A CONVERSE OF THE LOEWNER-HEINZ INEQUALITY, GEOMETRIC MEAN AND SPECTRAL ORDER

MITSURU UCHIYAMA
Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue City, Shimane 690-8504, Japan (uchiyama@riko.shimane-u.ac.jp)

(Received 16 January 2012)

Abstract Let A, B be non-negative bounded self-adjoint operators, and let a be a real number such that $0<a<1$. The Loewner-Heinz inequality means that $A \leqq B$ implies that $A^{a} \leqq B^{a}$. We show that $A \leqq B$ if and only if $(A+\lambda)^{a} \leqq(B+\lambda)^{a}$ for every $\lambda>0$. We then apply this to the geometric mean and spectral order.

Keywords: Loewner-Heinz inequality; geometric mean; spectral order
2010 Mathematics subject classification: Primary 47A63; 47A64
Secondary 15A39; 47A60

1. Introduction

Let A, B be bounded self-adjoint operators on a Hilbert space \mathbb{H}. $A \leqq B$ means that $(A x, x) \leqq(B x, x)$ for every $x \in \mathbb{H}$. A real continuous function $f(t)$ defined on a real interval is said to be operator monotonic, provided that $A \leqq B$ implies that $f(A) \leqq$ $f(B)$ for any two operators A and B whose spectra are in the interval. The LoewnerHeinz inequality means that the power function t^{a} is operator monotonic on $[0, \infty)$ for $0<a<1 . \log t$ is also operator monotonic on $(0, \infty) . f(t)$ is operator monotonic if and only if $f(t)$ has a holomorphic extension $f(z)$ to the open upper half plane such that $f(z)$ maps it into itself, i.e. $f(z)$ is a Pick function (see $[\mathbf{2}, \mathbf{4}]$).

Recall that for $A \geqq 0, B \geqq 0$ the geometric mean $A \# B$ is defined and represented as

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

if A is invertible. This binary operation is monotone increasing with respect to each variable, that is to say, for $A \leqq B, C \leqq D$,

$$
A \# C \leqq B \# D
$$

But, in general, the converse does not hold. For details, we refer the reader to $[\mathbf{3}]$ or $[\mathbf{1}$, Chapter 4].

Throughout this paper A, B, C, D stand for bounded self-adjoint operators, and for a real number λ we write $A+\lambda$, for short, instead of $A+\lambda I$. The objective of this paper is to show that $A \leqq B$ if $(A+\lambda)^{a} \leqq(B+\lambda)^{a}$ for a real number $0<a<1$ and for every real number $\lambda>0$; we actually prove a more general result. We then apply this fact to the operator geometric mean: we show precisely that $A \leqq B$ and $C \leqq D$ if

$$
(A+\lambda) \#(C+\mu) \leqq(B+\lambda) \#(D+\mu)
$$

for every $\lambda>0$ and every $\mu>0$. We also give a necessary and sufficient condition to be $A^{n} \leqq B^{n}$ for every n.

2. A converse of the Loewner-Heinz inequality

We start with a general result.
Lemma 2.1. Let $h(t)$ be a differentiable function defined in a neighbourhood of $t=a$ with $h^{\prime}(a)>0$. Let A, B be bounded self-adjoint operators. If

$$
\begin{equation*}
h\left(a+\lambda_{n} A\right) \leqq h\left(a+\lambda_{n} B\right) \tag{2.1}
\end{equation*}
$$

for $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ such that $\lambda_{n} \downarrow 0$, then $A \leqq B$.
Proof. We note that for sufficiently small λ_{n} the functional calculus $h\left(a+\lambda_{n} A\right)$ is well defined. From (2.1) it follows that

$$
\begin{equation*}
\frac{h\left(a+\lambda_{n} A\right)-h(a)}{\lambda_{n}} \leqq \frac{h\left(a+\lambda_{n} B\right)-h(a)}{\lambda_{n}} . \tag{2.2}
\end{equation*}
$$

Let $\left\{E_{t}\right\}$ be the spectral family of A. We then get

$$
\frac{h\left(a+\lambda_{n} A\right)-h(a)}{\lambda_{n}}=\int_{-\|A\|}^{\|A\|} \frac{h\left(a+\lambda_{n} t\right)-h(a)}{\lambda_{n}} \mathrm{~d} E_{t}
$$

For an arbitrary $\epsilon>0$ there exists n_{0} such that

$$
\left|\frac{h\left(a+\lambda_{n} t\right)-h(a)}{\lambda_{n}}\right| \leqq\left|\left(h^{\prime}(a)+\epsilon\right) t\right|
$$

for $n \geqq n_{0}$ and for $-\|A\| \leqq t \leqq\|A\|$. Since $\left|\left(h^{\prime}(a)+\epsilon\right) t\right|$ is continuous, by Lebesgue's theorem,

$$
\lim _{n \rightarrow \infty} \int_{-\|A\|}^{\|A\|} \frac{h\left(a+\lambda_{n} t\right)-h(a)}{\lambda_{n}} \mathrm{~d} E_{t}=\int_{-\|A\|}^{\|A\|} h^{\prime}(a) t \mathrm{~d} E_{t}=h^{\prime}(a) A .
$$

Since the right-hand side of (2.2) also converges to $h^{\prime}(a) B$, we get that $A \leqq B$.
Theorem 2.2. Let $f(t)$ be a non-constant operator monotonic function in a neighbourhood of $t=a$. Then, $A \leqq B$ if and only if there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $t_{n} \downarrow 0$ and

$$
f\left(a+t_{n} A\right) \leqq f\left(a+t_{n} B\right) .
$$

Proof. $A \leqq B$ clearly yields that $a+t_{n} A \leqq a+t_{n} B$. Hence, we get that $f(a+$ $\left.t_{n} A\right) \leqq f\left(a+t_{n} B\right)$. Since a non-constant operator monotonic function is increasing, by Lemma 2.1, $A \leqq B$ follows from $f\left(a+t_{n} A\right) \leqq f\left(a+t_{n} B\right)$.

Theorem 2.3. Let $A \geqq 0$, let $B \geqq 0$, and let $0<a<1$. The following are then equivalent:
(i) $A \leqq B$;
(ii) $A+\lambda \leqq B+\lambda$ for every $\lambda \geqq 0$;
(iii) $(A+\lambda)^{a} \leqq(B+\lambda)^{a}$ for every $\lambda \geqq 0$;
(iv) $\left(A+\lambda_{n}\right)^{a} \leqq\left(B+\lambda_{n}\right)^{a}$ for a sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ such that $\lambda_{n}>0$ and $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$;
(v) $\left(t_{n} A+1\right)^{a} \leqq\left(t_{n} B+1\right)^{a}$ for a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $t_{n}>0$ and $t_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. (i) \Longrightarrow (ii) and (iii) \Longrightarrow (iv) are trivial; (ii) \Longrightarrow (iii) is the Loewner-Heinz inequality. From (iv) it follows that

$$
\left(1+\frac{A}{\lambda_{n}}\right)^{a} \leqq\left(1+\frac{B}{\lambda_{n}}\right)^{a}
$$

which ensures (v). By Theorem 2.2 we get $(\mathrm{v}) \Longrightarrow$ (i).
It is not difficult to see the following in the same way as above.
Theorem 2.4. Let $A \geqq 0$ and let $B \geqq 0$. The following are then equivalent:
(i) $A \leqq B$;
(ii) $\log (A+\lambda) \leqq \log (B+\lambda)$ for every $\lambda>0$;
(iii) $\log \left(A+\lambda_{n}\right) \leqq \log \left(B+\lambda_{n}\right)$ for a sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ such that $\lambda_{n}>0$ and $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$;
(iv) $\log \left(t_{n} A+1\right) \leqq \log \left(t_{n} B+1\right)$ for a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $t_{n}>0$ and $t_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 2.3 indicates that (iv) \Longrightarrow (iii). The following gives a direct proof of this in the case of $a=\frac{1}{2}$.

Proposition 2.5. Let $A \geqq 0$, let $B \geqq 0$ and let $\lambda>0$. The following then hold.
(i) If $(A+\lambda)^{1 / 2} \leqq(B+\lambda)^{1 / 2}$, then $(A+\mu)^{1 / 2} \leqq(B+\mu)^{1 / 2}$ for every $\mu: 0<\mu \leqq \lambda$.
(ii) If $(\lambda A+1)^{1 / 2} \leqq(\lambda B+1)^{1 / 2}$, then $(\mu A+1)^{1 / 2} \leqq(\mu B+1)^{1 / 2}$ for every $\mu: \mu \geqq \lambda$.

Proof. To show (i) we may assume that $\mu=0$ without of loss of generality. $f(t):=$ $t^{1 / 2}\left(t+2 \lambda^{1 / 2}\right)^{1 / 2}$ is operator monotonic on $[0, \infty)$; indeed, $f(t)$ has a holomorphic extension $f(z)=z^{1 / 2}\left(z+2 \lambda^{1 / 2}\right)^{1 / 2}$ to the open upper half-plane. Since $0<\arg f(z) \leqq \arg z$ for $0<\arg z<\pi, f(z)$ is a Pick function, and hence $f(t)$ is operator monotonic. Since $f\left(t-\lambda^{1 / 2}\right)=\left(t^{2}-\lambda\right)^{1 / 2}$ for $t \geqq \lambda^{1 / 2}$, we have $f\left((A+\lambda)^{1 / 2}-\lambda^{1 / 2}\right)=A^{1 / 2}$, and hence $A^{1 / 2} \leqq B^{1 / 2}$. Part (ii) follows from part (i).

Unfortunately, we do not know whether Proposition 2.5 holds in other cases $a \neq \frac{1}{2}$. According to the notation introduced in [7] we can rewrite (i) in the above proposition as follows: for $0<\mu \leqq \lambda,(t+\mu)^{1 / 2} \preceq(t+\lambda)^{1 / 2}$ on $0 \leqq t<\infty$.

Theorem 2.3 also states that if $A^{a} \leqq B^{a}$ but $A \nsubseteq B$, then the set of λ such that $(A+\lambda)^{a} \leqq(B+\lambda)^{a}$ is bounded above. On the contrary, in the case where $a \geqq 1$ we have the following.

Proposition 2.6. Let $A \geqq 0$, let $B \geqq 0$ and let $a \geqq 1$. Then, $A^{a} \leqq B^{a}$ implies that $(A+\mu)^{a} \leqq(B+\mu)^{a}$ for every $\mu>0$, namely, $(t+\mu)^{a} \preceq t^{a}$ on $0 \leqq t<\infty$.

Proof. If a is a natural number, we can see this by the binomial expansion of $(A+\mu)^{a}$. In general, consider a function $f(t)=\left(t^{1 / a}+\mu\right)^{a}$. Since its holomorphic extension $f(z)=$ $\left(z^{1 / a}+\mu\right)^{a}$ is a Pick function, $f\left(t^{a}\right)=(t+\mu)^{a}$ yields the required result.

3. Application

We apply Theorem 2.3 to the operator geometric mean.
Theorem 3.1. For $A, B, C, D \geqq 0$ the following are equivalent:
(i) $A \leqq B$ and $C \leqq D$;
(ii) $(A+\lambda) \#(C+\mu) \leqq(B+\lambda) \#(D+\mu)$ for every $\lambda ; \mu>0$;
(iii) $(s A+1) \#(t C+1) \leqq(s B+1) \#(t D+1)$ for every $s, t>0$.

Proof. (i) \Longrightarrow (ii) and (i) \Longrightarrow (iii) are clear. To show that (ii) \Longrightarrow (i) we may assume that A and B are invertible, because (ii) holds for $A+\epsilon, B+\epsilon$ in place of A, B. Part (ii) then yields that

$$
\begin{align*}
& (A+\lambda)^{1 / 2}\left((A+\lambda)^{-1 / 2}(C+\mu)(A+\lambda)^{-1 / 2}\right)^{1 / 2}(A+\lambda)^{1 / 2} \\
& \quad \leqq(B+\lambda)^{1 / 2}\left((B+\lambda)^{-1 / 2}(D+\mu)(B+\lambda)^{-1 / 2}\right)^{1 / 2}(B+\lambda)^{1 / 2} \tag{3.1}
\end{align*}
$$

Divide both sides of (3.1) by $\lambda^{1 / 2}$ and let $\lambda \rightarrow \infty$. We then get that

$$
(C+\mu)^{1 / 2} \leqq(D+\mu)^{1 / 2}
$$

for every $\mu>0$. By Theorem 2.3 we obtain that $C \leqq D$. Divide both sides of (3.1) by $\mu^{1 / 2}$ and let $\mu \rightarrow \infty$ to get that $(A+\lambda)^{1 / 2} \leqq(B+\lambda)^{1 / 2}$, which ensures that $A \leqq B$. One can see analogously that (iii) \Longrightarrow (i).

It is not difficult to see that the above theorem also holds for the harmonic mean, i.e. $A!B:=\left(\frac{1}{2}\left(A^{-1}+B^{-1}\right)\right)^{-1}$, but does not hold for the arithmetic mean.

Let a be a real number. The power (non-operator) mean is then defined by

$$
M_{a}(s, t)=\left(\frac{s^{a}+t^{a}}{2}\right)^{1 / a}, \quad M_{\infty}(s, t)=\max (t, s), \quad M_{-\infty}(s, t)=\min (t, s)
$$

for $s, t>0 . M_{1}$ and M_{-1} are the arithmetic mean and harmonic mean, respectively. We now write, for $A \geqq 0$ and for $\lambda \geqq 0$,

$$
M_{a}(A, \lambda)=\left(\frac{A^{a}+\lambda^{a}}{2}\right)^{1 / a}
$$

We then have the following.
Proposition 3.2. Let $a>1$ and let $A, B \geqq 0$. The following are then equivalent:
(i) $A^{a} \leqq B^{a}$;
(ii) $M_{a}(A, \lambda) \leqq M_{a}(B, \lambda)$ for every $\lambda>0$.

Moreover, if A, B are invertible, then the following is equivalent to the above:
(iii) $M_{-a}(A, \lambda) \leqq M_{-a}(B, \lambda)$ for every $\lambda>0$.

Proof. Part (ii) is rewritten as $\left(A^{a}+\lambda^{a}\right)^{1 / a} \leqq\left(B^{a}+\lambda^{a}\right)^{1 / a}$. By Theorem 2.3 this is equivalent to (i). If A, B are invertible, (i) means that $A^{-a} \geqq B^{-a}$, which is equivalent to (iii) because of Theorem 2.3.

Although the above proof is very easy, the implication that (ii) \Longrightarrow (i) is not an obvious fact; for instance, if we slightly change the condition (ii) in the case of $a=2$ to be $\left(A^{2}+2 \lambda A+\lambda^{2}\right)^{1 / 2} \leqq\left(B^{2}+2 \lambda B+\lambda^{2}\right)^{1 / 2}$ for every $\lambda>0$, then we gain not that $A^{2} \leqq B^{2}$ but that $A \leqq B$.

Incidentally, in the case $0<a<1$, by Proposition 2.6 we easily obtain the following.
Remark 3.3. Let $0<a<1$ and let $A, B \geqq 0$. Then, $A \leqq B$ if and only if $M_{a}(A, \lambda) \leqq$ $M_{a}(B, \lambda)$ for every $\lambda>0$.

Proposition 3.2 leads us to the following theorem.
Theorem 3.4. Let $\left\{E_{t}\right\}$ and $\left\{F_{t}\right\}$ be spectral families of $A \geqq 0$ and $B \geqq 0$, respectively. The following are then equivalent:
(i) $A^{a} \leqq B^{a}$ for every $a>0$;
(ii) $M_{\infty}(A ; \lambda) \leqq M_{\infty}(B ; \lambda)$ for every $\lambda>0$;
(iii) $M_{-\infty}(A ; \lambda) \leqq M_{-\infty}(B ; \lambda)$ for every $\lambda>0$;
(iv) $E_{t} \geqq F_{t}$ for every t.

Before proceeding to the proof, we set out some concepts. For A, B with spectral families $\left\{E_{t}\right\},\left\{F_{t}\right\}$, respectively, we write $A \prec B$ if $E_{t} \geqq F_{t}$ for every t; this order is called the spectral order and the equivalence of (i) and (iv) in Theorem 3.4 was shown by Olson [5]. In the case where A, B are not necessarily non-negative, in [6] we have seen that $A \prec B$ if and only if $\mathrm{e}^{t A} \leqq \mathrm{e}^{t B}$ for all $t>0$.

Proof. To get (i) \Longrightarrow (ii) note that by Proposition $3.2 M_{a}(A, \lambda) \leqq M_{a}(B, \lambda)$ for every $a>1$ and for every $\lambda>0$. Since, for a fixed $\lambda, M_{a}(t, \lambda)$ converges uniformly to $M_{\infty}(t, \lambda)$ on $-\|A\| \leqq t \leqq\|A\|$ as $a \rightarrow \infty, M_{a}(A, \lambda)$ converges to $M_{\infty}(A, \lambda)$ in the normed sense. $M_{a}(B, \lambda)$ also converges to $M_{\infty}(B, \lambda)$. We therefore get (ii). Assume (i) again. By Proposition 2.6 we have that $(A+\epsilon)^{a} \leqq(B+\epsilon)^{a}$ for $\epsilon>0$. By Proposition 3.2 we deduce that $M_{-a}(A+\epsilon, \lambda) \leqq M_{-a}(B+\epsilon, \lambda)$. Letting $a \rightarrow \infty$ entails that $M_{-\infty}(A+\epsilon, \lambda) \leqq$ $M_{-\infty}(B+\epsilon, \lambda)$, and then letting $\epsilon \rightarrow 0$ yields (iii), because $M_{-\infty}(t, \lambda)$ is continuous for t. We next show that (ii) \Longrightarrow (iv). To do so, we claim that

$$
M_{\infty}(A, \lambda)=\lambda E_{\lambda}+A\left(I-E_{\lambda}\right)
$$

In fact,

$$
\begin{aligned}
M_{\infty}(A, \lambda) & =\int_{-\infty}^{\infty} M_{\infty}(t, \lambda) \mathrm{d} E_{t} \\
& =\int_{-\infty}^{\lambda} M_{\infty}(t, \lambda) \mathrm{d} E_{t}+\int_{\lambda+0}^{\infty} M_{\infty}(t, \lambda) \mathrm{d} E_{t} \\
& =\int_{-\infty}^{\lambda} \lambda \mathrm{d} E_{t}+\int_{\lambda+0}^{\infty} t \mathrm{~d} E_{t} \\
& =\lambda E_{\lambda}+\int_{\lambda+0}^{\infty} t \mathrm{~d} E_{t}\left(I-E_{\lambda}\right) \\
& =\lambda E_{\lambda}+\int_{-\infty}^{\infty} t \mathrm{~d} E_{t}\left(I-E_{\lambda}\right) \\
& =\lambda E_{\lambda}+A\left(I-E_{\lambda}\right)
\end{aligned}
$$

We therefore get that $M_{\infty}(A, \lambda)-\lambda=(A-\lambda)\left(I-E_{\lambda}\right)$, whose null space is $E_{\lambda} \mathbb{H}$. Since

$$
0 \leqq M_{\infty}(A, \lambda)-\lambda \leqq M_{\infty}(B, \lambda)-\lambda
$$

by comparing the null spaces we get that $F_{\lambda} \mathbb{H} \subseteq E_{\lambda} \mathbb{H}$. This yields (iv). We next show that $(\mathrm{iii}) \Longrightarrow$ (iv). Since $M_{-\infty}(A, \lambda)=A E_{\lambda}+\lambda\left(I-E_{\lambda}\right)$,

$$
0 \leqq(\lambda-B) F_{\lambda}=\lambda-M_{-\infty}(B, \lambda) \leqq \lambda-M_{-\infty}(A, \lambda)=(\lambda-A) E_{\lambda}
$$

One can see that the null space of $(\lambda-A) E_{\lambda}$ is $\left(E_{\lambda-0} \mathbb{H}\right)^{\perp}$. By comparing the null spaces of operators in the above inequalities, we obtain

$$
\left(E_{\lambda-0} \mathbb{H}\right)^{\perp} \subseteq\left(F_{\lambda-0} \mathbb{H}\right)^{\perp}
$$

This implies that $F_{\lambda-0} \leqq E_{\lambda-0}$ for every $\lambda>0$. We therefore get

$$
F_{\lambda} \leqq F_{\lambda+\epsilon-0} \leqq E_{\lambda+\epsilon-0} \leqq E_{\lambda+\epsilon}
$$

for an arbitrary $\epsilon>0$. Since E_{λ} is continuous from the right, this yields (iv).
We note that in the above proofs of (ii) \Longrightarrow (iv) and (iii) \Longrightarrow (iv), the non-negativity of A, B is not used. So, (ii)-(iv) in Theorem 3.4 are equivalent even if A, B are not nonnegative; indeed, since $M_{\infty}(t, \lambda)$ and $M_{-\infty}(t, \lambda)$ are non-decreasing continuous functions with respect to t, by [5, Corollary 1], (ii) and (iii) follow from (iv).

Acknowledgements. The author was supported in part by the (JSPS) KAKENHI Grant 21540181.

References

1. R. Bhatia, Positive definite matrices, Princeton Series in Applied Mathematics (Princeton University Press, 2007).
2. A. Koranyi, On a theorem of Löwner and its connections with resolvents of self-adjoint transformations, Acta Sci. Math. (Szeged) 17 (1956), 63-70.
3. F. Kubo and T. Ando, Means of positive linear operators, Math. Annalen 246 (1980), 205-224.
4. K. LöWner, Über monotone Matrix functionen, Math. Z. 38 (1934), 177-216.
5. M. P. OlSon, The self-adjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Am. Math. Soc. 28 (1971), 537-544.
6. M. Uchiyama, Commutativity of self-adjoint operators, Pac. J. Math. 161 (1993), 385392.
7. M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Analysis 231 (2006), 221-244.
