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A FINITELY GENERATED MODULAR ORTHOLATTICE

BY
CHRISTIAN HERRMANN

By an ortholattice we mean a lattice with 0 and 1 and a complementation
operation which is an involutorial antiautomorphism. The free modular or-
tholattice on two generators has 96 elements—cf. J. Kotas [8]. But

There exists a modular ortholattice with 3 generators containing an infinite
independent sequence of nonzero pairwise perspective (and orthogonal) ele-
ments.

Due to Kaplansky [6] and Amemiya-Halperin [1] such a lattice cannot be
embedded into a countably complete modular ortholattice. Also, this answers a
question raised by G. Burns and W. Poguntke: There is a complemented
modular lattice of infinite length which (as a lattice) is subdirectly irreducible
and finitely generated. One just has to take a subdirectly irreducible ortholat-
tice factor in which at least one (whence all) elements in the sequence stay
different from zero. By orthomodularity this will be subdirectly irreducible as a
lattice, too, and generated by six elements.

Actually, we construct the above lattice generators a, ¢, and d such that a is
perspective to a’ via d and a' is perspective in [0, a’+c] to a{a’+c)<a via c.
Even, 0,1, a, a’, ¢, d form a partial lattice J§ as defined in Day, Herrmann, and
Wille [3]. Then, defining a,=a and, recursively, a,,,=((a,+d)a’+c)a the
sequence a,al., (n=0) will have the properties asked for—as is very well
known cf. [7].

For lattice theory we refer to [1, 2, 7] for model theory to [9].

Outline of construction. Let V, be a 2n-dimensional rational vector space
with basis ey,..., e, fi,...,f. and L, its lattice of subspaces. Consider the
following four subspaces of V,, given by sets of generators: A, ={f,..., f.),
B,=(ey,..., ), Co=((e2+f1),...,(e,Tf)), D.={(es+fr),...,(e,+f.)). In
the terminology of Gelfand and Ponomorev [4] this is a quadruple S;(2n, —1)
of defect —1 over the rationals. Inspection yields that there is an orthocomp-
lementation on L, with A/, = B,. For a nontrivial ultraproduct L with constants
A, B, C, D of the ortholattices L,, with constants A,, B,, C,, D, let U be the
subortholattice generated by A, C,D. As a lattice U is generated by €=
{A,B,C,D,C',D'}.
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Then, we embed L (as a lattice) in the lattice of subspaces of a suitable
vector space in which there exist complementary subspaces E and F such that
X=XNE+XNF for all X in €. By Lemma 1.2 in Poguntke [10] we obtain
that aX =X NE defines a lattice homomorphism on U. Due to modularity
(aX)* = a(X') is well defined and M = a(U) becomes with 1,,=E, 0,, =0, and
the operation * an ortholattice homomorphic image of U. In particular, it is
generated by A, C, D.

From the L, M inherits the following relations:

aB=aA*, aA+aD=aB+taD=1
aAaC = aAaD = aBaC = aBaD = aCaD = 0.

Moreover, we choose E such that in addition

aA+aC=aD+aC=1 and aB+aC<]1.

For that, we have to find a vector space representation of L in which the
elements of € can be described, effectively. This is achieved by an axiomatic
correspondence in the sense of Mal’cev [9] between lattices with distinguished
elements, vector spaces, and coordinate descriptions. The same idea has been
applied in [5].

An axiomatic correspondence. Let I, be the set of nonzero integers z with
—n =z =n equipped with the constants 1 and n, the relation =, the operation
z+—>—z, and the partial operation z+—>z+1 defined for 1=z <n. Let Q denote
the field of all rational numbers and V,, the Q-vector space of all maps from
(the set) I, into Q. Let «,:V,xI,—Q be the function which picks the
coordinates: «,(f, i) = f(i). Finally, let L, be the lattice of all subspaces of V,
with the euclidean orthocomplementation ' and ¢, the relation describing
subspaces: f¢,U iff fe U. Now, consider the subspaces of V, given as follows:

fb. A, iff k. (f,i)=0 for i=-1
fé.B, iff k,(f,i)=0 for i=1
fé.D, iff k,.(f,1)=«,(f,—i) for all i
f6.C, ift k,(f,1)=«.(f,—n)=0 and «,(f,—i)=«k,(f,i+1) for 1=i<n.
Clearly, A/, =B, and

fo,D!, iff «k,.(f,i)=—«k,(f,—i) foralli

f6.Cl iff k. (f,—i)=—k,(f,i+1) for 1l=i<n
Let (V,L, A,B,C, D, ¢, I, K, k) be a nontrivial ultraproduct of the multibase
structures (V,, L., A,, B,, C,, D,, ¢,, I, Q, k,,). Due to the Theorem of X.0s a
first order statement holds in the ultraproduct if it holds in all but finitely many

factors. Therefore, we may consider V as a K-subspace of K' with k yielding
the components and L as a sublattice of the subspace lattice of V with
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U ={f|fpU}. Also, the X in & are described the same way the X, are. Now,
let J be the subset of I which is generated by 1 under the operators i+—>—i and
i—i+1 (i=1)—this can be though of as the nonzero integers. Let E and F be
the subspaces of K’ consisting of all maps which vanish outside J and inside J,
respectively. Then EQF=K' and X=XNE+XNF for X in € are im-
mediate and sois ANE+CNE=E. Also E¥ BNE+ CNE since f(1)=0 for
all f herein. Finally, to show E=CNE+ DNE define for given f in E

d)=d=D=f1), c1)=0, c(=D=f=D-f1)
and, recursively,
c(i+1)=c(=i), di+1)=d(=i-1)=f(i+1)—c@+1),
c(—i—-1)=f@i+1)—-d@+1)
for i in J and c(i)=d(i)=0, else. Then ce CNE, de DNE, and f=c+d.
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