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Abstract Let A, B be non-negative bounded self-adjoint operators, and let a be a real number such
that 0 < a < 1. The Loewner–Heinz inequality means that A � B implies that Aa � Ba. We show that
A � B if and only if (A + λ)a � (B + λ)a for every λ > 0. We then apply this to the geometric mean
and spectral order.
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1. Introduction

Let A, B be bounded self-adjoint operators on a Hilbert space H. A � B means that
(Ax, x) � (Bx, x) for every x ∈ H. A real continuous function f(t) defined on a real
interval is said to be operator monotonic, provided that A � B implies that f(A) �
f(B) for any two operators A and B whose spectra are in the interval. The Loewner–
Heinz inequality means that the power function ta is operator monotonic on [0,∞) for
0 < a < 1. log t is also operator monotonic on (0,∞). f(t) is operator monotonic if and
only if f(t) has a holomorphic extension f(z) to the open upper half plane such that
f(z) maps it into itself, i.e. f(z) is a Pick function (see [2,4]).

Recall that for A � 0, B � 0 the geometric mean A#B is defined and represented as

A#B = A1/2(A−1/2BA−1/2)1/2A1/2

if A is invertible. This binary operation is monotone increasing with respect to each
variable, that is to say, for A � B, C � D,

A#C � B#D.

But, in general, the converse does not hold. For details, we refer the reader to [3] or [1,
Chapter 4].
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Throughout this paper A, B, C, D stand for bounded self-adjoint operators, and for
a real number λ we write A + λ, for short, instead of A + λI. The objective of this paper
is to show that A � B if (A + λ)a � (B + λ)a for a real number 0 < a < 1 and for every
real number λ > 0; we actually prove a more general result. We then apply this fact to
the operator geometric mean: we show precisely that A � B and C � D if

(A + λ)#(C + µ) � (B + λ)#(D + µ)

for every λ > 0 and every µ > 0. We also give a necessary and sufficient condition to be
An � Bn for every n.

2. A converse of the Loewner–Heinz inequality

We start with a general result.

Lemma 2.1. Let h(t) be a differentiable function defined in a neighbourhood of t = a

with h′(a) > 0. Let A, B be bounded self-adjoint operators. If

h(a + λnA) � h(a + λnB) (2.1)

for {λn}∞
n=1 such that λn ↓ 0, then A � B.

Proof. We note that for sufficiently small λn the functional calculus h(a + λnA) is
well defined. From (2.1) it follows that

h(a + λnA) − h(a)
λn

� h(a + λnB) − h(a)
λn

. (2.2)

Let {Et} be the spectral family of A. We then get

h(a + λnA) − h(a)
λn

=
∫ ‖A‖

−‖A‖

h(a + λnt) − h(a)
λn

dEt.

For an arbitrary ε > 0 there exists n0 such that∣∣∣∣h(a + λnt) − h(a)
λn

∣∣∣∣ � |(h′(a) + ε)t|

for n � n0 and for −‖A‖ � t � ‖A‖. Since |(h′(a) + ε)t| is continuous, by Lebesgue’s
theorem,

lim
n→∞

∫ ‖A‖

−‖A‖

h(a + λnt) − h(a)
λn

dEt =
∫ ‖A‖

−‖A‖
h′(a)t dEt = h′(a)A.

Since the right-hand side of (2.2) also converges to h′(a)B, we get that A � B. �

Theorem 2.2. Let f(t) be a non-constant operator monotonic function in a neigh-
bourhood of t = a. Then, A � B if and only if there exists a sequence {tn}∞

n=1 such that
tn ↓ 0 and

f(a + tnA) � f(a + tnB).
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Proof. A � B clearly yields that a + tnA � a + tnB. Hence, we get that f(a +
tnA) � f(a + tnB). Since a non-constant operator monotonic function is increasing, by
Lemma 2.1, A � B follows from f(a + tnA) � f(a + tnB). �

Theorem 2.3. Let A � 0, let B � 0, and let 0 < a < 1. The following are then
equivalent:

(i) A � B;

(ii) A + λ � B + λ for every λ � 0;

(iii) (A + λ)a � (B + λ)a for every λ � 0;

(iv) (A + λn)a � (B + λn)a for a sequence {λn}∞
n=1 such that λn > 0 and λn → ∞ as

n → ∞;

(v) (tnA + 1)a � (tnB + 1)a for a sequence {tn}∞
n=1 such that tn > 0 and tn → 0 as

n → ∞.

Proof. (i) =⇒ (ii) and (iii) =⇒ (iv) are trivial; (ii) =⇒ (iii) is the Loewner–Heinz
inequality. From (iv) it follows that

(
1 +

A

λn

)a

�
(

1 +
B

λn

)a

,

which ensures (v). By Theorem 2.2 we get (v) =⇒ (i). �

It is not difficult to see the following in the same way as above.

Theorem 2.4. Let A � 0 and let B � 0. The following are then equivalent:

(i) A � B;

(ii) log(A + λ) � log(B + λ) for every λ > 0;

(iii) log(A + λn) � log(B + λn) for a sequence {λn}∞
n=1 such that λn > 0 and λn → ∞

as n → ∞;

(iv) log(tnA + 1) � log(tnB + 1) for a sequence {tn}∞
n=1 such that tn > 0 and tn → 0

as n → ∞.

Theorem 2.3 indicates that (iv) =⇒ (iii). The following gives a direct proof of this in
the case of a = 1

2 .

Proposition 2.5. Let A � 0, let B � 0 and let λ > 0. The following then hold.

(i) If (A + λ)1/2 � (B + λ)1/2, then (A + µ)1/2 � (B + µ)1/2 for every µ : 0 < µ � λ.

(ii) If (λA + 1)1/2 � (λB + 1)1/2, then (µA + 1)1/2 � (µB + 1)1/2 for every µ : µ � λ.
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Proof. To show (i) we may assume that µ = 0 without of loss of generality. f(t) :=
t1/2(t+2λ1/2)1/2 is operator monotonic on [0,∞); indeed, f(t) has a holomorphic exten-
sion f(z) = z1/2(z + 2λ1/2)1/2 to the open upper half-plane. Since 0 < arg f(z) � arg z

for 0 < arg z < π, f(z) is a Pick function, and hence f(t) is operator monotonic. Since
f(t − λ1/2) = (t2 − λ)1/2 for t � λ1/2, we have f((A + λ)1/2 − λ1/2) = A1/2, and hence
A1/2 � B1/2. Part (ii) follows from part (i). �

Unfortunately, we do not know whether Proposition 2.5 holds in other cases a �= 1
2 .

According to the notation introduced in [7] we can rewrite (i) in the above proposition
as follows: for 0 < µ � λ, (t + µ)1/2 � (t + λ)1/2 on 0 � t < ∞.

Theorem 2.3 also states that if Aa � Ba but A �� B, then the set of λ such that
(A+λ)a � (B +λ)a is bounded above. On the contrary, in the case where a � 1 we have
the following.

Proposition 2.6. Let A � 0, let B � 0 and let a � 1. Then, Aa � Ba implies that
(A + µ)a � (B + µ)a for every µ > 0, namely, (t + µ)a � ta on 0 � t < ∞.

Proof. If a is a natural number, we can see this by the binomial expansion of (A+µ)a.
In general, consider a function f(t) = (t1/a +µ)a. Since its holomorphic extension f(z) =
(z1/a + µ)a is a Pick function, f(ta) = (t + µ)a yields the required result. �

3. Application

We apply Theorem 2.3 to the operator geometric mean.

Theorem 3.1. For A, B, C, D � 0 the following are equivalent:

(i) A � B and C � D;

(ii) (A + λ)#(C + µ) � (B + λ)#(D + µ) for every λ; µ > 0;

(iii) (sA + 1)#(tC + 1) � (sB + 1)#(tD + 1) for every s, t > 0.

Proof. (i) =⇒ (ii) and (i) =⇒ (iii) are clear. To show that (ii) =⇒ (i) we may
assume that A and B are invertible, because (ii) holds for A + ε, B + ε in place of A, B.
Part (ii) then yields that

(A + λ)1/2((A + λ)−1/2(C + µ)(A + λ)−1/2)1/2(A + λ)1/2

� (B + λ)1/2((B + λ)−1/2(D + µ)(B + λ)−1/2)1/2(B + λ)1/2. (3.1)

Divide both sides of (3.1) by λ1/2 and let λ → ∞. We then get that

(C + µ)1/2 � (D + µ)1/2

for every µ > 0. By Theorem 2.3 we obtain that C � D. Divide both sides of (3.1) by
µ1/2 and let µ → ∞ to get that (A+λ)1/2 � (B +λ)1/2, which ensures that A � B. One
can see analogously that (iii) =⇒ (i). �
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It is not difficult to see that the above theorem also holds for the harmonic mean,
i.e. A!B := (1

2 (A−1 + B−1))−1, but does not hold for the arithmetic mean.
Let a be a real number. The power (non-operator) mean is then defined by

Ma(s, t) =
(

sa + ta

2

)1/a

, M∞(s, t) = max(t, s), M−∞(s, t) = min(t, s)

for s, t > 0. M1 and M−1 are the arithmetic mean and harmonic mean, respectively. We
now write, for A � 0 and for λ � 0,

Ma(A, λ) =
(

Aa + λa

2

)1/a

.

We then have the following.

Proposition 3.2. Let a > 1 and let A, B � 0. The following are then equivalent:

(i) Aa � Ba;

(ii) Ma(A, λ) � Ma(B, λ) for every λ > 0.

Moreover, if A, B are invertible, then the following is equivalent to the above:

(iii) M−a(A, λ) � M−a(B, λ) for every λ > 0.

Proof. Part (ii) is rewritten as (Aa + λa)1/a � (Ba + λa)1/a. By Theorem 2.3 this is
equivalent to (i). If A, B are invertible, (i) means that A−a � B−a, which is equivalent
to (iii) because of Theorem 2.3. �

Although the above proof is very easy, the implication that (ii) =⇒ (i) is not an
obvious fact; for instance, if we slightly change the condition (ii) in the case of a = 2 to
be (A2 + 2λA + λ2)1/2 � (B2 + 2λB + λ2)1/2 for every λ > 0, then we gain not that
A2 � B2 but that A � B.

Incidentally, in the case 0 < a < 1, by Proposition 2.6 we easily obtain the following.

Remark 3.3. Let 0 < a < 1 and let A, B � 0. Then, A � B if and only if Ma(A, λ) �
Ma(B, λ) for every λ > 0.

Proposition 3.2 leads us to the following theorem.

Theorem 3.4. Let {Et} and {Ft} be spectral families of A � 0 and B � 0, respec-
tively. The following are then equivalent:

(i) Aa � Ba for every a > 0;

(ii) M∞(A; λ) � M∞(B; λ) for every λ > 0;

(iii) M−∞(A; λ) � M−∞(B; λ) for every λ > 0;

(iv) Et � Ft for every t.
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Before proceeding to the proof, we set out some concepts. For A, B with spectral
families {Et}, {Ft}, respectively, we write A ≺ B if Et � Ft for every t; this order is
called the spectral order and the equivalence of (i) and (iv) in Theorem 3.4 was shown by
Olson [5]. In the case where A, B are not necessarily non-negative, in [6] we have seen
that A ≺ B if and only if etA � etB for all t > 0.

Proof. To get (i) =⇒ (ii) note that by Proposition 3.2 Ma(A, λ) � Ma(B, λ) for
every a > 1 and for every λ > 0. Since, for a fixed λ, Ma(t, λ) converges uniformly to
M∞(t, λ) on −‖A‖ � t � ‖A‖ as a → ∞, Ma(A, λ) converges to M∞(A, λ) in the normed
sense. Ma(B, λ) also converges to M∞(B, λ). We therefore get (ii). Assume (i) again. By
Proposition 2.6 we have that (A+ ε)a � (B + ε)a for ε > 0. By Proposition 3.2 we deduce
that M−a(A + ε, λ) � M−a(B + ε, λ). Letting a → ∞ entails that M−∞(A + ε, λ) �
M−∞(B + ε, λ), and then letting ε → 0 yields (iii), because M−∞(t, λ) is continuous for
t. We next show that (ii) =⇒ (iv). To do so, we claim that

M∞(A, λ) = λEλ + A(I − Eλ).

In fact,

M∞(A, λ) =
∫ ∞

−∞
M∞(t, λ) dEt

=
∫ λ

−∞
M∞(t, λ) dEt +

∫ ∞

λ+0
M∞(t, λ) dEt

=
∫ λ

−∞
λ dEt +

∫ ∞

λ+0
t dEt

= λEλ +
∫ ∞

λ+0
t dEt(I − Eλ)

= λEλ +
∫ ∞

−∞
t dEt(I − Eλ)

= λEλ + A(I − Eλ).

We therefore get that M∞(A, λ) − λ = (A − λ)(I − Eλ), whose null space is EλH. Since

0 � M∞(A, λ) − λ � M∞(B, λ) − λ,

by comparing the null spaces we get that FλH � EλH. This yields (iv). We next show
that (iii) =⇒ (iv). Since M−∞(A, λ) = AEλ + λ(I − Eλ),

0 � (λ − B)Fλ = λ − M−∞(B, λ) � λ − M−∞(A, λ) = (λ − A)Eλ.

One can see that the null space of (λ−A)Eλ is (Eλ−0H)⊥. By comparing the null spaces
of operators in the above inequalities, we obtain

(Eλ−0H)⊥ � (Fλ−0H)⊥.
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This implies that Fλ−0 � Eλ−0 for every λ > 0. We therefore get

Fλ � Fλ+ε−0 � Eλ+ε−0 � Eλ+ε

for an arbitrary ε > 0. Since Eλ is continuous from the right, this yields (iv). �

We note that in the above proofs of (ii) =⇒ (iv) and (iii) =⇒ (iv), the non-negativity
of A, B is not used. So, (ii)–(iv) in Theorem 3.4 are equivalent even if A, B are not non-
negative; indeed, since M∞(t, λ) and M−∞(t, λ) are non-decreasing continuous functions
with respect to t, by [5, Corollary 1], (ii) and (iii) follow from (iv).
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