Proceedings of the Edinburgh Mathematical Society (2014) **57**, 565–571 DOI:10.1017/S0013091513000655

A CONVERSE OF THE LOEWNER–HEINZ INEQUALITY, GEOMETRIC MEAN AND SPECTRAL ORDER

MITSURU UCHIYAMA

Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue City, Shimane 690-8504, Japan (uchiyama@riko.shimane-u.ac.jp)

(Received 16 January 2012)

Abstract Let A, B be non-negative bounded self-adjoint operators, and let a be a real number such that 0 < a < 1. The Loewner–Heinz inequality means that $A \leq B$ implies that $A^a \leq B^a$. We show that $A \leq B$ if and only if $(A + \lambda)^a \leq (B + \lambda)^a$ for every $\lambda > 0$. We then apply this to the geometric mean and spectral order.

Keywords: Loewner-Heinz inequality; geometric mean; spectral order

2010 Mathematics subject classification: Primary 47A63; 47A64 Secondary 15A39; 47A60

1. Introduction

Let A, B be bounded self-adjoint operators on a Hilbert space \mathbb{H} . $A \leq B$ means that $(Ax, x) \leq (Bx, x)$ for every $x \in \mathbb{H}$. A real continuous function f(t) defined on a real interval is said to be *operator monotonic*, provided that $A \leq B$ implies that $f(A) \leq f(B)$ for any two operators A and B whose spectra are in the interval. The Loewner–Heinz inequality means that the power function t^a is operator monotonic on $[0, \infty)$ for 0 < a < 1. log t is also operator monotonic on $(0, \infty)$. f(t) is operator monotonic if and only if f(t) has a holomorphic extension f(z) to the open upper half plane such that f(z) maps it into itself, i.e. f(z) is a Pick function (see [2, 4]).

Recall that for $A \ge 0$, $B \ge 0$ the geometric mean A # B is defined and represented as

$$A \# B = A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$$

if A is invertible. This binary operation is monotone increasing with respect to each variable, that is to say, for $A \leq B, C \leq D$,

$$A \# C \leq B \# D.$$

But, in general, the converse does not hold. For details, we refer the reader to [3] or [1, Chapter 4].

© 2014 The Edinburgh Mathematical Society

M. Uchiyama

Throughout this paper A, B, C, D stand for bounded self-adjoint operators, and for a real number λ we write $A + \lambda$, for short, instead of $A + \lambda I$. The objective of this paper is to show that $A \leq B$ if $(A + \lambda)^a \leq (B + \lambda)^a$ for a real number 0 < a < 1 and for every real number $\lambda > 0$; we actually prove a more general result. We then apply this fact to the operator geometric mean: we show precisely that $A \leq B$ and $C \leq D$ if

$$(A+\lambda)\#(C+\mu) \leq (B+\lambda)\#(D+\mu)$$

for every $\lambda > 0$ and every $\mu > 0$. We also give a necessary and sufficient condition to be $A^n \leq B^n$ for every n.

2. A converse of the Loewner–Heinz inequality

We start with a general result.

Lemma 2.1. Let h(t) be a differentiable function defined in a neighbourhood of t = a with h'(a) > 0. Let A, B be bounded self-adjoint operators. If

$$h(a + \lambda_n A) \le h(a + \lambda_n B) \tag{2.1}$$

for $\{\lambda_n\}_{n=1}^{\infty}$ such that $\lambda_n \downarrow 0$, then $A \leq B$.

Proof. We note that for sufficiently small λ_n the functional calculus $h(a + \lambda_n A)$ is well defined. From (2.1) it follows that

$$\frac{h(a+\lambda_n A)-h(a)}{\lambda_n} \leq \frac{h(a+\lambda_n B)-h(a)}{\lambda_n}.$$
(2.2)

Let $\{E_t\}$ be the spectral family of A. We then get

$$\frac{h(a+\lambda_n A)-h(a)}{\lambda_n} = \int_{-\|A\|}^{\|A\|} \frac{h(a+\lambda_n t)-h(a)}{\lambda_n} \,\mathrm{d}E_t.$$

For an arbitrary $\epsilon > 0$ there exists n_0 such that

$$\left|\frac{h(a+\lambda_n t)-h(a)}{\lambda_n}\right| \le |(h'(a)+\epsilon)t|$$

for $n \ge n_0$ and for $-||A|| \le t \le ||A||$. Since $|(h'(a) + \epsilon)t|$ is continuous, by Lebesgue's theorem,

$$\lim_{n \to \infty} \int_{-\|A\|}^{\|A\|} \frac{h(a + \lambda_n t) - h(a)}{\lambda_n} \, \mathrm{d}E_t = \int_{-\|A\|}^{\|A\|} h'(a)t \, \mathrm{d}E_t = h'(a)A.$$

Since the right-hand side of (2.2) also converges to h'(a)B, we get that $A \leq B$.

Theorem 2.2. Let f(t) be a non-constant operator monotonic function in a neighbourhood of t = a. Then, $A \leq B$ if and only if there exists a sequence $\{t_n\}_{n=1}^{\infty}$ such that $t_n \downarrow 0$ and

$$f(a+t_nA) \leq f(a+t_nB).$$

Proof. $A \leq B$ clearly yields that $a + t_n A \leq a + t_n B$. Hence, we get that $f(a + t_n A) \leq f(a + t_n B)$. Since a non-constant operator monotonic function is increasing, by Lemma 2.1, $A \leq B$ follows from $f(a + t_n A) \leq f(a + t_n B)$.

Theorem 2.3. Let $A \ge 0$, let $B \ge 0$, and let 0 < a < 1. The following are then equivalent:

- (i) $A \leq B$;
- (ii) $A + \lambda \leq B + \lambda$ for every $\lambda \geq 0$;
- (iii) $(A + \lambda)^a \leq (B + \lambda)^a$ for every $\lambda \geq 0$;
- (iv) $(A + \lambda_n)^a \leq (B + \lambda_n)^a$ for a sequence $\{\lambda_n\}_{n=1}^{\infty}$ such that $\lambda_n > 0$ and $\lambda_n \to \infty$ as $n \to \infty$;
- (v) $(t_nA+1)^a \leq (t_nB+1)^a$ for a sequence $\{t_n\}_{n=1}^\infty$ such that $t_n > 0$ and $t_n \to 0$ as $n \to \infty$.

Proof. (i) \implies (ii) and (iii) \implies (iv) are trivial; (ii) \implies (iii) is the Loewner–Heinz inequality. From (iv) it follows that

$$\left(1+\frac{A}{\lambda_n}\right)^a \leq \left(1+\frac{B}{\lambda_n}\right)^a,$$

which ensures (v). By Theorem 2.2 we get (v) \implies (i).

It is not difficult to see the following in the same way as above.

Theorem 2.4. Let $A \ge 0$ and let $B \ge 0$. The following are then equivalent:

- (i) $A \leq B$;
- (ii) $\log(A + \lambda) \leq \log(B + \lambda)$ for every $\lambda > 0$;
- (iii) $\log(A + \lambda_n) \leq \log(B + \lambda_n)$ for a sequence $\{\lambda_n\}_{n=1}^{\infty}$ such that $\lambda_n > 0$ and $\lambda_n \to \infty$ as $n \to \infty$;
- (iv) $\log(t_n A + 1) \leq \log(t_n B + 1)$ for a sequence $\{t_n\}_{n=1}^{\infty}$ such that $t_n > 0$ and $t_n \to 0$ as $n \to \infty$.

Theorem 2.3 indicates that (iv) \implies (iii). The following gives a direct proof of this in the case of $a = \frac{1}{2}$.

Proposition 2.5. Let $A \ge 0$, let $B \ge 0$ and let $\lambda > 0$. The following then hold.

- (i) If $(A + \lambda)^{1/2} \leq (B + \lambda)^{1/2}$, then $(A + \mu)^{1/2} \leq (B + \mu)^{1/2}$ for every $\mu: 0 < \mu \leq \lambda$.
- (ii) If $(\lambda A + 1)^{1/2} \leq (\lambda B + 1)^{1/2}$, then $(\mu A + 1)^{1/2} \leq (\mu B + 1)^{1/2}$ for every $\mu: \mu \geq \lambda$.

M. Uchiyama

Proof. To show (i) we may assume that $\mu = 0$ without of loss of generality. $f(t) := t^{1/2}(t+2\lambda^{1/2})^{1/2}$ is operator monotonic on $[0,\infty)$; indeed, f(t) has a holomorphic extension $f(z) = z^{1/2}(z+2\lambda^{1/2})^{1/2}$ to the open upper half-plane. Since $0 < \arg f(z) \leq \arg z$ for $0 < \arg z < \pi$, f(z) is a Pick function, and hence f(t) is operator monotonic. Since $f(t-\lambda^{1/2}) = (t^2-\lambda)^{1/2}$ for $t \geq \lambda^{1/2}$, we have $f((A+\lambda)^{1/2}-\lambda^{1/2}) = A^{1/2}$, and hence $A^{1/2} \leq B^{1/2}$. Part (ii) follows from part (i).

Unfortunately, we do not know whether Proposition 2.5 holds in other cases $a \neq \frac{1}{2}$. According to the notation introduced in [7] we can rewrite (i) in the above proposition as follows: for $0 < \mu \leq \lambda$, $(t + \mu)^{1/2} \leq (t + \lambda)^{1/2}$ on $0 \leq t < \infty$.

Theorem 2.3 also states that if $A^a \leq B^a$ but $A \not\leq B$, then the set of λ such that $(A+\lambda)^a \leq (B+\lambda)^a$ is bounded above. On the contrary, in the case where $a \geq 1$ we have the following.

Proposition 2.6. Let $A \ge 0$, let $B \ge 0$ and let $a \ge 1$. Then, $A^a \le B^a$ implies that $(A + \mu)^a \le (B + \mu)^a$ for every $\mu > 0$, namely, $(t + \mu)^a \preceq t^a$ on $0 \le t < \infty$.

Proof. If a is a natural number, we can see this by the binomial expansion of $(A+\mu)^a$. In general, consider a function $f(t) = (t^{1/a} + \mu)^a$. Since its holomorphic extension $f(z) = (z^{1/a} + \mu)^a$ is a Pick function, $f(t^a) = (t + \mu)^a$ yields the required result. \Box

3. Application

We apply Theorem 2.3 to the operator geometric mean.

Theorem 3.1. For $A, B, C, D \ge 0$ the following are equivalent:

- (i) $A \leq B$ and $C \leq D$;
- (ii) $(A + \lambda) # (C + \mu) \leq (B + \lambda) # (D + \mu)$ for every $\lambda; \mu > 0;$
- (iii) $(sA+1)\#(tC+1) \leq (sB+1)\#(tD+1)$ for every s, t > 0.

Proof. (i) \implies (ii) and (i) \implies (iii) are clear. To show that (ii) \implies (i) we may assume that A and B are invertible, because (ii) holds for $A + \epsilon$, $B + \epsilon$ in place of A, B. Part (ii) then yields that

$$(A+\lambda)^{1/2}((A+\lambda)^{-1/2}(C+\mu)(A+\lambda)^{-1/2})^{1/2}(A+\lambda)^{1/2} \leq (B+\lambda)^{1/2}((B+\lambda)^{-1/2}(D+\mu)(B+\lambda)^{-1/2})^{1/2}(B+\lambda)^{1/2}.$$
 (3.1)

Divide both sides of (3.1) by $\lambda^{1/2}$ and let $\lambda \to \infty$. We then get that

$$(C+\mu)^{1/2} \le (D+\mu)^{1/2}$$

for every $\mu > 0$. By Theorem 2.3 we obtain that $C \leq D$. Divide both sides of (3.1) by $\mu^{1/2}$ and let $\mu \to \infty$ to get that $(A + \lambda)^{1/2} \leq (B + \lambda)^{1/2}$, which ensures that $A \leq B$. One can see analogously that (iii) \implies (i).

It is not difficult to see that the above theorem also holds for the harmonic mean, i.e. $A!B := (\frac{1}{2}(A^{-1} + B^{-1}))^{-1}$, but does not hold for the arithmetic mean.

Let a be a real number. The power (non-operator) mean is then defined by

$$M_a(s,t) = \left(\frac{s^a + t^a}{2}\right)^{1/a}, \qquad M_{\infty}(s,t) = \max(t,s), \qquad M_{-\infty}(s,t) = \min(t,s)$$

for s, t > 0. M_1 and M_{-1} are the arithmetic mean and harmonic mean, respectively. We now write, for $A \ge 0$ and for $\lambda \ge 0$,

$$M_a(A,\lambda) = \left(\frac{A^a + \lambda^a}{2}\right)^{1/a}.$$

We then have the following.

Proposition 3.2. Let a > 1 and let $A, B \ge 0$. The following are then equivalent:

- (i) $A^a \leq B^a$;
- (ii) $M_a(A,\lambda) \leq M_a(B,\lambda)$ for every $\lambda > 0$.

Moreover, if A, B are invertible, then the following is equivalent to the above:

(iii) $M_{-a}(A,\lambda) \leq M_{-a}(B,\lambda)$ for every $\lambda > 0$.

Proof. Part (ii) is rewritten as $(A^a + \lambda^a)^{1/a} \leq (B^a + \lambda^a)^{1/a}$. By Theorem 2.3 this is equivalent to (i). If A, B are invertible, (i) means that $A^{-a} \geq B^{-a}$, which is equivalent to (iii) because of Theorem 2.3.

Although the above proof is very easy, the implication that (ii) \implies (i) is not an obvious fact; for instance, if we slightly change the condition (ii) in the case of a = 2 to be $(A^2 + 2\lambda A + \lambda^2)^{1/2} \leq (B^2 + 2\lambda B + \lambda^2)^{1/2}$ for every $\lambda > 0$, then we gain not that $A^2 \leq B^2$ but that $A \leq B$.

Incidentally, in the case 0 < a < 1, by Proposition 2.6 we easily obtain the following.

Remark 3.3. Let 0 < a < 1 and let $A, B \ge 0$. Then, $A \le B$ if and only if $M_a(A, \lambda) \le M_a(B, \lambda)$ for every $\lambda > 0$.

Proposition 3.2 leads us to the following theorem.

Theorem 3.4. Let $\{E_t\}$ and $\{F_t\}$ be spectral families of $A \ge 0$ and $B \ge 0$, respectively. The following are then equivalent:

- (i) $A^a \leq B^a$ for every a > 0;
- (ii) $M_{\infty}(A;\lambda) \leq M_{\infty}(B;\lambda)$ for every $\lambda > 0$;
- (iii) $M_{-\infty}(A;\lambda) \leq M_{-\infty}(B;\lambda)$ for every $\lambda > 0$;
- (iv) $E_t \geq F_t$ for every t.

M. Uchiyama

Before proceeding to the proof, we set out some concepts. For A, B with spectral families $\{E_t\}$, $\{F_t\}$, respectively, we write $A \prec B$ if $E_t \ge F_t$ for every t; this order is called the *spectral order* and the equivalence of (i) and (iv) in Theorem 3.4 was shown by Olson [5]. In the case where A, B are not necessarily non-negative, in [6] we have seen that $A \prec B$ if and only if $e^{tA} \le e^{tB}$ for all t > 0.

Proof. To get (i) \implies (ii) note that by Proposition 3.2 $M_a(A,\lambda) \leq M_a(B,\lambda)$ for every a > 1 and for every $\lambda > 0$. Since, for a fixed λ , $M_a(t,\lambda)$ converges uniformly to $M_{\infty}(t,\lambda)$ on $-||A|| \leq t \leq ||A||$ as $a \to \infty$, $M_a(A,\lambda)$ converges to $M_{\infty}(A,\lambda)$ in the normed sense. $M_a(B,\lambda)$ also converges to $M_{\infty}(B,\lambda)$. We therefore get (ii). Assume (i) again. By Proposition 2.6 we have that $(A+\epsilon)^a \leq (B+\epsilon)^a$ for $\epsilon > 0$. By Proposition 3.2 we deduce that $M_{-a}(A+\epsilon,\lambda) \leq M_{-a}(B+\epsilon,\lambda)$. Letting $a \to \infty$ entails that $M_{-\infty}(A+\epsilon,\lambda) \leq$ $M_{-\infty}(B+\epsilon,\lambda)$, and then letting $\epsilon \to 0$ yields (iii), because $M_{-\infty}(t,\lambda)$ is continuous for t. We next show that (ii) \Longrightarrow (iv). To do so, we claim that

$$M_{\infty}(A,\lambda) = \lambda E_{\lambda} + A(I - E_{\lambda}).$$

In fact,

$$M_{\infty}(A,\lambda) = \int_{-\infty}^{\infty} M_{\infty}(t,\lambda) dE_{t}$$

= $\int_{-\infty}^{\lambda} M_{\infty}(t,\lambda) dE_{t} + \int_{\lambda+0}^{\infty} M_{\infty}(t,\lambda) dE_{t}$
= $\int_{-\infty}^{\lambda} \lambda dE_{t} + \int_{\lambda+0}^{\infty} t dE_{t}$
= $\lambda E_{\lambda} + \int_{\lambda+0}^{\infty} t dE_{t}(I - E_{\lambda})$
= $\lambda E_{\lambda} + \int_{-\infty}^{\infty} t dE_{t}(I - E_{\lambda})$
= $\lambda E_{\lambda} + A(I - E_{\lambda}).$

We therefore get that $M_{\infty}(A, \lambda) - \lambda = (A - \lambda)(I - E_{\lambda})$, whose null space is $E_{\lambda}\mathbb{H}$. Since

$$0 \leq M_{\infty}(A,\lambda) - \lambda \leq M_{\infty}(B,\lambda) - \lambda,$$

by comparing the null spaces we get that $F_{\lambda}\mathbb{H} \subseteq E_{\lambda}\mathbb{H}$. This yields (iv). We next show that (iii) \implies (iv). Since $M_{-\infty}(A, \lambda) = AE_{\lambda} + \lambda(I - E_{\lambda})$,

$$0 \leq (\lambda - B)F_{\lambda} = \lambda - M_{-\infty}(B, \lambda) \leq \lambda - M_{-\infty}(A, \lambda) = (\lambda - A)E_{\lambda}$$

One can see that the null space of $(\lambda - A)E_{\lambda}$ is $(E_{\lambda-0}\mathbb{H})^{\perp}$. By comparing the null spaces of operators in the above inequalities, we obtain

$$(E_{\lambda-0}\mathbb{H})^{\perp} \subseteq (F_{\lambda-0}\mathbb{H})^{\perp}.$$

This implies that $F_{\lambda-0} \leq E_{\lambda-0}$ for every $\lambda > 0$. We therefore get

$$F_{\lambda} \leq F_{\lambda+\epsilon-0} \leq E_{\lambda+\epsilon-0} \leq E_{\lambda+\epsilon}$$

for an arbitrary $\epsilon > 0$. Since E_{λ} is continuous from the right, this yields (iv).

We note that in the above proofs of (ii) \implies (iv) and (iii) \implies (iv), the non-negativity of A, B is not used. So, (ii)–(iv) in Theorem 3.4 are equivalent even if A, B are not nonnegative; indeed, since $M_{\infty}(t, \lambda)$ and $M_{-\infty}(t, \lambda)$ are non-decreasing continuous functions with respect to t, by [5, Corollary 1], (ii) and (iii) follow from (iv).

Acknowledgements. The author was supported in part by the (JSPS) KAKENHI Grant 21540181.

References

- 1. R. BHATIA, *Positive definite matrices*, Princeton Series in Applied Mathematics (Princeton University Press, 2007).
- 2. A. KORANYI, On a theorem of Löwner and its connections with resolvents of self-adjoint transformations, *Acta Sci. Math. (Szeged)* **17** (1956), 63–70.
- F. KUBO AND T. ANDO, Means of positive linear operators, Math. Annalen 246 (1980), 205–224.
- 4. K. LÖWNER, Über monotone Matrix functionen, Math. Z. 38 (1934), 177–216.
- 5. M. P. OLSON, The self-adjoint operators of a von Neumann algebra form a conditionally complete lattice, *Proc. Am. Math. Soc.* **28** (1971), 537–544.
- M. UCHIYAMA, Commutativity of self-adjoint operators, Pac. J. Math. 161 (1993), 385– 392.
- M. UCHIYAMA, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Analysis 231 (2006), 221–244.