ADDITIVITY OF THE P^n -INTEGRAL (2)

G. E. CROSS

1. Introduction. The problem of additivity of the P^n -integral on abutting intervals was considered in [2] and in [5]. It was noted in [2] that the necessary and sufficient conditions for additivity for the P^2 -integral obtained by Skvorcov in [5] could be completely generalized to the P^n -integral, n > 2, if a key lemma (corresponding to Skvorcov's Lemma 3 [6]) could be proved. We provide a proof of that lemma in this paper and hence obtain the general additivity result.

The definitions and notation of [2] are used in the following, except that we shall take the following as the definition of P^n -major and minor functions:

Definition 1.1. Let f(x) be a function defined in [a, b] and let $a_1, i = 1$, 2, ..., n, be fixed points such that $a = a_1 < a_2 < ... < a_n = b$. The functions Q(x) and q(x) are called P^n -major and minor functions respectively of f(x) over $(a_i) = (a_1, a_2, ..., a_n)$ if

(1.4)
$$Q(x)$$
 and $q(x)$ satisfy condition A_n^* in $[a, b]$;
(1.5 $Q(a_i) = q(a_i) = 0, i = 1, 2, ..., n$;
(1.6) $\partial^n Q(x) \ge f(x) \ge \Delta^n q(x), x \in (a, b) - E, |E| = 0$;
(1.7) $\partial^n Q(x) \ne -\infty, \Delta^n q(x) \ne +\infty, x \in (a, b) - S, S$ a scattered
(1.8) Q and q are n -smooth in S .

set;

(Condition (1.8) is stronger than the corresponding condition in [3] and [2] but seems more natural. Compare the corresponding smoothness conditions in [4] and [6].)

2. Main results. The property of additivity of the P^n -integral may be stated as follows:

THEOREM 2.1. Let f(x) be P^n -integrable over $(a_i; x)$, where

$$A_1 \equiv \{a_i\} = (a, d_1, c_2, d_2, c_3, \dots, d_{(n/2)-1}, c_{n/2}, d_{n/2}),$$

 $(d_{n/2} = c)$, with associated integral $F_1(x)$ and over $(b_i; x)$, where

$$A_2 \equiv \{b_i\} = (d_{n/2}, c_{(n/2)+1}, d_{(n/2)+1}, c_{(n/2)+2}, \dots, c_{n-1}, d_{n-1}, b)$$

Received February 20, 1981.

with associated integral $F_2(x)$. Then f(x) is P^n -integrable on [a, b] if and only if there exist constants $\{\theta_j\}, j = 1, 2, ..., n - 1$, such that the function

$$F(x) = \begin{cases} F_1(x) + \sum_{j=1}^{n/2} \lambda(A_1; x, d_j)\theta_j, & a \leq x \leq c. \\ F_2(x) + \sum_{j=n/2}^{n-1} \lambda(A_2; x, d_j)\theta_j, & c \leq x \leq b, \end{cases}$$

(where for a set $A = \{x_0, x_1, \ldots, x_n\}$ of distinct numbers,

$$\lambda(A; x, x_r) \equiv \lambda(x, x_r) \equiv \prod_{i \neq r} \left(\frac{x - x_i}{x_r - x_i} \right), \quad r = 0, 1, \ldots, n),$$

is n-smooth and possesses Peano unsymmetric derivatives up to order (n-2) at x = c. If such numbers exist then the function F(x) is the associated P^n -integral of f(x) over $(a, c_2, c_3, \ldots, c_{n-1}, b)$.

The following result is crucial to our construction in the proof of Lemma 2.2.

THEOREM 2.2. If G(x) is n-convex on [a, b] and $G(a_i) = 0$, i = 1, 2, ..., n, where $a = a_1 < a_2 < ... < a_n = b$, then

 $G_{(n-1),-}(b) \ge 0$ and $G_{(n-1),+}(a) \le 0$.

Proof. Since G(x) is *n*-convex and has zeros at $a_1, a_2, \ldots, a_{n-1}$, and a_n , the graph of G lies alternately above and below the x-axis, lying below if $a_{n-1} \leq x \leq a_n = b$ (Theorem 5, [1]). We may choose points $x_i, a_i < x_i < a_{i+1}, i = 1, 2, \ldots, n-1$, and $x_{n-1} < x_n < b$, so that

$$G(x_k)/w'(x_k) > 0, k = 1, 2, \ldots, n - 1,$$

where

$$w(x) = \prod_{k=1}^n (x - x_k),$$

and x_n is close enough to b so that

$$\sum_{k=1}^n \frac{G(x_k)}{w'(x_k)} \ge 0$$

It then follows from Theorem 7 [1] that

 $G_{(n-1),-}(x) \ge 0$ for $x_n \le x < b$,

and consequently

$$G_{(n-1),-}(b) \ge 0.$$

Similarly it may be proved that

$$G_{(n-1),+}(a) \leq 0.$$

LEMMA 2.1. If f(x) is P^n -integrable with respect to the basis (a_i) on [a, b] then it is P^n -integrable on each interior interval [c, d], a < c < d < b. Furthermore, given $\epsilon > 0$, there exists a major function Q(x) and a minor function q(x) for f(x) on [c, d], such that, if F(x) denotes a P^n -integral of f(x) on [c, d] (with respect to some basis (b_i)), R(x) = Q(x) - F(x) and r(x) = F(x) - q(x), then

$$\begin{aligned} |R(x)| &< \epsilon, |r(x)| < \epsilon, |R_{(k),+}(c)| < \epsilon, |r_{(k),+}(c)| < \epsilon, \\ |R_{(k),-}(d)| &< \epsilon, and |r_{(k),-}(d)| < \epsilon, for \ 1 \leq k \leq n-1. \end{aligned}$$

Proof. Let

$$B = \sup_{i} \sup_{0 \le k \le n-1} \{\lambda^{(k)}(x; b_{i})|_{x=c}\},\$$

and

$$C = \sup_{1 \leq k \leq n-1} \sup \left\{ \frac{1}{(b-c)^k}, \frac{1}{(c-a)^k} \right\}.$$

Choose K such that $\epsilon/2 > \sup(K, KAC, BnK)$ where A is the constant determined in Corollary 8(b), [1]. Then pick a P^n -major function $Q_1(x)$ for f(x) on [a, b] with respect to the basis $\{a_i\}$ such that if $F_1(x)$ is the P^n -integral of f(x) on [a, b] with respect to the basis $\{a_i\}$, then we have

 $|R_1(x)| < K < \epsilon/2$

where

$$R_1(x) = Q_1(x) - F_1(x).$$

Define the function R on [c, d] by

$$R(x) = R_1(x) - \sum_{i=1}^n \lambda(x; b_i) R_1(b_i)$$

Because of the choice of K, R(x) is seen to satisfy the required inequalities and thus the function Q defined by

$$Q(x) = Q_1(x) - \sum_{i=1}^n \lambda(x; b_i) Q_1(b_i)$$

is the major function required.

In a similar way a minor function with the required properties may be shown to exist.

It follows incidentally that the P^n -integral of f(x) on [c, d] with respect to the basis (b_i) is the function F defined by

$$F(x) = F_1(x) - \sum_{i=1}^n \lambda(x; b_i) F_1(b_i).$$

LEMMA 2.2. Suppose f(x) is P^n -integrable with respect to the basis $\{a_i\}$ on [a, b], and let F(x) be the associated P^n -integral with respect to the basis $\{a_i\}$ on [a, b]. Then corresponding to $\epsilon > 0$ there is a P^n -major function Q(x) and a P^n -minor function q(x) such that if R(x) = Q(x) - F(x) and r(x) = F(x) - q(x), we have

$$|R(x)| < \epsilon, |r(x)| < \epsilon, |R_{(k),+}(a)| < \epsilon,$$

$$|R_{(k),-}(b)| < \epsilon, |r_{(k),+}(a)| < \epsilon, |r_{(k),-}(b)| < \epsilon,$$

$$1 \le k \le n-1.$$

Proof. Let

$$K_{1} = \max_{1 \le i \le n} \sup_{x \in [a,b]} \lambda(x; a_{i}),$$

$$K_{2} = \sup_{1 \le k \le n-1} \lambda_{(k),+}(a; a_{i}),$$

$$K_{3} = \sup_{1 \le k \le n-2} (b - a)^{k} / k!.$$

Suppose $\{\alpha_k\}_{k=1}^{\infty}$, $\{\beta_k\}_{k=1}^{\infty}$ are two sequences of points in the interval [a, b] such that

 $lpha_1 < eta_1 < eta_2 < \ldots < eta_k < \ldots,$ $lpha_1 > lpha_2 > lpha_2 < \ldots > lpha_k > \ldots,$

and $\lim_{k\to+\infty} \alpha_k = a$, $\lim_{k\to+\infty} \beta_k = b$.

Let $\{\epsilon_k\}$ be a sequence of positive numbers such that

$$\lim_{k \to +\infty} \frac{\epsilon_k}{(b-\beta_k)^j} = 0 \quad \text{and}$$

$$\lim_{k \to +\infty} \frac{\epsilon_k}{(\alpha_k - a)^j} = 0, \quad j = 1, 2, \dots, (n-1),$$

$$\sum_{k=1}^{\infty} \epsilon_k < \min\left\{\frac{(\epsilon)(n-2)!}{8(b-a)^{n-1}(1+nK_1)}, \frac{\epsilon(n-2)!}{16(b-a)^{n-1}nK_2}, \frac{\epsilon}{16K_3}\right\},$$

$$\epsilon_k < \min\left(\epsilon/4, \frac{\epsilon}{2nK_2}, \frac{\epsilon}{4nK_1}\right), \quad k = 1, 2, \dots$$

For the closed interval $[\alpha_1, \beta_1]$ and $\epsilon = \epsilon_1$, construct a function $R_1(x)$ corresponding to the function R(x) of Lemma 2.1. Similarly for the closed intervals $[\alpha_k, \alpha_{k-1}]$ and $[\beta_{k-1}, \beta_k]$ and $\epsilon = \epsilon_k$, $k \ge 2$, construct functions $\overline{R}_k(x)$ and $R_k(x)$ corresponding to the function R(x) of Lemma 2.1. Then define the function $\overline{R}^0(x)$ on [a, b] by

$$ar{R}^{0}(x) = egin{cases} egin{aligned} ar{R}_{k}(x), x \in [lpha_{k}, lpha_{k-1}], & k = 2, 3, \ldots \ R_{k}(x), x \in [eta_{k-1}, eta_{k}], & k = 2, 3, \ldots \ R_{1}(x), x \in [lpha_{1}, eta_{1}] \ 0, x = a, x = b. \end{aligned}$$

It is easy to verify that

$$\bar{R}^{0}_{(j),+}(a) = \bar{R}^{0}_{(j),-}(b) = 0, \ 1 \leq j \leq n-1.$$

Now construct a function p(x), constant on the intervals (α_1, β_1) , (α_k, α_{k-1}) , and (β_{k-1}, β_k) , $k \ge 2$, such that p(a) = 0 and its jump at a point of discontinuity d is equal to $\overline{R}^0_{(n-1),-}(d) - \overline{R}^0_{(n-1),+}(d)$. Since the functions $R_1(x)$, $\overline{R}_k(x)$, and $R_k(x)$ are *n*-convex on their respective intervals of definition, it follows from Theorem 2.2 that

$$\bar{R}^{0}_{(n-1),-}(d) \ge \bar{R}^{0}_{(n-1),+}(d),$$

and p(x) is monotonic increasing on [a, b].

By construction we have that the jump in the function p(x) at α_k and β_k is not more than $\epsilon_k + \epsilon_{k+1}$. Moreover

$$0 \leq p(x) \leq p(b) < 4 \sum_{k=1}^{\infty} \epsilon_k.$$

Now define G(x) as the (n-1)th indefinite integral of p(x) on the interval [a, b]:

$$G(x) = \frac{1}{(n-2)!} \int_{a}^{x} (x-t)^{n-2} p(t) dt,$$

and let the function L be defined on [a, b] by

$$L(x) = G(x) - \sum_{i=1}^{n} \lambda(x; a_i) G(a_i).$$

Then $L(a_i) = 0, i = 1, 2, ..., n$,

$$\begin{split} |L(x)| &\leq \frac{4(b-a)^{n-1}}{(n-2)!} \sum_{k=1}^{\infty} \epsilon_k + \frac{4nK_1}{(n-2)!} (b-a)^{n-1} \sum_{k=1}^{\infty} \epsilon_k \\ &= (1+nK_1) \left[\frac{4(b-a)^{n-1}}{(n-2)!} \right] \sum_{k=1}^{\infty} \epsilon_k < \epsilon/2, \quad a \leq x \leq b, \\ |L_{(k),+}(a)| &\leq |G_{(k),+}(a)| + \sum_{i=1}^{n} |\lambda_{(k),+}(a;a_i)| |G(a_i)| \\ &\leq 4K_3 \sum_{k=1}^{\infty} \epsilon_k + (nK_2) \frac{4(b-a)^{n-1}}{(n-2)!} \sum_{k=1}^{\infty} \epsilon_k \\ &< \epsilon/4 + \epsilon/4 = \epsilon/2, \quad 1 \leq k \leq n-1. \end{split}$$

Similarly $|L_{(k),-}(b)| < \epsilon$, for $1 \leq k \leq n-1$. Now define the functions \mathbb{R}^0 and \mathbb{R} on [a, b] by

$$R^{0}(x) = \bar{R}^{0}(x) - \sum_{i=1}^{n} \lambda(x; a_{i}) \bar{R}^{0}(a_{i}),$$

and

$$R(x) = L(x) + R^0(x).$$

Then if d is a point of discontinuity of $\overline{R}^0(x)$, we have

$$= \pm \frac{1}{2} [p(d+) - p(d-) - \bar{R}^{0}_{(n-1),+}(d) - \bar{R}^{0}_{(n-1),-}(d)] = 0,$$

by definition of p(x). Since each $\lambda(x; a_i)$ is *n*-smooth it follows that R(x) is *n*-smooth at each point of discontinuity of $\overline{R}^0(x)$. Since R(x) is *n*-convex on each of the intervals determined by the sequences $\{\alpha_n\}$ and $\{\beta_n\}$ it follows that R(x) is *n*-convex on [a, b].

We have then $|R(x)| < \epsilon$, $|R_{(k),+}(a)| < \epsilon$ and $|R_{(k),-}(b)| < \epsilon$, $1 \le k \le n-1$

Now let Q be defined on [a, b] by

Q(x) = F(x) + R(x),

where F(x) is defined in the statement of the lemma. Then

 $Q(x) = F(x) + L(x) + R^{0}(x),$

and on a typical interval, say $[\beta_{k-1}, \beta_k]$,

$$Q(x) = F(x) + Q_k(x) - F_k(x) + L(x)$$

where $Q_k(x)$ is a major function for f(x) on $[\beta_{k-1}, \beta_k]$ and $F_k(x)$ is its P^n -integral. Since $F(x) - F_k(x)$ and L(x) are polynomials of degree at most (n-1), it is easy to see that Q(x) has the required properties of a P^n -major function on $[\beta_{k-1}, \beta_k]$.

Q(x) is obviously continuous and the existence of $Q_{(k)}(x)$, $1 \leq k \leq n-2$, follows from the *n*-convexity of R(x) and the existence of $F_{(k)}(x)$, $1 \leq k \leq n-2$ [2]. F(x) is *n*-smooth in (a, b) and since R(x) is *n*-convex then $R^{(n-1)}(x)$ exists except at a countable number of points in (a, b)

[1] and so R(x) is *n*-smooth except at a countable number of points in (a, b). This shows that condition (1.4) in the definition of a major function is satisfied.

Conditions (1.5) and (1.6) are satisfied by Q(x) since, clearly, $Q(a_i) = 0, i = 1, 2, ..., n$, and

$$\partial^n Q(x) \ge \partial^n Q_k(x) \ge f(x)$$
, a.e. in $[\beta_{k-1}, \beta_k]$.

We have moreover that $\partial^n Q(x) \ge \partial^n Q_k(x) > -\infty$ except on a scattered set in (β_{k-1}, β_k) where $Q_k(x)$, and hence Q(x), is *n*-smooth. But the set which is the union of all the scattered sets from the intervals $(\alpha_1, \beta_1), (\alpha_k, \alpha_{k-1}), (\beta_k, \beta_{k+1}), k = 1, 2, \ldots$, is scattered, as is its union with the set of end points $T = \{\alpha_1, \alpha_2, \ldots, \beta_1, \beta_2, \ldots\}$. Since F(x) is *n*-smooth everywhere and R(x) is *n*-smooth at the points of *T*, condition (1.7) is verified for Q(x).

In a similar way we can construct a minor function with the required properties.

Now Theorem 2.1 follows because of the results of [3] (in particular, Remark, page 796).

References

- 1. P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), 81-98.
- 2. G. E. Cross, Additivity of the Pⁿ-integral, Can. J. Math. 30 (1978), 783-796.
- 3. R. D. James, Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
- S. N. Mukhopadhyay, On the regularity of the Pⁿ-integral, Pacific J. Math. 55 (1974), 233-247.
- V. A. Skvortcov, Concerning the definition of the P²- and SCP-integrals, Vestnik Moskov Univ. Ser. 1 Mat. Heh. 21 (1966), 12-19.
- 6. S. J. Taylor, An integral of Perron's type, Quart J. Math. Oxford (2) 6 (1955), 255-274.

University of Waterloo, Waterloo, Ontario