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INFECTION SPREAD IN RANDOM GEOMETRIC GRAPHS

GHURUMURUHAN GANESAN,∗ École Polytechnique Fédérale de Lausanne

Abstract

In this paper we study the speed of infection spread and the survival of the contact process
in the random geometric graph G = G(n, rn, f ) of n nodes independently distributed in
S = [− 1

2 , 1
2 ]2 according to a certain density f (·). In the first part of the paper we assume

that infection spreads from one node to another at unit rate and that infected nodes stay
in the same state forever. We provide an explicit lower bound on the speed of infection
spread and prove that infection spreads in G with speed at least D1nr2

n. In the second
part of the paper we consider the contact process ξt on G where infection spreads at
rate λ > 0 from one node to another and each node independently recovers at unit rate.
We prove that, for every λ > 0, with high probability, the contact process on G survives
for an exponentially long time; there exist positive constants c1 and c2 such that, with
probability at least 1 − c1/n

4, the contact process ξ1
t starting with all nodes infected

survives up to time tn = exp(c2n/log n) for all n.

Keywords: Random geometric graph; speed of infection spread; survival time of contact
process
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1. Introduction

Consider n nodes independently distributed in the unit square S = [− 1
2 , 1

2 ]2 according to a
certain density f satisfying

0 < inf
x∈S

f (x) ≤ sup
x∈S

f (x) < ∞. (1.1)

Connect two nodes u and v by an edge e if the Euclidean distance d(u, v) between them is
less than rn. The resulting random geometric graph (RGG) is denoted by G = G(n, rn, f ).

The giant component regime (nr2
n = c1) and connectivity regime (nr2

n = c2 log n) of RGGs
and their applications have been studied in [3], [5], [9], and [10]. In [4] we studied the size of
the giant component in the regime nr2

n → ∞. In what follows, we assume that nr2
n → ∞ as

n → ∞ and

c1 ≤ nr2
n ≤ c2 log n (1.2)

for some positive constants c1 and c2. Also, all constants mentioned throughout the paper are
independent of n. We mention here that the techniques in [4] could also be used in analyzing
other random graphs. In [11], we also estimate the giant component size of Erdős–Rényi graphs
using analogous methods.
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1.1. Infection spread in G

In this section we study infection spread in the graph G described above. For each edge e

in G, let t (e) denote its associated (random) passage time. The random variables {t (e)}e are
independent random variables, each exponentially distributed with unit mean [6]. At time
t = 0, the node x0 closest to the origin in S is infected. Any node x1 that shares an edge e with
x0 is infected after time t (e) and these infected nodes stay in that state forever. What is the
minimum time elapsed after which no new nodes are infected? How many nodes are ultimately
infected by the above process? In this section we provide sharp bounds for these two questions.
The main tool we use to describe our results is the speed of infection spread. We remark that
in a more general setup, passage times are not necessarily identically distributed. In [12], we
have also studied first passage percolation with nonidentical passage times.

Following an analogous construction as in Chapter 1 of [7], we define the infection process on
the probability space (�, H , P) (see Section 2 for further details). For a reasonable definition
of the speed of infection spread, we would first like to ensure that x0 is close to the origin and
an infection starting from x0 reaches close to the boundary of S. We say that �(x0) occurs if
d(0, x0) ≤ rn/2 and there exists a path of edges (e1, . . . , ef ) in G such that

(i) e1 contains x0 as one of its endvertices,

(ii) d(ef , ∂S) ≤ rn/2.

Here and henceforth we adopt the following notation. For x, y ∈ R
2, we let d(x, y) be the

Euclidean distance between x and y. For measurable sets A, B ∈ R
2, we define d(A, B) :=

inf{d(a, b) : a ∈ A, b ∈ B}. Finally, ∂A refers to the boundary of A. The following result
ensures that �(x0) occurs with high probability.

Proposition 1.1. There exists a constant θ > 0 such that

P(�(x0)) ≥ 1 − e−θnr2
n (1.3)

for all sufficiently large n.

We provide the proof in Section 2.
For any set A ⊆ R

2 and α > 0, define αA = ⋃
x∈A{αx} to be the dilation of A by the

factor α. Let G(x0) denote the connected cluster of nodes in G containing x0, and let I (t) be
the set of nodes of G(x0) infected up to time t. We say that the infection spreads at a speed of
at least vn,low if there exists 1 ≤ an = o(r−1

n ) and 0 ≤ bn = o(r−1
n ) such that

P

(
∩

an≤m≤r−1
n −bn

{(
G(x0) \ I

(
m

vn,low

))
∩ mrnS = φ

} ∣∣∣∣ �(x0)

)
= 1 − o(1),

where the index m runs through integers between 1 and r−1
n in the intersection. In other words,

conditioned on the occurrence of �(x0), we want all nodes of G(x0) contained in mrnS to be
infected within time m/vn,low. This must happen for ‘nearly all’ indices m, i.e. for all indices
between 1 and r−1

n excepting possibly o(r−1
n ) indices. Unless mentioned otherwise, we use the

standard terminology o(·) and O(·) in the regime n → ∞. Analogously, we say that the speed
is at most vn,up if there exists 1 ≤ cn = o(r−1

n ) and 0 ≤ dn = o(r−1
n ) such that

P

(
∩

cn≤m≤r−1
n −dn

{
I

(
m

vn,up

)
⊆ mrnS

} ∣∣∣∣ �(x0)

)
= 1 − o(1),

where, as before, the index m runs through integers between 1 and r−1
n in the intersection.

The following is the main result of this section.
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Theorem 1.1. There exist positive constants D1 and D2 such that

D1nr2
n ≤ vn,low ≤ vn,up ≤ D2n

√
n log n.

Since RGGs satisfying (1.2) are dense graphs, we expect the speed of infection spread to
grow with n. In the above result, we provide an explicit lower bound on the speed.

Let Telap denote the time taken to infect all nodes of G(x0), and let Ninf = #G(x0) denote
the number of nodes that remain infected in S after time Telap. We have the following corollary
regarding Telap and Ninf .

Corollary 1.1. We have

P

(
r−1
n

D3n
√

n log n
≤ Telap ≤ r−1

n

D4nr2
n

)
= 1 − o(1) (1.4)

as n → ∞ and
r−1
n

D3n
√

n log n
≤ ETelap ≤ r−1

n

D4nr2
n

(1.5)

for some positive constants D3 and D4 and all sufficiently large n. Also,

P(Ninf ≥ n − ne−θnr2
n ) = 1 − o(1) (1.6)

for some positive constant θ, as n → ∞.

Thus, with high probability, infection starting from the node closest to the origin eventually
spreads to nearly all nodes.

The study of infection spread in RGGs is important in practical applications. For example,
in wireless networks an RGG is used to model the underlying connectivity structure (see, e.g.
[5]) and is necessary to estimate the time taken for a virus to spread through the network.
Since RGGs are dense graphs, traditional subadditive techniques developed for first passage
percolation in regular graphs like Z

2 (see, e.g. [13]) are not directly applicable here. In our
analysis, we manually construct backbones to trace the infection spread (see Section 3 for
details).

1.2. Contact process on G

The contact process is a generalization of infection spread where nodes are capable of
recovering. In this subsection we assume that nodes independently recover at unit rate and
become infected at rate λ multiplied by the number of infected neighbours. We denote ξ1

t

to be the contact process on G starting with all nodes infected. For a fixed configuration of
nodes, the process ξ1

t is a Markov chain whose state space is the set of all subsets of {1, . . . , n}
and whose transition rates (or Q-matrix) are given by q(A, A \ {x}) = 1 if x ∈ A and
q(A, A∪{x}) = λ#(A∩NG(x)) if x /∈ A. Here A is a subset of {1, . . . , n} and NG(x) denotes
the set of neighbours of the node x in G.

Since the graph G is finite, the process ξ1
t dies out almost surely [6]. Let τn denote the

extinction time for ξ1
t , i.e.

τn = inf{t ≥ 0 : ξ1
t = φ}.

Again, following a construction analogous to [7], we define the contact process on the random
graph G in the probability space (�, H , P). We state the main result of this subsection.
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Theorem 1.2. Fix λ > 0. There exist positive constants δi = δi(λ), i = 1, 2, 3, such that

P

(
exp

(
δ1n

nr2
n

log n

)
≤ τn ≤ exp(δ2n log n)

)
≥ 1 − δ3

n4 for all n ≥ 1.

For every λ > 0, with high probability, the contact process survives for a nearly exponential
time because of (1.2). In this sense, we could say that the critical value of the contact process
on G is 0.

The study of the contact process on RGGs is important in practical applications. For example,
as mentioned before, RGGs are often used to model wireless networks (see, e.g. [5]) and in
such cases, it is required to know the time for which a virus or malware persists in the presence
of recovery agents. Contact processes on finite subsets of regular graphs like Z

d have been
studied before (see [6] for a survey). The survival of contact processes on finite random graphs
containing n nodes with power law degree distribution has been studied in [1] and [8]. The
proofs therein exploit the fact that, with high probability, there are a sufficiently large number of
nodes having degree at least nε for some constant ε > 0. In contrast, RGGs are ‘mildly dense’
in the sense that the degree of every node does not exceed O(log n) with high probability.
Consequently, we construct a long path of sufficiently ‘dense’ squares containing a total of αn

nodes for some constant α > 0 to study contact processes on RGGs.
The paper is organized as follows. In Section 2 we state and prove the geometric results

regarding RGGs that are needed for the analysis of infection spread. In Section 3 we prove the
lower and upper bounds on the speed from Theorem 1.1. In Section 4 we prove Corollary 1.1.
Finally, in Section 5, we prove Theorem 1.2.

2. Preliminary result for infection spread

We briefly describe the probability space in a little more detail. We define the point process
on the probability space (
, F , μ). Let {Zi}i≥1 be a countable set of independent random
variables exponentially distributed with unit mean, defined on the probability space (�, G, ν).

Following a construction analogous to Chapter 1 of [7] we define the infection process on the
probability space (�, H , P), where � = 
 × �, H = F × G, and P = μ × ν. For any event
A ∈ H , we have

P(A) =
∫




Pω(A)μ(dω), (2.1)

where Pω(A) := ν({ξ ∈ � : (ω, ξ) ∈ A}) is the probability that A occurs for a fixed
configuration of points ω.

We now prove Proposition 1.1. The proof is analogous to Lemma 3 of [4] and we provide a
brief sketch here. Divide S into small rn/� × rn/� squares {Sk}k≥1, where � = �n ∈ [4, 5]
is such that �/rn is an integer. We choose � such that the nodes in adjacent squares are joined
together by an edge. Throughout, a rectangle of size a × b is a translate of {0 ≤ x ≤ a, 0 ≤
y ≤ b}. We repeatedly use the term denseness of squares for the following concept. For a
fixed i, let 10σi be the mean number of nodes in the rn/� × rn/� square Si. Using (1.1) and
� ∈ [4, 5], we have

10β1nr2
n ≤ 10σi ≤ 10β2nr2

n, (2.2)

where β1 = 1
25 infx∈S f (x) > 0 and β2 = 1

16 supx∈S f (x) < ∞. Define Si to be dense if it
has at least �σi
 nodes and sparse otherwise. Here and henceforth, �x
 refers to the smallest
integer greater than or equal to x. We assume that β1nr2

n and β2nr2
n are integers; otherwise, the

argument below holds by considering �βinr2
n
 for i = 1, 2.
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Proof of Proposition 1.1. A set of squares C ⊆ {Si}i is said to be a cluster if the squares
form a connected set in R

2. Define C to be dense if each square in C is dense.
Let Sor denote the rn/� × rn/� square containing the origin. Using standard binomial

distribution estimates (see Chapter 1 of [9]) and (2.2), we have

P(Sor is dense) ≥ 1 − e−θ2nr2
n (2.3)

for some constant θ2 > 0 and all sufficiently large n. Let �0(x0) denote the event that there is
a path L1 = (A1, . . . , At ) of distinct rn/� × rn/� dense squares such that A1 = Sor and At

intersects the boundary of S. Here Ai and Ai+1 share a corner for every i. Since � ≥ 4, every
node in Ai is joined to every node in Ai+1 and, hence, �0(x0) ⊆ �(x0). Suppose that Sor is
dense, and denote by Cor the maximal dense cluster containing Sor. If Sor is dense and �0(x0)

does not occur then Cor must necessarily be surrounded by a circuit of sparse squares contained
in S. Such an event must be very unlikely because sparse squares occur with probability at
most e−θ2nr2

n .

Indeed, letting A = �c
0(x0) ∩ {Sor is dense} and applying a contour argument analysis anal-

ogous to that used in the proof of Lemma 3 of [4], it follows that, for integer k ≥ 1, P({#Cor =
k} ∩ A) ≤ ke−2θ0nr2

n

√
k for a fixed positive constant θ0 and all n ≥ N0, where N0 is a constant

that does not depend on k. Summing over k, we find that P(A) ≤ ∑
k≥1 ke−2θ0nr2

n

√
k ≤ e−θ0nr2

n

for all sufficiently large n. From the estimate (2.3), we then obtain (1.3). This completes the
proof of the proposition.

To estimate the time taken for the infection to cross the boundary of mrnS, as m runs through
1 to r−1

n , we need to find paths whose edges have low passage time. Oriented left–right crossings
described below are useful in that respect. Let Kn = (log n)/nr2

n. For positive integers m and
M, let R1 be an mrn/�×MKnrn/� rectangle containing exactly mMKn squares from {Sk}k.
Without loss of generality we allow Kn to be an integer throughout and the argument presented
below holds; otherwise, Kn = �(log n)/nr2

n
. We define an oriented left–right crossing in R to
be any sequence of distinct rectangles L = (Y1, Y2, . . . , Yt ) such that {Yi}i ⊂ {Sk}k and the
following conditions hold.

(a) For every i, the rectangles Yi and Yi+1 share only a corner.

(b) For every i, the x-coordinate of the centre of Yi+1 is larger than that of Yi.

(c) Y1 intersects the left side of R and Yt intersects the right side.

If every square in a left–right crossing L is dense, we define L to be a dense left–right
crossing. Here, our definition for oriented left–right crossings is slightly different from the
definition for (unoriented) left–right crossings in [4]. The concept of left–right crossings, with
varying definitions in different contexts, was used in [3], [9], and [10]. Let En(R1) denote the
event that R1 has a dense oriented left–right crossing. We have the following result.

Proposition 2.1. There exist positive constants C1 and M such that, for all sufficiently large n

and n1/9 ≤ m ≤ �/rn, we have

P(En(R1)) ≥ 1 − C1

n9 .

Proof. To prove the result, we employ Poissonization and assume that the nodes are dis-
tributed according to a Poisson process with an intensity function nf (·). Defining Po to be
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the probability measure under the Poissonized system, we prove that En(R1) occurs with Po-
probability at least 1 − 1/n10. We then translate to the original probability measure P using

P(En(R1)) ≥ 1 − C1
√

n(1 − Po(En(R1)) (2.4)

for some absolute constant C1, to prove the proposition. To prove (2.4), we note that in the
Poisson case the number of nodes N in the unit square S is a Poisson random variable with
mean n. Since Po(A

c) ≥ P(Ac) Pr(N = n) and Pr(N = n) = e−nnn/n! ≥ C1/
√

n for some
positive constant C1 (by Stirling’s formula), we obtain (2.4).

For the rest of this proof, we work in the Poissonized system. Our first step is to translate
the problem to Z

2. We identify each rn/�× rn/� square Si with a vertex zi ∈ Z
2 in the natural

way such that the rectangle R1 corresponds to an m × MKn rectangle Rint
1 in Z

2. We construct
an oriented percolation model on Rint

1 in the following way. We draw an arrow from zi to zj

if the corresponding squares Si and Sj share exactly one corner and both are dense. From the
estimate for dense squares in (2.3) we find that an oriented arrow occurs with probability at
least 1 − e−2θ1nr2

n for some constant θ1 > 0. Let Por denote the measure corresponding to the
oriented percolation model, and let En(R

int
1 ) denote the event that Rint

1 contains an oriented
left–right crossing. Following a contour argument as in [2], we have

Por(En(R
int
1 )) ≥ 1 − m(e−θ1nr2

n )MKn ≥ 1 − 1

n10

if M ≥ 1 is sufficiently large (for further details, we refer the reader to the proof of Proposi-
tion 5.2 below where an analogous analysis is performed). If an oriented left–right crossing
occurs in Rint

1 then there is a oriented dense left–right crossing in R1. Thus, Po(En(R1)) ≥
1 − 1/n10 for all sufficiently large n and from (2.4) we get the proposition.

3. Proof of Theorem 1.1

We first prove the lower bound on the speed. We choose an = n1/9 to be the starting index
from which we trace the infection spread (see the definition prior to Theorem 1.1). This suffices
since n1/9 = o(r−1

n ) by (1.2). (In fact, any α < 1
2 suffices since nα = o(r−1

n ) by (1.2).)
Fix integer n1/9 ≤ m ≤ �/rn and tile mrnS/� horizontally into a set RH of mrn/� ×

MKnrn/� rectangles and also vertically into a set RV of disjoint rectangles each of size
MKnrn/� × mrn/�. Here and henceforth, we fix the constant M such that Proposition 2.1
holds. For now, we allow m to be a multiple of MKn and extend it to the general case at the end.

The strategy of the proof is as follows. The first step is to construct a backbone of low
passage time paths in each rectangle of RH and RV; we obtain an explicit upper bound on the
passage time of each path of the backbone. We then estimate the time taken for the infection to
reach some node of this backbone starting from x0, the node of G closest to the origin. Finally,
we show that our estimates hold for each integer m between 1 and r−1

n except perhaps o(r−1
n )

indices, resulting in the lower bound on the speed.
For a vertical rectangle R in RV, we define En(R) to be the event that R contains a

oriented dense top–bottom crossing. Again, Proposition 2.1 is applicable to each rectangle
R in RV with the left–right crossing replaced by the top–bottom crossing. Defining En,tot :=⋂

R∈RH∪RV
En(R) and using the fact that the number of rectangles in the set RV ∪ RH is

O(�/rn) = O(
√

n) (by (1.2)), we then have that

P(En,tot) ≥ 1 − O(
√

n)
1

n9 ≥ 1 − 1

n8 (3.1)

for all large enough n.
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We henceforth assume that En,tot occurs and let m be a multiple of MKn. We perform the
following analysis for m that is an odd multiple of MKn and show at the end how to extend
it for even multiples. Now consider the lowermost rectangle R2 ∈ RH and let L(R2) =
(J1, J2, . . . , Jm) be the bottommost oriented dense left–right crossing of R2. Every oriented
crossing in R2 has exactly m squares. Let u1 be the node that is closest to the centre of J1.

Since � ≥ 4, every node in J2 is connected to u1. For 1 ≤ i ≤ r −1, we perform the following
iteratively. Consider the set of all edges from ui that have an endvertex in Ji+1 and choose that
edge hi with the minimal passage time. The endvertex of hi distinct from ui is set to be ui+1.

Let Lh(R2) = (h1, . . . , hr−1) be the resulting path of edges.
Since every Ji is dense, at each iteration in the above procedure, we have chosen the minimum

among at least β1nr2
n edges, where β1 > 0 is the constant in (2.2). We therefore expect the

passage time of each edge of Lh(R2) and the sum total of passage times to be low. Defining
T (R2) = ∑r−1

i=1 t (hi) if En,tot occurs and T (R2) = ∞ if En,tot does not occur, we have the
following result.

Lemma 3.1. There exist positive constants D1 and δ1 (independent of the choice of n and m)
such that

P

({
T (R2) ≥ D1m

nr2
n

}
∩ En,tot

)
≤ e−δ1m.

We prove the above lemma at the end of this section. The term T (R2) can be thought of as an
upper bound on the time taken for the infection to spread from one end of R2 to the other. Recall
that we continue to assume that En,tot holds and, therefore, the path Lh(R2) is well defined.
Now, to determine the time taken for the infection to spread to the ‘top’ of mrnS/�, we grow
low passage time paths from Lh(R2) in the vertical direction. This is possible because the
horizontal rectangle R2 intersects every vertical rectangle R ∈ RV and each of these rectangles
has a dense top–bottom crossing (due to the occurrence of the event En,tot).

Fix the leftmost vertical rectangle Rl ∈ RV, and consider the leftmost oriented dense top–
bottom crossing T B(Rl) = (A1, . . . , Am) of Rl. Here, A1 touches the bottom of mrnS/�. The
dense left–right crossing L(R2) obtained above and the dense top–bottom crossing T B(Rl)

intersect in the sense that there exist squares Al0 and Ji0 that share a side.
By previous construction, there exists an edge hi0 of Lh(R2) that has an endvertex ui0 in Ji0 .

Every node in Al0 is connected to ui0 . We now start from ui0 and perform the same iterative edge
searching procedure that was used to obtain Lh(R2) above, on the latter part (Al0 , . . . , Am)

of T B(Rl). Set u′
l0

= ui0 . For each l0 ≤ i ≤ m − 1, we iteratively choose the edge h′
i with

minimal passage time that has one endvertex as u′
i and one endvertex in Ai+1, and denote

the resulting path of edges by (h′
l0
, h′

l0+1, . . . , h
′
s). Similarly, we construct a ‘downward’ path

of edges (h′
l0−1, . . . , h

′
1), starting from ui0 and ending at some node in the square A1 using

the same iterative procedure as above. Finally, we define T Bh(Rl) to be the concatenation
T Bh(Rl) = (h′

1, . . . , h
′
l0−1, h

′
l0
, h′

l0+1, . . . , h
′
s) of the two paths and define the passage time

of the rectangle Rl to be T (Rl) = ∑s
i=1 t (h′

i ). The path T Bh(Rl) contains s ≤ m + 2 edges.
We illustrate the above procedure in Figure 1, where the path Lh(R2) is shown as a wavy
horizontal line.

Now repeat the above procedure for each R ∈ RV to obtain corresponding paths T Bh(R).

This results in a connected set of edges Pe that form a comb-like backbone; see Figure 2. The
advantage of working with Pe is that we have an explicit bound on the passage time of each of
its paths via Lemma 3.1. This is because even if the passage times of two distinct paths in Pe
are not necessarily independent, Lemma 3.1 holds for each of their passage times individually
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Figure 1: Construction of backbones in the rectangles R2 and Rl. Here a = mrn/�, b = MKnrn/�,

and the black circle represents ui0 .

Figure 2: The path π1 from x0 necessarily intersects the super backbone. Here the node ui0 is labelled
as umin

with the same constants D1 and δ1. This can then be used to estimate the time taken for the
infection to spread from some node of a path in Pe to the boundary.

As a final step in the construction, we obtain a path that allows us to estimate the time
taken for the infection to travel from x0 to the backbone. Let R0 denote the rectangle in RH
containing the origin, and let Ru and Rd denote the rectangles in RH sharing an edge with
R0 and lying above and below R0, respectively. In an analogous manner, as described in the
previous paragraphs, we ‘grow’ low passage time paths Lh(Ru) and Lh(Rd) that are connected
to the path T Bh(Rl), start from close to the left edge of mrnS/�, and end close to the right
edge. Also, we analogously define the passage times T (Ru) and T (Rd). Finally, we define

P = Lh(R2) ∪
⋃

R∈RV

T Bh(R) ∪ Lh(Ru) ∪ Lh(Rd) (3.2)

to be the super backbone. The super backbone is connected by construction.
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We henceforth assume that En,tot ∩ �0(x0) occurs (recall the event �0(x0) defined in the
proof of Proposition 1.1). Let L0 = (A′

0, . . . , A
′
g) be the path of dense squares present due to

the occurrence of �0(x0). Here A′
0 contains the origin and A′

g intersects the boundary of S.

Thus, we know that there is a path π of edges in G starting from x0 and crossing S(3Kn),

the 3MKn(rn/�) × 3MKn(rn/�) square with the origin at its centre. Here, M is as in
Proposition 2.1. (If there is more than one such path, we choose the path whose sum of the
length of edges is the least.) This is useful in estimating the time taken for the infection to reach
P from x0, as shown below.

Let R′
0 be the vertical rectangle in RV containing the origin, and let R′

l and R′
r be rectangles

in RV sharing the left and right longer edge, respectively, with R′
0. The leftmost oriented

crossings T B(R′
l ) and T B(R′

r ) were used in the construction of the super backbone. We see
that the corresponding oriented dense crossings T B(R′

l ), L(Rd), T B(R′
r ) and L(Ru) form a

‘circuit’ of squares in S(3Kn) (in Figure 2 we illustrate this with the paths labelled 1, 4, 3 and
2, respectively). Therefore, there exist two squares A′

i1
∈ L0 and Fi2 ∈ T B(R′

l ) ∪ L(Rd) ∪
T B(R′

r ) ∪ L(Ru), both contained in S(3Kn), that share a common side. By construction, Fi2

contains a node vi2 of an edge in P and A′
i1

contains a node v′
i1

of π. Since � ≥ 4, the nodes
v′
i1

and vi2 are joined by an edge of G.

We now trace the infection spread from x0. First, to estimate the time taken for the infection
starting from x0 to reach v, we need the following result on local passage time estimates. Let
m1 be the smallest integer that is a multiple of MKn such that S ⊆ m1rnS/�. The tiling of
m1rnS/� into horizontal m1rnS/�×MKnrn/� rectangles and vertical MKnrn/�×m1rnS/�

rectangles also tiles m1rnS/� into MKnrn/� × MKnrn/� squares {S′
i}i as seen in Figure 2.

Let Ti denote the sum of passage times of the edges that have at least one endvertex in S′
i and

let Tmax = maxi Ti .

Lemma 3.2. There exists a constant C1 > 0 (independent of n) such that

P(Tmax > (log n)8) ≤ C1

n9 . (3.3)

This lemma is assumed for now and proved later. We henceforth assume that {Tmax ≤
(log n)8} ∩ En,tot ∩ �(x0) occurs. Thus, within time (log n)8 all nodes of G(x0) ∩ S(Kn) are
infected and within time 2(log n)8 all nodes of G(x0)∩S(3Kn) are infected (recall that G(x0) is
the component of G containing x0). By construction, this necessarily implies that the infection
has reached some node of the super backbone within time 2(log n)8. In what follows we trace
the infection spread in the super backbone.

Define Vm = ⋂
R{T (R) ≤ D1m/nr2

n}∩En,tot, where the intersection is taken over all rect-
angles R present in the expression for P in (3.2) and T (R) denotes the passage time (see
Lemma 3.1) of the rectangle R. To estimate P(Vm), we recall, as mentioned before, that even
if the passage times of two distinct paths are not necessarily independent, Lemma 3.1 holds for
each of them individually with the same constants D1 and δ1. Thus, from (3.1) and Lemma 3.1
we obtain

P(V c
m) = P(Ec

n,tot) + P

(⋃
R

{
T (R) >

D1m

nr2
n

}
∩ En,tot

)

≤ P(Ec
n,tot) +

∑
R

P

({
T (R) >

D1m

nr2
n

}
∩ En,tot

)

≤ 1

n8 + C3
√

ne−δ1m
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for some positive constant C3. In obtaining the final estimate above, we use the fact that the
number of rectangles in RH ∪ RV = O(r−1

n ) = O(
√

n) by (1.2). Since m ≥ n1/9, we obtain

P(Vm) ≥ 1 − C2

n8 (3.4)

for some constant C2 > 0, independent of n and m.

We henceforth assume that Vm ∩ {Tmax ≤ (log n)8} ∩ �0(x0) occurs. The infection then
spreads to all nodes of the super backbone within time 2(log n)8+4D1m/nr2

n. Recalling the def-
inition of the squares {S′

i}i prior to Lemma 3.2, it then follows that the infection reaches at least
one node of each square S′

i contained in mrnS/� within time 2(log n)8 + 4D1m/nr2
n. Hence,

within time 2(log n)8 + 4D1m/nr2
n + (log n)8 ≤ 5D1m/nr2

n, the infection reaches all nodes
of G(x0) in mrnS/�. In the final estimate, we use the fact that m ≥ n1/9 and, therefore, that
(log n)8 = o(m/nr2

n) by virtue of (1.2). In other words, (G(x0) \ I (5D1m/nr2
n))∩mrnS/� =

φ, which is nearly what we want to prove. For the indices m that are even multiples of MKn, the
above analysis holds with slightly different definitions for Ru and Rd: there are 1 ×MKnrn/�

rectangles that are spaced MKnrn/� apart and equidistant from the origin. It only remains to
consider the indices m that are not multiples of MKn.

Recalling the definition prior to Theorem 1.1, we set an = n1/9 and bn = 2MKn (both
of which are o(r−1

n ) by (1.2)), and proceed as follows. For a fixed integer n1/9 ≤ m3 ≤
r−1
n − 2MKn, let m be the smallest integer that is a multiple of MKn such that S ⊇ mrnS/� ⊇

m3rnS. We choose bn so that there exists such an m. Since � ∈ [4, 5], we have 4n1/9 ≤ 4m3 ≤
m ≤ 5m3 + 5MKn ≤ 6m3. Here we used the fact that Kn = log(n)/nr2

n ≤ log n. Thus, if
Vm ∩ {Tmax ≤ (log n)8} ∩ �0(x0) occurs then, by the discussion in previous paragraph and the
above inequalities, the event Im3 occurs, where

Im3 :=
{(

G(x0) \ I

(
30D1m3

nr2
n

))
∩ m3rnS = φ

}
.

This conclusion holds for each n1/9 ≤ m3 ≤ r−1
n − 2MKn. Since r−1

n ≤ C
√

n for some
constant C > 0 (see (1.2)), from (3.4) we have P(Wn) ≥ 1 − C2C

√
n/n8 ≥ 1 − 1/n7 for

all sufficiently large n, where Wn = ⋂
n1/9≤m3≤r−1

n −2MKn
Vm. Therefore, from Lemma 3.2 and

Proposition 1.1, and the fact that �0(x0) ⊆ �(x0), we have

P(A ∩ �(x0)) ≥ P(Wn ∩ {Tmax ≤ (log n)8} ∩ �0(x0)) ≥ 1 − 1

n7 − C1

n9 − e−θ1nr2
n (3.5)

for all sufficiently large n, where A = ⋂
n1/9≤m3≤r−1

n −2MKn
Im3 and C1 > 0 as in (3.3). Since

P(A | �(x0)) ≥ P(A ∩ �(x0)), this proves the lower bound in Theorem 1.1.

Proof of Lemma 3.1. Let B = {T (R2) > 2D2m/nr2
n}, where D2 > 0 is a constant. As in

(2.1), the term Pω(B) denotes the probability that event B occurs for a fixed configuration of
points ω. From the discussion in the paragraph preceding Lemma 3.1, if ω ∈ En,tot then the
passage time T (R2) of R2 satisfies T (R2) = ∑q

i=1 t (hi) ≤ ∑q
i=1 Xi ≤ ∑m+2

i=1 Xi , where {Xi}i
are independent and identically distributed (i.i.d.) with Xi = min{ti,j : j = 1, 2, . . . , β1nr2

n},
and the {ti,j }j are a set of independent random variables exponentially distributed with unit
mean. Here β1 > 0, as in (2.2). If ω ∈ En,tot, we have Pω(B) ≤ P(

∑m+2
i=1 Xi > 2D2m/nr2

n),

where the right-hand side expression does not depend on ω. Integrating over ω, we have

P

({
T (R2) >

2D2m

nr2
n

}
∩ En,tot

)
≤ P

(10Mm∑
i=1

Xi >
2D2m

nr2
n

)
. (3.6)
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Since β1nr2
nXi is exponentially distributed with mean 1, we use the Chernoff bound to

obtain, for D2 > 0 and s ∈ (0, 1),

P

(m+2∑
i=1

Xi >
2D2m

nr2
n

)
≤ (E exp(sX1β1nr2

n))m+2e−2sβ1D2m =
(

1

1 − s

)m+2

e−2sβ1D2m.

Therefore, fixing s = 1
2 and choosing the constant D2 > 0 sufficiently large, for all sufficiently

large n ≥ N0 and all n1/9 ≤ m ≤ �/rn, the last expression in the above equation is no more
than 2m+2e−β1D2m ≤ e−δ1m for some positive constant δ1.

Proof of Lemma 3.2. For a fixed K ≥ 1, let EK(n) denote the event that every square in
the set of rn/� × rn/� squares {Si}i contains less than �K log n
 nodes. Using the fact that
nr2

n ≤ c2 log n (see (1.2)), we have

P(EK(n)) ≥ 1 − C1

n10 (3.7)

if K is sufficiently large. Here C1 > 0 is a constant independent of n. Fix such a K and
assume that K log n is an integer; otherwise, an analogous argument holds with �K log n
. Fix
a configuration ω ∈ EK(n), and, for a fixed i, let Ei denote the set of edges with at least one
endvertex in the square S′

i . We fix the M in Proposition 2.1 to be larger if necessary so that
every edge in Ei is contained in the 3MKnrn/� × 3MKnrn/� square S′′

i with the same centre
as S′

i . This is possible since MKnrn/� ≥ Mrn/c2� ≥ Mrn/c25. The first inequality above
follows from (1.2) and the second follows since � ≤ 5.

The square S′
i contains (MKn)

2 squares in {Sj }j . Therefore, the number of nodes in S′′
i

is less than (3MKn)
2K log n. Consequently, the number of edges in Ei is less than

9M2K2K4
n(log n)2 ≤ C1(log n)6 for some positive constant C1. Here we used the fact that

Kn = (log n)/nr2
n and (1.2). Arguing as in the derivation of (3.6) in the proof of Lemma 3.1,

we average over the configurations and obtain

P(Ti > (log n)8) ≤ P({Ti > (log n)8} ∩ EK(n)) + 1

n10

≤ P

(C1(log n)6∑
i=1

ti > (log n)8
)

+ 1

n10 ,

where ti are i.i.d. exponential with unit mean. We have

P

(C1(log n)6∑
i=1

ti > (log n)8
)

≤ P

(C1(log n)6⋃
i=1

{ti > C−1
1 (log n)2}

)

≤ C1(log n)6e−C−1
1 (log n)2

.

Thus, P(Ti > (log n)8) ≤ C1(log n)6e−C−1
1 (log n)2 + 1/n10 ≤ 2/n10 for all sufficiently large n.

Since the maximum possible number of squares in {S′
i}i is (�/rn)

2 = O(n) by (1.2), we have
P(Tmax > (log n)8) ≤ ∑

i P(Ti > (log n)8) ≤ O(n)/n10, proving (3.3).

3.1. Proof of the upper bound on the speed

At time t = 0, the node x0 of G closest to the origin is infected. Suppose that �(x0) occurs
(see the definition prior to (1.3)). For a fixed integer log n ≤ m ≤ r−1

n − 5, we now examine
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the path πm through which the infection first reaches the boundary of mrnS. More precisely,
let π = (h0, . . . , hb) be a self-avoiding path of edges such that

(iii) h0 contains x0 as one of its endvertices, exactly one endvertex of hb lies in S \mrnS, and

(iv) all other endvertices of the edges {hi}i lie in mrnS.

Such a path definitely exists because of the occurrence of the event �(x0). Define T (π) =∑b
i=0 t (hi) to be the passage time of π, and let πm be that path whose passage time is T (πm) =

minπ T (π), where the minimum is taken over all paths satisfying (iii) and (iv) above. Such a
unique path exists since the passage times are continuous random variables.

To bound T (πm), we recall the event EK(n) defined prior to (3.7). We fix K such that (3.7)
holds and consider a configuration ω ∈ EK(n) ∩ �(x0). Each node has fewer than K1 log n

neighbours for some fixed constant K1 > 0. We assume that K1n log n is an integer; an
analogous argument holds with �K1n log n
 otherwise. The number of edges T of G is less than
K1n log n. If e1, . . . , eT denotes the set of edges, we then have t (ei) ≥st min1≤j≤K1n log n tj =:
X0,where the {tj }j are i.i.d. exponential with unit mean and ‘≥st’denotes stochastic domination.
Since πm contains at least m/4 edges, we then have T (πm) ≥st mX0/4. We note that P(X0 ≥
1/n

√
n log n) ≥ 1 − C1/

√
n, for some constant C1 > 0 independent of ω. Thus, Pω(T (πm) ≥

m/4n
√

n log n) ≥ 1 − C1/
√

n, where Pω(·) is as defined in (2.1). This happens for each
log n ≤ m ≤ r−1

n − 5. Thus, for any fixed ω ∈ EK(n) ∩ �(x0), we have

Pω

( ⋂
log n≤m≤r−1

n −5

{
T (πm) ≥ m

4n
√

n log n

})
≥ 1 − C1r

−1
n√
n

,

and the final expression is 1−o(1) as n → ∞ since nr2
n → ∞. Thus, from the above discussion

and (2.1), we have

P

( ⋂
log n≤m≤r−1

n −5

{
T (πm) ≥ m

4n
√

n log n

}
∩ EK(n) ∩ �(x0)

)

≥
∫

EK(n)∩�(x0)

(
1 − C2r

−1
n√
n

)
μ(dω)

≥
(

1 − C2r
−1
n√
n

)(
1 − O(1)

n10 − e−θ1nr2
n

)
,

where the final terms in the last estimate follow from (3.7) and (1.3), respectively. Therefore,

P

( ⋂
log n≤m≤r−1

n −5

{
T (πm) ≥ m

4n
√

n log n

}
∩ EK(n) ∩ �(x0)

)
= 1 − o(1),

and from (3.7) we have

P

( ⋂
log n≤m≤r−1

n −5

{
T (πm) ≥ m

4n
√

n log n

}
∩ �(x0)

)
= 1 − o(1).

We note that if T (πm) ≥ m/4n
√

n log n then I (m/4n
√

n log n) ⊆ (m + 1)rnS. Again, by the
same argument following (3.5), this proves the upper bound on the speed in Theorem 1.1.
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4. Proof of Corollary 1.1

Proof of (1.4). Let m be a multiple of MKn (where the constant M is as in Proposition 2.1)
that satisfies mrnS/� ⊆ S ⊆ (m + MKn)rnS/�. Using � ∈ [4, 5] and Kn = (log n)/nr2

n =
o(r−1

n ) by (1.2), we get 3r−1
n ≤ m ≤ 6r−1

n for all sufficiently large n. The square mrnS/�

is the largest square contained in S to which the tiling argument of the proof of Theorem 1.1
described in Section 3 can be applied. Consequently, there exists a backbone of low passage
time connections as described in the paragraph preceding (3.4).

Suppose that the events Vm, defined prior to (3.4), and {Tmax ≤ (log n)8}, defined prior
to Lemma 3.2, occur, and let Um := Vm ∩ {Tmax ≤ (log n)8}. Let �0(x0) be as defined in
Proposition 1.1 and, for a constant K ≥ 1, let EK(n) be as defined prior to (3.7). Fixing K

such that (3.7) holds, it follows from (1.3), (3.4), (3.3), and (3.7) that Um ∩ �0(x0) ∩ EK(n)

occurs with probability 1 − o(1). By the proofs of the lower and upper bounds on the speed in
Theorem 1.1, with probability 1−o(1), the time T0 elapsed before all nodes of G(x0)∩mrnS/�

are infected therefore satisfies

3D1r
−1
n

n
√

n log n
≤ D1m

n
√

n log n
≤ T0 ≤ D2m

nr2
n

≤ 6D2r
−1
n

nr2
n

for some positive constants D1 and D2. The first and last inequalities hold by our choice of m.

Moreover, since {Tmax ≤ (log n)8} occurs and (log n)8 = o(r−1
n )/nr2

n by (1.2), we know that,
by time 6D2r

−1
n /nr2

n + (log n)8 ≤ 7D2r
−1
n /nr2

n, all nodes of G(x0) are infected. This proves
the upper and lower bounds in (1.4), and the lower bound in (1.5).

Proof of (1.5). The lower bound in (1.5) is proved above. To prove the upper bound in (1.5),
we let �1(x0) denote the event that x0 ∈ S(Kn) and the component G(x0) contains at least one
node outside S(3Kn). We recall that S(3Kn) is the 3MKnrn/� × 3MKnrn/� square with its
centre as the origin and where M is the constant in Proposition 2.1. Fixing K ≥ 1, as in the
previous paragraph, we now write

ETelap = ETelap 1(Um ∩ �1(x0)) + ETelap 1(Um ∩ �c
1(x0) ∩ EK(n))

+ ETelap 1(Um ∩ �c
1(x0) ∩ Ec

K(n)) + ETelap 1(Uc
m)

≤ ETelap 1(Um ∩ �1(x0)) + ETelap 1(�c
1(x0) ∩ EK(n))

+ ETelap 1(Ec
K(n)) + ETelap 1(Uc

m), (4.1)

and evaluate each term separately.
For the first term, we note that �1(x0) occurs and, therefore, there is a path, π1, of edges from

x0 ∈ S(Kn) that crosses S(3Kn). By an analogous argument, as in the two paragraphs following
(3.2), the path π1 intersects the super backbone P (present due to the occurrence of Um). Thus,
it follows from the proof of the upper bound of (1.4) above that ETelap 1(Um ∩ �1(x0)) ≤
7D2r

−1
n /nr2

n. We now show that each of the remaining terms in (4.1) is o(r−1
n )/nr2

n.

To evaluate the second term, we write �c
1(x0) = �1,1(x0) ∪ �1,2(x0), where �1,1(x0) is

the event that x0 /∈ S(Kn) and �1,2(x0) is the event that G(x0) is contained in S(3Kn).

If �1,2(x0) ∩ EK(n) occurs then the component containing x0 is completely contained in
S(3Kn). The time elapsed before no new nodes are infected is bounded above by the sum of
the passage times of edges contained in the square S(3Kn). Since EK(n) occurs, the square
S(3Kn) contains fewer than (3MKn)

2 log n ≤ (log n)4 nodes and, therefore, fewer than (log n)8

edges if n is sufficiently large. Here we use Kn = (log n)/nr2
n ≤ log n for all sufficiently

large n since nr2
n → ∞. Since the passage time of any edge has unit mean, this implies that
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E(Telap 1(�1,2(x0) ∩ EK(n))) ≤ E
∑(log n)8

i=1 ti = (log n)8 for all sufficiently large n. In the
above, the {ti}i are i.i.d. exponential with unit mean. Using (1.2), it follows that the right-hand
side of the above is o(r−1

n )/nr2
n.

We estimate E(Telap 1(�1,1(x0) ∩ EK(n))) and the third and fourth terms in (4.1) together.
We note that if �1,1(x0) occurs then S(Kn) is empty. Again, using standard binomial estimates
from Chapter 1 of [9], it follows that P(�1,1(x0)) ≤ e−θ1(MKn)2nr2

n for some constant θ1 > 0 and
all sufficiently large n. Choosing M to be greater, if necessary, it follows that (MKn)

2nr2
n =

M2(log n)2/nr2
n ≥ 10 log n/θ1 so that P(�1,1(x0)) ≤ 1/n10. Here we use (1.2) and the fact that

Kn = (log n)/nr2
n. Thus, using the Cauchy–Schwarz inequality, we bound ETelap 1(�1,1(x0)∩

EK(n)) above by

ETelap 1(�1,1(x0)) ≤ (ET 2
elap)

1/2
P(�1,1(x0))

1/2 ≤ 1

n5
(ET 2

elap)
1/2. (4.2)

Similarly, it follows that ETelap 1(Uc
m) ≤ (ET 2

elap)
1/2

P(Uc
m)1/2 for the fourth term in (4.1).

From (3.4) and Lemma 3.2, it follows that

P(Uc
m) ≤ P(V c

m) + P(Tmax > (log n)8) ≤ 2

n8 + 1

n8 ≤ 3

n8

for all sufficiently large n. Thus, the fourth term is bounded above by C1(ET 2
elap)

1/2/n4 for
some positive constant C1.

Finally, from (3.7) and the Cauchy–Schwarz inequality, it follows that the third term in
(4.1) is bounded by (ET 2

elap)
1/2

P(Ec
K(n))1/2 ≤ (ET 2

elap)
1/2/n5. Thus, from (4.2), the sum of

E(Telap 1(�1,1(x0) ∩ EK(n))) and the third and fourth terms in (4.1) are bounded above by
C2(ET 2

elap)
1/2/n4 for some positive constant C2. Since the number of edges in G is at most

n2, it follows that Telap ≤ ∑n2

i=1 ti , where the ti are i.i.d. exponential with unit mean. Hence,
by the arithmetic mean inequality it follows that ET 2

elap ≤ En2 ∑n2

i=1 t2(ei) ≤ C2n
4 for some

positive constant C2. Here we use the fact that EX2 < ∞ for an exponential random variable
X with unit mean. Thus, (ET 2

elap)
1/2/n4 ≤ C3/n

2 = o(r−1
n )/nr2

n for some positive constant
C3 by (1.2).

Proof of (1.6). To prove (1.6), we note from the proof of Theorem 1.1 that the infection
starting from the node x0 closest to the origin crosses the boundary of 1

2 r−1
n S with probability

1 − o(1). By using the construction of the giant component in the proof of Theorem 1(i) of
[4], we know that this path intersects the giant component with probability 1 − o(1). From
the estimate on the size of the giant component in Theorem 1(ii) [4], we know that the giant
component contains at least n − ne−θnr2

n nodes with probability 1 − o(1) for some constant
θ > 0. Equation (1.6) then follows.

5. Proof of Theorem 1.2

We construct the probability space as in Section 2. To analyse contact processes on G, we
would like to obtain a subgraph of G containing at least θn nodes, each having a sufficiently
large number of neighbours, for some constant θ > 0. As in Section 2, we divide S into small
rn/� × rn/� disjoint squares {Sk}k≥1, where � = �n ∈ [4, 5] is such that �/rn is an integer.
Recall the definition of dense squares from Section 2.

The first result we obtain is that there exists a sufficiently long path of dense squares with high
probability. Let {Yi}1≤i≤J ⊆ {Sk}k be a set of distinct squares. Assume that � = (Y1, . . . , YJ )

is a path if, for every 1 ≤ i ≤ J − 1, the square Yi shares a corner with Yi+1. We say that �
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is dense if every square in � is dense. For integer m ≥ 1, let Zm denote the event that there
exists a path containing at least m dense squares.

Proposition 5.1. There exist positive constants D1 and D2 such that

P(Zm) ≥ 1 − D1

n9

for m = �D2/Knr
2
n
 and all sufficiently large n.

We prove the above result at the end of this section. Fix a configuration of nodes ω ∈ Zm,

where m = �D2/Knr
2
n
, so that we have a path containing at least �D2/Knr

2
n
 dense squares.

Since each dense square contains at least β1nr2
n nodes (see (2.2)), we have a node path �

containing at least �D2K
−1
n r−2

n 
 × β1nr2
n =: N ≥ θ2n/Kn nodes for some constant θ2 > 0.

Moreover, we extract a subgraph that can be identified with the graph ZN,K, defined as follows:
fix integer K ≥ 1 (to be determined later), and let r = [N/(2K)]. Divide [1, 2rK] ∩ Z into
segments {Vi}1≤i≤r , where Vi = [(i − 1)2K + 1, 2iK] ∩ Z contains 2K points. For 2 ≤ i ≤
r − 1, join every point in Vi with every point in V ′

i+1 = [2iK + 1, 2iK + K] ∩ Z by an edge.
Also, join every point in Vi to every point in V ′′

i−1 = [2(i − 2)K + K + 1, 2(i − 1)K] ∩ Z

by an edge. Join every point in V1 to every point in V ′
2 by an edge, and join every point in Vr

to every point in V ′′
r−1 by an edge.

It suffices to study the contact process on the graph ZN,K. Since the number of neighbours
of each node of � in G is at least [θ1nr2

n] for some constant θ1 > 0, and nr2
n → ∞, the integer

K can be chosen as large as we want provided n is sufficiently large. Here [x] refers to the
integer part of x. Let η1

t denote the contact process on ZN,K starting with all nodes infected,
defined on the probability space (�, A, PK).

Proposition 5.2. There exist positive constants K, α1, α2, and α3 such that if sN = exp(α1N)

then
PK(η1

sN
�= ∅) ≥ 1 − e−α3N

for all sufficiently large N .

We henceforth fix K such that the above proposition holds. We remark that the constants in
the above result are independent of the choice of ω ∈ Zm. In other words, for each configuration
ω ∈ Zm, the following is true: with Pω-probability at least 1−e−α3N, the infection survives for
at least sN time units (recall the definition of Pω prior to (2.1)). Since N ≥ θ2n, the above result
together with (2.1) and Proposition 5.1 implies that P(ξ1

sN
�= ∅) ≥ (1 − e−α3N)(1 −D1/n

9) ≥
1 − 1/n4 for all sufficiently large n. This proves the lower bound on the extinction time in
Theorem 1.2. The upper bound is proved in the next subsection. We now prove Propositions 5.2
and 5.1 in that order.

Proof of Proposition 5.2. We compare the process with an oriented bond percolation pro-
cess. Identify the segment Vi with i ∈ Z. Divide the time slot into intervals of size ε for some
small fixed constant ε ∈ (0, 1) to be determined later. The point (i, j) ∈ Z

2 refers to the state of
the segment Vi at time jε. Oriented bonds are allowed to be drawn from (i, j) to (i + 1, j + 1)

and (i − 1, j + 1) only. Say that Vi is active at time jε if it contains at least one active node.
Set all nodes to be active at time t = 0. Suppose that Vi is active at time jε.

Draw an arrow from (i, j) to (i + 1, j + 1) if there is an active path from some active node
in Vi to some node in V ′

i+1 in the time interval Tj,ε := [jε, (j + 1)ε); here we say that an
active path occurs from x ∈ Vi to y ∈ V ′

i+1 in Tj,ε if (i) the recovery clocks of both x and y
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do not ring in Tj,ε, and (ii) the infection clock from x to y rings at least once in Tj,ε. If such
an active path occurs, we say that y is active. The event that y is active thus depends only on
the infection clocks of the nodes in Vi and the recovery clocks of the nodes in Vi and V ′

i+1, all
restricted to the interval Tj,ε. This ‘local dependence’ allows us to apply a contour argument to
estimate the survival probability of active nodes.

To calculate the probability of such an active path, let x1 ∈ Vi be a node that is active
at time jε. Let Z(x1) denote the first time the recovery clock of x1 rings after jε, and, for
1 ≤ r ≤ K, let Yr denote the first time the recovery clock of 2iK + r ∈ V ′

i+1 rings after jε.

Finally, for 1 ≤ r ≤ K, let Xr be the first time the infection clock from x1 to 2iK + r ∈ V ′
i+1

rings after jε, and let Xr1 := min1≤r≤K Xr. An arrow from (i, j) to (i + 1, j + 1) occurs if
A(x1) := {Z(x1) > ε} ∩ {Xr1 < ε} ∩ {Yr1 > ε}.

By the Poisson property we have that P(Xr1 < ε) = 1 − e−λKε. Moreover, r1 is uniformly
distributed in {1, 2, . . . , K}, i.e. P(r1 = r) = 1/K for 1 ≤ r ≤ K. Thus, P(Yr1 > ε) =∑

1≤r≤K K−1
P(Yr < ε) = e−ε. An analogous estimate holds for Z(x1).

From the definition of A(x1) and the calculations above, an arrow from (i, j) to (i +
1, j + 1) occurs with probability at least e−ε(1 − e−λKε)e−ε. Choose K large enough so that
(1 − e−λKε)e−2ε > 1 − 3ε. An analogous procedure is employed for drawing an oriented
bond from (i, j) to (i − 1, j + 1). Thus, we have an oriented bond percolation process Por,ε,

where each bond is present with probability at least 1 − 3ε. Fix an integer T ≥ 1, and, for
γ > 0, let T D(r, T ) denote the event that there exists an oriented top–bottom crossing of the
rectangle Rr,T := ([1, r]×[0, T ])∩Z

2. If an oriented top–bottom crossing occurs in Rr,T then
some node in ZN,K has survived up to time T ε. Using a contour argument analogous to [2] for
1-dependent site percolation, we obtain positive constants ε, γ1, and γ2 such that

Por,ε(T D(r, eγ1r )) ≥ 1 − e−γ2r (5.1)

for all sufficiently large r , provided ε > 0 is sufficiently small. Fix such an ε > 0. Clearly,
(5.1) implies the proposition.

To prove estimate (5.1), we apply a contour argument as in [2]. Let A = T D(r, eγ1r ).

To estimate P(A), we grow oriented paths starting from the bottom ([1, r] × {0}) ∩ Z
2 of

Rr,T , as described above. Let C denote the maximal collection of oriented paths containing
([1, r]×{0})∩Z

2. If a vertex (i, j) ∈ C and if the oriented bond from (i, j) to either (i+1, j+1)

or (i + 1, j − 1) is absent in C, we call the nonexistent bond the boundary bond and say that
it was terminated. As in [2], with each vertex x of C as the centre, we draw a square with
oriented edges that forms a clockwise contour around x and which has all the neighbours of x

in Z
2 as its corners. There is an outermost contour �0 that is oriented clockwise and encloses

C ⊇ [1, r] × {0}. Suppose that Ac occurs, and let � denote the part of �0 that crosses Rr,T

from left to right. We then write Ac = ⋃
1≤j≤T Aj ∩ Ac, where Aj denotes the event that �

cuts the segment ({1} × [j − 1, j)) of the left edge of Rr,T .

Counting the left and right arrows as in [2], we obtain the following: if � contains k ≥ r

edges, there exists a subset �′ consisting of at least k/16 edges, each of which cut the boundary
bonds that were independently terminated. The number of choices for � are at most 8k and,
for each choice of �, the number of choices for �′ are at most

(
k

k/16

) ≤ (16e)k/16. Here we use(
n
m

) ≤ (ne/m)m. Since each boundary bond is terminated with probability at most 3ε, we have

Por,ε(Aj ∩ Ac) ≤
∑
k≥r

8k(16e)k/16(3ε)k/16 ≤ e−2ε1r
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for all sufficiently large r and some constant ε1 > 0, provided ε > 0 is sufficiently small. Fix
such an ε > 0.

Finally, setting T = eε1r , we obtain

Por,ε(A
c) =

∑
1≤j≤T

Por,ε(Aj ∩ Ac) ≤ T e−2ε1r ≤ e−ε1r ,

proving estimate (5.1). This completes the proof of Proposition 5.2.

Proof of Proposition 5.1. Oriented dense left–right crossings, defined in Section 2, are
useful here. As before, we tile S horizontally into a set RH of 1×MKnrn/� disjoint rectangles
and vertically into a set RV of MKnrn/� × 1 disjoint rectangles. Let En,tot be the event that
each rectangle contains a dense oriented left–right crossing, as defined prior to (3.1). As before,
we assume that the tiling is perfect, as in Figure 3(a) of [4]. Otherwise, an analogous analysis
with tiling, as in Figure 3(b) of [4], holds.

Suppose now that En,tot occurs. Each rectangle in RH contains an oriented dense left–right
crossing and, therefore, there are at least �/MKnrn =: q disjoint left–right dense crossings,
each containing x = �/rn dense squares. If we can concatenate these crossings without losing
too many squares, we can then hopefully obtain a path � containing at least C1/Knr

2
n dense

squares for some constant C1 > 0. Let {Li}1≤i≤q = {(Ji,1, . . . , Ji,x)}i be the set containing the
lowermost oriented left–right crossing from each rectangle in RH. Recall that the first square
Ji,1 of each crossing Li intersects the left face of S. Let T Dright = (W1, . . . , Wx) be the leftmost
oriented top–bottom dense crossing of the rightmost ‘vertical’ rectangle Rright ∈ RV, and let
T Dleft = (X1, . . . , Xx) be the leftmost oriented top–bottom dense crossing of the leftmost
vertical rectangle Rleft ∈ RV. Thus, Rright intersects the right edge of S and Rleft intersects the
left edge of S. We assume that W1 and X1 intersect the bottom edge of S. We use T Dright and
T Dleft to ‘join’ the disjoint dense left–right crossings {Li}i .

A formal iterative procedure for concatenation is described as follows. The crossings L1
and T Dleft intersect in the sense that there are squares J1,j and Wi that share a common side.
Let i0 = max{j : J1,j ∩ T Dleft �= ∅} be the ‘last time’ L1 intersects the crossing T Dleft,

and let Xh1 = J1,i0 . Set T D
(1)
left = (Xh1 , . . . , Xx). Let j1 = min{j : J1,j ∩ T Dright �= ∅} be

the ‘first time’ the left–right crossing L1 intersects the top–bottom crossing T Dright, and let
J1,j1 ∩ Wk1 �= ∅. Set �1 = (J1,i0 , . . . , J1,j1). By construction, the subpath (Wk1 , . . . , Wx)

intersects L2. Set l1 = min{j : J2,j ∩(Wk1 , . . . , Wx) �= ∅} to be the first time this happens, and
let Wr1 ∩J2,l1 �= ∅. By construction, the concatenation of (Wk1 , . . . , Wr1) to �1 is a path which
we denote by �1. Set T D

(1)
right = (Wr1 , . . . , Wx). Starting from J2,l1 we now determine the first

time (going from right to left) the path L2 hits the path T D
(1)
left as i1 = max{j : J2,j ∩ T D

(1)
left �=

∅}. We concatenate the subpath (J2,l1 , . . . , J2,i1) of L2 to �1 and denote by �2 the new path.
Continuing in this way, the iteration terminates after a finite number of steps to yield the desired
final path �.

In the above procedure, the total number of dense left–right crossings is q = �/MKnrn
and, after concatenation, we lose at most 2(MKn)

2 dense squares for each rectangle in RH.

Since each dense left–right crossing contains at least �/rn dense squares, the total number
of dense squares in � is at least �2/MKnrnrn − �2(MKn)

2/MKnrn ≥ C1/Knr
2
n for all

sufficiently large n and some constant C1 > 0. Here we use � ∈ [4, 5], (1.2), and the fact that
Kn = O(log n). This complete the proof of Proposition 5.1.
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5.1. Proof of the upper bound on the extinction time

Let {Sk}k denote the set of rn/� × rn/� squares, as described in Section 2, and for integer
constant K ≥ 1, and let EK(n) denote the event that each square in {Sk}k contains less than
�K log n
 nodes. If K is large, from (3.7) we know that P(EK(n)) ≥ 1 − 1/n4. If EK(n)

occurs, each node in G has less than K1 log n neighbours for some sufficiently large constant
K1 > 0. Fix a configuration of nodes ω ∈ EK(n).

Divide the time axis into disjoint intervals {Ti}i≥1 of unit length, and let Yi denote the event
that in the time interval Ti the recovery clock of each node rings at least once and none of the
infection clocks ring. It follows that Pω(ξ1

i = ∅) ≥ Pω(
⋃

1≤j≤i Yj ) = 1 − Pω(
⋂

1≤j≤i Y c
j ) =

1 − (1 − Pω(Y1))
i , where Pω(·) is as defined in (2.1) and the final expression follows by

conditioning and the Markov property. Since ω ∈ EK(n), we have

Pω(Y1) ≥ ((e−λ)K1 log n(1 − e−1))n ≥ e−3K2n log n

for some constant K2 > 0. Setting i = e6K2n log n, it follows from the above two estimates that
1 − Pω(ξ1

i = ∅) ≤ (1 − 1/
√

i)i ≤ e−√
i ≤ e−n log n for all large n. Here we use the fact that

1 − x ≤ e−x for all x > 0. Using (2.1) and (3.7), we obtain

P(ξ1
i = ∅) ≥ (1 − e−n log n)

(
1 − 1

n4

)
≥ 1 − 2

n4

for all sufficiently large n.
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