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Abstract. Fix a prime numbep > 5 and a positive intege¥ prime top. We consider the projective
limits of p-adic étale cohomology groups of the modular curvég Np") andY1(Np") (r > 1),
which are denoted by S,(V)z, and GES,(N)z,, respectively. Let*' be the projector to the

direct sum of thevi-eigenspaces of the ordinary part, foe2 0, —1 modp — 1. Our main result
states thae” GES,(N)z, has a goodh-adic Hodge structure, which can be described in terms
of A-adic modular forms, extending the previously known resul&fé£S,(N)z,. We then apply
the method of Harder and Pink to the Galois representatioa oS, (IN)z, to construct large
unramified Abeliarp-extensions over cyclotomic,-extensions of Abelian number fields.

Mathematics Subject Classifications1991): 11F33, 11F67.
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Introduction

LetT" = Iy (M) be the usual congruence subgroup of,&). For each integer
d > 0, we have the well-known Eichler—Shimura isomorphisms

Hp (T, 8%(C)) = Sg42(T) & Sap2(T), (i)

HY(T, 5%(C)) = My;2(T') ® Syz2(L). (il
Here,5%(C) is C®(4+1) on whichTI acts via the symmetric tensor representation of
degreel, H: means the parabolic cohomology, and other symbols are the standard
ones. It follows that the cokernel of the natural mappisg H»(T', S¢(C)) —

H(T, 5¢(C)) is isomorphic to the space of Eisenstein series of weigh® with
respecttd’, and the exact sequence

0 — HL(T, $4(C)) “S~ HY(T, S%(C)) — Coker(ic) — O,

canonically splits as modules over the Hecke algebra. In this sense, the ‘difference’
betweenH (T, S¢(C)) and HY(T', $¢(C)) is well-understood. However, if we
take the integral structure in consideration, replacnly Z or Z,,, the situation
becomes subtle. Namely, the exact sequence

0 HL(T,59(z,)) 22+ HY(T,59(Z,)) — Cokel(iz,) — O,

(Kb. 6) INTERPRINT: S.A. PIPS Nr.: 148970 MATHKAP
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usually does not split as modules over the Hecke algebra. In fact, ihenl and
d is even, Harder and Pink [HP] started with the fact that the special value of the
Riemann zeta function appears as the ‘denominator of the Eisenstein conomology
class’, and then used it to construct and study large enough unramified Abelian
p-extensions 0Q((p).

In our previous work [O2], we have shown that there is a geadic analogue
of (i) for a subspace of the-adic Eichler—-Shimura cohomology group’. We fix a
prime numbep > 5, and a complete subfield of C, whose ring of integers we
denote by. Let N be a positive integer prime g and set

ES,(N), = (nﬂ Hl(Xl(Npr),zp)> ®z,0

r>1

using the modular curveX;(Np") over Q attached td'1(Np"), and theétale
cohomology groups of their base extension®tdrhe Hecke operatdf* (p) acts
on this space, and we can consider the associated idempdteftHida. Let
e*' be the projector to the direct sum of thé-eigenspaces for # 0,—1 mod
p —1ofe*ES,(N), with respect to an action of the groip/pZ)*, w being the
Teichnilller character. Botle*ES,(N), ande” ES,(N), are known to be free
modules of finite rank over the Iwasawa algelira= o[[T’]]. On the other hand,
let S(N; A,) be the space aof,-adic cusp forms of leveN. We can also define
idempotents ande’ from the Hecke operatdf(p) in a similar manner. Lef, be
the inertia group of G&D,,/Q,), and put

Uno o == € £S,(N)7, 82,0,
Boo,o = €'ES,(N)o/Uoo,0-

Then the main result of [O2] states that, whEnis sufficiently large, we have
canonical isomorphisms

Boo,o = €' S(N;A,)(—1), 0
Q[oo,u = Hom[\n (%OO,OaAO)'

Note that these isomorphisms preserve the integral structure. The purpose of the
present paper is to pursue the same subiject for the following bigger group, called
thegeneralizeg-adic Eichler—Shimura cohomology group of levél

GES,(N), = (ILm Hl(yl(Npr),z,,)> ®z,0.

r>1

Here,Y1(Np") is the canonical model of the open culvg Np")\ H overQ. Thus
there is a natural injective homomorphisi): ES,(N), — GES,(N), and we
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want to understand (the ordinary part of) the nature of this mappingl(ét; A, )

be the space of ,-adic modular forms of levelV. We can define the idempotents

e* ande* (resp.e ande’) acting onGES,(N), (resp.M(N; A,)) in the same way

as above. The following theorem is our main result of this paper, which gives a
p-adic analogue of (i) foe* GES,(N),, and extends (I):

THEOREM. e*GES,(N), is a free A,-module of finite rank. Thus we have

e*’GESp(N)Q; = 2z, and whenK contains all the roots of unity, there is

a canonical isomorphism
e"GESy(N), /U000 — ¢ M(N;A,)(—1). (I

The idea of the proof of this theorem is basically the same as that of (l).
Namely, we letM (T'; Z) be the subspace @f; (T') consisting of elements having
g-expansions with coefficients ih atioo and setM(T'; R) := Mi(I';Z) @z R
for any ring R. We consider the space

M (N 0)

O] € Mk(Fl(NPT);O)} ,

0
= lim {f € Mi(C1(Np");Cp) | f | [Npr

r>1

where the projective limit is taken with respect to the natural trace mappings. Again,
we have idempotents ande* attached t@™*(p) acting on this space and, as in the
case of cusp forms, we have a canonical isomorpRi8fi{N; A,) = e*90; (N o),

for each integek > 2. The main part of the proof consists in showing that there is
a canonical isomorphism

e"'GES,(N), /U000 —> 'M5(N;0)(—1), (1)*

which together with the above isomorphism gives (II).

Our results reduce the study of the ‘difference’ betwe#S,(N), and
e”’GESy(N), to that betweer'S(N; A,) ande' M(N; A,), which is much sim-
pler. Indeed, we can analyse the latter usingAhedic Eisenstein series. To state
the result, let us assume that ¢ (IV), and fix an even primitive Dirichlet character
x defined modulaVp whose restriction t¢Z /pZ)* is neitherw® norw=1. Lett
be the ring generated by the valuesxobverZ,,. Then taking thex-eigenspaces,
we get fromi, . an exact sequence

l(X)

0 ' ES,(N)X) s *GES,(N)™ — Cokel(i{) — 0.

Further localizing this sequence at the ‘Eisenstein maximal ideal’ opthdic
Hecke algebra acting owTGESp(N)EX), we obtain an exact sequence which we
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simply write 0— X — Y ——~ Z — 0 (see 5.2 of the text for details). The fol-
lowing theorem asserts that the ‘denominator ofitreaic Eisenstein cohomology
class’ is essentially the-adic L-function

THEOREM. Z is a free module of rank one ovdr.. The above exact sequence
of A.-modules canonically splits when tensored with the quotient Beddi A .. If
s:Z @5, L =Y ®p, L gives the splitting, then we have

G(T, sz)-Z when y # w2,

Z wheny =w™2

(Y Ns(Z)) = {
Here,G(T, xw?) is a twist of the Iwasawa power series giving the Kubota—Leopoldt
p-adic L-function; preciselyG (u® — 1, yw?) = L,(—s — 1, xw?), with a suitable
choice of a topological generatarof 1 + pZ,,.

After this theorem, we can directly apply the method of [HP], replacing the
classical Eichler—Shimura cohomology group by the ah&vénd hence&, by
A,). As a consequence, we can give a fairly explicit construction of large enough
unramified Abeliamp-extensions over cyclotomi, -extensions of Abelian number
fields, under some assumptions. In the particular case whesieges over even
powers of the Teichiiller character, this result gives a new (and simple) proof of the
Mazur-Wiles theorem [MW1] (the Iwasawa main conjecture) for such characters.

The organization of this paper is as follows: The first four sections are devoted
to the proof of our main theorem. In doing this, we need tools which are well-
known for studying cusp forms; but could not be found in the literature to treat
modular forms. We thus supply them in Sections 1-3. In Section 1, we study the
structure of the ordinary generalizgehdic Eichler—Shimura cohomology groups
and the ordinary-adic Hecke algebras attached to modular forms. In particular, we
show that they are controllable (in the sense of Hida’s theory) via the action of the
lwasawa algebra. In Section 2, we study the spadé$.N; A,) ande* M (N;o).

Aside from the knowledge of similar spaces corresponding to cusp forms, we need
the explicit description of enough,-adic Eisenstein series here.

In our study [O2] of cusp forms, an essential role was played by the Jacobians
of modular curves; especially their ‘good quotients’ and the assogiatidsible
groups. In the present treatment of modular forms, rather than cusp forms, we
need the corresponding theory for theneralized Jacobian®f reduced cuspidal
moduli) of modular curves. In Section 3, we collect some general facts about
generalized Jacobians for later use. After these three preliminary sections, we
carry out the construction of oyradic period mapping (Il) in Section 4, and
complete the proof of the main theorem. As in the case of cusp forms, a hard point
here is the surjectivity of (If). We get over this difficulty by reducing the problem
to an integrality property of the residues of ordinary modular forms (of weight 2),
with the aid of the known result for cusp forms.
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Section 5 is an application of our cohomology theory to the theory of cyclotomic
fields. The second theorem above is proved in Subsection 5.2 and with this we can
proceed in a completely parallel way, as in [HP], to construct large unramified
Abelianp-extensions.

Notation and conventions

Since this paper is a continuation of the previous work [O2], we use the same
terminology as in loc. cit. In particular
e H:={zeC|Im(z) > 0}.
e I'1(M) andI'g(M) denote the usual congruence subgroups of(B).defined
by

a b a b
{2 8] s [

1 %
[0 1] mod M-MZ(Z)},

To(M) ::{lz Z] € SLy(2Z) | l: Z] = [; :] mod M-MZ(Z)}.

e C, :=(the completion 0of),).
e We fix embeddings of into C andC,, once and for all.

e If Aisamodule overaring, andr (resp.l) is an element (resp. an ideal) of
R, we often writeA/r (resp.A/I) for A/r A (resp.A/I A).

1. Generalizedp-adic Eichler—Shimura cohomology groups ang-adic
Hecke algebras
1.1. GENERALIZED p-ADIC EICHLER—SHIMURA COHOMOLOGY GROUPS

As in [02], we fix a prime numbes > 5, and a complete subfield of C,, with
its ring of integers. We also fix a postive integéy not divisible byp. We set

N,:=Np" and T,:=Ty(N,) forr>1 (2.1.2)
and write
Xy = Xl(Nr)a Y, = Yl(Nr) (1-1-2)

for the canonical models df,\ H U P}(Q) andT',\ H overQ, respectively. (As in
[02], the cusp o is aQ-rational point ofX,..)
For any commutative ring? with unity, we putS%(R) := R®(4+D and let

pq : GLa(R) — GL(SU(R)) (1.1.3)

be the symmetric tensor representation of ded(ed)), realized as in Shimura [Sh]
8.2. To this representation, we can associate a twisted conpséatit étale sheaf
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Fgaz,yonY,; and we have canonical isomorphisms betwetle cohomology
groups and classical group cohomologies:
HY Y, Fsa(z,)) = HY(T\, 5%(Z,)),

— N (1.1.4)
Hl(Xra]r*FSd(Zp)) = H}J(Pra Sd(zp))v

where the bar means the base change i@ Q, j.: Y, — X, is the injection
morphism, andrlllj is the parabolic cohomology (cf. [02] 1.2). We will frequently
identify the groups in both hand sides.

DEFINITION (1.1.5). We set

GESy(N)z, := lim HYY,,Z,),

r>1
GE,S';D(]V)0 = GESp(N)zp®zp0,

the projective limit being taken relative to the trace mappings. We call these groups
the generalized p-adic Eichler—Shimura cohomology groups of level N Ayer
or o, respectively. Similarly, using’*(X,,Z,) instead ofH*(Y,,Z,), we define
the p-adic Eichler—Shimura cohomology groups,(NV)z, andES,(N), ([02]
(1.2.13)).

As in [O1] 7.3 and 7.4, the Hecke operatdr$(n) andT*(q,q) act on the
groupsin (1.1.4) and (1.1.5). Especially, we have Hida’s idempotent

e* == lim T*(p)™ (1.1.6)

n—o0

acting on these groups.

1.2. SOME LEMMAS

We write U, for the multiplicative group X p”Z, for r > 1. For the moment, we
fix integerss > r > 1 andd > 0. Set

o7 =T, NTo(p?). (1.2.2)
ThusT, O @ > I';, and we have the following disjoint decomposition:

1 0

r, = H fj@g with fj = [Nr] 1

0<j<ps "1

] ; and (1.2.2)

aEUT/US
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with

a1

I'>0,=
K

i ] mod p*-My(Z). (1.2.3)
o

Let Y] be the canonical model @b\ H overQ so thatY; — Y] — Y, is
defined oveR. Then it is known that the following diagram commutes:

HYY s, Fsu(z,)) —= H' (Y, Fsuaz,)) — H"Y 1, Foarz,))

! ! 2 (1.2.4)

HY(,, §(Z,)) = HY(@], 5(Z,)) <= HYT,, SU(Z,)

where Tr (resp. Cor) means the trace mapping (resp. the corestriction), and the
vertical isomorphisms are given by (1.1.4) (and similarlydjj; cf. [O1] (2.5.4).

The Hecke operators as in 1.1 act compatibly on these groups. For example, the
operatorT*(p') on HY(®", S4(Z,)) is described as follows: First we have

o 1o o = || Gi®"  with ;== ! 0 (1.2.5)
= ; Wi P = . L.
1o pt| ¢ ts ’ Ng pt

ogigpt—1

T*(p') then sends a cohomology clagéu) of a 1-cocycleu to cl(u') where
t-1
W'(y) = Y pa(Bi)ul(yi) for y € @]
i=0

it v716; =Byt with 4 € @, (1.2.6)

We have a similar diagram as (1.2.4) after applying the opetétet nllnooT*

(p)™. The following two lemmas are variants of Hida’s results in [H3], for which
we give direct proof for the convenience of the reader.

LEMMA (1.2.7) (cf. [H3]Lemma 4.6). e* HY(T,, S%(Z,)) ande* H(®", S4(Z,))
are freeZ,,-modules.

Proof. We give the proof only for the latter group. It is finitely generated over
Z,. Take an integeM so large thap? annihilates its torsion subgroup. Then from
the long exact sequence of cohomology groups obtained from:

0= 5%z,) 2o 59z,) - S4Z/pMZ) 5 0,
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we have a surjective homomorphism
HO(®, 54(Z/p"2)) — HY(®}, 5U(Z)))rors

Now it is easy to see that the endomorphisn#f®{ &7, 5¢(Z /pMZ)) = S4(Z /pM
Z)%: defined bym — Zﬁ’igl pa(Bi)m is compatible withT* (p’) on H*(®”, ¢
(Z/pMZ)).If t > M, we see that

1 0 0
Ngi 0 0

pa(Bi) =
(Ng)t 0 --- 0

It follows that if ¢ > M andt is divisible by M, thenzfigl p4(Bi)m = 0, which
proves our assertion. O

In general, ifl" andI" are congruence subgroups of ) andIl¥ D al'a™!
with o € GL2(Q), we can define the operator

‘o’ HYIY, 8%(R)) — HYTI, S(R)) (1.2.8)
by the formula
) | a=cl(u) with u(y) = pg(a Hu'(aya ) forall y eI, (1.2.9)
provided thatR is a Q-algebra, ora™! € My(Z). This operator preserves the

parabolic part; and coincides with the usual operater ‘(cf. (1.5.1) below) on
modular forms via the Eichler—Shimura isomorphism wheigdet- O.

LEMMA (1.2.10) (cf. [H3] Lemma 4.3 and page 570uts := [g pso_,,]. Then

we clearly haves—1®”§ C I',; and the following diagram commutes:

HY (@7, 5%Z,)) =% HYT,,5%Z,))

HY(®],5%(2,)) <+ H(T), $U(Z,))-

T*(ps—r) T*(ps—r)

Proof. Takecl(u) € HY(®",5%(Z,)) and let Cofcl(u)) | 61 =: cl(u'). Then
a simple calculation shows that, for anye @7, u'(y) = ?S:_Or_lpd(dgj)u(’}’j)
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if 7—155]- = 5§jr'yj_1 with v; € @ for each indey. Sinced¢; is equal tog; with
t = s — r, the upper triangle commutes. The commutativity of the lower triangle
can be proved in a similar manner. O

COROLLARY (1.2.11).The corestrictione* HX(®", S%(Z,)) — e*H(T,,S?
(Zp)) is an isomorphism.

We can let/;/U; actone* HY(T's, S4(Z,,)) by a + * | o1 with o, € SLo(Z)

satisfyingo, = [0‘01 a] mod p* - M»(Z) (for the moment; later we will use
different action ofU/).

LEMMA (1.2.12). The corestriction induces an isomorphism
e*Hl(Fsa Sd(zp))Ur/Us — e*Hl(Fra Sd(zp))a

where the subscript means the coinvariant.

Proof. By the corollary above, it is enough to show that the mapping induced
from the corestriction (s, S4(Z,))v, /v, — H*(®%,5%(Z,)), is an isomor-
phism.

For this, let\ be the Pontryagin dual &§¢(Z,). Let ( , ) be the canonical
pairing betweens?(Z,) and A/, and consideV" as a®’-module by(z,y) =
(yx,vy) for v € ®L. Denoting byF, the sheaf ond?\H (or its pull-back to
I's\ H) attached toV, the Poinca& duality implies that the Pontryagin dual of the
mapping above is identified with the canonical mapping

He(®\H, F) = HI(T\H, Fn)™,

But from the argument of [O1] 7.3, we may interpret this as the natural mapping
Homg: (Do, ') — Homr, (Do, M),

whereDy is the degree 0 part of the free Abelian groupRIQ), the set of cusps

of I's or ®%. This is clearly an isomorphism becadge' Us = @} /I'; (o <> 0,). O

1.3. PASSING TO THE PROJECTIVE LIMIT

We denote byAz, (resp.A,) the completed group algebra©f overZ, (resp.o),
and write

LU — Azp - AO, (131)

for the obvious inclusion. As usual, we fix a topological generatof U3, and
identify Az, (resp.A,) with the formal power series ring,[[T']] (resp.o[[T]]) via
t(u) < 14 T. We put

r—1 r—1

wrg =W’ ) —u® T = (14T —u? (1.3.2)
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for integers- > 1 andd > 0.
Now set

X4z, = lim e HY(Y,, Fga(z,)) = lim e*HY(T,, 8%(Z,)) (1.3.3)
r>1 r>1

where the projective limits are taken relative to the trace mappings and the co-
restrictions, respectively. We also set

xdm = xd72p®zp0. (1.3.4)

Thus,Xp, = e*GES,(N),. As we explained before (1.2.12), we may consider
X4z, as alz,-module and, hencé,, as aA, = Azp@@zpo-module also.

THEOREM (1.3.5).For eachd > 0, X, is a freeA ,-module of rank

-1 N
ranky, ¢ BS,(V)o + P55 3 plthe () = (),
0<t|N

wherey is the Euler function. Moreover, via the natural projection, we have an
isomorphism

xd,o/wr,o — e*Hl(?hFSd(Zp)) ®Zp 0= e*Hl(Fra Sd(o))

for eachr > 1.
Proof. For integerss1 > s> > r > 1, we have a commutative diagram:

Wr,0 Cor
e*HY(Ts,54Zp)) —> e*HY(Ts,,54(Zp)) — e*HYT,,5%(Z,)) —— 0

Cor\ Cor\

e HY Ty, SU(Z,)) G € HH Ty, SU(Z,)) g5 ¢ BT, 5%(Z,)) ——> 0

with exact horizontal lines by (1.2.12). Thus taking the projective limit, we obtain
an isomorphisnk, z, /wro — e*HYT',, 5%(Z,)). Especiallyx,z, is a finitely
generated\z,-module.

Now e*HY(T',,S%(Z,)) is free overZ, by (1.2.7); and let us now com-
pute its rank. First, we already know that tAg-rank of e* H:(T',., S4(Z,)) is
equal tOp’"—lrank«Z e*ESy(N)z, by [O2] (1.4.3). On the other hand, the oper-

P
ator ‘/[1\% *01]’ interchangesT'(p) and T*(p) on HY(T,, S%(Q,)) and, hence,
e*H (T, 5%(Q,))/e* H3 (T, S4(Q,)) has the same dimension agf*(T',, 5¢
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(Q,))/e HE (T, 5%(Q,)), wheree is the idempotent attached T{p). It then fol-
lows from [H3] Lemma 5.3 (which we recall in (2.3.2) below) and Corollary 5.6
that the common dimension of these spacegis”) /2) 3o v () p(IN/t). (We
will give another proof of this dimension formula in 4.3.) We therefore see that
X4z,/wrois afreeZ,-module of ranky”~1r(N) for eachr > 1. Using the well-
known structure theorem of finitely generatég -modules, we easily see that
X4z, is free of rank-(N) overAz,.

This proves our result when= Z,,; and the general case follows from this.

1.4. SPECIALIZATI ONS OFe*GES,(N)o.

Recall that we have th&pecialization mapping
sprd: GESy(N), — HY(T,, S%o0)) (1.4.1)

for each integers > 1 andd > 0 (cf. [02] 1.3). It commutes with the Hecke
operatorsI™(n) andT™*(q, q). In view of this, from now on, we change tlig-
module structure off 1(T',, S%(0)) newly defining the action af € Uy by o - * |

o', The resulting new\,-module structure ok, , is the twist of the previous
one by the charactef/; > a — o and, hence, (1.3.5) remains valid if we
replacew, o by w, 4 in the statement. The specialization mapping above is then a
homomorphism of\ ,-modules (loc. cit.).

One can prove the following theorem in a similar manner as in [O2] (1.4.3).
(From (1.3.5), we know that the both sides below are ér@@odules of the same
rank and, hence, we only need to show the surjectivitypf; wheno = Z,,.)

But a much more general result had been obtained by Ash and Stevens, cf. [AS],
Theorem 5.1.

THEOREM (1.4.2). Foreach> 1 andd > 0, sp, 4 induces an isomorphism
¢*GESy(N)y/wy g — e HYTy, 5% 0)).

Nowwhens > r > 1, for the same reason as [02] (1.4.4), the following triangle
commutes:

SPs,d
—_—

GESy(N), HY(T, 5%0))
_ Cor (1.4.3)

HY(T,, 8%0)).

From this, we obtain the following corollary:
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COROLLARY (1.4.4). For each integerd > O, the mappingssp, 4 induce an
isomorphism of\,-modules*GES,(N), — Xq..-

1.5. p-ADIC HECKE ALGEBRAS

As usual, we denote by/, (T") (resp.Si(T")) the space of holomorphic modular
forms (resp. cusp forms) with respect to a congruence subdrooip SLy(Z).

In this paper, we consider only forms of weight> 2. For f € M (T") and

v = {‘; g] € GL2(R) with positive determinant, we set

Gzt b) . (1.5.1)

(F 1)) = det)es + ) (202

DEFINITION (1.5.2). We denote bt (T',; Z) theZ-subalgebra of Engl M (T';))
generated by all the Hecke operatd'én) and T'(q,q). Similarly we define
Hi (L, Z) C Ende (Mg (L)) usingT™(n) andT™(q, g) (cf. [O1] 7.3). The Hecke
algebras corresponding £ (I',.) are denoted b, (I',; Z) andhj (T',; Z), respec-
tively. For any commutative ring with unity, we set;(I';; R) := Hi(I'; Z) ®z
R and likewise for other algebras.

If we put

0 -1
Ty = [Nr 0] for r > 1, (1.5.3)

then we have
moT(n) =" | o T (n),

¢ 1 ¢ ’ % (154)
| Tr OT(qaq) = | Tr OT (qaq)a

both on My, (T';) and Si(T';). Thus H(T',; R) and ;. (T',; R) are canonically
isomorphic via the corresponden@n) «» 7*(n) andT'(q,q) < T*(q, q).
We set

Hk(N;R) = L@ Hk(Fr;R),
r>1
HL (N R) = L@ Hi(Tri R),

r>1

(1.5.5)

relative to the natural homomorphisnB(¢) — T'(n) andT'(q,q) — T(q,q)
etc.); and we defing, (INV; R) andhj(NV; R) in a similar manner. The element of
Hi(N; R) corresponding to the sequenceTifn) € Hy(T',; R) will be denoted
by the same symbdl'(n); and similarly forT*(n), etc.
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Via the Eichler—Shimura isomorphism, we may identiy.(I',; Z) and #},
(T; Z) with the subalgebras of EsdH (T, S¢(Q))) defined in the same way as
(1.5.2), where: = d + 2. By (1.2.7), we may considety,, as ane*H;;  ,(N;0)-
module.

Now we let(Z/N,Z)* > ¢ mod N, act onH(I',; R) (resp.H5(T',; R)) as
multiplication byT'(q, q) (resp.T*(q, q)). Thus if we set

Zy =1lim (Z/N,Z2)* = (Z/NZ)* x 2, (1.5.6)

r>1

Ha2(N; R) andH3(N; R) are naturally equipped with the structure Bf{ Zx]]-
(and, henceR[[U1]]-)algebras.

Remember that (resp.e*) stands for the idempotent attachedIt(p) (resp.
T*(p)). The following result is essentially due to Hida; the corresponding assertion
for hi,(N;0) andhj (N; o) being well-known:

THEOREM-DEFINITION (1.5.7). (i)Via the natural correspondencg(n) <
T(n) andT(q,q) < T(q,q), we have isomorphisms of algebre®(N;o) =
eH(N;o), for all & > 2; and similarly we have*#H3(N; o) = e*H; (N o).

In what follows, we identify these isomorphic algebras, and write #%0iV; o)
and e*H*(N; o), respectively. We make the same conventiorefarNV; o) and
e*h*(N; o).

(i) eH(N;o) ande*H*(N;o) are freeA,-modules of finite rank. The rank is
given by

-1 N
ranky, e h(N;o) + —— ety | — ).
7 2 e (3)

(i) Via the natural correspondence, we have isomorphisms

eH(N;o0)/wr g — eHay2(Ty;0),
e*H*(N;o)/wrd — e My o(Tr;0),
for every integers > 1 andd > 0.

Unfortunately, in [H3], Hida proves the result only for the Hecke algebras
attached to cusp forms. Thus we outline the proof for the convenience of the
reader. We may assume thads finite overZ,.

Letk = d+2 > 2. As we noted above, we can considgr, as are* ;. (N; o)-
module. Moreover, by (1.3.5), this is in fact a faith&if; (IV; 0)-module. We then
obtain an injective homomorphisma*#; (N;0) — Endy, (X4,,) = M, (n)(As),
the matrix algebra of size(\V) over A,. It is easy to see that this mapping is
continuous and, hence, we may identif§/; (N; o) with the o-subalgebra of
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Endy, (X4,,) topologically generated by &ll*(n) andT™(q, ¢). The assertion (i)
then follows from (1.4.4). It also follows that H*(V; o) is finite overA,.

The freeness in (ii) is more difficult and so we follow Hida’s method. Consider
M, (T,) as a subspace @f][¢]] via the usuaf-expansion and let

My (Ty; Z) := Mg (Ty) N Z[[q]], (15.8)
My(Tv; R) = My(T'y;Z) ®z R < Z[[q]] ®z R.

We then set
MI(Ty;0) i= @], _yM(Ty; K) Nollg]] (5 > 2), (1.5.9)

M®(Ty;0) = Uj)ZMj(Fr;U) in o[[q]],

and letM (T,; 0) denote the completion dé/>°(T,.; o) with respect to the natural
norm one[[¢]]. Then Hida proved that this subsetoffiy]] is independenof r > 1
([H2] Corollary 1.2) and we writé// (N; o) for this space.

We denote by}’ (T,;0) and H*/(T',;0) the Hecke algebras fak/’(T'; o)
defined similarly as before. Then by the above-mentioned result, the algebras

I|<_m H?(T'y; 0), I|<_m H*(Ty; 0), (1.5.10)
jz2 jz2

are seen to be ‘independentof: 1’ in the obvious sense ([H2] (1.15 a)), which
we denote byH'(N; o) andH*(N; ), respectively. These ark,-algebras in a
natural manner.

Now from the inclusiomV/,(T,; 0) — M (N;0) we get homomorphisms

pri - €M (N;0) - eHp(Ty; 0),

(1.5.11)
Pook - €H'(N;0) = eHi(N;o0) = eH(N;o0),

as in [H3] Section 1. Clearly), ;. is independent ot and, hence, we write fi.
Similarly, we obtain a homomorphism

pio t€"HY (N;0) - e*H*(N;o0). (1.5.12)

By virtue of [H2], Theorem 3.1¢*H* (N; 0) is free of finite rank oven,. Let us
now look at the homomorphisms induced freif:

e*HY(N;o)/wip — e H* (N;0)/win (n>0). (1.5.13)

These algebras act @ H1(T'y, S"(0)) = e*GES,(N), /w1, by (1.4.2). But by
[H2] Corollary 3.2, we know that

Q*H*,(N; 0)/wl,n ~ 6*H2+2(F1; 0) for n >p— 1. (1514)
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It follows that this isomorphism must factor througt*(N;0)/w1,,, Showing
that (1.5.13) is an isomorphism whenexer p — 1. The freeness in question then
follows from the above-quoted theorem and [H3] Lemma 6.3; and it also follows
thatp?_ andp, are isomorphisms.

As for (iii), we have a natural surjective homomorphistfi*(N; o) /wy 4 —
e*H; (T 0) by (1.4.2). Thus it is enough to show that these tvé@ o-modules
have the same rank.

For this, we recall the well-known duality: In general, let

mg(Tr;0) i ={f € Mp(Ty; K) | a(n; f) € o forall n > 1}, (1.5.15)
wherea(n; f) denotes the coefficient @f* in f. Then the pairing
(,):mg(Tr;0) X Hi(Tyr;0) = o, (1.5.16)

given by(f,t) :=a(1; f | t) sets up a perfect duality of freemodules (cf. [H2]
Proposition 2.1).
From this, (1.5.14), and the remark after it, we have

r:=ranky, e*H*(N;o0) = rank,eH,;(I'1; 0) = rank, em;(I'1;0), (1.5.17)

fori > p+ 1. By [H3] Lemma 5.3, we see that

, -1 N
r=dimg e ST K) + 220 3 p(t)e (—) . (1.5.18)
2 t
0<t|N
Similarly, we have
rank,e*Hy(T'y; o)
. " N
= dimg eSi(Ty; K) + 0] > plt)e (-) : (1.5.19)
2 t
0<t|N
Since we already know that
dimg e Sy (T,; K) = p" ranky, e h(N;o)
= p"Ndimg e S;(I'1; K) (1.5.20)

the assertion (jii) follows. The formula of the rank in (ii) is also clear.
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2. A,-adic modular forms and projective systems of modular forms

2.1. A,-ADIC MODULAR FORMS

Asin[O2], we WriteUlf/TJ,« for the set o “-valued characters f; /U, (identified
with the characters d¥; trivial on U,.), and put

Urs = |J UL/U,. (2.1.1)

r>1

Whene € ﬁl,f, we denote by, (resp.K.) the ring generated by the values of
e overo (resp.K), and define an elemeft ; € Az . by

P.q:=1(u) —e(u)ul = T — (e(u)u? — 1), (2.1.2)

for each integed > 0. Also, we define an integer > 1 by Ker(e) = U,..
Let Lk be the quotientfield ok,. If F = Y02 g a(n; F)g™ € Ay[[¢]]®a, Lk C
Lxl[q]], we set

Fea'= Z a(n; F)(e(u)u? — 1) - ¢" € K.[[q]], (2.1.3)

n=0

whenever the right-hand side is meaningful and note that this is the case except
possibly for finitely many pairs of andd.

Fore € U1/U,, we set
Mk(rr,&%)
={f € Mg(Ty;0:.) | f|oa=c¢(a)f forall a € Us}. (2.1.4)

Here, o, is an element of’; congruent to{aal ;] mod p" - M»(Z), and the

operator | o,,’ is deduced from (1.5.1) (see [02] 2.1 for further explanation about
such symbols).

We are now going to define and study the space's,eddic modular forms. As
in [O2], for the reason that will be clear later, it is convenient for us to start with
such forms of dixed weight.

DEFINITION (2.1.5). For each integér = d + 2 > 2, we define two types of
spaces of\ ,-adic modular forms of weight k and leu¥1 by

Mk(N;Ao)

= {F € AJ[ql] | Fet € My(T,, &;0.) forall e € Uy s},
M,’C(N;Ao)

= {F € AJlg]] | Fea € My(Ts.,;0.) for almostalle € Uy f}.
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These spaces arg,-modules in the obvious manner.

If F = Y o°ya(n; F)g" belongs to either one of these spaces, we’set
T(p) := > nroa(np; F)q". Thenitis clearthatF | T'(p))e.a = F-.a | T (p) when-
everF, € My (T, ¢; 0.); and hencer | T'(p) belongs to the same space. One can
define the idempotewrt= lim,,_, ., T'(p)™ on each of the spaces above. The spaces
Sk(N; A,) of A,-adic cusp forms are defined similarly; and we already know that
e Si(N; A,) is independent ok > 2 (cf. [02] (2.5.5)).Let us henceforth denote
this space by S(V; A,). Later, we will show that My, (N; A,) = e M[(N; A,);
and that this is independent bf> 2.

2.2. PROJECTIVE SYSTEMS OF MODULAR FORMS

Let 7. be asin (1.5.3), and put
M (Do) i={f € Mp(L',;Cp) | f |7 € Mp(Ly;0)}. (2.2.1)

If we denote by Ty: M (T',41;C,) — My (T',; Cp) the natural trace mapping, then
one can show that it sendsg; (", 1; 0) to M}/ (T';; 0) as in [02] 2.3.

DEFINITION (2.2.2). For eack > 2, we set
M (N;o) = Im M; (Ty; 0)

r>1

the projective limit being taken relative to,Tr

SinceMy(T';; o) is stable under all’(n) andT'(q, ¢), one sees from (1.5.4) that
M} (T',;0) is stable under all'*(n) andT*(q, ¢). Also, Tr, commutes with these
operators. It follows that we can considsi; (N; o) as a module ovet; (N;o)
(1.5.5). We can then considem; (N; o) as a module over*H*(N; o) or A, (cf.
(1.5.7)).

THEOREM (2.2.3).For eachk = d + 2 > 2, we have an isomorphism a&f,-
modules M, (N; A,) = e*9; (N 0), given explicitly as follows:

If 7 € eMy(N;A,), we send this element fo= (f,),>1 € e*M;(N;o0)
defined by

fr = prfl Z fe,d | T(p)_r | Tr_l'
EGU:](\]T

If f = (fr)r>1 € eM(N;0), we send this element to the uniqde €
e M (N; A,) satisfying

Fea= > e@fr |7 [T 03",

aEUl/UT
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forall e € ﬁl,f- Here,r is any integer such that > r..
Proof. The proof given for cusp forms ([O2] 2.4) works without any change in
the present case and, hence, we do not repeat it here. O

Via this theorem and the canonical isomorphisri (N;o) = e*H*(N;o)
(T(n) < T*(n),T(q,q) < T*(q,q)), we henceforth considerM(N;A,) as
aneH(N;o0)-module. One easily checks that the resultihgmodule structure
coincides with the obvious one and also that

(F1T(n))ea = Fea | T(n),
(‘7: | T(q7 q))E,d = ]:E,d | T(q7 q)a
forall F € e M (N; A,) ande € ﬁlyf.

(2.2.4)

2.3. A,-ADIC EISENSTEIN SERIES

Letu, v andc be positive integers; and Igtands be Dirichlet characters defined
modulou andw, respectively. Then we set

Ek(Xa ’l/), C)

o0 n B
= 0(¢) Loo(L— Ky X) + ) (Z X () (;) t* 1) ¢, (2.3.1)
n=1 \0<t|n

where L (s, x) is the Dirichlet L-function; andd(«) is 1/2 if ¢ is the trivial
character, and 0 otherwise. Whegns a Dirichlet character module, we denote
by x1 the character modulo LCM, p) induced fromy. We then havé. (s, x1) =
(1= x(p)p*)Loo(s; X)-

Let Eis;(T',-) be the orthogonal complement 8f(T",.) in M} (T',.) with respect
to the Petersson metric.

LEMMA (2.3.2) ([H3] Lemma 5.3 and its proof)Suppose that > 2 and

r > 1, and let Eis,(T',; Q) be the set of all elements &fis,(T",) having Q-
rational g-expansions. Thekis; (T',; Q) spansEis;(T',); and the idempotent
attached toT'(p) acting onEis;(T';; Q) ®q C, leavesEis,(T';; Q) stable. The
seriesEy(x1, ¥; ¢) with x, ¢ andc satisfying the following three conditions give a
basis ofe Eisy (T',.):

() x¥(—1) = (=1)* andcuv dividesN,;
(i) x and+) are primitive Dirichlet characters module andv, respectively;
(i) v andc are prime top.

Moreover, we have

. . (p") N
dime ¢ Eisy (I,) = £ e (=) .
c e Eisy > Ogleso @ < : )
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We are going to construct enough elements bfy, (N; A,)/e Sk (N; A,) using
this lemma. To do this, we first recall well-known facts abpistdic L-functions
(cf. Washington [Wa] Section 7.2): Létbe an even primitive Dirichlet character
of the first kind. Then there is a unique element

Az,, if 0#1,
F(T,0) € . , (2.3.3)
mAzp |f 0 - 1,

suchthat'(u®—1,6) = L,(s, ), the Kubota—Leopoldt-adic L-function attached
to 0. Here, and henceforth, we denotebthe trivial character.

We may consider an € ﬁ\l,f as a (primitive) Dirichlet character of the second
kind. It is then known that, moreover, we have

F(e(u)u® —1,0) = Ly(s,0c71). (2.3.4)
We set
G(T,0) = F(u *(1+T)"t - 1,0), (2.3.5)

so that we have
G(e(u)u® —1,0) = Ly(1 — k,0e) = Loo(1 — k, (few™)1), (2.3.6)

for k = d 4+ 2 > 2. Here,w is the Teichniller character; and, as in [Wa], we
considesw~* as a primitive Dirichlet character.
On the other hand, we can write every Z; as

a=w(a){a), (2.3.7)

with (a) € Us. If ¢ is a positive integer prime tp, we set
O _ 5o (5D i ®
AYT) =t(1+T)"D =y | 7 )T if () =u'". (2.3.8)
i—o \ !
Then using the same convention as above, we have

Ag(e(w)u? — 1) = t4ew™4(1), (2.3.9)
foranye € f]\l,f-
THEOREM-DEFINITION (2.3.10).Letf andt) be primitive Dirichlet characters

defined modula: and v, respectivelyand letc be a positive integer. We assume
thatf+y(—1) = 1; v andc are prime top; and cuv dividesN; = Np. Set

£0,910) = SGT02 + 3 | 3 ot (1) 4 | o
n=11 o<t|n
pit
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Then, for any: € Uy ; andd > 0, we have

E(0,%;0)e.q0 = Eqya((few™)1,;c).

Whenevero contains the values of and i, we have:£(0,v¢;c) € g2
e M, (N;A,) unlessd = w2 andy = 1; and (1 + T) — v ?)E(w 2, 1;¢)
has the same property.

Wher¥, ¢ andc satisfying the above conditions vary, andontains the values
of all ¢ ands, we obtain((p — 1) /2) 3oy n ¢(t)p(N/t) suchA,-adic Eisenstein
serieswhich are linearly independent ovér, moduloe S(N; A, ).

Proof. First note tha®w? is of the first kind. Then from (2.3.6) and (2.3.9),
we see that (0, v; c). 4 coincides WithEy ((few=9)1,1;¢) with k = d + 2 for
everyd > 0 ande € ﬁl,f- It is clear that, under our assumptidaw ¢, ) andc
satisfy the conditions (i)—(iii) of (2.3.2). Now assume tfatontains the values of
6 and. Then we have shown th#t, ((fsw—%)1,1; c) belongs toe My (T,; K.).

But it is well known that the Nebentypus character of this form is (the one induced
from) (Gew?)11p. We conclude thaf (0, y; ¢). 4 € e Mi(T;, €5 0:) ®,. K. for all
e € U1,y andd > 0. This proves the first part of the theorem.

That the number of tha ,-adic Eisenstein series is given by the above formula
is a special case of (2.3.2); and the linear independence follows by looking at the
specialization. 0

2.4. THE STRUCTURE OFe M} (N; A,)

Lete € UI/\U,« be a character whose values are contained We then denote
by Hx (T, €; 0) theo-subalgebra of EndMy (T, €; 0)) generated by all'(n) and
T(q,q). We also set

mi (T, €;0)
={f € M(Ty,e;0) ®, K | a(n; f) € o forall n > 1}. (2.4.1)

We can define a pairing
(,):mg(Tr,e;0) X Hi(Tpye50) — o, (2.4.2)

as in (1.5.16), which gives a perfect duality of freenodules. It follows from
(1.5.7) (iii) that we have a canonical isomorphism

eH(N;0)/Peyg —> eMai2(Ty, €5 0), (2.4.3)
for all d > 0 ande as above. We therefore have the equalities:

rank, emy (T, €;0) = rank, e Mg (T, €;0) = ranky, e H(N; o). (2.4.4)
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Now the purpose of this subsection is to prove the following

THEOREM-DEFINITION (2.4.5) The subspace My (N; A,) of A,[[¢]] is inde-
pendent ofk > 2. Moreover, it is a freeA,-module whose rank is equal to
ranky, e H(N; 0). We hereafter denote this spaced/ (N; A,).

For the proof, we follow the method of Hida [H4] 7.3. As usual, put
d+2>2.

LEMMA (2.4.6) e M/ (N A,) is afinite and free\,-module.

Proof. We first show that, ibg is the ring of integers of a finite extensidfy of
K, thene Mj.(N; A,,) = e M[(N; A,) ®, 0o. (The same holds far M, (N; A,).)
For this, we assume for the moment th&$ is a Galois extension oK whose
Galois group iS(o1,...,0m}. Let{ws,...,wn,} be a basis 0y overo. Then we
may write everyF € e Mj(N;A,,) asF = > iv; w;F; with F; € A [[q]]. If we
let Gal Ko/K) act on the coefficients ok,,[[¢]] = oo[[T’, ¢]], then it is easy to
see that eact?i is an element oé M, (N; A,,). Since the matriXw;” )1<; j<m
is invertible, we can express; as a linear combination af?i’s. This shows
that F; € e M} (N;A,,) NA,[[q]] = e M (N;A,) and, henceg M (N; A,,) C
e M (N; A,) ®, oo. The converse inclusion is obvious.

In the general case, we |&f; be the Galois closure dfy/ K, and denote by,
its ring of integers. We then obtain the desired equality by taking thefG#K))-
invariants from the equality: M (N; A,,) = e M[.(N; A,) ®, o1.

After this remark, the proof goes as that of [H4] 7.3 Theorem 1 as follows:

o Let{Fy,...,F-} CeM](N;A,) be amaximal set af,-linearly indepen-
dent elements. This is a finite set; and in fads bounded by rank eH(N; o)
by (2.4.4). Then there is a nonzeid(T) € A, such thate M} (N;A,) C
(/DT (AFr+ -+ AF).

o We may therefore take anc Uy ; so thatF, 4 € e M (I';_, €, 0.) for all
F € e M (N;A,). By the first remark, we may assume that= o to prove our
lemma.

¢ One sees that

P.4-e My (N;A,) = {F € e Mj,(N;A,) | F.q = O}.

(Note here that the corresponding assertionefdf(N; A,) is far from being
trivial.) Thus the correspondenge— F. 4 gives an injection

eM,'C(N;AO)/PQd — e My(T,_,¢;0).

If {Fi,...,F} C eM;(N;A,) gives ano-basis ofe M} (N;A,)/P: 4 when
reduced moduld. 4, then it is a free basis @fM| (N; A,) overA,. O
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LEMMA (2.4.7). e M (N;A,) C A,[[¢]] is independent of > 2. Moreover, its
A,-rankis equal taanky , eH(N; o).
Proof. It follows from the proof of the lemma above that

ranky, e M (N; A,) < ranky, eH(N;o).

However,e M} (N; A,) containse S(N; A, ), which is A,-free, and the\,-adic
Eisenstein series constructed in (2.3.10). Therefore, we have

ranky, e M} (N; A,) > ranky, e S(N; A,) + p%l S o(t)e (g) ‘
0<t|N

By (1.5.7) (ii) and [02] (2.5.3), the right-hand side is equal to rank(V; o).
This proves our assertion concerning the rank.

We have also shown thai\/}(N; A,)®4, Lk isspanned ovel g bye S(N; A,)
and theA ,-adic Eisenstein series in (2.3.10). It is therefore independentoR
and, hence, so isBM|,(N; A,) = (e M[(N; A,) ®a, Lx) N A,[[q]]- O

In the following, we writee M'(N; A,) for the common space in the lemma
above.

LEMMA (2.4.8). Lete € U /U, take valuesin. Then forany € e My(T'y,¢;0),
there is anF € e M'(N; A,) such thatF, ; = g.

Proof (cf. [H4] p. 215). We considef (w2, 1;1) given in (2.3.10). Its ‘con-
stant term’ isG (T, 1)/2, and we recall thati (uv® — 1,1) = (,(—s — 1) ((2.3.4),
(2.3.5)), where(, is the p-adic Riemann zeta function. Pt := ((1+ T) —
u~2)€(w2,1; 1), which belongste M;(N;A,) foralll > 2. Then&’ |;_,—2_1=
(2u®) " Y(p~t — 1)log,u =: C is a constant which is in fact g-adic unit. Let
E" be the element of\,[[¢]] obtained fromC~£’ by the change of variable
T+ e(u) tu=k1+T) - 1.

Now for g as above, it is easy to see that€” € A,[[¢]] belongs taV//(N; A,)
forany! > k + 2; and also thatg - £). 4 = g. It follows thatF :=e(g - £") has
the desired property. O

Theorem (2.4.5) would follow from what we said above, and the following
lemma:

LEMMA (2.4.9). e Mj(N;A,) = e M'(N; A,).
Proof (cf. [H4] loc. cit.). Assume otherwise and take an elensErt ¢ M'(N;;

A,) — e M (N;A,). Then there is am € (71,f such thatF, 4 & e My (T, €; 0.).
It follows from this and (2.4.8) that

rank,.e M'(N; A,_)/P. 4 > rank,_e My (T',_,&;0.) = ranky e H(N; o)
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which contradicts (2.4.7). |
As a consequence of (2.2.3) and (2.4.5), we record:

COROLLARY (2.4.10). For anyk andk’ > 2, e*90; (N; 0) ande*M;, (N; o) are
canonically isomorphic ag*H*(N; o)-modules; and these are frdg-modules of
finite rank.

2.5. SPECIALIZATIONS

As for the specializations of M (N; A, ), we obtain the following result immedi-
ately from the argument of 2.4:

PROPOSITION (2.5.1)Lete € (/]\17f take values ino. Then for every integer
k =d+ 2> 2, the correspondence: — F. 4 gives an isomorphism:

e M(N;A,)/P. g — e My(T,_,€;0).

Next, fore € Ulf/\U,u with values ino, we set
M (Tr,e;0) i={f € Mp(T,;Cp) | f |7 € Mp(T'y,e;0)}. (2.5.2)

We can then define
pe i €"ML(N;0) = "M (L), €;0) (2.5.3)

bYpe((fr)r>1) = Xacvn/u,. €(@) fr. | 04, Whichfactors through* it (N; o)/ Pr 4.
One then obtains the following result in the same manner as in the case of cusp
forms (cf. [O2] (2.6.4)):

PROPOSITION (2.5.4)Let the notation be as above. Then we have the following

commutative diagram:
"M (N; o) (2;3) e M(N;A,)

can can

e*SmZ(N;o)/Pg,d eM(N;Ao)/ngd

(2.2.3)

Pe 1 (2.5.1)

Y

e* M (Ty.,e;0) —— e Mg(T,_,€;0),
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if we define the bottom horizontal arrow By— f | 7, | T'(p)"=. In particular,p.

induces an isomorphiseim (N;o)/P. g — e*M}(T,,,€;0).
In concluding this section, we add the following remark:

Remark2.5.5). Seem(N;A,) = (e M(N;A,)®a, Lk)N (LK +qA,][[q]])-
Then we can show that the pairirgn(N;A,) x eH(N;0) — A, defined by
(F,t) == a(1;F | t) sets up a perfect duality of frek,-modules; and also that
e M(N; A,) is a faithfuleH(N; o)-module. Especially, we can identié# (N ; o)
with the A,-subalgebra of End (e M (N; A,)) generated by all'(n). This point
of view was taken up as the definition @/ (N; o) in [H4].

3. Preliminaries on generalized Jacobians
3.1. GENERALIZED JACOBIANS

In this section, we recall and study some properties of generalized Jacobians of
Rosenlicht and Serre. Basic references are Serre [Se] and Bagkbbbhmert—
Raynaud [BLR].

For simplicity, we assume that our base fiél of characteristic 0; and consider
only the generalized Jacobiansreflucedmoduli. Now letY be a geometrically
connected and smooth curve ovBr and X its smooth compactification. We
considerC' .= X — Y as the reduced closed subschemeXofWe henceforth
assume that’ is nonempty.

Recall that, for anf’-schemeS, an invertible sheaf oX's (the base change of
X from F to S) rigidified alongCy is a pair(L, «), whereL is an invertible sheaf

on Xs anda is an isomorphism@¢, — L |¢.. The functor
(Picy/r, C) 1 (SCYF)° — (Sety (3.1.1)
assigning to each € (Schy F)? the set of isomorphism classegd¥, o) as above,

is represented by a commutative group scheme locally of finite presentation over
F'. We denote this group scheme By. Its identity component

P2 =: GJy (3.1.2)
is thegeneralized Jacobiaof X with the modulug’.
For anyF-schemeS ands € Y(S), we may consides as a section ofs over
S and, hence, also as an effective relative Cartier divisoof degree 1 orX s over
S. The correspondence:— (Ox (D;) together with its canonical rigidification)
gives anF’-morphism

wy 1Y — Py, (313)
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the canonical morphisnof Y to Py-. If we fix a rational pointcg € Y (F'), we also
have a morphism

LY zg - Y —» GJy, (314)

BY tyeo(s) = tv(s) — ty(zo,s) for s € Y(S) as above, whereg s is the base
change of the sectiary to S. We may considesy and.y ;, as rational mappings
from X to Py andGJy, respectively; and they enjoy the universal property of
‘Albanese type’ ([BLR] 10.3 Theorem 2, [Se] V& Theoeme 2).

Let Px be the usual Picard scheme &f over F', and Jx := P$ the usual
Jacobian variety ofX. Then there is a natural homomorphism ‘forgetting the
rigidification”: Py — Px and, hence, als@'Jy — Jx. We have a natural exact
seqguence of commutative group schemes éver

0—-Vy - VSi— Py —» Px — 0, (3.1.5)

whereV; (resp.V;:) represents the functgBchy F)° — (Setg which associates
eachS with the groud’(Xs, 0%, ) (resp.I'(Cs, Of, ) ([BLR] 8.1). We recall that
the middle arrow sendse I'(Cs, Of,, ) to the pair(O x (the multiplication byu))

€ Py (S). In our situation, we clearly havie( X s, 0% ) = I'(S, O%) and, hence,
Vi = Gp. On the other hand, it is also clear thgt = RC/F(Gm), the Weil
restriction ofG,,,. Thus, if we set

Ty = Ker(Py — Px) = Ker(GJy — Jx), (316)
we have a canonical isomorphism
Ty = Coke(G,, — Re/p(Gm)), (3.1.7)
where the morphism corresponds to the natlial, O%) — I'(Cs, O¢, ).
We denote by C¢y) =Cot(GJy) the cotangent space at the origin Bf
or GJy, and identify it with the space of translation invariant differential forms
on Py or GJy. We also identify it with thef’-dual of the Lie algebra Lig?%y) =

Lie(GJy). Let F'[¢] be the ring of dual numbers ovey, and sefS[e] := S Q@ F[e]
foranF-schemes. LetOx.1(1onC[e])* be the subsheaf @ () whose sections

take value 1 or[¢], and defingx (1 onC)* in a similar manner. Then the exact
sequence of sheaves &n
0 — Ox(=C) — Oxp(1onC[e])* — Ox(lonC)* — 0, (3.1.8)

yields the canonical isomorphism

HY(X,0x(~C)) = Ker(Py (F[e]) — Py (F)) = Lie(Py). (3.1.9)
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With these notations, we have the following important compatibility (Deligne [D]
2.3; one can prove this in a similar manner as Mazur {®g)): The diagram

by

Lie(Py)Y

HO(Y’ Q%//F)
! can (3.1.10)

HY(X,0x(-0))" —oer HY(X,Q%/£(0)),

Serre

commutes, where the superscriptimeans thef’-dual, and the bottom horizontal
arrow comes from the Serre duality. (It is Proposition 5 of [Se]*that the
image ofij, is H°(X, Q% (C)).)
Next assume that all the points 6fare F'-rational. LetC = {¢c1,..., ¢} and
leti; : Spe¢F) — X correspond te;. Then the exact sequence
0— Ox(—C) = Ox — &'_ij(F) = 0, (3.1.11)
obtained by ‘evaluation at;’ gives the exact sequence

0_s 09, ®c;ec F = HYX,0x(-C)) - HY(X,0x) — 0.(3.1.12)

Onthe other hand?/»(Gr,) is the product ok copies ofG,,,, which are indexed
by C in this case.

LEMMA (3.1.13). (i) The notation being as above, the following diagram com-

mutes:

0 F—2 . g coF HY(X,0x(-C)) — HY(X,0x) 0
l (3.1.9) |2 !

0 — Lie(Gn) — [] Lie(Gn) Lie(Py) Lie(Px) 0,

c; €C

if we define the left two isomorphisms in a natural mannér¥ 1 is sent to
1+ ¢ € Ker(G,,(F[e]) — G,(F)), which corresponds tXd/dX if G, =
Spe¢F[X, X ~1])). Here, the bottom horizontal sequence is obtained {{®rh.5)

(i) The F-dual of the sequend®.1.12)is identified with

®;Res;

0— H°(X, Q}\’/F) — H°(X, Q%{/F(C)) @Bcjec F L F 0

via the Serre duality, the middle arrow being the mapping ‘taking residueg.at

comp4193.tex; 21/07/1995; 13:12; v.7; p.26

https://doi.org/10.1023/A:1000556212097 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000556212097

ORDINARY p-ADIC ETALE COHOMOLOGY GROUPS 267

Proof. As for the first assertion, it is enough to show the commutativity of the
middle square. Thus take and fix;)1<j<k € ®¢ect = HO(X, @lez'j*(F)).
Its image iNH(X, Ox(—0C)) is the class of th&)y (—C)-torsor consisting of
local sections ofOx whose values at; area;. Take an open affine covering
{U;} of X so that this torsor admits a sectippon eachlU;. Then the image of
the above class i/ (X, Ox1e)(1onCle])*) is represented by théech 1-cocycle
{14+(pj lv:nv; —pi lvino,)e € T(UiNU;, Ox (1 0nCle])*)}. Onthe other hand,
if we start with (a;)1<;<x and go anticlockwise, then we gef, o) € Py (F'[e])
with £ = Ox|,] anda given by multiplication by(1 + aje)1¢j<k- It is easy to
see that this corresponds to the above cohomology class, which proves the first
assertion. The second assertion follows from the explicit description of the Serre
duality ([Se] Il r°8). O

3.2. FUNCTORIALITY OF GENERALIZED JACOBIANS

Let Y7 andY> be smooth and geometrically irreducible curves aveand letX;
andC; have the same meaning as in 3.1 ¥91(z = 1, 2). We assume that we are
given anF'-morphism

f: X1 — X, such thatf~1(C2) = Cy (set theoretically. (3.2.1)

Its restriction toY; will be also denoted by .

For an isomorphism class @i, ) in Py,(S), we can naturally attach its
pull-back(f5(L), (fs|c, )" (). This correspondence yields homomorphisms of
F-group schemes

(3.2.2)

Iy Py, — Py,
GJYZ — GJyl.

Also, from the ‘Albanese type’ universality referred to in 3.1, we see that there
are uniqueF'-homomorphisms

fo { gf};j’g:’n’ (3.2.3)
such that the following diagram commutes:

Vi—2 . Py

f fe (3.2.4)

Vs Py,.
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From this, we clearly have the commutative diagram

HO(X1, 0%,/ (C1)) ~~— Cot(Pyy)

/|

HO(Xz, Q%(Z/F(Cz)) D COt(PYz)a

Cot(f.) (3.2.5)

where the vertical arrows are obtained by pulling back differentials.
As for (3.2.2), we have the following commutative diagram:

H°(X1,0%,/#(C1)) <~ Cot(Py;)

trace{

H®(X5,9%,/7(C2)) < Cot(Py,).

Cot(f*) (3.2.6)

In fact, the compatibility (3.1.10) easily reduces this to the commutativity of the
diagram below whet is algebraically closed:

HO(X1,0%,/p(C1))" 5o H'(X1,0x,(=C1))

Serre

can (3.2.7)

(tracev‘
S
HO(X5,9%,/p(C2))Y =25 HY (X2, Ox,(—C5)).
This amounts to the formula in Lemme 4 (cf. also remark 1) on the subsequent

page) of [Se] Il 112, via the explicit description of the Serre duality.
Next, we look at the torus parts of the generalized Jacobians. For this, we assume

that bothC andC> consist ofF-rational points; and writ€'y, = {cs,...,ct} and
Cy = {da,...,d;}. Then, from the definitions, we see that the following diagram
commutes:
Gn —— [] Gm - GJy, - Jx,
¢ €C
I f* ‘ f* (3.2.8)
Gn — ] Gm G Jy, Jx,,
d; €Cy
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where the horizontal arrows come from (3.1.5), and the middle left morphism is
given by:G,, _deg, Hcieffl(dj) G,, on thejth factor of]'[djecz G,,. Also, we

have the following commutative diagram:

G, — H (T - Gy, - Jx,
c; €Cy
deg(f) l f* lf* (3.2.9)
Gn — ][] Gm G Jy, Jx,-
d; €Cy

Here, the left vertical morphism is — z%9/). The middle left morphism sends

z € Gy, (S) in theith factor tox*(%/%) in the jth factor, if f(c;) = d; and the
ramification index ofc; overd; is e(c;/d;). To see this, we only need to check
the commutativity of the middle square. Since we are in characteristic zero, it is
enough to prove that the square obtained by taking ‘Cot’ is commutative. In view
of (3.2.5) and (3.1.13), this reduces to the obvious commutativity:

@zRe$l
EBciech Ho(XlaQ%(l/F(Cl))
‘ /- (3.2.10)
Ddjec, V' o,Res,, HO(XZaQ}\’Z/F(CZ))

where the left arrow sendsin the jth factor to®,, ¢ j-1(4;)e(ci/d;)a.

3.3. ETALE COHOMOLOGY GROUPS AND GENERALIZED JACOBIANS

In this subsection, all the cohomology groups will be étele cohomology. LeX,
Y andC be as in 3.1; and indicate by bar the base extension frdmits algebraic
closureF'. Then the ‘Kummer theory’ provides us with the canonical isomorphism

for any positive integer.,, where the subscript,’ in the right-hand side means
the kernel of multiplication by, ([SGA4] XVIII 1.6.4). This in turn gives us an
isomorphism

HY(Y,Zy(1)) 2 T,(GJy), (3.3.2)

T, being the usua-adic Tate module. Combining these with the Poigaduality,
we obtain the following canonical isomorphisms:

HY(Y,Z/nZ) = Hom(,GJy (F),Z /nZ),

137 ~ (3.3.3)
H*Y,Z,) = Hom(T,(GJy),Zp).

comp4193.tex; 21/07/1995; 13:12; v.7; p.29

https://doi.org/10.1023/A:1000556212097 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000556212097

270 MASAMI OHTA

Now we consider the situation as in 3.2. We then first see that the diagram:
HY(Y1,Z,) — Hom(T,,(GJy;), Z,)

Try Hom(f*,Z,) (3.3.4)

HYY2,2,) — Hom(T,(G'Jy,),Z,),

commutes, where the left vertical arrow is the trace mapping with respeftct to
This indeed follows from the well-known fact that the Poiredual of Tr is the
canonical mappingt (Y 2,Z,(1)) — H(Y1,Z,(1)). The commutativity of the
following diagram seems less obvious to us:

H*(Y1,Z,) ~~ Hom(T,(G Jy;), Z,)

Hom(fx,Zp) (3.3.5)

can

HYY 2,2,) — Hom(T,(GJy,), Z,).
For this, we show the commutativity of the diagram
HYY1,Z2/nZ) =~ Hom(,G.Jy,(F),Z/nZ)
can‘ ‘ Hom(f,Z/nZ) (3.3.6)
HYY2,Z/nZ) —~ Hom(,G Jy,(F),Z/nZ)

for any positive integen. We may assume thd = F and, hence, drop the bar
for the simplicity of the notation in the following. We fix ar-rational pointz, of
Y7 and putz; := f(z1), so that the diagram

Vi — 2L Gy,
/ . (3.3.7)
Yo 4”}/2@2 GJY2

commutes. Consider the exact sequence

0— ,GJy, = Gy, — GJy, = 0 (3.3.8)
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of commutative group schemes ovéfor: = 1 or 2. We can then view (the middle)
GJy, as an,GJy,-torsor on (the right)GJy,, which determines a cohomology
class inHY(G Jy.,,GJy;). (Note that,GJy, is a constant group scheme under
our assumption.) Now take € Hom(,,G Jy; (F'), Z /nZ). Changing the structural

nGlJy,
group byu, we obtain & /nZ-torsorG Jy; /\Y Z /nZ (the contracted product via
u) on G Jy;; and then taking its inverse image under,., we get a cohomology
class inH'(Y;,Z/nZ). In this way, we obtain a mapping

@; - Hom(,G.Jy.(F),Z/nZ) — HY(Y;,Z/nZ). (3.3.9)
It is then known that-y; is inverse to one of the horizontal mappings in (3.3.6)

([SGA4Y/2] Arcata VI (2.3.3)). Therefore, starting with € Hom(,G.Jy,(F),
Z/nZ), itis enough to show that the twt/nZ-torsors on

nGJYZ
GJyll(f*)*(GJYZ A Z/’n,Z)

nG]YZ nG]Yl
g(f*)*GJYZ A Z/nZ and GJy, A Z/nZ

are isomorphic; the latter being definedjsy.Jy, (F) L~ ,G.Jy,(F) —~ Z/nZ.
But we have the following obvious commutative diagram:

0 WGy, — GJy, —— Gy, 0
fe f I (3.3.10)
0 nGJy, — Gy, Gy, 0.

Since the multiplication by: on G'Jy, is étale,(f.)*G Jy, is represented by the
fibre productG'Jy, xa.,, G'Jy, obtained from the right square above. We thus
have a morphismGJy; — (f«)*GJy, over GJy,, which commutes with the
action of, G Jy; and,,G Jy, via f.. We conclude that there is a morphisn¥gfnZ-

nG.J WGT
torsors:G Jy, /\Y1 Z/nZ — (f)*GJy, /\Y2 Z/nZ, which is automatically an
isomorphism. This completes the proof of the commutativity of (3.3.6) and (3.3.5).

3.4. MODULAR GENERALIZED JACOBIANS AND HECKE OPERATORS

Suppose that we are given a congruence subdgrafiSL,(Z) and any € GL(Q)
with positive determinant. If we s& := I' N o 'T'«, then we have the following
morphisms of Riemann surfaces:

MNH 2L T\H -2+ T\H, (3.4.1)
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where the left (resp. the right) arrow is the natural projection (resp. given by
modI” — «a(z) modT"). Assume that we are given a model of this situation

y v Loy, (3.4.2)

all defined over a subfield@ of C. This extends to a diagram between smooth
compactifications oveF

x 2 x' 1. x. (3.4.3)

As before, we sef ;= X — Y andC’ := X' —Y”’. Then using (3.2.2) and (3.2.3),
we can define endomorphisms@fly over F' in two ways:

T :=¢q.0p", T  :=p,oq". (3.4.4)
Now we have canonical isomorphisms:

Cot(G.Jy) @ C oo f °(X, 0%, 1(C)) ®r C 2 My(D), (3.4.5)

the latter being the usual ongdq/q <+ f. Let

Lol =[] T8; = [[ T, (3.4.6)
i j

be disjoint. Then, from the commutativity of (3.2.5) and (3.2.6), one easily derives
the following:

LEMMA (3.4.7). Via (3.4.5) the endomorphisr@ot(T") (resp.Cot(T*)) corre-
sponds to the usual operatgr[T'al'] (resp. ‘ | [[al']*’) on M,(T"); that is,

flTal] = Zflﬂu f1[Lall* Zfl

EXAMPLE (3.4.8). We assume thBRtisT'1(M) and thafy” is the canonical model
of I'\ H overQ.

0!
obtain endomorphisms @éf.Jy- defined oveQ by (3.4.4). They will be denoted by

T () andT™*(1), respectively.

(i) Let ¢ be a positive integer prime td/. If we takea to be an element of
SL,(Z) congruent t({qgl ’(;] modM - M,(Z), we again obtai®Q-endomorphisms
of G Jy-, which will be denoted b¥'(q, ¢) andT*(q, q), respectively.

(i) Let o = H} *01] =: 7. In this case, we get an involution 6f.Jy- defined

overQ(e?™/M),

(i) Let o := [1 0] with a prime numbet. Then we can také" to beQ, and
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By (3.4.7), the endomorphisms in (i) and (ii) above induce the operators of the
same name on C@# Jy') ®g C = M(T). Thus the subalgebra of Eg¢F.Jy)
generated by all’'() andT'(q, q) (resp.T*(l) andT™*(q, q)) is canonically isomor-
phic to the Hecke algebra ov&rattached taV/>(T") of the same sort. By (3.3.4)
and (3.3.5), the isomorphisms in (3.3.3) are also compatible W(th and7™*(I)
etc. Similarly, the automorphism defined in (iii) corresponds|te’‘on M;(T").
Conjugation by this involution interchang@g/) and7*(1); and alsdl'(q, ¢) and
T*(q, q) (cf. (1.5.4)).

Finally, we wish to write down the effect of the endomorphigirend 7™ above
on the torus parfy (3.1.6) of G.Jy. This is equivalent to describe the induced
endomorphisms of the Tate modulg(7y-). However, for later use via (3.3.3), it
is rather convenient to describe the adjoint action on the dual group. To do this, let
us denote by ,[C] the freeZ,-module generated by the elements¥(Q), the
latter being identified W|tIT\P1( Q). Itis clear from (3.1.7) that we have an exact

sequence

0 Z,(1) 2% 7,[0)(1) = T,(Ty) — O. (3.4.9)
The pairing

Z,[C1xZ,[C) = Zy | 3 ace, 3 bee|i= 3 ab. (3.4.10)

ceC(Q) ceC(Q) ceC(Q)

obviously gives a perfect duality &,-modules. In the following, we identify
Hom(Z,[C],Z,) with Z,,[C] by this pairing. We therefore obtain from (3.4.9) the
exact sequence:

sum

0 — Hom(T},(Ty ), Z,) — Z,[C](—1) - Z,(~1) — 0. (3.4.11)

PROPOSITION (3.4.12)The notation being as aboVéy is stable undefl” and
T*; andHom(T', Z,,) andHom(T™*, Z,,)) onHom(T},(Ty'), Z,) are induced from the
Z,-linear endomorphisms & ,[C] determined b)(l) and (i) below via(3.4.11)
respectively.

() Z,[C) > 0@ 3em X7 e
(i) Z,[C) > C[Q) 3¢ i -c.

(Thus they look likeT™ andT, respectively!)
Proof. We may fix an isomorphisnZ, (1) = Z,,, and neglect the Tate twist to
prove our proposition. Define#,-linear endomorphisrti of Z,[C] by

CQoc— Z e(d/p(d)) - p(d),
deq=*(c)
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where the sum ranges over dlle C'(Q) such thatg(d) = ¢. Then by (3.2.8)
and (3.2.9), it induces the action @ on T, (Ty) via (3.4.9). If we define an
endomorphism” of Z,[C] by (t*(c), ) = (¢,tY(¢')), we have

()= eld/d)q(d).
dep~i(c’)

A simple group theoretical argument shows that this coincides with the endomor-
phism given by (ii), which proves our assertion ot.

The proof of the assertion fd@r (which actually will not be used in what follows)
is similar. O

4. Thep-adic Hodge structure ofe” GESp(N),

4.1. GOOD QUOTIENTS OF MODULAR GENERALIZED JACOBIANS

We now return to the situation of 1.1. We set

Cr =X, -V, (4.1.1)
(the reduced cuspidal subschemeXg), and write

GJ, =GJy,, Jr = Jx,, T =Ty, (4.1.2)

for the generalized Jacobian &f. with the modulug’;., the Jacobian oX,., and
the torus part of7J,., respectively. They are all defined ow@r The purpose of
this subsection is to construct certain quotien&of. following Mazur and Wiles
[MW1] and Tilouine [Ti].

Recall thato?~! = T",_1NTo(p"), andY;"~Lis the canonical model @’ ~\ i
overQ (1.2). We have natural morphisms

O D T (4.1.3)
(Here, ®9 = I'1(N) N To(p) andYy = Y1(N).) We define the quotient group
schemes

ap  GJp = Qp, (4.1.4)

inductively as follows: First we define
Q1= GJl/WI(Gjylo). (4.1.5)
If we have already constructed_1: GJ,_1 — Q,_1 (r > 2), we put

K, == Ker(a;_10 pps : GJYTPl = Qr-1),

4.1.6
Qr = GJ,/(m}(K;))°. ( :
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Note that we are taking quotients bgnnectedubgroup schemes.
Recall also that we have canonical isomorphisms (3.4.5):

Cot(GJ,) ®q C = HO(X,, 2%, o(Cr)) ®q C = Ma(T,). (4.1.7)
PROPOSITION (4.1.8)The notation being as above, the image of
Cot(a,) : Cot(Q,) ®g C — Cot(GJ,) ®q C,
corresponds, vig4.1.7) to the following subspace af>(T",), for eachr > 1:
B_1 D {f € Ma(T;) | f|oa=c¢(a)f for al a € (Z/N,Z)*} =2 M

Here, the inner sum ranges over all the Dirichlet charactarsl V; whose conduc-
tors are divisible by?, ando, € SLy(Z)is congruentt({“a1 Z] modN;-M>(Z).

Proof. We proceed by induction om. First note that the kernel of:
GJyr-1 = Gy is finite. Forr = 1, we have a commutative diagram with exact
horlzontal lines:

0 CotQu)e <X CotfGir)e 2t CotlGyo)c 0
l {l
Mz(rl) trace Mz((pg) 07

by (3.2.6), where the subscript’*means ®qC'. The trace mapping is given by
M>(T1) o f = Y, f | o4 (resp. 212 f | og) if N > 3 (resp. otherwise),
the sum ranging over all € (Z/pZ)* — (Z/N1Z)*. Our assertion for = 1
therefore follows.

Next suppose that > 1. We have an exact sequence

Cot(ar)

0 — Co(@;) ——Cot(GJ,) — Col(K,) — O,

and also a commutative diagram

Cot( Cot( Prx)

Cot(GJ,)c L co ot(GJyr-1)c Cot(GJr-1)c

l l

Ma(Ty) Ma(®; 1) Ma(Tyr-1),

trace can
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by (3.2.5) and (3.2.6). But by the induction hypothesis, there is a commutative
diagram with exact horizontal lines

Cot(a—100r«
- @ >

L Co(GJy1)c — Cot(K,)c —— O

0 Cot(@Qr—1)c

l l

0

Mr—l

can Mp(@;7H).

Combining these, we conclude thate M>(I',) = Cot(GJ;)c lies in the
image of CotQ,)c if and only if its trace toM(®"~1) belongs toM, 1. Our
result follows easily from this. O

COROLLARY (4.1.9). Kefa,) = (n}(K,))? is stable under al’(I) andT'(q, ¢)
(cf. (3.4.8) for these endomorphisms®¥,.).

Proof. It is enough to prove that Li&er(«;)) is stable under such operators.
By (4.1.8) and the remark after (3.4.8), we are reduced to show\thais stable

under the Hecke operatdf§/) andT(q, q), which is clear. O

It follows that the action of the Hecke alget¥a(T",; Z) on G J, (cf. the remark
after (3.4.8)) induces a homomorphisis (', ; Z) — Endy(Q,) for eachr > 1.

Let B, be the ‘good quotient’ of,. defined in a same manner as above ([Ti] Sec-
tion 2). Here, as before, we assume that the kernel of the quotient homomorphism:
J» — B, is connected. Then, from the construction, it is easy to see that there is a
unigueQ-homomorphism@, — B, making the following square commutative:

GJy ——— Q,

(4.1.10)

J, B,

It is also easy to see that the kernel of this homomorphism is a quoti@htasfd,
hence, it is a torus.

4.2. p-DIVISIBLE GROUPS ATTACHED TO MODULAR GENERALIZED JACOBIANS

We have seenin 1.5 thet{(N; o) ande*H*(N; o) are naturally equipped with the
structure ob[[ Zy]]-algebras (cf. (1.5.6) and (1.5.7)). Especially, we can decompose
them as:

eH(N;0) = Dimodp—1H(N;0)),

. 4.2.1)
e H*(N;0) = Bimodp_1€ H*(N;0)®),
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where the superscript?’ means thevi-eigenspace with respect to the action of
(Z/pZ)* C Zn.

DEFINITION (4.2.2). As in [O2], we denote by (resp.c*') the idempotent of
eH(N; o) (respe*H*(NN; o)) corresponding to the projectordn o1 e (N, 0)®
(resp®izo,—1 e H*(N; a)(i)). We use the same symbol to denote its homomorphic
image to other algebras (e«f{x(L';; 0) (resp.e*H;.(I';; 0)) via (1.5.7) (iii)).

See [02] (3.2.7) for the reason why we have to excludeJtheand thew—1-
eigenspaces. (Actually, the argument of this subsection works without excluding
thew~1-eigenspace.)

In general, ifG is a group scheme over a schefehich is an extension of an
abelian scheme by a torus, then the kernels of multiplicatiop’by,» G) form a
p-divisible group ovelS. We denote thig-divisible group byG(p).

PROPOSITION (4.2.3).The guotient homomorphisi induces an isomorphism
of p-divisible groups ove®: ¢’ - GJ,(p) — €' - Q,(p).

Proof. Write L, (resp.L,) for the kernel ofGJ, — Q, (resp.J, — B,); and
let ! be the kernel of the natural surjective homomorphidm:— L'. Then

we know thate’ - ,»L7.(Q) = {0} ([Ti]; cf. also [02] 3.2). It follows that we

have an isomorphism - ,n L/(Q) —— ¢’ - ,n L.(Q) for eachn > 1. To prove
thate’ - L, (p) is trivial, it is enough to show thaf'(p) has no unit eigenvalue on
T,(L)® ®z, Q, wheni # 0 modp — 1. But sinceL! is isomorphic to a sub-
group scheme of the tords, this is equivalent to saying that the same holds for
(Lie(L!) ®q Q). Thus, we need to show that, fog 0 modp — 1, 7(p) has no
(p-adic) unit eigenvalue ofCot(L") ®q C)*, which is isomorphic to a quotient of
(M3(T',)/M,)® by (4.1.8). This is a consequence of Hida [H1] Proposition. 1.

Next, let us denote by, the automorphism ofJ, induced byr, = []3 *01]

(3.4.8). It is defined ove®((x, ), where(y, is a primitive N,th root of unity. If
o € GallQ(¢n,)/Q) and(y, = (%, with a positive integes, then we have

wy = wyoT(a,a) =T"(a,a) o w,. (4.2.4)
We define
QF = GJ, Jw, (Ker(ay)). (4.2.5)

From the above relation, we see that(Ker(a,)) is Q-rational; and hencé€); is
defined oveQ. We also see that there is a natural homomorphggil’,; Z) —
Endy(Q;). We thus obtain the following obvious corollary:

COROLLARY (4.2.6). The quotient homomorphism induces an isomorphism of
p-divisible groups ove: e*' - G.J,(p) — e - Q*(p).

comp4193.tex; 21/07/1995; 13:12; v.7; p.37

https://doi.org/10.1023/A:1000556212097 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000556212097

278 MASAMI OHTA

Let B be the quotient of/, defined in a similar manner as (4.2.5). We then
have an exact sequence of commutative group scheme®admerhich we define
N,.:

0— N, - Q; — B:—0. (4.2.7)

It is well-known thatB;: has good reduction ovéd(¢,-) at the prime above.
On the other hand, by (3.1.7); splits overQ, (¢, ), an unramified extension of
Q,(¢yr); and hence so i&,.. Let us now denote b@r/z ]the ‘Néeron Ift-model’

of Q; overZ,[(,r] ([BLR] 10.1); and similarly forN, andB*. They exist by [BLR]
10.2 Theorem 2. Since the formation ofidn Ift-models commutes wititale base
changesN? "Izl |s a torus which splits ovez, [y, ], by [BLR] 10.1 Example

5. It then follows from the argument of the proof of [BLR] 10.1 Proposition 7 that
(4.2.7) extends to an exact sequence of commutative group schemes, @yel:

*0 *
0— N "/ Zp[Gr] T QT/ZP[CpT} - Br/zp[Cp"} — 0. (428)

The Hecke algebra(;(T',; Z) acts on these group schemes compatibly; and we
can make the following

DEFINITION (4.2.9). We define the-divisible groups over,,[(,-]| b
Hy = e Nz e, (0)
Gri= e Qr @), Gri=e Bl (),

so that we have an exact sequencg-aivisible groups over (¢, |

0O—H, — G, — G, — 0.

4.3. ORDINARY CUSPIDAL GROUPS

As before, we identifyC,(Q) with T',\P*(Q). The correspondence: §1Z) >
[‘é Z] — a/c € PY(Q) gives a bijection:

T\ SL2(Z)/Uss — TA\PL(Q), (4.3.1)

wherelU,, = {i[é ﬂ € SlLy(Z)} is the stabilizer subgroup of the cugp. For
a positive integen/, we put

Ay = {[;ﬂ € (Z/MZ)®? | (z,y) =1 in Z/MZ}/N (4.3.2)
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where[z] ~ [“’;:] if and only ify = ¢/ andz = 2’ mody(Z/MZ). Then itis well
known that there are bijections:

T\ SLa(Z) /Use — A, [{£1} — (An x Apr)/{1}. (4.3.3)

Here, the first arrow seno[% Z} to the class 01{‘;] mod N,., and the second one
is induced from the natural mapping:

[x] > <[x] modN, V} modp’"> .
) ) )
The image of[‘c‘ g] € SLy(Z) in the middle (resp. the right) set will be denoted

by [‘;]N (resp(mN, [“]pr)). We henceforth identify”, (Q) with the sets in

C
(4.3.3).

There is a natural action of the operaiftfp)” onZ,[C,]. Namely, it sends the
class ofz € P1(Q) to the formal sum of the classes @f + i) /p" € P(Q) for
1=0,...,p" — 1. Inview of (3.4.12) (cf. also (4.3.6) below), we denotedjythe
idempotent attached to thi&(p) acting onZ,,[C,].

PROPOSITION (4.3.4)LetD, be the submodule &[C,] generated by al[g] .
suchthap | c. ThenD, is stable undef’(p), ande* D, = {0}. Moreover, we have
an isomorphisme*Z,[C,] — Z,[C,]/D;.

Proof. Take[i]N € An, /{£1} with p | c. Then since t a, we see that
a Lra+ic
T(p) I:C:INT - ; [ pnc :|er

This shows thaD, is stable undeT'(p). If n > r andp™ = 1 mod N, we have

o] = (1005

It then follows that

T(p)" [Z]N =p" pil (

1=0

’

¢ln

a—i—ic] >
0o |,
p

and, hence* = lim T'(p)*¥" annihilatesD,..

k— o0
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On the other handZ,,[C,]/D, is generated b)[‘;] N with p t c¢. Take and fix

ann such thap™ = 1 mod N. We may change and assume thatis divisible by
p™. We then see that:

T(p)" [G]NT _ {a/p"h _ {Z]N mod D,.

C C
It follows thate*(Z,[C,]/D,) = Z,[C,]/D,. O

COROLLARY (4.3.5). rank, e*Z,[Cy] = 30(p") o<y n @(t)o(N/1).
Proof. The rank in question is equal to the cardinality of

{GZHN{;L) E(f“fv><f4pr)/{ﬂ:1}}. _

Recallthat7 (Y, Z,)) is canonically isomorphic to Ho(®, (G J,.), Z,,) (3.3.3).
We henceforth consider the latter group as a module &i",;Z,) through
this isomorphism. Thus, as we noted after (3.4.8), for example, the action of
T*(l) € H5(I';;Z,) on HomM(T,,(GJ,),Z)) is induced from the endomorphism
T*(I) of GJ, (3.4.8). On the other hand, from (3.4.11), we have an isomorphism

Hom(e*T,(T}), Z,) — €*Z,[C,](—1), (4.3.6)

by (3.4.12). These groups then inherit the structure’6{;(I",; Z,)-modules.
We therefore have the following diagram ef#5(T",; Z,)-modules with exact
horizontal lines:

— can —
00— e*HY(X,,Zp) ——— e*HY(Y,Zp)

! \ ! \ (3.3.3)

0 —— Hom(e*Ty(Jr),Zp) —> Hom(e*Tp(GJy),Zp) —> €*Zp[Cr](—1) ——— 0.

(4.3.7)

Here, the left vertical arrow is the usual one (cf. [02] (3.1.4)). One checks that the
square above commutes, in a similar manner as (3.3.5).
Recall alsothat**5(T",; Z,) isaZ,[(Z/N,Z)*]-algebra; and that#*(N; Z,)
is azZ,[[Zy]]-algebra (1.5). From now on, we denote by the same lettsibefore
the natural mappings

(Z/N:Z)" = Z,[(Z/N:Z2)"] (= e*H3(Lri Zy)),

L { (4.3.8)
ZN = Zp[[2N]] (= e*H*(N;Zp)).
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Fora € (Z/N,Z)*, the action ot («) one*Z,[C,|(—1) is obtained from (the Tate
twist of) the following action:

Z,[Cr] 2 Cr(Q) 3 ¢+ o4, (4.3.9)

whereo,, € SLy(Z) is congruent tc{o‘gl ;] modN,. - M»(Z), by (3.4.12).

PROPOSITION (4.3.10)ConsiderZ,[C,] as aGal(Q/Q)-module via the natural
action onC,.(Q). Then(4.3.6)is an isomorphism oGaI( Q/Q)-modules. Ifo €
Gal(Q/Q(¢w)) satisfies(, = (5 witha € (Z/p"Z)* C (Z/N,Z)*, o acts as
W(a)~tone*Z,[C,].

Proof. It is easy to see that the exact sequence (3.4.9Yfds GalQ/Q)-
equivariant; and the pairing (3.4.10) clearly satisfie$,y?) = (x,y) for all
T,y € Z,[C;] ando € Gal(Q/Q). Therefore, (3.4.11) foy, is an exact sequence
of Gal(Q/Q)-modules. We also see thEfp) onZ,[C,] commutes with the action
of Gal(Q/Q); and hence the first assertion follows.

Next, D, being the kernel of*, is a Galois submodule &, [C;]. Thus for the
second assertion, with the same notation as above, it suffices to show that

if p tc. Let X be the canonical model ov€({y) of the modular curve attached
to'(NV) NI'1(p") of which the cuspoo is rational oveQ((x ). I'o(p") normalizes
the above group; and it acts @(y)-automorphisms ok . It follows that all the

cusps of the forrr@[*]N m ) on X, areQ(¢y)-rational. Butacuspﬁ ] with

p 1 c is obtained from a cusp of the above type by applyingrhe formula to be
proved results from the well-known property of the automorphisoy poattached
to 7, (cf. (4.2.4)). O

Whens > r > 1, we have the commutative diagram (3.3.4) for the natural
morphismf; : X, — X,. But by (3.2.8), the diagram:

(3.4.12)

Hom(T},(T5), Z) Z,[Cs](-1)

Hom(f2 Zp)\ \ (4.3.11)

Hom(7T,(T),Zp) @ait Z,[C](-1),
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commutes, if we define the right vertical arrow from the (set theoretical) projection:

Cs(Q) — Cr(Q). Thus, taking the projective limits with respect to Hoff, Z,)
and (4.3.11), (4.3.7) yields the following commutative diagram:

0

e*BSp(N)z, ————— e*GESy(N)z,

0 —— lim Hom(e*Ty(J;),Zp) — lim Hom(e*T}(GJy),Zp) —> lim e*Z,[C,)(—1) — 0.

r>1 r>1 r>1
(4.3.12)

Now set
Co(N)z, :=lim eZy[C;],  Cp(N)o i= Cp(N)z,8z,0- (4.3.13)

r>1
These are modules ovEy[[Zx]] or o[[Zx]] (and hence ovekz, or A,), respec-
tively.

PROPOSITION (4.3.14)C, (N ), is a freeA,-module of ranK(p — 1) /2) 3 o4 v
o(t)p(N/t). Moreover, for eachr > 1, the projection mapping induces an isomor-
phismC,(N),/wro — €*Z,[Cy] ®z, 0 =1 e*o[C}].

Proof. It is enough to prove our assertion whes- Z,,. If o € Uy, the action
of (o) onZ,[C;] is given by

(@) 3 ({ZﬂN’ [fL) - (mM {a;ZZL’")

Therefore, as &z ,-module,e*Z,[C,] is isomorphic to the submodule &f,[C:; ]
generated by all the elements of the fo(rf@ﬂ e [ 0] ), by (4.3.4). Namely, itis
p7‘

c2
canonically isomorphic to the freg,-module generated A xy < (Z /p"Z)*) /{£1}

as aAz,-module; theAz -module structure of the latter being the evident one. Our
conclusion is now obvious. |

4.4. THE MAPPING:e* GES,(N)o — "9 (N; 0)(—1)

We now come to our main step. By virtue of what we have said so far, we can proceed
in a parallel way as in [O2] 3.3 to construct the mapping above, as follows: Let
G andG¢! be the connected part and the maxirgtalle quotient of the-divisible
groupG, (4.2.9), respectively; and likewise f6t,.. SinceH, is of multiplicative

type, it is contained it;% and, henceGi¢' = G Put

B, := Hom(T,(G?), Z,),

r

B, 1= Hom(T,,(G?),Z,).

r

A, := Hom(T,(G%),Z,), { (4.4.1)
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Then we have an exact sequencedH;(I',; Z,)-modules:
0— 92, — e’HYY,,Z,) = B, — 0, (4.4.2)

by (3.3.3) and (4.2.6). _
Let I, be the inertia group of G&®,,/Q,), and

GallQ/Q) — Z* or
: (_/ )= 4 . (4.4.3)
GallQ,/Q,) = Z,,
thep-cyclotomic character. Then we have:
A =eHYY ,,Z,)" = e’ HYX,,Z,)",
(Y, 2Zp) (Xr,2Zp) (4.4.4)

I, > o acts ask(o) Lu(k(0))™ on B,.

In fact, we know by (4.3.10) (resp. [O2] (3.2.11)) that the actiod,0bn B, /B,
(resp.fB,) is as stated as above. But it is easy to see that the exact sequence
of Gal(Q,/Q,)-modules: 0— B, B, B, /B, — 0 splits when
tensored withQ,,, using an appropriate elementadt#3(T',; Z,,).

Fromthis, we see that (4.4.2) is a splitexact sequenc@&®$(I',; Z,,)-modules.
The splitting is noncanonical, but can be made functorial when we 1etry.
Therefore, if we set

B = lim B,
s = lim 2, > (4.4.5)
7.21 %OO = I@a%Tv
r>1
we have a split exact sequencetfL*(N; Z,)-modules
0 — A — e’GESy(N)z, — B — 0. (4.4.6)

It follows from (1.3.5) that both., and®B., are freeAz, -modules. Moreover, we
see that, via the projection mappings

Qloo/‘f‘)r,O — Ay, %oo/wr,o — %T‘a (4.4.7)

forall » > 1. For each pair of integers> 1 andd > 0, set

er,d = e*lHl(YTa FSd(Zp))Ipa

(4.4.8)

%,«703 = e*lﬂl(?r, Fsd(zp))/%,d.
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Then, by (1.4.2), we also see that the specialization mapging induces the
following isomorphisms:

Qloo/wr,d ; er,d, %oo/wryd ; %r,d- (449)
If we put
Apo = AUr®z,0, By, = B,®z,0, (4.4.10)

for 1 < r < oo, and similarly for, 4 and%nd, (4.4.2),(4.4.6), (4.4.7)and (4.4.9)
remain valid for these modules; H(Y ,, Z,) ®z, 0, ande” GES,(N)s,.

From now on, we assume thatontains all the roots of unityrhen applying the
argument of Tate [Ta] Section 4 to thedinary p-divisible groupG, overZ,[(,-],
we have canonical isomorphisms:

Ao = Lie((GE,)') = Lie((G,,)),
By, = COt(Gr/o)( 1) = COt(Gr/o)(_ 1) = e*ICOt(Br/o)( 1), (4.4.11)
B, = Col(G?),)(~1) = Cot(G,/,)(~1) = e*'Cot(Q;,,) (1),

where the subscript,,” means the base extension frafi[(,-] to o, and ( )’
signifies the Cartier dual. From (4.4.2), we obtain the following exact sequence:

0— Lie((G,/,)") = e"HYY,,Z,) ®z, 0 — Col(G,/,)(—1) = 0. (4.4.12)
Especially, we have constructed homomorphisms“@{; (T, ; o)-modules:

' HNY 1, Zp) ®z, 0 = By o = €'COQ},) (—1) = M(Ty; K)(—1). (4.4.13)

PROPOSITION (4.4.14)The image of the natural mapplng*’Cot(Qr/o)
My(T',; K) is contained ire* M5 (T',; 0) N M3(Ty; 0).

Proof. The proof is similar to that of [O2] (3.3.6), as follows. L€tz ¢, | be
the normalization of the affingline overZ,[(x,]in Y, ®qQ, (¢, ), and}ﬁs/rgo‘[’g.?v |

its smooth locus ovet,[(, . Also, letG ],z (¢, | be the Neron left-model of7 J,

overZ,[(n,]. There is an unramified extension@f (¢, ) over whichY;. admits a
rational pointzg. We then obtain the morphism, ., (3.1.4) over this field, which
extends to the base extensionsYgﬁ[Qooth andGJ,z, ¢y, O its ring of integers.

Therefore, further extending the baseotaNe obtainuy, 4, )jﬂs/”goom = GJp /-
Thus, we have the situation as in loc. cit.

Speco((q))) — Ym0 G,y Q)
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from which we conclude that the image in question lieddp(T',; 0). The image
also lies inM3 (I';; o) because the automorphism of G'J, overQ({y, ) extends
to GJT/O. d

It follows that (4.4.13) gives
e’ HY Y, Zp) ®z, 0 = By, — ' M3 (Ty;0)(—1). (4.4.15)

Whenr varies, the trace mappings éfale cohomology groups and the natural
trace mappings of modular forms are compatible, by (3.3.4) and (3.2.6). Taking the
projective limit, we finally obtain a homomorphism ©f H*(N; o)-modules:

e”’GESy(N)y — Booo — ' M5(N;0)(—1). (4.4.16)

THEOREM (4.4.17).The mapping.%oo,o — e“9M5(N;0)(—1) above is an
isomorphism.

We will complete the proof of this theorem in the next subsection. Let us give
here some preliminary remarks. The two modules in question are both free of finite
rank overA, and, hence, the mapping above is an isomorphism if it is so after
reducing modulav; o = 7. So, by (2.5.4) and (4.4.7), we just need to show that
the mapping

e"ColQ;),) — ¢ M3 (T1; o) (4.4.18)

is an isomorphism.

For this, we recall that there is a canonical isomorphin®q K = Coke(G,,

diag_ I, ©) G.,)- This trivially extends to the group scheme Cakey, _diag

Hcecr@ Gm) =: T, overo of which Nf/o is a quotient. The Hodge—Tate theory
for the associateg-divisible group is of the following very elementary nature:
Namely, the diagram

can

Hom(TP(Tr/o)a 0) — O

~

HOoM(T},(Gm),0) ~— &.c(, @0(—1)

ce CT‘ (6)

Tat%z ! (4.4.19)

COt(Tr/o)(_l) ~can ®cecr(6)COt(Gm) (—1).

commutes if we define the right vertical arrow fram— Cot(G,,,) sending 1 to
dX/X. (Here and in the diagram, we are of course considg@pgovero.) The
action of T*(p) onT;. clearly extends td’, /,; and the above compatibility means
that the isomorphism (4.3.6) when tensored wittoincides with the one obtained
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from the Hodge-Tate theory f, ., via o = Cot(G,,). Consider the following
commutative diagram with exact horizontal lines:

0 —— Hom(T,(G,), 0) — Hom(T,(G,), 0) Hom(T,(H,),0) —— 0
can can
v Y
0 - B, , - B, > Hom(7,(H,),0) —— 0
(4.4.11) [ 1| (4.4.11) lz
Y Y

Reg-1)
_

0 — €"COl(B; o) (~1) — e/ CotQl/o)(~1) e"0[C,](~1) —— 0

(4.4.14)

Y Y

0 —— "S5 0)(—1) —=> "' M5 (T;0)(—1). (4.4.20)

can

Here, the upper horizontal line comes from (4.2.9), and the right vertical arrow is
obtained from (4.3.6) through the quotient morphisih:— N,.. By the remark
above, using (3.1.13) and the compatibility (3.1.10), we now see that the mapping
labelled asReq—1)’ is indeed the Tate twist of theum of residuegiven by:

Reqw) = Z Res(w)-c, (4.4.21)

ceCyr(Q)

for w € e'Cot(Q;),) — HO(X, ®q K, Q%@QK/K(C,«)). Namely, we have
proved thesurjectivity of Res : e“Cot(Q /0) — ¢e*o[C,] via the Hodge-Tate
theory. As for (4.4.18), we already know that the mappia’gCot(Bi‘/o) —

e* S5(T'1; 0) is anisomorphism ([02] (3.4.9)). Our Theorem (4.4.17) will therefore
follow from the following proposition whose proof we give in the next subsection:

PROPOSITION (4.4.22)For f € e* M3 (T';;0),we letw; := fdq/q be the corre-
sponding differential ok, ®q K. ThenReqwy) € e*Z,[C;] ®z, K actually lies
ine*o[C].

4.5. COMPLETION OF THE PROOF OF OUR MAIN THEOREM

We begin with an elementary observation: In generall’lbe a congruence sub-
group of Sly(Z), and fix a cusp € PY(Q). Then there is @ € SL,(Z) such that
p(s) = ioco. If we denote byl*(s) the stabilizer subgroup afin I', we have

pL(s)p~t- {£1} = {:I: ! i]m | m € Z} (4.5.1)
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with a positive integekh. For f € M,(T"), its Fourier expansion at(which depends
on the choice op) is given by:

o0
Flot=ang"" (¢ ==y, (4.5.2)
n=0

(cf. [Sh] 2.1). The differentialv; = f dg/q satisfiesvs o pt = (f | p 1) dg/q;
and it follows easily from this that:

oy = h (Z an ez’”(”l)p(z)/h> qminn, 45.3)
n=0

Since &™)/ is a local parameter at of the Riemann surfacE\ H U P*(Q)
(Sh] 1.5), we conclude that:

Reg(wf) = hag. (4.5.4)

We now wish to prove (4.4.22). To do this, we use the algebraic theory of
modular forms (Katz [Kal]). In [O2] 3.6, we reviewed this theory and we now
use the same terminology as in loc. cit. Recall tR4tB, ['oo( M )2"™") denotes the
space of oo( M ) 2™ modular forms of weight (€ Z) over a ringB, which consists
of certain functionsF” on thel'go(M )2 ™-test objecty E,w, i) over B-algebras.
There is a natural injection

M;,(Ty(M)) < R(C,Too(M)*™"). (4.5.5)
Namely, if we set
E27ri,27riz = C/Zﬂ'iZ + Zﬂizz,
_ 2min (4.5.6)

i(Chr) = S (Car = €27M),

thenF; € R¥(C,Too(M)2M) corresponding t¢ € M;,(I'1(M)) satisfies
f(2) = Fy(E2ni2niz, Qu, 1) (4.5.7)

with » the variable onC. The ¢g-expansion off (at the cuspicco) is given by
evaluatingF’ at the Tate curve; precisely, it is equalfp(Tatg(q), wean, ican) -

Puty =p~1 = [‘; Z] so thaty(ico) = s = MN . Then we see that

c

(f | 7)('2) = (CZ + d)_ka(EZWi,Zﬂi’y(z)a dua Z)
= Ff (E27ri,27ri'y(z)a (CZ + d) du, 'L) (4.5.8)
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The multiplication by(cz + d)~* on C induces an isomorphism:

x(cz+d)~t

Eori2niz Eori2niv(z)- (4.5.9)

If we define thel'oo( M)2"-structurei’ on the left-hand side by

i(Ch) = W, (4.5.10)

then this is compatible withon the right-hand side. We therefore have

(f 1 )(2) = Fy(Bariniz, du, ). (4.5.11)
This in turn gives us the following purely algebraic description of the Fourier
expansion at:

o

flv=2% ang"" = Fy(Tate(g), wean i), (4.5.12)

n=0

where we defing’ by i (¢r) == ¢%,¢%/M (cf. Katz [Ka2] 2.4). Especially, when
B is a subring ofC,, this formula makes sense fére M (I'1(M); B) (which is
defined as in (1.5.8)); and (4.5.4) remains valigl & 2.

LEMMA (4.5.13). LetB be asubringo€ or C,, and take arf € M>(I'y(M); B).
Assume thad/ = MM, with relatively prime positive intege®; and M5; and
thaty € T'o(M1). Then the Fourier expansion gfat s = y(i00) (with respect to
p =) belongs toB[(us,, 1/Mol[[¢"/ )],

Proof. First note that, dividesMs. i" being as above, we see that the following
diagram commutes:

ill

mTate(q)

\2
11X 12

K, X My, — g Tat€q) x u, Tatgq),

Kar

if we defineiy (resp.iz) by i1(Car) == Yy, (respaiz(Car,) = (4p,a%/™M2). (Here, of
coursefy, = €/Mi € Q.) Thus theloo(M)™-test object Tate(q), wean, ") is
defined oveB[(ar,, 1/M>]((q**2)). By the g-expansion principleF; belongs to
R¥(B,Too(M)2); and hence it takes the value B{Cyz,, 1/M>]((¢¥"2)) when
evaluated at the triple above. O
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Proof of(4.4.22). By (4.3.4), we can take a basis:tZ,[C,] of the form

{{Z]NTera,prTC},

with a suitabled, . € D, for each[‘;]N . It is therefore enough to show that
ResH (wr) € o whenevep 1 c. '
N,

Apply;ing the previous lemma tg := f | 7. € My(I';;0), we see that:
g | v € o[[¢*N]] for anyy € To(p"). It follows from (4.5.4) that Regw,) € o for

*

each cusp of the form ([:]N, [0] ) But we clearly havew, = wy o 7, and
pT
hence Regw,) = Res, (,)(wy). This concludes the proof of (4.4.22). O

We have thus completed the proof of (4.4.17). This, together with (2.2.3) and
(2.4.5), also gives the isomorphism (II) in the introduction.

5. Application to the theory of cyclotomic fields
5.1. THE GALOIS REPRESENTATION ON*ES,(N)z

In this subsection, for simplicity, we set

A=Az, L:=Lq,(= (the quotientfield ofA)),
eh(N;Z,)c = eh(N;Z,) ®x L, (5.1.1)
e*h*(N;Zp); = e*h*(N;Z,) Qa L.

LEMMA (5.1.2). e*ESy(N)z, ®a L is a freee*h*(N,;Z,)-module of rank 2,
ande S(N; A) ®a Lis afreeeh(N;Z,):-module of rank 1.

Proof. The proof is standard, as follows (cf. [H3] Lemma 8.1): lgt:=
(w1,0) = (T) C A, and indicate by the subscrip” the localization at). By

[H3] (cf. (1.5.7) above), we know thath*(N;Z,)/Q —— e*h3('1;Z,), while
we also have* ES,(N)z,/Q — e*Hp(T'1,Z,), ((02] (1.4.3)). But it is well
known thate* Hp(T'1, Q) is a freee* h3(I'1; Q,)-module of rank 2. It follows from
Nakayama’s lemma that there is a surjective homomorphism:

e*h* (N, Zp)gz — (e"ESy(N)z,)q

of e*h*(N;Z,)q- (and hence\ o-) modules. Since the twlg-modules above are
free of the same rank, the first assertion follows.
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The second assertion can be proved in a similar manner, using that we have an
isomorphisme: S(N; A)/Q —— ¢ S3(I'1;Z,), (cf. [02] (2.6.1)). O

As for e ES,(N)z,, we moreover have the following

LEMMA (5.1.3). 2, ®a £ and B, @, L are freeeh*(N;Z,)-modules of
rank 1.

Proof. Actually, itis known thatl,, itself is a free=*'h*(N; Z,,)-module of rank
1 ([H3], [MW?2], [Ti]; cf. also Saby [Sa] Tkoeme 2.3.5). Then by dualities (cf.
[02] (4.3.1), (2.5.3)), we have isomorphisms, = Homy (s, A) =2 e'S(N; A)
compatible with the action of'h*(N; Z,) = ¢'h(N; Z,) (T*(—) <> T(—)). The
assertion fofB,, ® L follows from the lemma above. (We could also derive this
lemma from the main result of [02].) O

By (5.1.2), fixing are*h*(N; Z,) c-basis ofe* ES,(N)z, ®a L, we may regard
the Galois representation @hE.S,(N)z, as

pn 1 GalQ/Q) — GLe*h*(N;Zp)(e*ESp(N)Zp)
< GlLa(e*h*(N;Z,)z). (5.1.4)
Especially, we may consider the tracetr(c) and the determinant det; (o),
both belonging te*h*(N;Z,) ., for eachs € Gal(Q/Q). The representatiopy

is unramified outsidé&vp by a well-known result of Igusa.
For a prime numbel;, we denote byp; ageometrid-robenius atin Gal(Q/Q)

orin GalQ,/Q,).

THEOREM (5.1.5).1f [ does not dividéVp, we have
det(l — py(®))X) =1 - T*(1)X +1T*(1,1) X2

Proof. The proof is also standard: First, we have the congruence relation
(1) = &, +1T*(1, l)@l‘l, one*ES,(N)z, ([01] (7.6.1)). There is ai-bilinear
form, denoted by{, } in [02] (4.1.17), one*ES,(N)z, ®a L. We know that
T*(n) andT*(q, q) are self-adjoint; and that the adjoint & is lT*(l,l)(I)fl,
with respect to this pairing ([O2] (4.2.8)). Moreover, this pairing is nondegenerate.
Indeed, using the same terminology as in the proof of (5.1.2), the reduction modulo
Qof{,}on(e*ESy(N)z,)q is anondegenera@,-bilinear form, by [02] (4.2.5).
Thus the correspondenge— (the adjoint of ¢ with respect to{, }) gives an
anti-automorphism of the*h*(N; Z,)) c-algebra Eng .- vz, . (e* ESp(N)z, @4
L) = My(e*h*(N;Z,) ). Considering the regular representation on this algebra,
we conclude tha®, anle*(l,l)@fl, viewed as elements of Epgl-(y.z,), (e*
ES,(N)z, ®x L), have the same characteristic polynomial. The congruence rela-
tion above then implies that

de(1 — py(B)X)? = (1 T*()X +IT*(L)X?)? € *h*(N: Z,)c[X]
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which proves our assertion. O

It follows from this and theCebotarev density theorem thapty and depy
take values i*h*(N; Z,).

5.2. SOME PROPERTIES Op-ADIC EISENSTEIN COHOMOLOGY CLASSES

From now on, until the end of this paper, we assume that

(P, p(N)) =1, (5.2.1)
and fix anevenandprimitive Dirichlet charactery of conductorN; = Np such
that

X l(z/pz)<=w" with i%# 0,—1 mod p — 1. (5.2.2)

We letr be the ring generated by the valuesyobverZ,, andt its quotient field.
For anyr[(Z /N1Z)*]-moduleM, we mean byl %) the maximal direct summand
of M on which(Z/N1Z)* acts viay.

Recall that there are natural homomorphisms

t[[ZN]] — e*H*(N;t) - e*h*(N; ),

(5.2.3)
t[[ZN]] — eH(N;t) » eh(N;v).

We may then consider an exact sequence

0 —— e"ES,(N)Y) — ¢*GES,(N)Y — ¢, (N)X(-1) — 0, (5.2.4)

T

of e*H*(N;t))-modules as well as G&)/Q)-modules. Note thal™*(q, ¢) is
equal toy(q)¢({g)) € A, in e*H*(N; )X for each positive integer prime toNy.

DEFINITION (5.2.5). We define the Eisenstein idgal(resp.I*) of e* H* (N ; t) %)
(resp.e*h*(N;t)(X)) as the ideal generated by &ll*(1) — 1 — x(1)l((1)) (! J( Ny)
andT*(l) — 1 (I | N1) with prime numbers. Similarly, we define the Eisenstein
idealsZ and T of e (N;t)X) ande h(N;t)X), respectively.

In 2.3, we considered ,-adic Eisenstein series. Using the same notation as in
(2.3.10), we easily see that f6(0, v;c) € e M(N; A,),

E(O,;¢) | T(q,q) = 0p(q)e((q)E(0,4;¢) if (g, N1) =1, (5.2.6)

unlessd = w2 andy = 1; and similarly for (1 + 7)) — u ?)&E(w 2, 1;¢).
Thus(e M(N; A,)%) /e S(N; A,)X)) @4, L is spanned ovef i by £(, 1)) :=
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£(0,1; 1) whenf and1) run through the Dirichlet characters satisfyifig) = x
and also the conditions in (2.3.10). For sughadic Eisenstein series, we have

£0.0) 1 7) = | X 0w () Adr) | £6.v)

0<t|n
pit

— | 5 ot (5) ttien | £0.0), 527)

0<t|n
pit

for all positive integers. It follows that there is a surjective.-algebra homomor-
phism:eH (N;t)X) — A, sendindl'(n) to

An(Tyx) = ) x(Ot((t)) (5.2.8)

0<t|n
pit

(the eigenvalue of (i, 1)) whose kernel ig. Especially,Z (resp.Z*) is a proper
ideal of e (N;t)) (resp.e*H*(N;t)X)). Set

m:= (Z,p,T); m:=(I,p,T),

(5.2.9)
m* = (Z%,p,T);, w*:=I*p,T),

so thatn and9t* are maximal ideals. We consider the localizatiorn®at
X = ¢ ES,(N) %,
Y = e*GESy(N) %, (5.2.10)
7 = Cyp(N) 5. (1),

Note thatX = e*ESp(N)(X)* if m*, or equivalentlyl*, is a proper ideal and

r,m

X = 0 otherwise. As usual, we identify the Dirichlet characters with characters of

GalQ/Q).

LEMMA (5.2.11). (i) Z is a freeA.-module of rank 1, and™(n) acts as multi-
plication by A, (T, x) on it.

(i) Gal(Q/Q(¢y)) > o acts onZ as multiplication by(xw) (o) (k(c)) ™2
(o)) €AY,

Proof. SinceZ is a direct summand af,(NV).(—1), it is a freeA,-module by
(4.3.14). We want to show thd# ®,, L is one-dimensional ovef,. Suppose
otherwise.

By our maintheorent, (V) isisomorphic ta: M(N; A,)X) /e S(N; A,) X0,
andT™*(n) on the former corresponds #(n) on the latter. Our assumption then
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implies that there is a paf#, 1)) # (x, 1) as above such that*(N; r)(wxl admits
a homomorphism ta../, sendindl™ (1) to 6(1)1.((l)) + (I) for each primée { Ny,
wherert’ is the ring generated by the valuegaind: overr. Reducing modulo the
maximal ideal ofA ./, we see that there is an automorphisrof the residue field
of ¢, and the congruendegw)” (1) + 1 = fw(l) + 1 (I) holds for all primed { N;.
Sincey # 1, we must have) = (xw)”, by our assumption (5.2.1). However, the
conductor of) was assumed to be primegpand this contradicts to the assumption
(5.2.2). Thus, rank Z = 1, and it is clear from the preceding argument that the
action of the Hecke operators is as stated as above.

The second assertion is a direct consequence of (4.3.10). O

Now let us look at the commutative diagram

X®.0 Y ®.0 T Z®.0

(5.2.12)

0 e S(N; Ag)5) — e M(N; Ay A,.

ct

Here, the right (resp. the left) vertical arrow comes from our main theorem (resp.

[02]), and the mapping ct sends eaEhe e M (N; Ao)(m") to its ‘constant term’
a(0;F). (We have neglected the Tate twist by fixing an isomorphigpf:-1) =
Z,.) The vertical arrows commute with the Hecke operators in the sensE‘thaj
on the upper modules correspondito—) on the lower modules.

LEMMA (5.2.13). The notation being as above, there is an isomorphis,ef
modulesZ®.0 — A, together with which5.2.12)remains commutative.

Proof. Clearly, eS’(N;Ao)(WX) lies in the kernel of ct. Since the cokernels of
the middle left horizontal arrows are canonically isomorphic, there is a unique
A,-homomorphismZ®.0 — A, with which the resulting square commutes.

By the lemma above, it remains to show that ct is surjective. Reducing modulo
(T), (2.5.1) further reduces the problem to the surjectivity of the constant term

mapping:e M»(T'q; o)(mX) — o. Here, of course, we are considering the localiza-
tion eMz(I‘l;o)g;‘) througheH (N;t)/T —— eHo(T1;t) (1.5.7); i.e. it is the
localization ofe M»(I'1; 0)(X) at the ‘Eisenstein prime’ afH,(T'y;t) ).
By (4.4.22) and the argument preceding it, we know that the mapping:
e* M5 (T1; 0)%) — e*o[Cy]™)

given byf — Regwy) is surjective. But by (4.3.4)0[C1)X) contains an element
of the form
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. Y x M B]Nler,

9 ae(z/nz)x

withd € D1, wherey is the order of. It follows thatthereis affi € e* M (I'q; 0) %)
suchthatRegw;) € o*. Ifwe setf’ := f | 71, thenthis belongs te Ma(T'1; 0) X,
andwe have(0; f') = Resy(wy) = Reg(wy) € 0. Onthe other hand, we have:
eHa(T1; 1)) = eHo(T1; 1) & R with R a direct sum of local rings. Accordingly,
we have a decompositianM(T'1; 0)X) = e M(T'y; o)g;Q ®M. N f' = fon + f"
under this decomposition, then it is clear from (2.3.2) (@&, ") = 0. Conse-
quently, the constant term gy € e M»(I'1; o)(mX) is a unit. O

THEOREM (5.2.14).The exact sequence
O_'X®Ar£€—’Y®Ar£€LZ@AVEB—’O,

uniquely splits asGal(Q/Q)- and e*’}-[*(N;t)gt‘l-modules. Ifs: Z @a, Le —
Y ®a, Le, gives the splitting, then we have

G(Ta sz)'Z if X 7£ w—Z’

Z if y=w?

(Y Ns(Z)) = {
Proof. We already know that the exact sequence (4.4.6) spldS &S (N; Z,)-
modules. By our main theorem and (5.1.2), we have an isomorphism commuting
with the Hecke operators in the same sense as above

Y @n, Lx = (e M(N; A)) @r, L) @ (e S(N; M) @4, Lic).

Therefore, the common kernel of &l (n) — A, (T, x) is a one-dimensional k-
subspace of ®,, Lk, which is mapped isomorphically onfo® 5, L. The first
part of our theorem follows from this.

On the other hand, by (5.2.13), we have a commutative diagram

™

0

Y®.0 Z®.0

l

e M(N; ALY - A, - 0,

ct

and the left vertical arrow has a section commuting with the Hecke operators. Since

A,(T,x) = 1, the image ofV ®.0 N s(Z®.0) in e M(N, A is A, - E(x, 1)

wheny # w~? and, hence, we see thatY ®.0 N s(Z®.0)) = G(T, xw?) - Z&:o,
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in this case. This proves the latter part of the theorem wheh w=2. Since the
‘constant term’ of((1+ 7') — u=?)&(w 2, 1) is a unitinAz,, a similar argument
implies the remaining assertion. O

COROLLARY (5.2.15).1f ¥ # w2 and I* = m* = e*h*(N;r)¥), then
G (T, xw?) € A, is a unit.

COROLLARY (5.2.16). Suppose tha # w2 and thatm* # e*h*(N;t)®).

Then there is aGal(Q/Q)- and e*h*(N;r)ﬁf‘*)-submoduleV of X/G(T, xw?)
enjoying the following properties:

(i) V isisomorphicta\,/(G(T, xw?)) as aA.-module.
(i) Gal(Q/Q(¢x)) 2 o acts onV as multiplication by(xw) (o) (k(o)) 1

t({k(0)) ).
(i) T*(n) acts onV as multiplication byA,, (T, x).

Proof. Write U for Y N s(Z). Then we clearly havé/(T, xw?) - Y C X + U.
Therefore, for any € Y, we can expresS(T, xw?)y asz + v with uniquez € X
andv € U. The correspondenge— z gives an injective homomorphism

Y/(X +U) = X/G(T, xw?).

On the other hands induces an isomorphism
Y/(X +U) — Z/n(U) = A/ (G(T, xw?)).

The action of GAQ/Q(¢y)) (resp. the Hecke operators) aifw(U) is as stated
in (ii) (resp. (iii)) by (5.2.11). 0

COROLLARY (5.2.17) (cf. Wiles [Wi] Theorem 4.1)Under the same assump-
tion as above, there is a surjectikg-algebra homomorphisieih*(N; r)fﬁé?/[* -

A./(G(T, xw?)), sending eacl™ (n) to A, (T, x).
5.3. MODULAR CONSTRUCTION OF UNRAMIFIED ABELIANp-EXTENSIONS

In this final subsection, we follow the method of Harder and Pink [HP] (cf. also
Kurihara [Ku]). We keep the notation and the assumption of 5.2 and, moreover,
assume thay # w2 andm* # e*h*(N;t)) (otherwise the situation is uninter-
esting to us in view of (5.2.15); cf. also (5.3.19) below). We henceforth write

b = e*h*(N; )Y (5.3.1)

m

for the simplicity of notation. We now look into the Galois representation

p:GalQ/Q) — GLy-(X) = GLa(h* ®a, Le). (5.3.2)
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We already know that

detp(o) = (xw) (o) (k(0)) e((k(0)) 1), (5.3.3)
by (5.1.5).
Set
X, =X, (5.3.4)

ThenlI, acts onX /X via the charactews — w™""1(0)(x(0))"Le((k(c)) 1) by
(4.4.4), and this action factors through Gy~ ) /Q) = dxGal(Q(up=)/Q(1p))
with 6 = Gal(Q(u,)/Q). ¢ thus acts onX/ X through the nontrivial character
w™~1, Take and fix arp € I, such that := w=~1(ay) is a nontrivial(p — 1)st
root of unity. We letX _ be the¢-eigenspace ok with respect to the action ofy,
so that we have a direct sum decomposition:

X=X &X,, (5.3.5)

of h*-modules.
By (5.1.3),X_ ®a, L and X ®x, L are freeh* @, L,-modules of rank 1.
We can therefore expregsmatricially’ as

(5.3.6)

with 0;((7) € End)* (X_) — b* QA L andd(U) € End)* (X+) — h* QA Ly, etc.
Note thata(c), d(c) andb(o)c(o’) € h* ®a, L are independent of the choice of
the basis. Note also that we have

(o) = [detf:(") (1)] it oel, (5.3.7)

To apply the method of Harder and Pink, it is convenientto consider an auxiliary
ideal J* of h* which is, by definition, generated By (1) — 1 — x(1)1.((/)) for all
prime numbers prime to Np. By the definition ofX_, p(1,) contains an element
[g 2] with a nontrivial(p — 1)st root of unity¢. Using (5.1.5), one can then prove

the following two lemmas in the same way as in [HP] 3.1.4 and 3.1.5. See also
[Ku] Section 3 for a similar argument.

LEMMA (5.3.8). For any 0,0’ € GalQ/Q), a(s) — detp(s),d(c) — 1 and
b(o)c(o') belong toJg*.

LEMMA (5.3.9). J* is generated by eithdfu(o) — detp(o) | o € Gal(Q/Q)} or
{d(0) —1] 0 € GalQ/Q)}.
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Let
B C Homy- (X4, X_), C C Homgy-(X_, X,), (5.3.10)
be they*-submodulegenerated by all(c) or c(o), respectively. We may consider
BC as an ideal of* contained inJ*. Let a(o),d(c) € p*/BC andb(o) €

B/(BC)B be the elements obtained froaio) etc. by reducing moduldC.
Then we can defineepresentationsf Gal(Q/Q) by

p1(0) == la(") li(g)] ;o p2(0) = la(g) ~?T ] : (5.3.11)

LEMMA (5.3.12). We havea(o) = detp(c) mod BC, andd(c) = 1, for all
o € GallQ/Q).

Proof. d is a homomorphism of GAD/Q) to (h*/BC)* unramified outside
N, by (5.3.7). Let4 be the field corresponding to its kernel. Since the kernel of the
homomorphism(h*/BC)* — (h*/m*)* is a prop group, it follows from class
field theory that the composite of Gal/Q) — (h*/BC)* — (h*/m*)* is still
injective. It is thus enough to show théir) = 1 modm* for all o € Gal(Q/Q).

But by (5.1.5) and th€ebotarev density theorem, we see that

a(o) +d(o) = 1+ (xw) (o) mod m*.
Since(xw) ™! ramifies ap by (5.2.2), we must havé(c) = 1 modm*. O
From this and (5.3.9), we obtain
COROLLARY (5.3.13). BC = J*.

Forlt Np, T*(I) — 1 — x(I)l.((I)) € J* is not a zero divisor im*, and hence
we have:

COROLLARY (5.3.14). B andC are faithfulp*-modules.
Reducingp: andy, modulol*, we obtain the representations

Pr(o) = th(“) 5(5), Po(o) = [Fg’(“) c” (5.3.15)

with b(c) = b(c) modI* B, etc. LetK andk be the subfields @@ correspondingto
the kernels ofp; andi),, respectively. By (5.3.7) does not ramify in the extension
K/E. LetF be the field corresponding #av, andF,, the cyclotomicZ ,-extension
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of F. Then it is easy to see thaf,, D k£ D F. Sincep totally ramifies inF, / F,
Gal(K/k) is isomorphic to G4lK .,/ F, ) if we set

Ky =K:F,. (5.3.16)
As usual, we have a direct product decomposition:
Gal(F/Q) =A x T, (5.3.17)

with A = Gal(F/Q) andI’ = Gal(Fy,/F'). We fix a topological generatoy of

', and define: € Uy by u := (k(v0)). This is meaningful because the character
Gal(Q/Q) > o — (k(0)) factors through G&F,,/Q). We identifyT" with U; via
the correspondencg < u and, hences[[I']] with A,. Also as usual, G&F,,/Q)
acts on GdlK .,/ Fx) Vvia the conjugation. The matrix computation

[detg(a) iHé b(z')Hdetg(U) ﬂ_lZ[é detp(i)b(o’)’

shows thatA (resp.I') acts on GdlK . /F.,) < B/I*B via (xw) ™! (resp.y —
(s () e((B(1)) 7).

LEMMA (5.3.18). The mappingr — b(c) gives an isomorphism dal(K/k)
ontoB/I*B.
Proof. We only need to prove the surjectivity of this mapping. As we noted

aboveg(I,) contains[g (ﬂ with a nontrivial(p — 1)st root of unity¢. Thus, for

anyo € Gal(Q/Q), considering the commutator gf (¢) with this element, we
see thab(o) is contained in the image.

On the other hand, we have seen above that the image issabmodule of
B/I*B. Sinceh*/I* is isomorphic to a quotient ring df,, the image must coin-
cide withB/I*B. O

In general, for a finitely generate'd-moduleM, we denote by char (M) its
characteristic ideal.

THEOREM (5.3.19).The notation and the assumption being as abdvg, is
an unramified Abeliarp-extension ofF,, satisfyingchan (Gal(K/Fx)) C
(F(T, xw?)). (See 2.3 for the right-hand side.)
Proof. We have already seen that,,/ F,, is unramified outsidév. That it is
unramified at the primes dividinyy is contained in the proof of [Wi] Lemma 6.1.
We now claim that char (B/I*B) C (G(T, xw?)), where we viewB /I* B as
a A.-module through\, — §* as before. In fact, lei be the ideal of\, such that
h*/I* = A./a. Then, using (5.3.14) and (5.2.17), it is easy to see that the Fitting
ideal of theA.-moduleB/T* B satisfies Fitt (B/I*B) C a C (G(T, xw?)). This
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together with the Ferrero—Washington theorem implies our claim. (See Mazur and
Wiles [MW1] Appendix for the general facts about Fitting ideals; cf. also [Wi]
Section 6.)

By (5.3.18) and the remark preceding it, if we consider(Bal/F) as a
t[[']]-module Iwasawa theoretically, then its characteristic ideal is obtained from
the above by the change of varialdfe+s «~1(1+ 7') 1 — 1. Our theorem follows
from Definition (2.3.5) ofG(T, xw?). O

Let Lo, be the maximal unramified Abeligmextension ofF,,, and L. its
subextension whose Galois group o¥&g is the (yw) -part’ (cf. [MW1] page
192) of GalLeo/ Foo)-

COROLLARY (5.3.20). Ko, = L.

Proof. Itis clear thatL,, O K. On the other hand, the Mazur—Wiles theorem
(the Iwasawa main conjecture) says that ghé®al(L. /F.)) = (F(T, xw?)).
The theorem above then implies that the natural homomorphisrfiLGdlF.,) —
GallK«/F) is a pseudo-isomorphism. The conclusion follows from the well-
known fact that G4IL_/F,) has no nontrivial finiteA.-submodules (cf. [Wa]
Proposition 13.28). O

This in turn gives us the following

COROLLARY (5.3.21).h*/I* is isomorphic ta\. /(G(T, xw?)).

Proof. From the argument above, we know tlist/* B has no nontrivial finite
A.-submodules; and hence its Fitting ideal coincides with the characteristic ideal
(IMW1] Appendix, Corollary to Proposition 2). Thus the ideain the proof of
(5.3.19) is equal t4G(T, xw?)). 0

In the proof of the last two corollaries, we employed the Mazur—Wiles theorem.
As a final remark, we note that our theorem (5.3.19) can be used to give a simple
proof of this theorem fo = w* with i even. Indeed, it is enough to guarantee the
existence of an extensidii,, as in (5.3.19) for eacly = w' # w2 as above. In
the case excluded from our argument, i.e. wiges 1, this is trivial because

B 1
F(0,w?) = =By, = —?2 =1 modp

and, henceF (T, w?) is a unit power series.
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Corrections to [02]

Page 72, line 11e S (N; 0) should bee S(N; A,).

Page 83, line 1: There, | quoted the formulaTf(p) in characteristigp from
[MW1]. However, the models of ouk, are different from those in [MW1]; and
it should be replaced by the formula given in [Sagbieme 2.2.3. The rest of the
argument remains valid.
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