ADDITIVITY OF THE P^{n}-INTEGRAL (2)

G. E. CROSS

1. Introduction. The problem of additivity of the P^{n}-integral on abutting intervals was considered in [2] and in [5]. It was noted in [2] that the necessary and sufficient conditions for additivity for the P^{2} integral obtained by Skvorcov in [5] could be completely generalized to the P^{n}-integral, $n>2$, if a key lemma (corresponding to Skvorcov's Lemma $3[\mathbf{6}]$) could be proved. We provide a proof of that lemma in this paper and hence obtain the general additivity result.

The definitions and notation of [2] are used in the following, except that we shall take the following as the definition of P^{n}-major and minor functions:

Definition 1.1. Let $f(x)$ be a function defined in $[a, b]$ and let $a_{1}, i=1$, $2, \ldots, n$, be fixed points such that $a=a_{1}<a_{2}<\ldots<a_{n}=b$. The functions $Q(x)$ and $q(x)$ are called P^{n}-major and minor functions respectively of $f(x)$ over $\left(a_{i}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ if
(1.4) $Q(x)$ and $q(x)$ satisfy condition $A_{n}{ }^{*}$ in $[a, b]$;
$\left(1.5 Q\left(a_{i}\right)=q\left(a_{i}\right)=0, i=1,2, \ldots, n\right.$;
(1.6) $\partial^{n} Q(x) \geqq f(x) \geqq \Delta^{n} q(x), x \in(a, b)-E,|E|=0$;
(1.7) $\partial^{n} Q(x) \neq-\infty, \Delta^{n} q(x) \neq+\infty, x \in(a, b)-S, S$ a scattered set;
(1.8) Q and q are n-smooth in S.
(Condition (1.8) is stronger than the corresponding condition in [3] and [2] but seems more natural. Compare the corresponding smoothness conditions in [4] and [6].)
2. Main results. The property of additivity of the P^{n}-integral may be stated as follows:

Theorem 2.1. Let $f(x)$ be P^{n}-integrable over $\left(a_{i} ; x\right)$, where

$$
A_{1} \equiv\left\{a_{i}\right\}=\left(a, d_{1}, c_{2}, d_{2}, c_{3}, \ldots, d_{(n / 2)-1}, c_{n / 2}, d_{n / 2}\right)
$$

$\left(d_{n / 2}=c\right)$, with associated integral $F_{1}(x)$ and over $\left(b_{i} ; x\right)$, where

$$
A_{2} \equiv\left\{b_{i}\right\}=\left(d_{n / 2}, c_{(n / 2)+1}, d_{(n / 2)+1}, c_{(n / 2)+2}, \ldots, c_{n-1}, d_{n-1}, b\right)
$$

with associated integral $F_{2}(x)$. Then $f(x)$ is P^{n}-integrable on $[a, b]$ if and only if there exist constants $\left\{\theta_{j}\right\}, j=1,2, \ldots, n-1$, such that the function

$$
F(x)= \begin{cases}F_{1}(x)+\sum_{j=1}^{n / 2} \lambda\left(A_{1} ; x, d_{j}\right) \theta_{j}, & a \leqq x \leqq c . \\ F_{2}(x)+\sum_{j=n / 2}^{n-1} \lambda\left(A_{2} ; x, d_{j}\right) \theta_{j}, & c \leqq x \leqq b\end{cases}
$$

(where for a set $A=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of distinct numbers,

$$
\left.\lambda\left(A ; x, x_{r}\right) \equiv \lambda\left(x, x_{r}\right) \equiv \prod_{i \neq r}\left(\frac{x-x_{i}}{x_{\tau}-x_{i}}\right), \quad r=0,1, \ldots, n\right)
$$

is n-smooth and possesses Peano unsymmetric derivatives up to order $(n-2)$ at $x=c$. If such numbers exist then the function $F(x)$ is the associated P^{n}-integral of $f(x)$ over $\left(a, c_{2}, c_{3}, \ldots, c_{n-1}, b\right)$.

The following result is crucial to our construction in the proof of Lemma 2.2.

Theorem 2.2. If $G(x)$ is n-convex on $[a, b]$ and $G\left(a_{i}\right)=0, i=1$, $2, \ldots, n$, where $a=a_{1}<a_{2}<\ldots<a_{n}=b$, then

$$
G_{(n-1),-}(b) \geqq 0 \text { and } G_{(n-1),+}(a) \leqq 0
$$

Proof. Since $G(x)$ is n-convex and has zeros at $a_{1}, a_{2}, \ldots, a_{n-1}$, and a_{n}, the graph of G lies alternately above and below the x-axis, lying below if $a_{n-1} \leqq x \leqq a_{n}=b$ (Theorem 5, [1]). We may choose points $x_{i}, a_{i}<$ $x_{i}<a_{i+1}, i=1,2, \ldots, n-1$, and $x_{n-1}<x_{n}<b$, so that

$$
G\left(x_{k}\right) / w^{\prime}\left(x_{k}\right)>0, k=1,2, \ldots, n-1,
$$

where

$$
w(x)=\prod_{k=1}^{n}\left(x-x_{k}\right),
$$

and x_{n} is close enough to b so that

$$
\sum_{k=1}^{n} \frac{G\left(x_{k}\right)}{w^{\prime}\left(x_{k}\right)} \geqq 0 .
$$

It then follows from Theorem 7 [1] that

$$
G_{(n-1),-}(x) \geqq 0 \text { for } x_{n} \leqq x<b
$$

and consequently

$$
G_{(n-1),-}(b) \geqq 0
$$

Similarly it may be proved that

$$
G_{(n-1),+}(a) \leqq 0
$$

Lemma 2.1. If $f(x)$ is P^{n}-integrable with respect to the basis $\left(a_{i}\right)$ on $[a, b]$ then it is P^{n}-integrable on each interior interval $[c, d], a<c<d<b$. Furthermore, given $\epsilon>0$, there exists a major function $Q(x)$ and a minor function $q(x)$ for $f(x)$ on $[c, d]$, such that, if $F(x)$ denotes a P^{n}-integral of $f(x)$ on $[c, d]$ (with respect to some basis $\left.\left(b_{i}\right)\right), R(x)=Q(x)-F(x)$ and $r(x)=F(x)-q(x)$, then

$$
\begin{aligned}
& |R(x)|<\epsilon,|r(x)|<\epsilon,\left|R_{(k),+}(c)\right|<\epsilon,\left|r_{(k),+}(c)\right|<\epsilon, \\
& \left|R_{(k),-}(d)\right|<\epsilon, \text { and }\left|r_{(k),-}(d)\right|<\epsilon, \text { for } 1 \leqq k \leqq n-1 .
\end{aligned}
$$

Proof. Let

$$
B=\sup _{i} \sup _{0 \leqq k \leqq n-1}\left\{\left.\lambda^{(k)}\left(x ; b_{i}\right)\right|_{x=c}\right\},
$$

and

$$
C=\sup _{1 \leqq k \leqq n-1} \sup \left\{\frac{1}{(b-c)^{k}}, \frac{1}{(c-a)^{k}}\right\} .
$$

Choose K such that $\epsilon / 2>\sup (K, K A C, B n K)$ where A is the constant determined in Corollary $8(\mathrm{~b}),[\mathbf{1}]$. Then pick a P^{n}-major function $Q_{1}(x)$ for $f(x)$ on $[a, b]$ with respect to the basis $\left\{a_{i}\right\}$ such that if $F_{1}(x)$ is the P^{n}-integral of $f(x)$ on $[a, b]$ with respect to the basis $\left\{a_{i}\right\}$, then we have

$$
\left|R_{1}(x)\right|<K<\epsilon / 2
$$

where

$$
R_{1}(x)=Q_{1}(x)-F_{1}(x)
$$

Define the function R on $[c, d]$ by

$$
R(x)=R_{1}(x)-\sum_{i=1}^{n} \lambda\left(x ; b_{i}\right) R_{1}\left(b_{i}\right)
$$

Because of the choice of $K, R(x)$ is seen to satisfy the required inequalities and thus the function Q defined by

$$
Q(x)=Q_{1}(x)-\sum_{i=1}^{n} \lambda\left(x ; b_{i}\right) Q_{1}\left(b_{i}\right)
$$

is the major function required.
In a similar way a minor function with the required properties may be shown to exist.

It follows incidentally that the P^{n}-integral of $f(x)$ on $[c, d]$ with respect to the basis $\left(b_{i}\right)$ is the function F defined by

$$
F(x)=F_{1}(x)-\sum_{i=1}^{n} \lambda\left(x ; b_{i}\right) F_{1}\left(b_{i}\right) .
$$

Lemma 2.2. Suppose $f(x)$ is P^{n}-integrable with respect to the basis $\left\{a_{i}\right\}$ on $[a, b]$, and let $F(x)$ be the associated P^{n}-integral with respect to the basis
$\left\{a_{i}\right\}$ on $[a, b]$. Then corresponding to $\epsilon>0$ there is a P^{n}-major function $Q(x)$ and a P^{n}-minor function $q(x)$ such that if $R(x)=Q(x)-F(x)$ and $r(x)=F(x)-q(x)$, we have

$$
\begin{aligned}
& |R(x)|<\epsilon,|r(x)|<\epsilon,\left|R_{(k),+}(a)\right|<\epsilon, \\
& \left|R_{(k),-}(b)\right|<\epsilon,\left|r_{(k),+}(a)\right|<\epsilon,\left|r_{(k),-}(b)\right|<\epsilon, \\
& 1 \leqq k \leqq n-1 .
\end{aligned}
$$

Proof. Let

$$
\begin{aligned}
& K_{1}=\max _{1 \leqq i \leqq n} \sup _{x \in[a, b]} \lambda\left(x ; a_{i}\right), \\
& K_{2}=\sup _{1 \leqq k \leqq n-1} \lambda_{(k),+}\left(a ; a_{i}\right), \\
& K_{3}=\sup _{1 \leqq k \leqq n-2}(b-a)^{k} / k!.
\end{aligned}
$$

Suppose $\left\{\alpha_{k}\right\}_{k=1}^{\infty},\left\{\beta_{k}\right\}_{k=1}^{\infty}$ are two sequences of points in the interval $[a, b]$ such that

$$
\begin{aligned}
& \alpha_{1}<\beta_{1}<\beta_{2}<\ldots<\beta_{k}<\ldots, \\
& \alpha_{1}>\alpha_{2}>\alpha_{2}<\ldots>\alpha_{k}>\ldots
\end{aligned}
$$

and $\lim _{k \rightarrow+\infty} \alpha_{k}=a, \lim _{k \rightarrow+\infty} \beta_{k}=b$.
Let $\left\{\epsilon_{k}\right\}$ be a sequence of positive numbers such that

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty}-\frac{\epsilon_{k}}{\left(b-\beta_{k}\right)^{j}}=0 \quad \text { and } \\
& \lim _{k \rightarrow+\infty} \frac{\epsilon_{k}}{\left(\alpha_{k}-a\right)^{j}}=0, \quad j=1,2, \ldots,(n-1), \\
& \sum_{k=1}^{\infty} \epsilon_{k}<\min \left\{\frac{(\epsilon)(n-2)!}{8(b-a)^{n-1}\left(1+n K_{1}\right)}, \frac{\epsilon(n-2)!}{16(b-a)^{n-1} n K_{2}}, \frac{\epsilon}{16 K_{3}}\right\}, \\
& \quad \epsilon_{k}<\min \left(\epsilon / 4, \frac{\epsilon}{2 n K_{2}}, \frac{\epsilon}{4 n K_{1}}\right), \quad k=1,2, \ldots .
\end{aligned}
$$

For the closed interval $\left[\alpha_{1}, \beta_{1}\right]$ and $\epsilon=\epsilon_{1}$, construct a function $R_{1}(x)$ corresponding to the function $R(x)$ of Lemma 2.1. Similarly for the closed intervals $\left[\alpha_{k}, \alpha_{k-1}\right.$] and $\left[\beta_{k-1}, \beta_{k}\right]$ and $\epsilon=\epsilon_{k}, k \geqq 2$, construct functions $\bar{R}_{k}(x)$ and $R_{k}(x)$ corresponding to the function $R(x)$ of Lemma 2.1. Then define the function $\bar{R}^{0}(x)$ on $[a, b]$ by

$$
\bar{R}^{0}(x)= \begin{cases}\bar{R}_{k}(x), x \in\left[\alpha_{k}, \alpha_{k-1}\right], & k=2,3, \ldots \\ R_{k}(x), x \in\left[\beta_{k-1}, \beta_{k}\right], & k=2,3, \ldots \\ R_{1}(x), x \in\left[\alpha_{1}, \beta_{1}\right] \\ 0, x=a, x=b\end{cases}
$$

It is easy to verify that

$$
\bar{R}_{(j),+}^{0}(a)=\bar{R}_{(j),-}^{0}(b)=0,1 \leqq j \leqq n-1 .
$$

Now construct a function $p(x)$, constant on the intervals (α_{1}, β_{1}), $\left(\alpha_{k}, \alpha_{k-1}\right)$, and $\left(\beta_{k-1}, \beta_{k}\right), k \geqq 2$, such that $p(a)=0$ and its jump at a point of discontinuity d is equal to $\bar{R}_{(n-1),-}^{0}(d)-\bar{R}_{(n-1),+}^{0}(d)$. Since the functions $R_{1}(x), \bar{R}_{k}(x)$, and $R_{k}(x)$ are n-convex on their respective intervals of definition, it follows from Theorem 2.2 that

$$
\bar{R}_{(n-1),-(}^{0}(d) \geqq \bar{R}_{(n-1),+}^{0}(d),
$$

and $p(x)$ is monotonic increasing on $[a, b]$.
By construction we have that the jump in the function $p(x)$ at α_{k} and β_{k} is not more than $\epsilon_{k}+\epsilon_{k+1}$. Moreover

$$
0 \leqq p(x) \leqq p(b)<4 \sum_{k=1}^{\infty} \epsilon_{k} .
$$

Now define $G(x)$ as the $(n-1)^{\text {th }}$ indefinite integral of $p(x)$ on the interval $[a, b]$:

$$
G(x)=\frac{1}{(n-2)!} \int_{a}^{x}(x-t)^{n-2} p(t) d t,
$$

and let the function L be defined on $[a, b]$ by

$$
L(x)=G(x)-\sum_{i=1}^{n} \lambda\left(x ; a_{i}\right) G\left(a_{i}\right) .
$$

Then $L\left(a_{i}\right)=0, i=1,2, \ldots, n$,

$$
\begin{aligned}
& |L(x)| \leqq \frac{4(b-a)^{n-1}}{(n-2)!} \sum_{k=1}^{\infty} \epsilon_{k}+\frac{4 n K_{1}}{(n-2)!}(b-a)^{n-1} \sum_{k=1}^{\infty} \epsilon_{k} \\
& \quad=\left(1+n K_{1}\right)\left[\frac{4(b-a)^{n-1}}{(n-2)!}\right] \sum_{k=1}^{\infty} \epsilon_{k}<\epsilon / 2, \quad a \leqq x \leqq b, \\
& \left|L_{(k),+}(a)\right| \leqq\left|G_{(k),+}(a)\right|+\sum_{i=1}^{n}\left|\lambda_{(k),+}\left(a ; a_{i}\right)\right|\left|G\left(a_{i}\right)\right| \\
& \leqq 4 K_{3} \sum_{k=1}^{\infty} \epsilon_{k}+\left(n K_{2}\right) \frac{4(b-a)^{n-1}}{(n-2)!} \sum_{k=1}^{\infty} \epsilon_{k} \\
& \quad<\epsilon / 4+\epsilon / 4=\epsilon / 2, \quad 1 \leqq k \leqq n-1 .
\end{aligned}
$$

Similarly $\left|L_{(k),-}(b)\right|<\epsilon$, for $1 \leqq k \leqq n-1$. Now define the functions R^{0} and R on $[a, b]$ by

$$
R^{0}(x)=\bar{R}^{0}(x)-\sum_{i=1}^{n} \lambda\left(x ; a_{i}\right) \bar{R}^{0}\left(a_{i}\right),
$$

and

$$
R(x)=L(x)+R^{0}(x) .
$$

Then if d is a point of discontinuity of $\bar{R}^{0}(x)$, we have

$$
\begin{aligned}
\bar{h}^{\frac{1}{n-1}} & {\left[\frac{G(d+h)+G(d-h)}{2}-\sum_{k=0}^{(n / 2)-1} \frac{h^{2 k}}{(2 k)!} D^{2 k} G(d)\right.} \\
& \left.+\frac{\bar{R}^{0}(d+h)+\bar{R}^{0}(d-h)}{2}-\sum_{k=0}^{(n / 2)-1} \frac{h^{2 k}}{(2 k)!} D^{2 k} \bar{R}^{0}(d)\right] \\
= & \frac{1}{2 h^{n-1}}\left[G(d+h)-G(d)-\sum_{k=1}^{n-2} \frac{h^{k}}{k!} G_{(k),+}(d)\right] \\
& -\frac{1}{2(-h)^{n-1}}\left[G(d-h)-G(d)-\sum_{k=1}^{n-2} \frac{(-h)^{k}}{k!} G_{(k),-}(d)\right] \\
& +\frac{1}{2 h^{n-1}}\left[\bar{R}^{0}(d+h)-\bar{R}^{0}(d)-\sum_{k=1}^{n-2} \frac{h^{k}}{k!} \bar{R}_{(k),+}^{0}(d)\right] \\
& -\frac{1}{2(-h)^{n-1}}\left[\bar{R}^{0}(d-h)-\bar{R}^{0}(d)-\sum_{k=1}^{n-2} \frac{(-h)^{k}}{k!} \bar{R}_{(k),-}^{0}(d)\right] \\
\rightarrow & \pm \frac{1}{2}\left[G_{(n-1),+}(d)-G_{(n-1),-}(d)+\bar{R}_{(n-1),+}^{0}(d)-\bar{R}_{(n-1),-}^{0}(d),\right. \\
= & \pm \frac{1}{2}\left[p(d+)-p(d-)-\bar{R}_{(n-1),+}^{0}(d)-\bar{R}_{(n-1),-}^{0}(d)\right]=0,
\end{aligned}
$$

by definition of $p(x)$. Since each $\lambda\left(x ; a_{i}\right)$ is n-smooth it follows that $R(x)$ is n-smooth at each point of discontinuity of $\bar{R}^{0}(x)$. Since $R(x)$ is n-convex on each of the intervals determined by the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ it follows that $R(x)$ is n-convex on $[a, b]$.

We have then $|R(x)|<\epsilon,\left|R_{(k),+}(a)\right|<\epsilon$ and $\left|R_{(k),-}(b)\right|<\epsilon, 1 \leqq$ $k \leqq n-1$

Now let Q be defined on $[a, b]$ by

$$
Q(x)=F(x)+R(x)
$$

where $F(x)$ is defined in the statement of the lemma. Then

$$
Q(x)=F(x)+L(x)+R^{0}(x)
$$

and on a typical interval, say $\left[\beta_{k-1}, \beta_{k}\right]$,

$$
Q(x)=F(x)+Q_{k}(x)-F_{k}(x)+L(x)
$$

where $Q_{k}(x)$ is a major function for $f(x)$ on $\left[\beta_{k-1}, \beta_{k}\right]$ and $F_{k}(x)$ is its P^{n}-integral. Since $F(x)-F_{k}(x)$ and $L(x)$ are polynomials of degree at most $(n-1)$, it is easy to see that $Q(x)$ has the required properties of a P^{n}-major function on $\left[\beta_{k-1}, \beta_{k}\right]$.
$Q(x)$ is obviously continuous and the existence of $Q_{(k)}(x), 1 \leqq k \leqq$ $n-2$, follows from the n-convexity of $R(x)$ and the existence of $F_{(k)}(x)$, $1 \leqq k \leqq n-2[2] . F(x)$ is n-smooth in (a, b) and since $R(x)$ is n-convex then $R^{(n-1)}(x)$ exists except at a countable number of points in (a, b)
[1] and so $R(x)$ is n-smooth except at a countable number of points in (a, b). This shows that condition (1.4) in the definition of a major function is satisfied.

Conditions (1.5) and (1.6) are satisfied by $Q(x)$ since, clearly, $Q\left(a_{i}\right)=0, i=1,2, \ldots, n$, and

$$
\partial^{n} Q(x) \geqq \partial^{n} Q_{k}(x) \geqq f(x) \text {, a.e. in }\left[\beta_{k-1}, \beta_{k}\right] \text {. }
$$

We have moreover that $\partial^{n} Q(x) \geqq \partial^{n} Q_{k}(x)>-\infty$ except on a scattered set in $\left(\beta_{k-1}, \beta_{k}\right)$ where $Q_{k}(x)$, and hence $Q(x)$, is n-smooth. But the set which is the union of all the scattered sets from the intervals $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{k}, \alpha_{k-1}\right),\left(\beta_{k}, \beta_{k+1}\right), k=1,2, \ldots$, is scattered, as is its union with the set of end points $T=\left\{\alpha_{1}, \alpha_{2}, \ldots, \beta_{1}, \beta_{2}, \ldots\right\}$. Since $F(x)$ is n-smooth everywhere and $R(x)$ is n-smooth at the points of T, condition (1.7) is verified for $Q(x)$.

In a similar way we can construct a minor function with the required properties.

Now Theorem 2.1 follows because of the results of [3] (in particular, Remark, page 796).

References

1. P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), 81-98.
2. G. E. Cross, Additivity of the P^{n}-integral, Can. J. Math. 30 (1978), 783-796.
3. R. D. James, Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
4. S. N. Mukhopadhyay, On the regularity of the Pn-integral, Pacific J. Math. 55 (1974), 233-247.
5. V. A. Skvortcov, Concerning the definition of the P^{2} - and $S C P$-integrals, Vestnik Moskov Univ. Ser. 1 Mat. Heh. 21 (1966), 12-19.
6. S. J. Taylor, An integral of Perron's type, Quart J. Math. Oxford (2) 6 (1955), 255-274.

University of Waterloo, Waterloo, Ontario

