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Abstract. After showing that the anelastic approximation is better 
than the subseismic one to filter out acoustic waves when studying low-
frequency stellar oscillations, we compute gravito-inertial modes of a typ­
ical 7 Doradus star using this approximation. We show that eigenmodes 
can be regular or singular, according to the possible focusing towards 
attractors of the underlying characteristics. Consequences on the oscilla­
tions spectrum are then discussed. 

1. Introduction 

7 Doradus stars are rapidly rotating variables for which the second-order per-
turbative theory of Ledoux (1951) fails to reproduce observations. Indeed, os­
cillations and rotation periods are both around one day (Handler & Krisciunas, 
1997) and eigenfrequencies should be non-perturbatively computed. 

In this paper, gravito-inertial modes of a typical 7 Dor star are computed 
using the anelastic approximation. We first compare the anelastic and subseismic 
approximations and show that the anelastic one is the best to filter out acoustic 
waves from the infinite system of differential equations (Sect. 2). Properties of 
gravito-inertial oscillations are then recalled (Sect. 3) and the part played by the 
characteristics trajectories is discussed, before conclusions in Sect. 4. 

2. Comparison of the anelastic and subseismic approximations 

These two approximations have been compared in Dintrans & Rieutord (2001). 
Both approximations neglect perturbations in the gravitational potential and 
assume that the Eulerian pressure fluctuations do not contribute to Lagrangian 
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ones. On the contrary, they differ on the form of the equation of mass conser­
vation as 

Anelastic: V • (pov) = 0, Subseismic: V • v = (g/c )vr, 

where po, g and c2 respectively denote the equilibrium density, gravity and 
square of the velocity of sound whereas v is the velocity. 

Comparisons have been made using g-modes of the homogeneous and n = 3 
polytropes. Analytic expressions for the anelastic and subseismic eigenfrequen­
cies have been found for the homogeneous model whereas all the eigenfrequencies 
have been computed numerically for the n = 3 polytrope. 

Results are summarized in Table 1. They show that the anelastic values 
are between 5 and 20 times more accurate than the corresponding subseismic 
ones demonstrating that the anelastic approximation is best to filter out acoustic 
waves when studying low-frequency stellar oscillations. 

Table 1. Complete dimensionless eigenfrequencies ui2 for some g-
modes of the n = 3 and homogeneous (in parenthesis) polytropes, with 
their associated anelastic w2

nel and subseismic u>2
nh counterparts. 

x W "anel X 10d 
^sub x 103 

g5 5.76059 (-36.1367) 
gio 1.98396 (-12.2196) 
g2o 0.59984 (-3.65629) 
g30 0.28631 (-1.73527) 

6.03954 (-35.2941) 
2.02646 (-12.1212) 
0.60453 (-3.64741) 
0.28744 (-1.73327) 

6.27794 (-32.6087) 
2.08345 (-11.5607) 
0.61587 (-3.55239) 
0.29154 (-1.70180) 

3. Application to the long-period oscillations of a 7 Dor type-star 

The anelastic equations need to be solved in a co-rotating frame; they read 
(Dintrans & Rieutord, 2000, hereafter DR2000) 

x v 
N2 

+ ^ x (2lt x v) = 0 and ^ • {p0v) = 0, (1) 

where we assumed a time-dependence of the form exp(iat) and N denotes the 
Brunt-Vaisala frequency. After projecting on vectorial spherical harmonics (see 
Dintrans et al., 1999 for numerical details), one obtains a generalized eigenvalue 
problem which is solved using either the QZ algorithm (all the eigenvalues a are 
computed) or an iterative Arnoldi-Chebyshev solver (only desired eigenvalues 
an are computed, with their associated eigenvectors vn). 

The perturbative theory has been tested by following a high-order g-mode 
(period~0.3d) of a typical 1.5 M© 7 Dor star as rotation was increased. As 
expected for this kind of long-period mode, perturbative theories rapidly reach 
their limits since first- and second-order relative errors are comparable to the 
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Figure 1. Integration of the characteristics Eq. (2) for a star with a 
rotation period of one day and two mode frequencies a. If a is well 
above 2ft (a), characteristics fill the whole hyperbolic domain whereas 
they can be focused along attractors when a ~ 2ft (b). Three hundred 
reflections have been drawn in both cases but we removed the first two 
hundred ones in plot (b) to emphasize the final attractor. 

observational detection limit for rotation periods of about 8 and 3 days, respec­
tively. 

Then, by solving the non-perturbative problem (1) in the rapid rotation 
regime (rotation down to one day), we found that the part played by the char­
acteristics trajectories become more and more important as the rotation in­
creases. Characteristics, on which energy propagates, obey the following differ­
ential equation (s and z being cylindrical coordinates with r2 = s2 + z2) 

dz 
ds 

N2sz ± ry/a2N2s2 + (4ft2 - a2){a2r2 - N2z2) 
(2) 

Given a mode frequency a and rotation rate ft, this equation can be integrated 
in the radiative zone of the star and we found that the resulting web imposes 
the mode structure depending on the ratio cr/2ft: 

• if a ^> 2ft, all characteristics trajectories are ergodic (Fig. la) and the 
associated eigenmodes are regular, in the sense that the velocity field is 
smooth and square-integrable (see Fig. 8a in DR2000). 

• if a ~ 2ft (the region of interest), characteristics trajectories almost focus 
along attractors (Fig. lb) and the associated eigenmodes are singular, that 
is, velocity tends to infinity on the attractor (see Fig. 8b in DR2000). Thus, 
without an efficient diffusion process, these modes cannot exist. 

• if a < 2ft, no global eigenmodes have been found, most likely because of 
numerical difficulties. 
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4. Conclusion 

First, we showed that the anelastic approximation is better than the subseisrnic 
one to filter out acoustic waves from oscillations equations. Second, we applied 
this result to investigate the low-frequency oscillations of a rapidly rotating 7 Dor 
type-star. 

We tested first- and second-order perturbative theories by following a long-
period g-mode while increasing rotation. We showed that a non-perturbative 
approach is necessary for rotation periods below 3 days. Then, a computation of 
eigenmodes allowed us to reach the one-day rotation region where we found that 
modes divide into regular and singular ones according to whether the associated 
characteristics trajectories are ergodic or focused along an attractor. It has 
important consequences on the oscillation spectrum since frequency subintervals 
corresponding to attractors are lacking eigenvalues when dissipative effects are 
neglected. 
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Discussion 

R. Townsend : What advantage does the anelastic approximation give, if you 
must still use an expansion in spherical harmonics ? 

B. Dintrans : We always need to expand the angular part of perturbations into 
spherical harmonics. But adding rotation through Coriolis' force leads to an 
infinite system of coupled differential equations. The usefulness of the anelastic 
approximation is precisely to decrease the system size by filtering out acoustic 
waves, which makes numerics more efficient. 

R. Townsend : What is the physical interpretation of the singular modes which 
you find ? 

B. Dintrans : These modes are due to the focusing of the characteristics, as­
sociated with the inviscid problem, towards periodic orbits (attractors); this 
process is therefore coming from the ill-posedness of the associated mathemat­
ical problem. Physically, you may think to a wave packet which, following the 
characteristics, will bounce on the boundaries. After each cycle, its wavelength 
is reduced by a factor (which depends on frequency) larger than unity. After an 
infinite time, the wavelength is zero and the singularity is born. 
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