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REPRESENTATION OF EUCLIDEAN RANDOM FIELD
SHIGEO TAKENAKA

P. Lévy introduced a notion of Brownian motion % = {X(p); p e M}
with parameter in a metric space (M, d), which is a centered Gaussian
system satisfying

E|X(p) — X(@) =d(p,q) and X(O) =0, O being the origin .

In the case of M = R™, S™ or the hyperbolic space H" with usual geodesic
metric, the Brownian motion above has the following representation

(1) X(p) = Y(S,), where S, = {hyperplanes intersect Op} and % =
{Y(-)} is the Gaussian random measure associated with a certain measure
o on the set of all hyperplanes.

In this paper we shall discuss Brownian motion that corresponds to
a general metric. When the metric d on R" is expressible as d(p, q) =
r(p — q|) where r is a positive increasing continuous function, the Brownian
motion is called a Euclidean random field (ERF). The main purpose of
this paper is to establish the representations of the form (1) for some im-
portant classes of ERFs.

In Section 1 we will consider a simple and basic class of ERFs, denote
it by {#*}, and their representations. The covariance function of the field
%° is of finite range and rotationally invariant. The form (1) for the
ordinary Brownian motion with parameter R" is obtained as the limit
p — oo of these fields #%*.

In Section 2 the representation of type (1) will be considered for general
ERF related to the {#*}. We will start with a special class of ERFs. If
r(t) = t* the random field is called the self-similar Euclidean random field
(SERF) of index a. The representation of SERF of index 0 < a <1 will
be written as a superposition of the fields #°. For general ERF, two
sufficient conditions for the existence of the representation of form (1) will
be given as conditions on the function r(-).
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In Section 3, invariance properties of SERFs will be considered in
connection with our representations.

§0. Introduction

0-1. P. Lévy defined a notion of Brownian motion with parameter
space M equipped with a metric d as below:

DerFiNITION 1. A Gaussian system 2 = {X(p); pe M} is called a
Brownian motion with parameter space (M, d) if it satisfies

%0) X(0) =0 for a fixed origin Oe M,
%1) X(p) — X(@)£N(0, d(p, 9)) ,

that is the left-hand-side is subject to the Gaussian law with mean 0 and

variance d(p, g).

It is well known that the Brownian motion exists if and only if the
covariance function o(p, q) = (1/2)(d(p, O) + d(q, O) — d(p, q)) is positive
definite. In this line, several investigations have been done on the posi-
tive definiteness of function ¢ ([3], [6], [7], [9], [10]). In the case of M = R"
with usual metric, N. N. Chentsov took more direct manner to obtain
Brownian motion in [1] (P. Lévy also treated the case M = S", by the
same manner in [5]). To describe Chentsov’s method, we need the notion
of Gaussian random measure attached to measure space (E, %, p).

DerFINITION 2. A Gaussian system % = {Y(B); Be %, y(B) < oo} is
called a Gaussian random measure associated with (E, #, ) if it satisfies

21) Y(B)zN(0, 1(B))
#2) Y(B,UB,) = Y(B) + Y(B), ae., if BNB,=¢.

Let o# be the set of all hyperplanes of codimension 1 in R". J# is
parametrized by (g, r)e S™' X R, as # 2> H={y; {y, ¢) = r}, and define
a measure p on # as dy = dq-dr, where dq is the normalized uniform
measure on S"°'. Set

(12) S, = {He s#; H intersects the line segment Op},
then Chentsov’s representation of the Brownian motion is

(1) X(p) = Y(S,), where % in the definition 2 is the random measure
associated with (#, p).
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0-2. In the case of M = S™ and H" —the n-dimensional hyperbolic
space — the similar results were obtained ([10]):

Let o# be the set of all hyperplanes of codimension 1 in M. There
exists a canonical measure p on 5 in the sense of integral geometry.
Define a map S from M into the Borel sets of # as

(12) S, = {hyperplanes intersect Op} .
Then,
Y] X(p) = Y(S)

is the Brownian motion with parameter (M, d), where @ = {Y(-)} is the
Gaussian random measure associated with (&, p).

The essential parts of the representations above are

1) the pair {(E, 4, 1), S} of measure space and the map S, from the
metric space M to 4.

ii) the relation d(p, q) (= E|X(p) — X(@)}}) = (S, A S,) between the
metric and the measure, where A means the symmetric difference.

In this paper we will discuss the case of M = R" with rotational
invariant d and will establish the pairs {(E, %, p), S} for some important
classes of random fields.

§1. Random field %#* and the Chentsov representation

We start with a simple class {#*} of Brownian motions and their
representations. The original Chentsov’s representation will be obtained
as the limit p — oo of #°. Moreover, in the next section the field #* will
be used as the basic element to construct representations of certain classes
of Brownian motions. In this sense {#*} is an important and fundamental
class of Brownian motions.

1-1. Let M be a set and % be the Gaussian random measure as-
sociated with a measure space (E, #, p). Assume that there is a map

S: Msp—>S,e % .
Define a Gaussian system
(1) Z = {X(p) = Y(S,); pe M}.
Then, since (AAB)UBAC)DAAC), the function d(p,q) =
E\X(p) — X(@) = (S, A S, is a pseudo-metric on M.
We call this representation a Chentsov type representation of the
random field & with parameter (M, d).
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1-2. The class {#°}. Let # = {Y(B); Be %} be the Gaussian random
measure with respect to (R, %, dx). Set,

2.0) St ={xeR"; |x —p| < p},

for a positive constant p, and define a Gaussian system
(1.p) @ = {U(p) = Y(Sp)} .

Then,

ProPosITION 1. % is a Gaussian random field stationary under the
action of the group M(n) of n-dimensional Euclidean solid motions.

Let us calculate the metric function d* related to %°. Set

rdp — q) = d*(p, @) = E[U*(p) — U%()I* = |S; A Sz| .
Then,

min (£/2, p)
(3) r,,(t) = 40'n_1'[ (0" — x)vdy
0

where ¢,_; is the volume of the (n—1)-dimensional unit ball.
ProrosiTiON 2.
D 10 =en(L)
0

2) () = O(t) when t— 0,
3) r@t) =2, ift=1,
4) 1,(&) = O(o™") when p— oo

It is easy to see that the centered random field
v = {U(p) = Un(p) — U(O)}
is the Brownian motion corresponding to the metric d*(p, q) = r.((p — q)).

1-3. Chentsov representation as the limit of #*. We note that
min (¢/2p,1)
(4) r(Olo" = 4,)0,,_1[ (1 — 2)-vdy
0
= 20,_,-t+ 0(1), when p—> .

It is natural to expect that the original Chentsov’s representation of usual
Brownian motion would be obtained as a limit of representations of #°.
In fact, this is the case as is shown below. Take a normalization of the
measure in 1-2 as to be
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dx ret
5 di, = — = - dr-d
( ) IUP 20n_1pn—1 2_pn'1 r q

in the polar coordinate x =r-q, re R, and qe S*!. Related to this nor-
malization we have a series of Gaussian system

(6) £ = {Up(p)/*/fzan—lpn_l} ’ p>0.
Set,
(7) X4 ={U"(p); |p] < R}  for fixed R>0.

For p > R, express the set S5, S% in the polar coordinate;

p=r=o+{p®
+ (g, b 0 =2 —0), X, @ Z 2
p+<a,p) + (Vg p)*+ " — ' — p)
=rsoe o{p, @) <2

(8) S;ASy =1(q,r)e S"'XR,;

where ¢ = |p|.
The term (v {q, p)* + p* — £ — p) tends to zero when p — co. So, let
us substract the offset p from the radial part r and set 7 =r — p. Then,

0=7F=L{g, P+ o), p{p, = t2/2}
To()+<p, @) SFZ0, o{p, @) <t2)

On the other hand, for a Borel subset 4 of S*' X [—R, R],
(9) f.(4) = p.{4) + o(1), where dy., = +dqdF .

(8) S:A84 :{(q, f)e S*'X[—R, R]

Finally, set
(10) XS;(Q; i:) = llm |Xs£(Q> f) - XSZ(q! ;:)I ’
v
where %, means the indicator function of the set A. Then,

(11) S, ={(g,7); min (0, (g, p>) = F < (max (0, {g, p))} -

Take E; = (S" ! X [—R, R], dp..) and let % be the Gaussian random meas-
ure associated with E,. Set % be the limit p — oo of Z3*;

Zr={X(p)=Y(S,); pe S X [~R,R]}.
Then we obtain

THEOREM 3. The projective limit % = projlim &, is the Brownian
R—ca

motion parametrized in n-dimensional Euclidean space that corresponds to

https://doi.org/10.1017/50027763000000714 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000714

24 SHIGEO TAKENAKA

the usual metric. Moreover, the representation X(p) = Y(S,) is essentially
equal to the one of N.N. Chentsov in 0-2.

Proof. Let us identify a hyperplane H(F, q) = {x; {(x,q) = F} with a
point (g, 7)€ S** X R,. Then the set

(12) {He #; H intersects the line segment Op}
is identified with
(11) {(g,7)e S X R,; 0 =7 < <q,p)}.

Compare (11’) with (11) then we see that our new representation is just
the Chentsov’s representation of multiplicity 2.

1-4. Another examples of Brownian motions. The rest of this paper
is devoted to the case of rotationally invariant metrics. But our formu-
lation works for some of general metrics without rotationally invariance
property.

ExampLE A. Let 2, = {h; hyperplanes in R*, h | Oe;}, where e, is
the unit vector parallel to the i-th coordinate, and let g, be the nor-
malized uniform measure on J#,. Consider the measure space (2, f),
where # = #,U#,U---U#, and i=ji + fio + -+ + fi,. Define S, =
{he #: hintersects Op} and let # be the random measure associated with
(o, ). Then {X(p) = Y(S,)} is the Brownian motion that corresponds to
the metric d(x,y) = >, |x, — ¥:l.

ExampLE B. In the case of R? set #, = {h: parallel with O(e, + e,)}
and set #Z_ = {h; parallel with O(e, — e,)}. The measure g = (1/v 2 )(u, +
¢.), the space s = #,U#_, the map S, and the random measure % are
all defined similarly to those in example A. Then the field {X(p) = Y(S,)}
is the Brownian motion that corresponds to the metric

d(x,y) = max (|x; — yil, [% — ¥:)).

The author have been informed by private communications with pro-
fessor A. Noda that for general metrics—for example ¢ metric on R" and its
a-th power, 0 <« < 1—the Chentsov type representation can be obtained.

§2. Representation of Euclidean random field

In this section we treat the Chentsov type representations of an im-
portant class of random fields—self similar Gaussian random fields—and
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a general class of Gaussian random fields with Euclidean invariance
property.
2-1. Self-similar Euclidean random field.

DerintTION 3. A Gaussian system 7™ = {V«(p); pe R"} is called a
self-similar Euclidean random field (SERF) of index « if it satisfies

F0) V«(0) =0,
&L1) Ve(p) — V(@QNQO,|p — ql) .

The SERF exists if and only if 0 <a < 2 ([4]). It is easy to see that
[-]* is a metric if and only if 0 < a < 1. Therefore, the Chentsov type
representation of SERF may be obtained in the case. In fact, we do form
the representation in the case 0 < o <1. (excluding the usual Brownian
motion, a = 1).

Set E = R, X R® and introduce a coordinate in E as
(13) x = (%5 X) = (%o, X3y Xy =+ Xp) x> 0.
Consider a measure
(14) dp(x) = M(e)-x5""'dx,dx on E,

where M(a) is the normalizing constant which will be defined in (23).
Let # be the Gaussian random measure associated with (E, p,). Define
the following maps;

(15) S: R"—> B(E); p—> S, = {x; |x — p| < %}
and

(16) S, =S,AS,.

Then,

THEOREM 4. For 0 < a <1,
D plS,) < oo,
2) V«(p) = Y(S,) is the SERF of index a.

Proof. 1)
4(S,) = M() f s, = M(@) f ’ xg-lr,(;“ ,->de :

where ¢ = |p|. Because r,(f) = 20, if t = 1,
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! t
I xg‘lr,(~ rﬁ>dx(,
0 xO

And because r,(2) = O(p"™"), p — =, we get

- r y = ir()dy < 20, r yoidy < o0, if a>0.
1 1

) f ) rx,,(t)xg-n-ldxo} < Kr g, < oo, ifa<1.
1 1

Combining the two inequalities above, we get 1,(S,) < oo for 0 < a < 1.
2) E|\V(p)— V(P = E|Y(S,ASo) — Y(S, A So)] = p(S, A S,). Note
that the measure g, is invariant under the action

@7 8x = (%o, 8%)

of the group of solid motions M(n). Then there is a positive function s
such that

(18) E|Vi(p) — V(q)f = s(p — ql) .

For any ¢ > 0, we have
19  E|V(p)f = M(e) fw ra(ct)xs " dx, = M(a) I i xg‘1r1<_ci)dx0
0 0 xo
= c"M(a) r rl(l—> x57'dx, = cE[V*(p)]*.
0 X,

That is s(ct) = c*s(t) = (ct)*s(1), and the fact s(1) = 1 is derived from (23)
and (24).

The SERF of index 1 is nothing but the ordinary Brownian motion
and we have already obtained the representation of this type in 1-2.
Consider the section S,N{x, = p} of the set in (16). This is the n-ball of
radius p. Thus we can see that the field ™ of index 0 <« <1 is repre-
sented by a superposition of the fields {#*}, that is, in an intuitive manner

vep) = [ oo
0
2-2. Euclidean random fields. Let us proceed to a more general class

of random fields which can be obtained by superpositions.

DerFINITION 4. A Gaussian system 7 = {X"(p); pe R"} is called a
Euclidean random field (ERF) if it satisfies

&0) X7(0) = 0

and
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&1) X'(p) — X"(@NQ, r(p — ql),

where r is a positive continuous function.

The SERF in 2-1 is a special class of ERFs with r(f) = t*. In this
subsection we consider the conditions under which the ERF has a Chentsov
type representation.

Suppose that X7(p) is decomposed into a superposition of the inde-
pendent family of ERFs {#*}, as X'(p) = I Ur(p)(p)dp with a positive

measure v(p)dp. Let du(x) = 1 (x,)dx,dx be a measure on E= R, X R", S,
be the same in (16) and % be the random measure which corresponds to
dy. Then the assumption above is equivalent to the existence of the
representation

(20) X"(p) = Y(S,) .

The relation between r and v is given by
1) r(®) = EX)F = [ r.@(0)dp,  where t =|p].

Thus if the function r belongs to the image of the integral transform
above, the ERF 27 has a Chentsov type representation.
The integral equation (21) can be solved as below;

TaeoREM 5 (cf. [2]). If F(t) = (—d/dt)**'r'(2t) = 0 and r F)-tmdt <
1
oo, then the solution is obtained as

(22) V(o) = A j :’ f(t)(fE - 1)‘"“>/2dt ,

A being a positive constant.

We now consider another condition for the existence of the represen-
tation. We have already obtained a series of solutions of (21) in 2-1.
Actually, set

29) M@=f¢ﬁ%§@,
then
- f ol

Thus the density v*(p) in question which corresponds to the metric r(f) =t
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is expressible as p* ""!/M(«). Let us consider again a superposition of
1

these special solutions by a positive density m(«), say X( p)=J Ve(p)m(a)de.
0

That is, let us consider a measure ¢ on E as

dp(x) = ( jlglf@f mz(oz)d(x>dxodo_c and define
(20" X(p) = Y(S)),

where % is again the random measure associated with (E, p). Then, the
corresponding function r is

@1) r(t) = L trm¥(c)dee .

Set R(x) = r(e ). The Bernstein’s theorem on Laplace transform tells us
that the function R(x) is completely monotone on [0, oo).
We then come to a class of functions r satisfying the conditions below

0) lim,_,r() = r(0) =0,
1) d(p, q) = r(|p — ¢|) defines a C~-metric on R".
22) R(x) = r(e ®) is completely monotone.

By Bernstein’s theorem there exists a positive measure m*(a)de such that

(25) R(x) = r e "mia)da or equivalently
0+
(26) r(t) = r tem*(a)de .
0+
Set g(2) = r ¢“*m¥(a)da for Im(2) = 0. Then,
0+

Lemma 6. If r(lp — q|) defines a metric on R", then there are positive
constants ¢, and ¢, such that r(t) < c, + cit, te R,.

Using this lemma, we prove that r t*m*a)da < ¢, + c;t for any ¢, that
0

is Um e“mz(oc)dai < oo for any ze C. Thus the domain of definition of g(2)
0

can be extended to the whole complex plane.

THEOREM 7. The function g(z) is of inferior exponential type of order
1, that is for any ¢ > 0 there is a constant C, such that

|g(@)] £ C.et+om@1 = for any ze C .
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Proof.
@I [ e mia)de = re™ ) < ¢ + et
0+
Hence, we can choose the desirable constant C, for any ¢ > 0. Q.E.D.

By virtue of the Paley-Wiener theorem, the support of the measure
m*«)da is included in (0,1]. Finally we get;

TuroreMm 8. If r satisfies the conditions /0)~</2) above, then the ERF
Z™ has Chentsov type representation,

(L.r) X'(p) = Y(S,),

where the set S, is the same as in the case of SERF, and the corresponding

measure y, is

1 a—n—1
@7 dp, (X) = ( ) 5154(“) mz(a)da)dxod.x.
N.B. The point mass at 1 corresponds to the original Chentsov repre-
sentation.

2-3. Remark. In the remainder case of SERF of index o, 1 <a <2,
the covariance function ¢ is positive definite but |p — ¢|* is not a metric
function. It is impossible to get Chentsov type representation. However
we can get another type of representation—in the form of the Wiener
integral.

Let # be the Gaussian random measure associated with (R”, dx) and
I(-) be the Wiener integral with respect to #.

TaEOREM 9. Set f(x) = x| ™%”, for a + n, and logl|x| for « = n, and
set F(t, x) = f(x) — f(x — t), x,te R*. Then for any «, 0 < a <2,

1) F(t, x) e LR, dx), for any fixed t,

2) X&) = I(F(t, -)) is proportional to the SERF of index «.

The proofs are quite similar to that of Theorem 4.

§3. Invariance properties and representation

The SERF ¥« has the following invariance properties:
Set
(28) Qy(p) = V(gp) — V(g0), geMm),

and
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(29) ZYp) = e **?*V(ep) , ueR',

then both @, and Z* are again SERFs of the same index «. It is obvious
that the actions of M(n) and the multiplications related to Z* form a
group G.

Let us consider the relation between this invariance properties under
G and the representation of the Brownian motion. To simplify our dis-
cussion, we modify our representation of SERF as follows; set

(30) VS, =1lm{Y(S,NDys) — Y(SoN D)}, with D ={x = (x, x); %, < R},
R—oo

and write the left hand side as

(31) Y(Fy(x)), where F,(x) = 15(x) — 2s,(x) .

N.B. In this section we consider invariance properties. If parallel
transforms are considered, it is natural to treat stationary fields. But
such a field Y(S,) does not exist. So we consider ?(Fp(x)) as a substitute
of Y(S,). Note that F,,(x) # F, (g 'x) for ge M(n), g # id.

The fields 7= and 7"« has the same covariance. However, from the
view point of group action, ¥’* behaves more naturally than 7. In the
rest of this paper, we use the modified field 7* instead of #™*. So in the
definition (28) and (29), V< has to be changed to Ve.

Let us fix « between 0 and 1. It is obvious that the group G is the
subgroup of continuous point transforms of R, X R" which act as auto-
morphisms on the family of subsets {§p§ peR"). Any element ge G is
written as g = (g, u), where g is the part of solid motion and u is the
dilation part of g. The action of g on the point x& R, X R" is defined as

gx = (euxm eugi’_c) .
Then we have;
Tureorem 10.

Qu(p) = Y(F (%)) = Y(F(g7'%)) — Y(F ()

and
Z*(p) = e~ Y(F(e""x)), a.a. w.

The theorem above describes the invariance properties of the SERF

from the viewpoint of our representation and tells us why we have intro-
duced Y.
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AppempuM. SERF is called fractional Brownian motion and plays
a central roll in the theory of fractals. The representation treated in
2-3 and its application were appeared in the paper of Mandelbrot [11].
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