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INDUCED REPRESENTATIONS OF RINGS 

MARC A. RIEFFEL 

At the beginning of the chapter on induced representations in the treatise 
of Curtis and Reiner [8] on representation theory, they write "Most of the 
results have not yet found suitable generalization to rings with minimum 
condition or finite dimensional algebras, ...". The purpose of this paper is to 
indicate how some of the more basic theorems concerning induced representa­
tions can, in fact, be generalized to rings and algebras. In most cases we can 
do this by bringing together known results, so that in this sense this paper 
does not contain substantially new results. Perhaps of greatest interest is the 
connection we indicate in § 2 between the imprimitivity theorem and 
what have come to be called "the Mori ta theorems". In § 1 we discuss the 
Frobenius reciprocity theorem and related matters, while in § 3 we consider 
the intertwining number theorem of Mackey. 

It may be of interest that almost all of the theorems which we consider are 
seen to be true (in an appropriate form) for representations of (possibly 
infinite) groups on modules over arbitrary commutative ground rings with 
unit. 

1. The Frobenius Reciprocity Theorem. Although Levitzki [15] made 
an early attempt to generalize Frobenius' definition of induced representations 
[10] to the setting of algebras (by using idempotents), and a similar formula­
tion is implicit in a treatment for groups given by Weyl [26, p. 335], the first 
general, functorial, definition of induced representations for rings and algebras 
which we have found in the literature was given in 1955 by D. G. Higman 
[11]. His definition can be stated in slightly more current terminology as 
follows. Let A be a ring and let B be a subring of A. (Throughout this paper 
rings are always assumed to have an identity element, and subrings are assumed 
to contain the identity element of the containing ring. All modules are unital.) 
Then the obvious restriction functor, PF "—> WB, from the category of left 
A -modules to the category of left ^-modules has both an adjoint, Ft—> AV, 
and a coadjoint, V i—> VA, (for the definition of adjoint functors see [17, p. 79]). 
These are defined on a left ^-module, F, by 

(1.1) AV = A ®BV 

and 

(1.2) VA = HomB (A, V) 
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respectively, where in the first case A is viewed as a left-^-right-I3-bimodule, 
and in the second case as a left-5-right-^-bimodule. These are just the change 
of rings operations familiar from other areas of algebra (see for example 
[5, p. 28]). We will call A F a n d VA the adjoint and coadjoint induced modules 
obtained by inducing V from B to A. 

Higman indicated that if the constructions (1.1) and (1.2) are applied to 
the case of a group and a subgroup of finite index (by using their group 
algebras), they both lead to Frobenius' original definition of induced repre­
sentations. Since Higman's proof of this fact is buried in his discussion of 
self-dual S-rings, we will begin by sketching a direct proof here. In the process 
we will indicate what happens if the subgroup does not have finite index. 

Let G be a group, and let R be a commutative ring, which will remain fixed 
throughout this paper. We will denote the group algebra of G over R by R(G). 
The representations of G which we will consider are those for which G acts as 
a group of automorphisms of some i^-module. We will refer to the space of 
such a representation of G as a G-module. (The term G-i^-module would be 
more appropriate if there were any chance of confusion about which ground 
ring is being used.) Then it is easily verified that G-modules correspond to 
R(G)-modules (see [5, p. 149]), and, even more, that the category of G-modules 
is isomorphic to the category of R(G)-modules. 

Let if be a subgroup of G, and let V be an i7-module. Frobenius gave his 
definition of the induced representation of G obtained from V only for the case 
in which G is finite and R is a field, but we make neither of these assumptions 
here. His definition, in more modern guise, and in this slightly greater general­
ity, is as follows. The space of the induced G-module is the i^-module, RH(G, V), 
of all functions, F, from G to F which satisfy the relation 

(1.3) F (pes) = s-'iFix)) 

for all x G G and s ^ H} with the action of G on RH(G, V) given by 

(1.4) (yF)(x) = F(yr-ix) 

for x, y Ç G. We will now see how this definition is related to Higman's defini­
tions in terms of the change of ring operations. 

We consider coadjoint induced modules first. We do not assume that G is 
finite or that H has finite index in G. Now R(H) is a subalgebra of R(G) and 
so we can apply (1.2) to construct the coadjoint induced representation 
VR{G). Let us write VG instead of VR(G), and similarly for Hom# or <g)#. Now 
any element, T, of VG = Hom#(R(G), V) is determined by its values on 
the i?-basis for R(G) consisting of the elements of G, that is, by a F-valued 
function on G. To obtain agreement with the conventions we used above in 
describing Frobenius' definition of induced representations, we associate to T 
the function, FTl defined on G by 

(1.5) FT(x) = T(ar*). 
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We thus obtain a mapping from VG to i?#(G, V) which is easily seen to be a 
G-module (or i?(G)-module) isomorphism. Thus the functor F«—> VG is 
naturally equivalent to the functor V^-^RH(G, V). (Here and elsewhere we 
leave details concerning morphisms to the reader.) 

We turn now to the adjoint induced modules, which we write as °V instead 
of R(°)V. Again we wish to express R(G) ®H F as a collection of F-valued 
functions on G. A calculation which suggests how to do this is the following. 
Let / Ç R(G), v £ V, and let {xc : c £ G/H] be a collection of coset repre­
sentatives for H in G. Then, writing / as the formal linear combination 
Hxeaf(%)x, we have 

/ ® v = ]T) f(x)x ® v 
X 

(1-6) = E T, f(Xct)xet ® v 

c£GIH t£H 

= Z Xc ® ( Z f{0Cct)tv) . 
This suggests that we associate t o / and v the F-valued function, ô(/, y), on 
G defined by 

(1.7) 6(/ ,»)(x) = E /(x/)to. 

It is easily verified that b extends to an injection from R(G) ®H V into 
RH(G, V). However, b is not in general surjective, for the range of b will be 
the subspace, RH°(G, V), of RH(G, V) consisting of functions which have 
value zero off of the union of a finite number of cosets of H in G. Thus the 
functor Fi—> GV is naturally equivalent to the functor V^> RH°(Gy V). 

In particular, if H is of finite index in G, then RH°(G, V) = RH(G, V), and 
the functors F«—> GV and F>—> VG are naturally equivalent. In other words, 
in this case we have the interesting phenomenon that the adjoint and coadjoint 
of the restriction functor from the category of R (G) -modules to the category 
of R(H)-modules are naturally equivalent. This phenomenon was investigated 
for general extensions of rings by Higman [11], and later by Morita [19], who 
showed that the ring extensions exhibiting this phenomenon are exactly the 
"Frobenius extensions" introduced earlier by Kasch [13]. This phenomenon 
also holds for unitary representations of compact groups [22]. We remark that 
a description of induced representations in terms of homogeneous bundles can 
be found in [9]. 

The statement that the constructions (1.1) and (1.2) provide the adjoint 
and coadjoint of the restriction functor should be considered to be the ap­
propriate generalization of the Frobenius reciprocity theorem to the setting 
of rings. 

T H E FROBENIUS RECIPROCITY THEOREM FOR RINGS. Let A be a ring and 
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let B be a subring of A. Then 

(1.8) HomA(AF, W) ^ Hom f î(F, WB) 

and 

(1.9) Hoiru(W, VA) ç* HomB(Wflf F) 

for ail A-modules W and B-modules V. 

These natural equivalences are well-known and follow from the basic 
properties of tensor products (see [5, p. 28] or [4, p. 133]). The Frobenius 
reciprocity theorem for groups in the form given on [12, p. 556] is an immediate 
consequence of the above theorem. More classical versions can be derived 
from this form as in [12]. 

The theorem on induction in stages for adjoint induced representations 
(see [8, p. 267] for the case of groups) follows immediately from the associativity 
of tensor products, while for coadjoint representations it follows from similar 
considerations. 

THEOREM ON INDUCTION IN STAGES. Let A be a ring, B a subring of A, and 
C a subring of B. Let U be a C-module. Then there are natural equivalences of 
functors 

A(BU)^AU and (UB)A ^ UA. 

We remark in conclusion that "Shapiro's lemma" (see [14, p. 69] or [25, p. 
131]), which states that 

Hn(G, VG) ^Hn(H, V), 

where the Hn are cohomology groups (and R is the ring of integers), is an 
almost immediate consequence of (1.9) together with Corollary 1 of [1]. 
(I thank C. C. Moore for bringing "Shapiro's Lemma "to my attention.) 

Extensions of a number of the ideas of this section to representations of 
locally compact groups and Banach algebras can be found in [21; 22; 23]. 

2. The Imprimitivity theorem. Just as basic to the theory of induced 
representations of groups as the Frobenius reciprocity theorem, is the im­
primitivity theorem, which describes which representations of a group G are 
induced from representations of a subgroup H. Since we have seen that for 
rings there are two types of induced representations, the adjoint and coadjoint 
induced representations, there should be two imprimitivity theorems for 
induced representations of rings. In this section we will only discuss the 
imprimitivity theorem for adjoint induced representations of rings (con­
struction (1.1)), but an entirely parallel discussion can be given for coadjoint 
induced representations. 
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What we must do is discover what special properties are possessed by A-
modules which happen to be of the form A ®B V for some i3-module V. 
Appropriate special properties are suggested by what have come to be known 
as "the Morita theorems" [18; 2, Chapter 2; 7]. Let AB denote A viewed as 
a right ^-module, and let E = E n d ^ ^ ) , the ring of ^-linear maps of A 
into itself. To any element a £ A we can associate the map of A into itself 
consisting of left multiplication by a, and in this way we can identify A with a 
subring of E. Now A B is in an obvious way a left-E-right-5-bimodule, and 
from this it is clear that if V is any 5-module, then A ®B V will in fact be a 
left E-module, with the action of E being an extension of the original action 
of its subring A on A ®B V. Thus a necessary condition that a left A -module 
W be induced from a left J3-module is that the action of A on W be extendable 
to an action of all of E on W. 

To obtain a sufficient condition we must make hypotheses on A and B which 
will ensure that E is large enough to see well how B acts on A. For this purpose 
the Morita theorems suggest that we require that AB be finitely generated, 
projective, and a generator (see [2, p. 68]). Then from the Morita theorems 
(see especially [2, p. 65]) we immediately obtain the following theorem. 

T H E EQUIVALENCE THEOREM. Let A be a ring and B a subring of A. Assume 
that as a right B-module A is a finitely generated projective generator. Let E = 
EndB {AB). Then the category of left E-modules is equivalent to the category of 
left B-modules, the equivalence being given in one direction by V i—> A ®B V for 
any left B-module V. 

From this one obtains almost immediately: 

T H E IMPRIMITIVITY THEOREM FOR RINGS. Let A be a ring and B a subring 
of A. Assume that as a right B-module A is a finitely generated projective generator. 
Let E = EndB(^4B), and identify A with the subring of E consisting of left 
multiplication by elements of A. Then a left A-module W is {adjoint) induced 
from a left B-module if and only if the action of A on W can be extended to an 
action of all of E on W. 

To see that the imprimitivity theorem for groups is a special case of the 
above theorem, we must first identify the algebra E in this case. As before let 
G be a group and H a subgroup of G, so that E = End(B#) (R(G)(RG)). Then 
R(G) is free as a right R(H)-module, with basis consisting of a set of coset 
representatives for H in G. In particular, as a right R(H)-module R(G) is a 
projective generator. Furthermore it is finitely generated if H has finite index 
in G, which we assume from now on. But, from the fact that a set of coset 
representatives, {xc : c £ G/H}, is a basis for R(G) as a right i? (if)-module, 
it is easily seen that the collection of operators Pc ® x forms a basis for E 
over R as c ranges over G/H and x ranges over G, where Pc is the natural 
projection of R(G) onto its subspace of functions which have value zero off 
the coset c, and Pc ® x acts by applying first x and then Pc. 
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Now if W is an R(G)-module and if we wish to extend the action of R(G) 
on W to an action of all of E on W, it suffices to specify how each basis element 
Pc ® x is to act on W, as long as this is done in a way consistent with the way 
in which these basis elements are added and multiplied in E. Examination of 
this consistency requirement leads to the imprimitivity theorem in its usual 
form for groups (see [8, p. 346]). 

The above result, as well as the description of E, can be reformulated in a 
way which is algebraically more attractive. Let C(G/H) denote the algebra 
under pointwise multiplication of all i^-valued functions on G/H, which 
whenever convenient we will tacitly identify with the R-valued functions on 
G which are constant on cosets of H. Then the operator consisting of pointwise 
multiplication of elements of R{G) by a fixed element of C(G/H) is easily seen 
to commute with the right action of R(H) on R(G), and so C(G/H) can be 
identified with a subalgebra of E. 

Let x 6 G and 0 Ç C(G/H), with both x and <j> viewed as elements of E. 
Then it is easily seen that 

x(4f) = (*0)(*/) 

for a l l / 6 R(G), where by definition x<t>{y) — 4>(x~1y) for all y € G. Further­
more, it is easily verified that with the action </> »—» x<j>, G acts as a group of 
automorphisms of the algebra C(G/H). 

Now given any algebra, C, and any group, G, acting as automorphisms of C, 
there is a construction (see [24]) of an algebra which can be considered to be 
the "semidirect product" of G and C, and which has the property that the 
modules over this algebra are in bijective correspondence with the spaces W 
which are simultaneously G and C modules in such a way that 

x(cw) = (xc)(xw) 

for all x G G, c G C, w G W, where xc denotes the result of applying the 
automorphism corresponding to x to the element c of C. 

Returning to the situation of a group G and subgroup H, it is easily seen 
that the algebra E is isomorphic to the "semidirect product" 

C(G/H) ®R(G). 

The statement of the imprimitivity theorem then becomes the statement that 
an R(G)-module W is induced from some representation of H if and only if 
it can be made into a C(G/H) -module in such a way that 

x(<l>w) = (x<t>)(xw) 

for all x G G, <j> Ç C(G/H), w G W. This form is very close to the form of 
the imprimitivity theorem for induced representations of locally compact 
groups given by Blattner [3]. 
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3. Mackey's Intertwining Number Theorem. The generalization of 
Mackey's intertwining number theorem [8, p. 327] to the context of rings 
should concern the relations between representations induced from two 
subrings of a ring. The first proof which Mackey gave for his intertwining 
number theorem [16, p. 580] (which is the proof presented on [8, p. 325]) uses 
his tensor product theorem, which in turn involves being able to take inner 
tensor products of representations. But the possibility of taking inner tensor 
products seems to involve the presence of a Hopf algebra structure. (See [20]. 
It would be interesting to have a theorem to this effect.) And so one would 
not expect that this proof would generalize to give a proof of an intertwining 
number theorem in the context of induced representations of arbitrary rings. 
Mackey then gave a second proof (in [16, § II]) of an intertwining number 
theorem which, in fact, applied to open subgroups of separable locally compact 
groups. The proof of this version is fairly long. We will sketch here a proof, for 
the case of discrete groups and an arbitrary commutative ground ring, which 
involves little more than two applications of the Frobenius reciprocity theorem 
and one application of the imprimitivity theorem. In the process we will see 
how the theorem can at least to some extent be generalized to rings. As in the 
previous section we will treat only adjoint induced representations, but a 
quite parallel treatment can be given for coadjoint induced representations. 

Let A be a ring, and let B and C be subrings of A. Let U be a left ^-module 
and F be a left C-module. The intertwining number theorem concerns the 
space 

(3.1) HomA(AU, AV) 

(or, more specifically, the dimension of this space if the rings are finite dimen­
sional semisimple algebras over a splitting field). If we apply the Frobenius 
reciprocity theorem in form (1.8) to (3.1) we find that (3.1) is naturally 
equivalent to 

(3.2) Horn, (U, {AV)B). 

Now (A V)B is just A 0 c V where A is now viewed as a left-C-right-5-bimodule. 
To proceed further we must make the assumption that A is decomposable as a 
^-C-bimodule (which will usually be the case if B and C are semisimple). Thus 
assume that 

A = ®D, 

where the Dt are 5-C-sub-bimodules of A. (We allow this direct sum to have 
an infinite number of summands.) Then 

(3.3) A 0C V^®Di 0 CV 

as ^-modules. Substituting (3.3) in (3.2) we obtain the following relation, 
which seems to be about the best one can do in obtaining a generalization of 
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Mackey's intertwining number theorem to rings if one does not have further 
information about the structure of the DfS. 

Horn, (AU,AV)^®HomB (U,Di®c V). 

To see that Mackey's intertwining number theorem is in part a special case 
of this relation, consider a group G with subgroups H and K. If R{G) is viewed 
as an R(H)-R(K)-bimodu\e, then it has an obvious bimodule decomposition in 
terms of the H-K-doub\e cosets of G, which can be expressed as 

(3.4) R(G)*É © R(D), 
D£H\G/K 

where H\G/K denotes the collection of H-K-double cosets of G, and R(D) 
denotes the subspace of R(G) spanned by the elements of D. Suppose that U 
is an i7-module and that F is a i£-module. Then, applying the above result, 
we see that 

(3.5) Horn *(*[/, GV)^ © Horn* (£7, R(D) ®KV). 
D£H\G/K 

This result somewhat resembles Mackey's intertwining number theorem. 
To obtain the additional details contained in Mackey's intertwining number 

theorem we must analyze further the structure of the if-modules R(D) ®K V, 
and express them as induced representations. This analysis is the main part 
of the proof of Mackey's subgroup theorem [8, p. 324], and follows readily 
from the imprimitivity theorem. (The proofs in [16] and [8] are slightly ad 
hoc.) If we view R(D) as a left if-module, then there is an obvious transitive 
system of imprimitivity, namely the one associated with the cosets of K 
contained in D. If {xD)D^H\GIK is a family of double coset representatives, so 
that D = HxDK, then this system of imprimitivity is based (see [8, 50.2]) on 
the quotient of G by the stability subgroup of R(xDK), which is easily seen 
to be H P\ xDKxD~l. Let us denote H C\ xDKxD~l by HXD. Then, according to 
the imprimitivity theorem, the iJ-module R(D) is equivalent to the module 
obtained by inducing up to H the HXD-modu\e R(xDK) if HXj> has finite index 
in H. That is, 

(3.6) R(D) ^ R(H) ®HXD R{XDK). 

We note that R(xDK) is a right i^-module, and that the equivalence (3.6) is, 
in fact, an equivalence of if-i£-bimodules. Using the associativity of tensor 
products [8, p. 67], we find that 

R(D) ®K V^R(H) ®HXD (R(XDK) ®K V), 

and we recognize the right hand side as being the module obtained by inducing 
the H^-module R(xDK) ®K V up to H. Now it is easily verified that the 
ijT^-module R(xDK) ®K V is isomorphic to the conjugate by xD of the restric­
tion of V to HXD, that is, the module V(XD) whose elements are those of V 
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but for which the action of HXj> is defined by 

y(v) = {xD-lyxD)v 

for y G HXD, V 6 F, where v denotes v viewed as an element of V(XDy. Thus we 
see that 

R(D)®KV^H(ViXD)). 

If we apply this in (3.5), we find that 

mmo(GU,eV)2Z e UomH(U,H(ViXD))). 
D£H\G/K 

If we assume that HXj> is of finite index in H for all xD> so that, as we saw in 
the first section, H(V(XD)) == ( F ^ ) ) ^ , then we can apply the Frobenius 
reciprocity theorem for coadjoint induced representations (1.9) to the right 
hand side. This completes the proof of the following slight generalization of 
Mackey's intertwining number theorem (in that it applies when working over 
any commutative ground ring with unit). 

INTERTWINING SPACE THEOREM FOR GROUPS. Let H and K be subgroups of 
the group G> let U be an H-module and let V be a K-module. Let HXD and F(Xz>) 

be defined as above for D £ H\G/K. Assume that HX£> is of finite index in H for 
all D e H\G/K. Then 

nom0(°U, °V) ^ 0 RamBmD(UB,D, Vw). 
D£H\G/K 

To see that the theorem is false if we do not assume that the HXD are of 
finite index in H it suffices to consider the example in which G is an infinite 
group, H = G, K consists of only the identity element of G, and in which 
U and V are the trivial representations of H and K respectively. 

We remark that another generalization of Mackey's intertwining number 
theorem can be found in [9]. 

It is not difficult to use the approach of this section to formulate a generali­
zation to Hopf algebras [20] of Mackey's tensor product theorem ([16] or 
[8, p. 325]). However, the hypotheses become sufficiently cumbersome that 
we do not consider it worthwhile to include such a generalization here. On 
the other hand, some of the arguments employed above can be used to give 
additional motivation for the steps in the proof of this theorem in its original 
form. We also remark that in [20] we showed how to generalize Burnside's 
theorem concerning faithful representations of groups to the setting of Hopf 
algebras. 

Finally, we remark that there is one very important part of the theory of 
induced representations of groups which we do not at present see how to 
generalize to rings, namely Clifford's theory of induced representations of 
group extensions ([6], or [8, §§ 49, 50 and 51]). The main difficulty is that we 
do not know an appropriate definition of a "normal" subring of a ring. 
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