
A CONSTRUCTION FOR WYTHOFFIAN POLYTOPES 

G. C. SHEPH A RD 

1. Introduction. This paper contains an account of a simple method 
of deriving the coordinates of the vertices of any uniform polytope or 
honeycomb (degenerate polytope) whose symmetry group is generated by 
reflections. 

Polytopes and honeycombs of this type have been described by many authors, 
amongst whom must be mentioned Schlâfli (10), Gosset (8), Mrs. Boole Stott 
(14), Schoute (12; 13), Elte (7), Robinson (9), and Coxeter (1; 2; 3; 5). The 
whole theory of uniform polytopes was unified by Coxeter (4; 6, pp.86, 196), 
who adapted Wythoff's construction (15) to obtain a general geometrical 
method for obtaining all the uniform polytopes whose symmetry groups are 
generated by reflections.1 His discussion was elegantly illustrated by the use of a 
graphical notation (7, p. 191; 4, p. 329). 

One of the most comprehensive discussions of uniform polytopes in analytical 
terms is that of Schoute (11; 12), whose paper, in four parts, comprises a com­
mentary of 190 pages on Mrs. Boole Stott's geometrical methods. As Professor 
Coxeter remarked to me in a letter, "it is sad to think how much unnecessary 
work Schoute did, through not anticipating Wythoff's construction." 

This present paper is concerned with an analytical account of the Wythofifian 
polytopes and is based principally on the geometrical ideas of Coxeter's paper 
(4). After the determination, for each group, of a set of basic vectors, the 
coordinates of the vertices of any uniform polytope associated with that 
group may be written down. A modified form of the same method can be 
applied to determining the coordinates of the vertices of the Wythoffian 
honeycombs. 

2. Finite groups. Suppose that @ is a finite w-dimensional group generated 
by reflections in n primes whose point of concurrency is 0, the origin of the 
(cartesian) coordinate system. Considering the reflections as operating on an 
(n — 1)-dimensional sphere whose centre is 0, the fundamental region of the 
group may be taken to be a spherical simplex whose bounding figures are the 
intersections of the sphere with a specially chosen set of primes, reflections in 
which generate the group (6, pp. 188-191). 

Received June 1, 1953. 

xIt is convenient to call these polytopes Wythoffian. In (4) Coxeter uses the word Wythoffian 
in a different sense to include some uniform polytopes whose symmetry groups are not generated 
by reflections, namely the "snub" polytopes in three and four dimensions. 
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If we represent the simplex (and therefore the reflection group) by a Coxeter 
graph (4, p. 329), then we may suppose that the ith node of the graph (the 
nodes being numbered in some arbitrary manner) corresponds to the prime p< 
which intersects the sphere in the bounding figure P i P 2 • . . Pf-i Pi+i . . . Pn 

of the simplex P i P 2 . . . Pn-
Now define n basic vectors ri, r2, . . . , rn in the following manner: r* 

is in direction OPt and the distance of its end point from p f is §. Thus, 
considering 
2.1 rt = (r,i, ri2, . . . , rin) 

as the coordinate vector of the point Ru then the reflection i\* of r* in p* is the 
coordinate vector of R* which is at unit distance from Rt. 

The following is the basic result: 

2.2 One vertex of any Wythoffian polytope (of unit edge length) derived from 
the group ® has the coordinate vector 

eiri + e2r2 + • . . + enrn, 

where e* = 1 if the ith node of the graph is ringed, and et = 0 if the ith node of the 
graph is not ringed. 

The other vertices of the polytope may be found by applying the operations 
of ©, that is, by repeated reflections in the primes pi, p2, . . . , pn . Consequently, 
when we have found the set of basic vectors for ©, we can immediately deter­
mine the coordinates of any polytope found by applying Wythoff's construction 
t o ® . 

2.3 Example: ® = C3, the symmetry group of the cube (order 48). 

Graph Number of node Basic vector Reflecting plane 

i > 1 ri = H i , i, i) x3 = 0 

< 
4 

2 r2 = | ( V 2 , V2, 0) x2 — Xz = 0 

< » 3 r3 = i (V2 , 0, 0) Xi — x2 = 0 

The operations of this group correspond to permuting the coordinates in 
every way and also to changing the sign of any one. We write the values of the 
et in the form (ei, e2, e3) and so derive coordinates for the seven Wythoffian 
derivatives of C3, as in Table 2.4. 

The proof of the basic result follows immediately from Coxeter's account 
of Wythoff's construction. Evidently the i'first vertex" is left invariant by a 
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reflection if the corresponding et is zero, or is transformed into a point at unit 
distance if the corresponding et is unity. 

By allowing et to take other values, the vertices of poly topes may be derived 
whose bounding figures are parallel to the corresponding bounding figures of a 
uniform polytope but whose edges are equal in length to the values of the non­
zero €*. (See for example (4, p. 336). Here a ringed node marked y/2 is taken 
to indicate that et is to be given the value y/2.) 

The basic vectors, and their reflections in the primes, are precisely the trans­
lations to be effected on the bounding figures in the "expansions'' and "con­
tractions" of Mrs. Stott's method (14). 

3. Infinite groups. A similar method may be used for the coordinates 
of the vertices of a degenerate polytope (honeycomb) in n dimensions. In 
this case the fundamental region consists of a Euclidean simplex P i P 2 . . . P»+i 
of which the vertex Pw + i is chosen as the origin 0 of the coordinate system. 
The method differs from that for finite groups on account of the fact that if 
all the Wythoffian polytopes associated with a given group have edges of unit 
length, the "scale" of the group (i.e., the size of the fundamental simplex) may 
be different in each case. We proceed as follows : 

The primes pi, p2, . . . , pn are defined to be the faces of the fundamental 
simplex that pass through 0, and pn+i(e) to be the prime 

n 
/ I OLiXi = C 

parallel to the face P i P 2 . . . Pn of the simplex, and normalized so that 2a ? = 1. 
The size of the simplex is therefore altered by varying the value of the constant 
c. The vectors r* are defined as before, that is, r* lies along the line of inter­
section of all the primes except pi and pw+i and its end point is at distance 
\ from pi. Also rn+i is the zero vector. Define also the n + 1 constants by the 
relations 

n 

X) afij = ct (i = 1, 2, . . . , ri)% 

1 — r 
2 ~~ °n+lj 

where Tt is taken in the form 2.1. 
The first vertex of the honeycomb has coordinate vector 

€il*i + e2T2 + . . . + en+irn+i 

where et = 1 if the ith node of the graph is ringed, et = 0 if the '̂th node of the 
graph is not ringed, and the other vertices are given by repeated reflections of 
the first vertex in pi, p 2 , . . . , pn and 

2J djXj = €i£i + e2C2 + • • . + €n+iCB+i. 
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3.1 Example: © = JR4, the symmetry group of uniformly packed cubes. 

Number 
Graph of node Basic vector c, Reflecting plane 

\ 
4 

1 ri = i(L 1, 1) 1 
2 xz = 0 

< > 2 r2 = i(V2, V2, 0) IV2 #2 — X3 = 0 

i > 

4 

3 r3 = è(V2, 0, 0) *V2 Xi — x% == U 

i > 4 r4 = (0, 0, 0) 1 
2 Xi = C 

Reflections in pi, p2 and p 3 are equivalent to permuting the coordinates in 
every way, and altering the sign of any coordinate. Reflections in all four planes 
include «the operation of increasing any coordinate by a multiple of 2c. Hence 
the coordinates of the vertices may be written 

(#i, x2, x3) (mod 2c), 

though this may not be the simplest or most elegant form. These points evidently 
form a number of lattices. 

Owing to the fact that the graph is symmetrical, only nine of the fifteen 
Wythoffian derivatives (Table 3.2) are distinct (5, pp. 402-403).3 

3On page 403, the symbols for h$h and hi^h have been accidentally transposed. 
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