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A collisionless shock structure results from the nonlinear interaction between charged
particles and electromagnetic fields. Yet, a collisionless shock is globally governed by the
mass, momentum and energy conservation requirements. A stable shock structure must
ensure that the fluxes of the conserved quantities are constant on average, and, therefore,
is determined by this necessity. Here, we study an observed high upstream temperature
high Mach number shock and show that the conservation laws cannot be fulfilled unless
the shock is spatially inhomogeneous along the shock front and time-dependent.
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1. Introduction

Collisionless shocks are one of the most ubiquitous phenomena in space plasmas, and
one of the most studied nonlinear plasma systems during the last seventy years. While the
primary interest in collisionless shocks is related to their being among the most powerful
accelerators of charged particles in remote astrophysical objects, like supernova remnants,
or at the large scale of clusters of galaxies, the heliosphere is the only natural laboratory
where these shocks can be studied in detail with in situ measurements. All mentioned
shocks are non-relativistic magnetized fast shocks, in which the magnetic field plays a
major role and the shock speed exceeds the fast magnetosonic speed. The shock structure,
that is, the magnetic field inside the shock transition, and the corresponding particle
motion and distributions, are the focus of the heliospheric shock studies. It is well known
that the magnetic profile of fast shocks evolves with the increase of the Mach number.
The concept of a shock has been born within magnetohydrodynamics (MHD), where it is
treated as a discontinuity. In what follows we shall extensively use the normal incidence
frame (NIF). The NIF is the frame in which a shock discontinuity stands and the plasma
flow enters the shock along the shock normal with the velocity Vu (the upstream NIF
velocity). Hereafter, subscript u means ‘upstream’ and subscript d means ‘downstream’, in
the shock frame. In MHD, fast shocks are typically characterized by the angle θBn between
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2 M. Gedalin and V. Roytershteyn

the upstream magnetic field vector Bu and the normal to the shock front n̂. The latter will
be assumed to point from the upstream to the downstream. A shock is also characterized
by the parameter βu = 8πpu/B2

u, where pu is the upstream kinetic plasma pressure. The
most important shock parameter is the Mach number. The Alfvénic Mach number is MA
and the fast Mach number MF are defined as follows:

MA = Vu

vA
, MF = Vu

vF
, (1.1a,b)
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where nu is the upstream proton number density, mp is the proton mass and vs is the
sound speed. For simplicity, the plasma is considered to consist of protons and electrons,
while possible admixtures of α-particles are ignored. The sound speed v2

s = γTu/mp,
where Tu = pu/nu is the upstream temperature, and γ = 5/3 in isotropic plasmas. For fast
shocks MA > MF > 1. The magnetic profile of a shock depends on all three parameters,
MA, θBn and βu. Magnetic profiles or quasi-perpendicular shocks, θBn > 45◦, are typically
more regular than that of quasiparallel shocks, θBn < 45◦ (Bale et al. 2005; Burgess
et al. 2005; Krasnoselskikh et al. 2013). Low βu shocks are typically less structured
than high βu shocks (Greenstadt et al. 1975, 1977, 1980; Russell et al. 1982b; Farris,
Russell & Thomsen 1993). However, the Mach number is usually considered the main
parameter related to structural changes of the collisionless shock front. The Alfvénic
Mach number has a simple physical meaning: the ratio of the kinetic energy flux along
the shock normal numpV3

u to the Poynting flux c(E × B) · n̂/4π = VuB2
u/4π is M2

A. The
fast Mach number does not have such a simple energetic meaning, so we usually use MA.
Low MA low βu shocks are laminar, with nearly monotonically increasing magnetic field
magnitude. The dissipative MHD relates changes in the structure to the absence of shock
solutions with resistivity and thermal conduction alone above the so-called critical Mach
number, at which the downstream flow velocity along the shock normal drops below the
downstream sound speed (Kennel 1987, 1988). Above the critical Mach number, viscosity
is necessary. This critical Mach number is often considered to mark the onset of ion
reflection. However, theoretically, ion reflection and the accompanying appearance of
overshoot and downstream magnetic oscillations were predicted for dispersive shocks,
where above some critical Mach number a soliton solution is not possible (Sagdeev
1966). The two critical Mach numbers are different, the dissipative one being smaller
than the dispersive one (Forslund & Freidberg 1971; Manheimer & Spicer 1985). Yet,
traditionally deviation from the monotonic shape and onset of ion reflection was attributed
to crossing the dissipative critical Mach number (Livesey, Kennel & Russell 1982; Russell,
Hoppe & Livesey 1982a), and up to now shocks are often classified as subcritical or
supercritical (Zhou & Smith 2015). It was found observationally that ion reflection and
overshoot occur in subcritical shocks as well (Farris et al. 1993). It has been shown,
observationally, theoretically and in simulations, that even in very low Mach number
shocks overshoot and downstream magnetic oscillations develop due to the transmitted
ion gyration and slow gyrophase mixing and kinematic collisionless relaxation (Balikhin
et al. 2008; Ofman et al. 2009; Gedalin 2015; Gedalin, Friedman & Balikhin 2015).
Overshoots are stronger in higher Mach number shocks (Livesey et al. 1982; Russell et al.
1982a; Tatrallyay, Luhmann & Research 1984; Scudder et al. 1986; Mellott & Livesey
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1987; Tatrallyay et al. 1997; Masters et al. 2013), which was thought, until recently, due
to reflected ions. Low Mach number shocks are planar and time stationary, to a very
good approximation. Even at rather high Mach numbers, a shock may be planar and time
stationary (Scudder et al. 1986). It was shown that, in moderately supercritical shocks,
the magnetic profile is consistent with the kinematic collisionless relaxation and may be
only weakly non-planar or time-dependent (Gedalin 2019a,b,c). At sufficiently high Mach
numbers, shocks become rippled (Moullard et al. 2006; Lobzin et al. 2008; Ofman &
Gedalin 2013; Johlander et al. 2016; Gingell et al. 2017; Johlander et al. 2018) or reforming
(Lobzin et al. 2007; Lefebvre et al. 2009; Tiu et al. 2011; Sundberg et al. 2013; Dimmock
et al. 2019; Liu et al. 2021). It was suggested that onset of time dependence occurs when
the so-called whistler critical Mach number is exceeded (see, e.g. Krasnoselskikh et al.
2013), and the upstream whistler waves can no longer stand in the shock frame.

All the above approaches, striving to explain the observed structural changes in the
magnetic profile with the increase of the Mach number, focus on nonlinear wave features
or details of the ion dynamics. Indeed, ions carry most of mass, momentum and energy,
and therefore ions shape the profile. However, we suggest that the kind of shock structure
(laminar, planar and stationary structured, rippled, reforming or whatever else will be
observed in the future) is independent of the exact mechanism causing the structure, and
is determined by the necessity to ensure stable transfer of mass, momentum and energy
across the shock. By stable we mean that on average the fluxes of the above-mentioned
conserved quantities should be constant and there should be no large disruptions in the
transfer. We suggest that a collisionless shock is a self-regulatory system, and the shock
structure is the one that ensures the stability of the mass, momentum and energy fluxes,
for given upstream parameters. Within this approach, the focus is shifted from reason to
purpose: more than one microscopic process may lead to the same type of collisionless
shock structure, which is determined solely by the requirement of stable fluxes. In other
words, this means that if the conservation laws can be fulfilled with a laminar profile,
the shock will be laminar. With the increase of the Mach number, this is no longer
possible, and the shock develops a structure, no matter what it is the mechanism of the
structure generation. It has been shown that, in higher Mach number shocks, necessary
ion heating requires stronger ion reflection, which in turn requires the development of an
overshoot (Gedalin et al. 2023a). The mechanism of the overshoot formation is due to the
deceleration of the transmitted ion flow, while the reflected ions limit overshoot growth,
thus ensuring stability (Gedalin & Sharma 2023; Sharma & Gedalin 2023). Here, we show
that, at even higher Mach numbers, a planar stationary structure cannot ensure stable mass,
momentum and energy conservation, which means that the shock front becomes rippled.

2. Observations

In this section, we describe observations of a shock which is modelled in the rest of
the paper. Figure 1 shows the magnitude and three components of the magnetic field,
measured by MMS1 on 22 April 2020 at 16:43:50 UTC. The resolution corresponds to
the FGM survey mode (Russell et al. 2016; Torbert et al. 2016). The fields are rotated
into the shock coordinates, as follows: the x-coordinate is along the model shock normal
(Farris & Russell 1994), n̂ = (0.6720,−0.7152, 0.1921) in the GSE coordinates, pointing
toward downstream, the z-coordinate is along the difference between the downstream and
upstream magnetic field vectors �B = Bd − Bu and the non-coplanarity direction is ŷ =
ẑ × x̂. The upstream region is chosen visually as −166 < t < −86 (in seconds from the
crossing), and the downstream region is 212 < t < 447. The angle between the upstream
magnetic field and the shock normal θBn = 115◦. The magnetic compression Bd/Bu = 2.9.
The upstream and downstream ions and electron number densities niu = 3.0 cm−3,
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(a)

(b)

(c)

(d )

FIGURE 1. The magnitude and three components of the magnetic field, measured by MMS1 on
22 April 2020 at 16:43:50 UTC. The components are given in the shock frame, see details in the
text.

neu = 2.3 cm−3, nid = 9.7 cm−3 and ned = 9.8 cm−3 are taken from plasma measurements
by FPI (Pollock et al. 2016). The upstream densities differ, although quasi-neutrality is
supposed to hold. The Alfvén speed, the shock speed and the upstream plasma velocity in
NIF are calculated as

VA = 21.8
Bu√
nu

km s−1, (2.1)

Vsh = (ndV 2 − nuV 1) · n̂
nd − nu

, (2.2)

Vu = nd

nd − nu
|(V 1 − V 2) · n̂|, (2.3)

where V 1 and V 2 are the plasma velocities in the upstream and downstream regions, as
measured by the spacecraft. When using the electron velocities V e1 · n̂ = 301.5 km s−1,
V e2 · n̂ = 76.0 km s−1 and densities in (2.1)–(2.3), the shock speed has a wrong sign, so
we use the ion velocities V i1 · n̂ = 291.0 km s−1, V i2 · n̂ = 76.5 km s−1, which give vA ≈
38 km s−1, Vu ≈ 308 km s−1 and MA = Vu/vA ≈ 8. The upstream βiu = 7.8 and βeu = 6.1,
as calculated onboard. For βu ≈ 10 the fast Mach number MF ≈ 2.5. In what follows we
use the upstream ion gyrofrequencyΩu = eBu/mpc and the ion inertial length c/ωpi, ω2

pi =
4πnue2/mp.

The non-coplanar component of the magnetic field By makes excursion toward negative
values inside the central part of the transition, in qualitative agreement with the
theoretically derived relation By ∝ cos θBn(dBz/dz) (see, e.g. Gedalin et al. 2022). On
the other hand, the strong fluctuations of Bx inside the central part clearly indicate the
non-planarity of the shock front (Gedalin & Ganushkina 2022). The maximum magnetic
field is Bm/Bu ≈ 6.7. The tangential components of the upstream plasma velocity in the
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spacecraft frame are Vy ≈ 130 km s−1 and Vz ≈ −260 km s−1. The shock speed in the
spacecraft frame is Vsh ≈ −17 km s−1. This means that the spacecraft crosses the shock
tangentially, at an angle ≈87◦ to the shock normal, and at an angle ≈27◦ to z-direction.

3. Modelling

The principles of the approach are as follows: we numerically trace ions across a
model shock front, derive the total pressure pxx = mp〈

∫
v2

x f (r, v, t) d3v〉 of the generated
ion distribution and analyse whether this pressure is consistent with the model shock
profile used for the tracing. Here, f (r, v, t) is the ion distribution function, and 〈(· · · )〉
denotes proper spatial and temporal averaging, if such is needed. In this approach,
mass conservation is fulfilled automatically. We restrict ourselves to one component
of the pressure only. A more sophisticated approach, taking into account also pyx, pzx
and the energy flux, would be beyond any possible precision of the model. Initially,
ions are distributed according to the Maxwellian distribution with the thermal speed
vT = Vu

√
βiu/2/MA. The method was described in detail by Gedalin (2016). The electron

pressure is taken into account in the adiabatic approximation pe/n5/3 = const. Note that
we are not going to reproduce the profile or any of the details of the shock described in
§ 2. Given the uncertainties of measurements and errors in the determination of the shock
parameters, this task would be impossible. The objective of the present study is to analyse
whether a shock with the parameters in the observed range, that is, a quasi-perpendicular
high Mach number, high-β shock can be laminar or structured planar stationary, or the
stability of the fluxes of the conserved quantities dictate non-planarity and dependence on
time (rippling).

3.1. Non-structured profile
We start with the attempt to model the observed shock with a laminar profile with
the calculated magnetic compression of Bd/Bu = 2.9. Figure 2 presents the magnetic
compression Bd/Bu as a function of the Alfvénic Mach number MA, obtained by solving
the Rankine–Hugoniot relations (Kennel et al. 1985) for various upstream βu. For a given
Bd/Bu, higher βu requires higher MA. It is seen that the measured Bd/Bu and βu are
inconsistent with the derived Mach number. Since the Rankine–Hugoniot relations are
nothing but conservation laws and must be fulfilled, we will choose Bd/Bu = 2.8, βu = 12
and MA = 10 for the modelling.

We start with a monotonic magnetic field given by the expressions

Bz = Bu sin θBn

(
R + 1

2
+ R − 1

2
tanh

3x
D

)
(3.1)

Bx = Bu cos θBn (3.2)

By = c cos θBn

MAωpi

dBz

dx
(3.3)

Bd

Bu
=

√
R2 sin2 θBn + cos2 θBn. (3.4)

The expression (3.3) has been derived within a two-fluid study of stationary nonlinear
waves (Gedalin 1998). These expressions should be completed with the electric field,
which takes the form: Ez = 0, Ey = VuBu sin θBn/c and Ex = −KEBy. The coefficient KE is
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FIGURE 2. The magnetic compression Bd/Bu as a function of the Alfvénic Mach number
MA, for various βu, as obtained from the solution of the Rankine–Hugoniot relations (Kennel,
Edmiston & Hada 1985).

determined by the value of the cross-shock potential

eφ = −
∫

Ex dx = s(mpV2
u/2), (3.5)

where s is one of the varied parameters of modelling. The ramp width is chosen as
D = c/ωpi.

Figure 3 presents the reduced distribution function f (x, vx) = ∫
f (x, v) dvy dvz. Heating

occurs mainly due to the downstream gyration of the directly transmitted ions. Reflected
ions contribute a small part. The kinematic collisionless relaxation due to the gyrophase
mixing is seen very clearly. The decisive step is the calculation of the magnetic field from
the conservation law

pxx +
(

n
nu

)5/3

(nuTu)+ B2

8π
= numpV2

u + 2nuTu + B2
u

8π
, (3.6)

where n = ∫
f (x, vx) dvx. This magnetic field is shown in figure 4. It is seen that the

calculated magnetic field approaches the model magnetic field well behind the shock
transition. It should be mentioned that the result is sensitive to the value of s. At first sight,
the model is successful. However, in a planar stationary shock the equation (3.6) should be
valid throughout the shock, for each position x. However, figure 4 shows that (3.6) requires
that the shock profile be structured. In particular, the shock structure should include a large
overshoot. We, therefore, move on to modelling a structured planar stationary shock. Such
shocks were shown to exist (Scudder et al. 1986).

3.2. A structured planar stationary shock model
Our objective is to model a structured shock profile, which would include at least a foot
and an overshoot and would be similar to the observed shock profile, but not necessarily
reproduce the latter. Such modelling requires first denoising the magnetic profile, that is,
removing oscillations that are supposed not to be a part of the shock structure but, possibly,
transient waves or observed due to the tangential crossing of the shock by the spacecraft.
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FIGURE 3. The reduced distribution function f (x, vx) = ∫
f (x, v) dvy dvz obtained by tracing

80 000 ions through the shock profile given by (3.1)–(3.3) and s = 0.32.

FIGURE 4. The magnetic field calculated from (3.6).

Figure 4 makes the impression that at least one magnetic maximum corresponds to the
overshoot, after which the magnetic field drops to the downstream value or below it. The
position of the overshoot corresponds to the position of the maximal deceleration of the
directly transmitted ions in figure 3. Figure 3 also shows that the reflected ions appear
as far as approximately 0.5(Vu/Ωu) from the ramp. This distance should approximately
correspond to the foot length of a structured shock. Figure 5 compares the original profile
with a denoised one. The latter is obtained by applying Daubechies 10 wavelet transform,
reducing the smaller scale 9 levels, and applying the inverse transform (WaveShrink
procedure of the WaveLab 850 package).

An overshoot is added as follows:

�Bz = aBu sin θBng(x, xl,wl, xr,wr) (3.7)

g(x, xl,wl, xr,wr) =
(

1 + tanh
3(x − xl)

wl

) (
1 − tanh

3(x − xr)

wr

)
. (3.8)
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FIGURE 5. The original magnetic field magnitude truncated to 213 points (red) and the denoised
magnetic field. The denoising is done by applying Daubechies 10 wavelet transform, reducing
the smaller scale 9 levels, and applying the inverse transform.

For the run below the following parameters are chosen: a = 1, wl = 0.3(Vu/Ωu),
wr = 1.87(Vu/Ωu), xl = 0.1(Vu/Ωu), xr = 0.15(Vu/Ωu). Because of the overshoot, the
cross-shock potential has to be modified, so the downstream value sd = 0.2 while
smax = 0.35.

Figure 6 shows the reduced distribution function f (x, vx), in the format similar to
figure 3. It has been shown that an overshoot enhances ion reflection (Gedalin et al.
2023a). This enhancement is easily seen comparing figures 3 and 6. Ion reflection is strong
because of the large vT/vu = 0.17 (Sharma & Gedalin 2023). The much larger fraction of
the reflected ions in the structured shock reverses the behaviour of the total ion pressure
pxx across the shock from decreasing, as required by the conservation laws, to increasing,
which is impossible in a stable shock. Although figure 7 shows this behaviour for one
set of parameters but it has been found that no variation of parameters can reduce the far
downstream pxx to below the upstream value. Thus, the observed profile (figures 1 and 5)
cannot belong to a planar stationary shock. Namely, rippling should be explored as the
next viable possibility.

3.3. A rippled shock: simulations
A self-consistent two-dimensional (2-D) hybrid kinetic simulation was performed in order
to provide a reference configuration for the modelling effort. In the hybrid simulation
model, the ions are treated kinetically, while electrons are modelled as a massless
fluid with a prescribed equation of state (e.g. Winske et al. 2023). The simulation was
performed in a 2-D domain of size Lx × Ly = (1024 × 256)(c/ωpi), covered by a uniform
grid with 8192 × 2048 cells. The upstream parameters are θBn = 115◦ and βe = βi = 6,
where the distribution function for the ions is a drifting Maxwellian. The upstream
magnetic field is in the x–y plane. Note that the y-coordinate in the simulation corresponds
to the z-coordinate in the data and test particle analyses. The plasma is injected from x = 0
of a 2-D simulation domain with the speed V0 = 7VA. Reflecting boundary conditions
are used at x = Lx, and the shock is formed by the interaction between the incoming
and reflecting flows. In the simulation frame of reference, the shock propagates in the
negative x direction with the average speed Vsh ≈ 3.35VA, resulting in total upstream flow
in the NIF Vu ≈ 10.35VA. The simulation was performed using a version of the H3D code
(Karimabadi et al. 2006) adapted for shock simulations. An adiabatic equation of state
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FIGURE 6. The reduced distribution function f (x, vx) = ∫
f (x, v) dvy dvz obtained by tracing

80 000 ions through the structured shock profile. The black line shows the magnetic field
magnitude.

FIGURE 7. Ion pxx throughout the shock. Black line: the non-structured shock. Red line: the
planar stationary structured shock.

with adiabatic index γ = 5/3 was used for the electrons. Ion distribution is sampled by
computational particles with a uniform and constant statistical weight, such that in the
upstream region the number of particles per cell is Nppc = 100. The time step used in the
simulation is δtΩu = 1.25 × 10−3. In the discussion below, coordinates are normalized to
upstream ion inertial length c/ωpi, while time is normalized to Ωu.

The basic properties of the shock are summarized in figure 8, which shows x-profiles of
the magnetic field components Bx(x′, y = const, tΩu = 125)/Bu, By(x′, y = const, tΩu =
125)/Bu, normal component of the velocity V ′

x(x
′, y = const, tΩu = 125)/Vu and density

ρ(x′, y = const, tΩu = 125)/ρu, taken at various values of y = const (left column). Here,
V ′

x = Vx + Vsh is the velocity in NIF. There is substantial variance of the above variables.
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(a) (b)

FIGURE 8. Profiles of (top to bottom) Bx, By, ρ and Vx in the hybrid simulation. The left column
shows y = const cuts taken at each cell, i.e. there are 2048 cuts, and a single instance of time
tΩu = 125. In each panel, each blue line is the single profile, e.g. By(x, y = const, t = const),
while the black line corresponds to the y-average. The vertical dash lines mark the region used
in the analysis of shock front perturbations and distribution function below. The right column
shows 〈Bx〉y(x′, t), 〈By〉y(x′, t), 〈V ′

x〉y(x′, t) and 〈ρ〉y(x′, t), for various moments in the time
interval 125 < tΩu < 220. Here, x′ = x + Vu(t − t0) is the NIF coordinate, with t0Ωu = 125,
and Vx = V ′

x + Vsh.

The right column shows the y-averaged profiles

〈X〉y(x′, t) = 1
Ly

∫
dyX(x′, y, t), (3.9)

where X = Bx,By,Vx, ρ, for various moments in the time interval 125 < tΩu < 220, and
x′ = x + Vu(t − t0) is the NIF coordinate. The y-average profiles are stationary in NIF.

The structure of the shock front perturbations is further illustrated in figure 9,
which shows a section of the simulation domain of size (60 × 60)c/ωpi near the shock
front. Several distinct types of perturbations are present, with different wavelengths
and polarization properties. We identify the shock rippling by the enhancements at the
shock front, shown in the figure by red arrows. The wavelength of these fluctuations is
approximately 25c/ωpi. These perturbations propagate in the negative y-direction, with
the velocity Vy ≈ −6VA. Note that the fronts of the rippling wave are not perpendicular
to the shock front but are oblique. One of these fronts is along a red arrow in the figure.
Figure 10 illustrates the frequency spectrum of By fluctuations along the shock front in the
NIF. The spectrum is obtained by performing the fast Fourier transform of By collected in
a narrow region around x′ = 593.5c/ωpi (see figure 8). The spectrum shows the existence
of perturbations with wavenumbers in the range ky � 0.6, propagating roughly with the
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(a) (b) (c)

(d ) (e)

FIGURE 9. Two-dimensional profiles of (clockwise) Bx, By, Bz, ρ and pressure tensor p̂xx in a
hybrid simulation at tΩu = 125.

FIGURE 10. Frequency–wavenumber spectrum of By fluctuations along the shock front.

same phase speed in the negative y direction. Further, there appears to exist a second class
of weaker fluctuations, propagating in the opposite direction with a somewhat smaller
phase speed.

The reduced ion distribution function collected in the same narrow region of x is shown
in figure 11. The same rippling as in figure 9 is seen in the reduced distribution function
and is marked by red arrows. The rippling seems to be closely related to the non-locality
of the reflection process is also seen (Gedalin 2023).

Despite the spatial and time variability of the shock structure, the shock maintains stable
average fluxes of the conserved quantities, as expected. This is shown in figure 12, which
shows fluxes of mass Fm, total momentum Fp and total energy Fε in the simulation,
normalized to their corresponding upstream values. Omitting resistivity terms, the
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(a) (b) (c)
(d )

FIGURE 11. Reduced distribution function at the shock front (left to right): f ( y, vx), f ( y, vy),
f ( y, vz). The rightmost panel shows By( y) at the same x-location. The distributions are shown
in the NIF.

conserved fluxes take the following form in the hybrid model:

Fm = niVi, (3.10)

Fp = p̂i,xx + miniV2
ix + pe + 1

4π

(
B2

2
− B2

x

)
, (3.11)

Fε = χi,x + (V i · p̂i)x + 1
2

miniV2
i Vix

+1
2

Tr(p̂i)Vix + γ

γ − 1
peVex + c

4π
(E × B)x, (3.12)

where

p̂i,ab(x′, y, t) = mp

∫
(va − Va)(vb − Vb)f (v, x′, y, t) d3v, (3.13)

is the ion kinetic pressure tensor in the co-moving frame, and

χi,x = 1
2

mp

∫
(v − V )2(vx − Vx)f (v, x′, y, t) d3v, (3.14)

is the ion heat flux. The fluxes in (3.10)–(3.12) are further y-averaged. We observe that
time-averaged fluxes of mass and momentum are conserved to approximately 0.5 % or
better between the upstream and downstream regions. The average energy flux shows
somewhat greater variation, a little over 1 %, across the region included in figure 12. This
is likely due to a combination of numerical dissipation in the simulation and slight time
variability of the upstream conditions (which could be traced to numerical dissipation in
the upstream region).
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(b)

(a)

(c)

FIGURE 12. Fluxes of (top to bottom) mass, momentum and energy in the hybrid simulation.
In each panel, the coloured lines show flux computed at an instance of time as indicated by the
colour bar. The black lines show time-averaged fluxes. Each flux is normalized by its upstream
value.

3.4. A rippled shock: modelling
We model a rippled shock front assuming that the shock is approximately stationary in the
frame moving with the ripples along the shock front with the ripple velocity Vu(Vry,Vrz).
We assume that the residual time dependence seen in the simulations is of secondary
importance and may be ignored when modelling the shock structure. In what follows we
exploit the principles proposed by Gedalin & Ganushkina (2022). In the rippling frame,
the upstream plasma velocity is Vu(1,−Vry,−Vrz), so that the electric field would be

E(0)x = −Vry sin θBn − KE
dBz

dx
(3.15)

E(0)y = sin θBn + Vrz cos θBn (3.16)

E(0)z = −Vry cos θBn, (3.17)

if the shock were planar, which is denoted by the superscript (0). We introduce the scalar
and vector potentials

A(0)y ,
∂A(0)y

∂x
= B(0)z (x), (3.18a,b)

A(0)z ,
∂A(0)z

∂y
= B(0)x , −∂A(0)z

∂x
= B(0)y , (3.19a–c)

φ = Vry sin θBnx + KEB(0)z − (sin θBn + Vrz cos θBn)y + Vry cos θBnz, (3.20)
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where B(0) is given by (3.1)–(3.3). Rippling is added by replacing the dependence on x
with the dependence on

X = x − ψ (3.21)

ψ = ar cos(kxx + kyy + kzz)G (3.22)

G = g(x, xL,wL, xR,wR). (3.23)

The shape (3.22) is a generalization of waveform proposed by Gedalin & Ganushkina
(2022) and is inspired by the above simulation showing that the front of the wave is not
perpendicular to the shock front. Thus, rippling is a nonlinear wave propagating at an
angle to the shock front. This wave damps into the downstream region and seems to not
propagate into the upstream region. This behaviour is modelled using the localization
function g. The replacement x → X is to be done in the vector potential and scalar
potential. Then

Bx = ∂Az

∂y
− ∂Ay

∂z
= cos θ − ψyB(0)y + ψzB(0)z (3.24)

By = ∂Ax

∂z
− ∂Az

∂x
= B(0)y (1 − ψx) (3.25)

Bz = ∂Ay

∂x
− ∂Ax

∂y
= B(0)z (1 − ψx) (3.26)

Ex = −∂φ
∂x

= (−Vry cos θBn − KEB(0)y )(1 − ψx) (3.27)

Ey = −∂φ
∂y

= sin θBn + Vrz cos θBn + Vyr cos θBnψy + KEB(0)y ψy (3.28)

Ez = −∂φ
∂z

= −Vry cos θBn + KEB(0)y ψz, (3.29)

where B(0)z = B(0)z (X), B(0)y = B(0)y (X) and ψξ = ∂ψ/∂ξ . For the present analysis, we add
rippling to the non-structured shock profile (3.1). The parameters chosen to make the
model resemble the simulated shock are

ky = 0, kz = 2π/3, kx = kz cos(145◦), Vry = 0, Vrz = −0.6 (3.30a–e)

xL = xR = 0, wL = 1/MA, wR = 8, ar = 0.75/MA. (3.31a–d)

The three components of the magnetic of the rippled shock model are shown in figure 13
(central part only). Figure 14 further illustrates the structure of the magnetic field of the
model, showing two families of the magnetic field magnitude cuts. The model was used
to trace 160 000 ions. The incident distribution was the same Maxwellian as above. The
initial x and y were the same for all ions, while the initial z were randomly distributed
along the wavelength 0 ≤ z < 3. Figure 15 presents the results of the tracing as a 2-D
distribution of the ion pressure pi,xx, where

pi,xx(x, z) = mp

∫
v2

x f (v, x, z) d3v. (3.32)

The distribution function f (v, x, z) is obtained by counting particles appearing in 500 × 50
cells of the size�x = 0.018 and�y = 0.06. During the tracing z-coordinate of an ion may
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(b)(a) (c)

FIGURE 13. The three components of the magnetic of the rippled shock model. Three
wavelengths along the shock front are shown.

(a) (b)

FIGURE 14. (a) Value of |B|/Bu as a function of x for various z. (b) Value of |B|/Bu as a
function of z for various x.

leave the stripe 0 ≤ z < 3. In this case, it is counted with z-coordinate shifted toward the
stripe by adding an integer number of wavelengths. Each ion count is multiplied with the
weight |v0x| (Gedalin, Pogorelov & Roytershteyn 2023b). Figure 16 shows the reduced
distribution function f (x, vx) = ∫

f (v, x, z) dvy dvz dz.
The behaviour of ions is further illustrated by the cuts at x = 0. Figure 17 shows the

distribution function f (z, vx) at x = 0. Figure 18 shows z-integrated distributions f (vx, vy)
and f (vx, vz) for x = 0. Finally, figure 19 shows the magnetic field magnitude calculated
using the planar stationary momentum balance (3.6). Only the values far upstream and
downstream have physical sense since in the region, where rippling is still noticeable,
(3.6) is not valid and should be replaced with a more complicated version (Gedalin &
Ganushkina 2022). The downstream value of |B|/Bu is rather close to Bd/Bu chosen in the
model.

4. Discussion and conclusions

To remind a reader, the main objective of the present study was to analyse whether
parameters similar to those of the observed shock crossing are consistent with a planar
stationary shock profile, either non-structured or structured or non-planarity, and time
dependence, e.g. in the form of ripples propagating along the shock front, are required
to maintain the conservation laws. Starting with the upstream shock parameters, namely,
the Alfvénic Mach number, shock angle and upstream temperature, we have shown
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(a)

(b)

FIGURE 15. (a) Value of pi,xx as a function of x and z. (b) Value of Bx as a function of x and z.

FIGURE 16. The reduced distribution function f (x, vx).

FIGURE 17. The distribution function f (z, vx) at x = 0.
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(a) (b)

FIGURE 18. (a) Value of f (vx, vy) at x = 0. (b) Value of f (vx, vz) at x = 0.

FIGURE 19. The magnetic field magnitude calculated using the planar stationary momentum
balance (3.6). The derived downstream magnetic field is consistent with the chosen model
magnetic field. The conversion to the downstream value starts rather quickly, less than three
ion upstream convective gyroradii.

that the magnetic compression, predicted by the Rankine–Hugoniot relations, cannot
be achieved in a planar stationary shock without breaking the momentum conservation
(3.6) throughout the shock. Using hybrid simulations, we found that the shock with
parameters similar to those of the observed shock is rippled. In the NIF, this rippling
is a large-amplitude nearly monochromatic wave propagating with a constant speed along
the shock front. The amplitude of the ripples is the largest in the vicinity of the ramp
and overshoot, sharply dropping toward upstream and slowly decaying in the downstream
region. In the frame moving with the speed of ripples along the shock front, the overall
pattern of shock transition layer and the downstream region is spatially non-uniform but
nearly time-independent. In NIF, where the ripples are moving, the pattern is significantly
time-dependent. Observations (Johlander et al. 2016; Gingell et al. 2017; Johlander et al.
2018) support the numerically established picture of ripples propagating in NIF. It is not
known at present whether ripples can stand in NIF. The mass, momentum and energy
fluxes significantly vary in space and time but the averaged fluxes are constant throughout
the shock. The 2-D simulation allowed us to determine the plausible rippling parameters
which were further used for modelling the rippled shock and test particle analysis of the
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ion motion in this model. The far downstream magnetic field, derived from ion tracing
in the model, is consistent with the magnetic field chosen in the model. We interpret the
results of the study as an indication of a ‘phase transition’ from a planar stationary regime
to a rippled regime, in a way similar to the transition from an almost monotonic profile
in subcritical shocks to a well-structured profile in supercritical shocks. Such a ‘phase
transition’ should occur simply because of the necessity to maintain stable fluxes of mass,
momentum and energy, and would occur whatever is a specific mechanism of rippling
onset. At present, we do not know what are thresholds in the parameter range required to
be crossed for such a transition.
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