)�= !i with i 6� 0;�1 mod p� 1: (5.2.2)

We let r be the ring generated by the values of� overZp, andk its quotient field.
For anyr[(Z=N1Z)�]-moduleM , we mean byM (�) the maximal direct summand
of M on which(Z=N1Z)� acts via�.

Recall that there are natural homomorphisms

r[[ZN ]] - e�H�(N ; r) � e�h�(N ; r);

r[[ZN ]] - eH(N ; r) � e h(N ; r):
(5.2.3)

We may then consider an exact sequence

0 - e�ESp(N)(�)r
- e�GESp(N)(�)r

- Cp(N)(�)r (�1) - 0; (5.2.4)

of e�H�(N ; r)(�)-modules as well as Gal(Q=Q)-modules. Note thatT �(q; q) is
equal to�(q)�(hqi) 2 �r in e�H�(N ; r)(�) for each positive integerq prime toN1.

DEFINITION (5.2.5). We define the Eisenstein idealI� (resp.I�) ofe�H�(N ; r)(�)

(resp.e�h�(N ; r)(�)) as the ideal generated by allT �(l)� 1� �(l)l�(hli) (l - N1)
andT �(l) � 1 (l j N1) with prime numbersl. Similarly, we define the Eisenstein
idealsI andI of eH(N ; r)(�) ande h(N ; r)(�) , respectively.

In 2.3, we considered�o-adic Eisenstein series. Using the same notation as in
(2.3.10), we easily see that forE(�;  ; c) 2 eM(N ;�o),

E(�;  ; c) j T (q; q) = � (q)�(hqi)E(�;  ; c) if (q;N1) = 1; (5.2.6)

unless� = !�2 and  = 1; and similarly for ((1 + T ) � u�2)E(!�2;1; c).
Thus(eM(N ;�o)(�)=e S(N ;�o)(�))
�o

LK is spanned overLK by E(�;  ) :=
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E(�;  ; 1) when� and run through the Dirichlet characters satisfying� = �
and also the conditions in (2.3.10). For such�o-adic Eisenstein series, we have

E(�;  ) j T (n) =

0B@X
0<tjn
p-t

�(t) 

�
n

t

�
At(T )

1CA E(�;  )

=

0B@X
0<tjn
p-t

�(t) 

�
n

t

�
t�(hti)

1CA E(�;  ); (5.2.7)

for all positive integersn. It follows that there is a surjective�r-algebra homomor-
phism:eH(N ; r)(�) � �r sendingT (n) to

An(T; �) :=
X

0<tjn
p-t

�(t)t�(hti) (5.2.8)

(the eigenvalue ofE(�;1)) whose kernel isI. Especially,I (resp.I�) is a proper
ideal ofeH(N ; r)(�) (resp.e�H�(N ; r)(�)). Set

M := (I; p; T ); m := (I; p; T );

M� := (I�; p; T ); m� := (I�; p; T );
(5.2.9)

so thatM andM� are maximal ideals. We consider the localizations atM�:

X := e�ESp(N)
(�)
r;M� ;

Y := e�GESp(N)
(�)
r;M� ;

Z := Cp(N)
(�)
r;M�(�1):

(5.2.10)

Note thatX = e�ESp(N)
(�)
r;m� if m�, or equivalentlyI�, is a proper ideal and

X = 0 otherwise. As usual, we identify the Dirichlet characters with characters of
Gal(Q=Q):

LEMMA (5.2.11). (i) Z is a free�r-module of rank 1, andT �(n) acts as multi-
plication byAn(T; �) on it.

(ii) Gal(Q=Q(�N )) 3 � acts onZ as multiplication by(�!)�1(�)h�(�)i�1

�(h�(�)i�1) 2 ��r .
Proof. SinceZ is a direct summand ofCp(N)r(�1), it is a free�r-module by

(4.3.14). We want to show thatZ 
�r
Lk is one-dimensional overLk. Suppose

otherwise.
By our main theorem,Cp(N)

(�)
o is isomorphic toeM(N ;�o)(�)=e S(N ;�o)(�),

andT �(n) on the former corresponds toT (n) on the latter. Our assumption then
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implies that there is a pair(�;  ) 6= (�;1) as above such thate�H�(N ; r)(�)M� admits
a homomorphism to�r0 , sendingT �(l) to �(l)l�(hli) + (l) for each primel - N1,
wherer0 is the ring generated by the values of� and overr. Reducing modulo the
maximal ideal of�r0 , we see that there is an automorphism� of the residue field
of r, and the congruence(�!)� (l) + 1� �!(l) +  (l) holds for all primesl - N1.
Since 6= 1, we must have � (�!)� , by our assumption (5.2.1). However, the
conductor of was assumed to be prime top, and this contradicts to the assumption
(5.2.2). Thus, rank�r

Z = 1, and it is clear from the preceding argument that the
action of the Hecke operators is as stated as above.

The second assertion is a direct consequence of (4.3.10). 2

Now let us look at the commutative diagram

0 - X b
ro - Y b
ro
� - Z b
ro - 0

0 - e S(N ;�o)
(�)
M

?

can
- eM(N ;�o)

(�)
M

?

ct
- �o:

(5.2.12)

Here, the right (resp. the left) vertical arrow comes from our main theorem (resp.
[O2]), and the mapping ct sends eachF 2 eM(N ;�o)

(�)
M to its ‘constant term’

a(0;F). (We have neglected the Tate twist by fixing an isomorphism:Zp(�1) �=
Zp.) The vertical arrows commute with the Hecke operators in the sense thatT �(�)
on the upper modules correspond toT (�) on the lower modules.

LEMMA (5.2.13). The notation being as above, there is an isomorphism of�o-

modules:Z b
ro
�- �o together with which(5.2.12)remains commutative.

Proof. Clearly, e S(N ;�o)
(�)
M lies in the kernel of ct. Since the cokernels of

the middle left horizontal arrows are canonically isomorphic, there is a unique
�o-homomorphism:Z b
ro! �o with which the resulting square commutes.

By the lemma above, it remains to show that ct is surjective. Reducing modulo
(T ), (2.5.1) further reduces the problem to the surjectivity of the constant term

mapping:eM2(�1; o)(�)M ! o. Here, of course, we are considering the localiza-

tion eM2(�1; o)(�)M througheH(N ; r)=T
�- eH2(�1; r) (1.5.7); i.e. it is the

localization ofeM2(�1; o)(�) at the ‘Eisenstein prime’ ofeH2(�1; r)(�):
By (4.4.22) and the argument preceding it, we know that the mapping:

e�M�2 (�1; o)(�) ! e�o[C1]
(�)

given byf 7! Res(!f ) is surjective. But by (4.3.4),e�o[C1]
(�) contains an element

of the form
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1
g

X
�2(Z=N1Z)�

��1(�)

�
0
�

�
N1

+ d;

with d 2 D1, whereg is the order of�. It follows that there is anf 2 e�M�2 (�1; o)(�)

such that Res0(!f ) 2 o�. If we setf 0 := f j �1, then this belongs toeM2(�1; o)(�),
and we havea(0;f 0) = Resi1(!f 0) = Res0(!f ) 2 o�:On the other hand, we have:

eH2(�1; r)(�) = eH2(�1; r)(�)M �RwithR a direct sum of local rings. Accordingly,

we have a decompositioneM2(�1; o)(�) = eM2(�1; o)(�)M �M . If f 0 = fM + f 00

under this decomposition, then it is clear from (2.3.2) thata(0;f 00) = 0. Conse-

quently, the constant term offM 2 eM2(�1; o)(�)M is a unit. 2

THEOREM (5.2.14).The exact sequence

0 - X 
�r
Lk - Y 
�r

Lk
�- Z 
�r

Lk - 0;

uniquely splits asGal(Q=Q)- and e�H�(N ; r)(�)M� -modules. Ifs: Z 
�r
Lk !

Y 
�r
Lk; gives the splitting, then we have

�(Y \ s(Z)) =

(
G(T; �!2)�Z if � 6= !�2;

Z if � = !�2:

Proof. We already know that the exact sequence (4.4.6) splits ase�0H�(N ; Zp)-
modules. By our main theorem and (5.1.2), we have an isomorphism commuting
with the Hecke operators in the same sense as above

Y 
�r
LK �= (eM(N ;�o)

(�)
M 
�o

LK)� (e S(N ;�o)
(�)
M 
�o

LK):

Therefore, the common kernel of allT �(n)�An(T; �) is a one-dimensionalLK-
subspace ofY 
�r

LK , which is mapped isomorphically ontoZ
�r
LK : The first

part of our theorem follows from this.
On the other hand, by (5.2.13), we have a commutative diagram

Y b
ro
� - Z b
ro - 0

eM(N ;�o)
(�)
M

?

ct
- �o

?

o

- 0;

and the left vertical arrow has a section commuting with the Hecke operators. Since
Ap(T; �) = 1, the image ofY b
ro \ s(Z b
ro) in eM(N;�o)

(�)
M is �o � E(�;1)

when� 6= !�2 and, hence, we see that�(Y b
ro\ s(Z b
ro)) = G(T; �!2) �Z b
ro;
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ORDINARY p-ADIC ÉTALE COHOMOLOGY GROUPS 295

in this case. This proves the latter part of the theorem when� 6= !�2. Since the
‘constant term’ of((1+ T )� u�2)E(!�2;1) is a unit in�Zp , a similar argument
implies the remaining assertion. 2

COROLLARY (5.2.15). If � 6= !�2 and I� = m� = e�h�(N ; r)(�), then
G(T; �!2) 2 �r is a unit.

COROLLARY (5.2.16).Suppose that� 6= !�2 and thatm� 6= e�h�(N ; r)(�):

Then there is aGal(Q=Q)- and e�h�(N ; r)(�)m� -submoduleV of X=G(T; �!2)
enjoying the following properties:

(i) V is isomorphic to�r=(G(T; �!2)) as a�r-module.
(ii) Gal(Q=Q(�N )) 3 � acts onV as multiplication by(�!)�1(�)h�(�)i�1

�(h�(�)i�1).
(iii) T �(n) acts onV as multiplication byAn(T; �).

Proof. Write U for Y \ s(Z). Then we clearly haveG(T; �!2) � Y � X + U .
Therefore, for anyy 2 Y , we can expressG(T; �!2)y asx+v with uniquex 2 X
andv 2 U . The correspondencey 7! x gives an injective homomorphism

Y=(X + U) ,! X=G(T; �!2):

On the other hand,� induces an isomorphism

Y=(X + U)
�- Z=�(U) �= �r=(G(T; �!

2)):

The action of Gal(Q=Q(�N )) (resp. the Hecke operators) onZ=�(U) is as stated
in (ii) (resp. (iii)) by (5.2.11). 2

COROLLARY (5.2.17) (cf. Wiles [Wi] Theorem 4.1).Under the same assump-
tion as above, there is a surjective�r-algebra homomorphisme�h�(N ; r)(�)m� =I

� �

�r=(G(T; �!
2)); sending eachT �(n) toAn(T; �).

5.3. MODULAR CONSTRUCTION OF UNRAMIFIED ABELIANp-EXTENSIONS

In this final subsection, we follow the method of Harder and Pink [HP] (cf. also
Kurihara [Ku]). We keep the notation and the assumption of 5.2 and, moreover,
assume that� 6= !�2 andm� 6= e�h�(N ; r)(�) (otherwise the situation is uninter-
esting to us in view of (5.2.15); cf. also (5.3.19) below). We henceforth write

h
� := e�h�(N ; r)(�)m� (5.3.1)

for the simplicity of notation. We now look into the Galois representation

�: Gal(Q=Q)! GLh�(X) ,! GL2(h
� 
�r

Lk): (5.3.2)
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We already know that

det�(�) = (�!)�1(�)h�(�)i�1�(h�(�)i�1); (5.3.3)

by (5.1.5).
Set

X+ := XIp : (5.3.4)

ThenIp acts onX=X+ via the character:� 7! !�i�1(�)h�(�)i�1�(h�(�)i�1) by
(4.4.4), and this action factors through Gal(Q(�p1)=Q) = ��Gal(Q(�p1)=Q(�p))
with � �= Gal(Q(�p)=Q): � thus acts onX=X+ through the nontrivial character
!�i�1. Take and fix a�0 2 Ip such that� := !�i�1(�0) is a nontrivial(p � 1)st
root of unity. We letX� be the�-eigenspace ofX with respect to the action of�0,
so that we have a direct sum decomposition:

X = X� �X+; (5.3.5)

of h�-modules.
By (5.1.3),X� 
�r

Lk andX+ 
�r
Lk are freeh� 
�r

Lk-modules of rank 1.
We can therefore express� ‘matricially’ as

�(�) =

"
a(�) b(�)

c(�) d(�)

#
; (5.3.6)

with a(�) 2 Endh�(X�) ,! h�
�r
Lk andd(�) 2 Endh�(X+) ,! h�
�r

Lk, etc.
Note thata(�); d(�) andb(�)c(�0) 2 h� 
�r

Lk are independent of the choice of
the basis. Note also that we have

�(�) =

�
det�(�) 0

� 1

�
if � 2 Ip: (5.3.7)

To apply the method of Harder and Pink, it is convenient to consider an auxiliary
idealJ� of h� which is, by definition, generated byT �(l)� 1� �(l)l�(hli) for all
prime numbersl prime toNp. By the definition ofX�, �(Ip) contains an elementh
�
0

0
1

i
with a nontrivial(p� 1)st root of unity�. Using (5.1.5), one can then prove

the following two lemmas in the same way as in [HP] 3.1.4 and 3.1.5. See also
[Ku] Section 3 for a similar argument.

LEMMA (5.3.8). For any �; �0 2 Gal(Q=Q), a(�) � det�(�),d(�) � 1 and
b(�)c(�0) belong toJ�.

LEMMA (5.3.9). J� is generated by eitherfa(�)�det�(�) j � 2 Gal(Q=Q)g or
fd(�) � 1 j � 2 Gal(Q=Q)g.
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Let

B � Homh�(X+; X�); C � Homh�(X�;X+); (5.3.10)

be theh�-submodulesgenerated by allb(�) or c(�), respectively. We may consider
BC as an ideal ofh� contained inJ�. Let ea(�); ed(�) 2 h�=BC andeb(�) 2
B=(BC)B be the elements obtained froma(�) etc. by reducing moduloBC.
Then we can definerepresentationsof Gal(Q=Q) by

'1(�) :=

" ea(�) eb(�)
0 ed(�)

#
; '2(�) :=

" ea(�) 0
0 ed(�)

#
: (5.3.11)

LEMMA (5.3.12). We haveea(�) = det�(�) modBC, and ed(�) = 1, for all
� 2 Gal(Q=Q):

Proof. ed is a homomorphism of Gal(Q=Q) to (h�=BC)� unramified outside
N , by (5.3.7). LetA be the field corresponding to its kernel. Since the kernel of the
homomorphism:(h�=BC)� � (h�=m�)� is a pro-p group, it follows from class
field theory that the composite of Gal(A=Q) ,! (h�=BC)� ! (h�=m�)� is still
injective. It is thus enough to show thatd(�) � 1 modm� for all � 2 Gal(Q=Q):

But by (5.1.5) and thěCebotarev density theorem, we see that

a(�) + d(�) � 1+ (�!)�1(�) mod m
�:

Since(�!)�1 ramifies atp by (5.2.2), we must haved(�) � 1 modm�: 2

From this and (5.3.9), we obtain

COROLLARY (5.3.13).BC = J�:

For l - Np, T �(l) � 1� �(l)l�(hli) 2 J� is not a zero divisor inh�, and hence
we have:

COROLLARY (5.3.14).B andC are faithfulh�-modules.

Reducing'1 and'2 moduloI�, we obtain the representations

 1(�) :=
�

det�(�) b(�)
0 1

�
;  2(�) :=

�
det�(�) 0

0 1

�
(5.3.15)

with b(�) = b(�)modI�B, etc. LetK andk be the subfields ofQ corresponding to
the kernels of 1 and 2, respectively. By (5.3.7),p does not ramify in the extension
K=k. LetF be the field corresponding to�!, andF1 the cyclotomicZp-extension
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of F . Then it is easy to see that:F1 � k � F: Sincep totally ramifies inF1=F ,
Gal(K=k) is isomorphic to Gal(K1=F1) if we set

K1 := K � F1: (5.3.16)

As usual, we have a direct product decomposition:

Gal(F1=Q) = �� �; (5.3.17)

with � �= Gal(F=Q) and� = Gal(F1=F ). We fix a topological generator
0 of
�, and defineu 2 U1 by u := h�(
0)i: This is meaningful because the character
Gal(Q=Q) 3 � 7! h�(�)i factors through Gal(F1=Q). We identify� with U1 via
the correspondence
0 $ u and, hence,r[[�]] with �r. Also as usual, Gal(F1=Q)
acts on Gal(K1=F1) via the conjugation. The matrix computation

�
det�(�) �

0 1

� �
1 b(�0)
0 1

� �
det�(�) �

0 1

��1

=

�
1 det�(�)b(�0)
0 1

�
;

shows that� (resp.�) acts on Gal(K1=F1) ,! B=I�B via (�!)�1 (resp.
 7!
h�(
)i�1�(h�(
)i�1)).

LEMMA (5.3.18). The mapping� 7! b(�) gives an isomorphism ofGal(K=k)
ontoB=I�B.

Proof. We only need to prove the surjectivity of this mapping. As we noted
above, 1(Ip) contains

h
�
0

0
1

i
with a nontrivial(p� 1)st root of unity�. Thus, for

any� 2 Gal(Q=Q), considering the commutator of 1(�) with this element, we
see thatb(�) is contained in the image.

On the other hand, we have seen above that the image is a�r-submodule of
B=I�B: Sinceh�=I� is isomorphic to a quotient ring of�r, the image must coin-
cide withB=I�B. 2

In general, for a finitely generated�r-moduleM , we denote by char�r
(M) its

characteristic ideal.

THEOREM (5.3.19).The notation and the assumption being as above,K1 is
an unramified Abelianp-extension ofF1 satisfyingchar�r

(Gal(K1=F1)) �
(F (T; �!2)): (See 2.3 for the right-hand side.)

Proof. We have already seen thatK1=F1 is unramified outsideN . That it is
unramified at the primes dividingN is contained in the proof of [Wi] Lemma 6.1.

We now claim that char�r
(B=I�B) � (G(T; �!2)); where we viewB=I�B as

a�r-module through�r ! h� as before. In fact, leta be the ideal of�r such that
h�=I� �= �r=a: Then, using (5.3.14) and (5.2.17), it is easy to see that the Fitting
ideal of the�r-moduleB=I�B satisfies Fitt�r

(B=I�B) � a � (G(T; �!2)): This
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together with the Ferrero–Washington theorem implies our claim. (See Mazur and
Wiles [MW1] Appendix for the general facts about Fitting ideals; cf. also [Wi]
Section 6.)

By (5.3.18) and the remark preceding it, if we consider Gal(K1=F1) as a
r[[�]]-module Iwasawa theoretically, then its characteristic ideal is obtained from
the above by the change of variable:T 7! u�1(1+T )�1�1. Our theorem follows
from Definition (2.3.5) ofG(T; �!2): 2

Let L1 be the maximal unramified Abelianp-extension ofF1, andL01 its
subextension whose Galois group overF1 is the ‘(�!)�1-part’ (cf. [MW1] page
192) of Gal(L1=F1).

COROLLARY (5.3.20).K1 = L01:
Proof. It is clear thatL01 � K1:On the other hand, the Mazur–Wiles theorem

(the Iwasawa main conjecture) says that char�r
(Gal(L01=F1)) = (F (T; �!2)):

The theorem above then implies that the natural homomorphism: Gal(L01=F1) �
Gal(K1=F1) is a pseudo-isomorphism. The conclusion follows from the well-
known fact that Gal(L01=F1) has no nontrivial finite�r-submodules (cf. [Wa]
Proposition 13.28). 2

This in turn gives us the following

COROLLARY (5.3.21).h�=I� is isomorphic to�r=(G(T; �!2)).
Proof. From the argument above, we know thatB=I�B has no nontrivial finite

�r-submodules; and hence its Fitting ideal coincides with the characteristic ideal
([MW1] Appendix, Corollary to Proposition 2). Thus the ideala in the proof of
(5.3.19) is equal to(G(T; �!2)): 2

In the proof of the last two corollaries, we employed the Mazur–Wiles theorem.
As a final remark, we note that our theorem (5.3.19) can be used to give a simple
proof of this theorem for� = !i with i even. Indeed, it is enough to guarantee the
existence of an extensionK1 as in (5.3.19) for each� = !i 6= !�2 as above. In
the case excluded from our argument, i.e. when� = 1, this is trivial because

F (0; !2) = �B1;! � �
B2

2
= �

1
12

modp

and, hence,F (T; !2) is a unit power series.
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sur l’algèbre de Hecke,Bull. Soc. Math. Fr.115 (1987), 329–360.

[Wa] Washington, L.:Introduction to Cyclotomic Fields, Graduate Texts in Math. 83,
Springer-Verlag, 1982.

[Wi] Wiles, A.: The Iwasawa conjecture for totally real fields,Ann. Math.131 (1990), 493–
540.
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[SGA41=2] Śeminaire de Ǵeoḿetrie Alǵebrique du Bois-Marie SGA41=2, par P. Deligneet al.,
Lecture Notes in Math. 569, Springer-Verlag, 1977.

comp4193.tex; 21/07/1995; 13:12; v.7; p.60

https://doi.org/10.1023/A:1000556212097 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000556212097
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Corrections to [O2]

Page 72, line 11:e Sk(N ; o) should bee Sk(N ;�o).
Page 83, line 1: There, I quoted the formula ofT �(p) in characteristicp from
[MW1]. However, the models of ourXr are different from those in [MW1]; and
it should be replaced by the formula given in [Sa] Théor̀eme 2.2.3. The rest of the
argument remains valid.
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