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This paper proposes new, simple, and more accurate statistical tests in a cointegrated
system that allows for endogenous regressors and serially dependent errors. The ap-
proach involves first transforming the time series using orthonormal basis functions
in L2[0,1], which have energy concentrated at low frequencies, and then running an
augmented regression based on the transformed data and constructing the test statis-
tics in the usual way. The approach is essentially the same as the trend instrumental
variable approach of Phillips (2014), but the number of orthonormal basis functions
is held fixed for the development of the standard F and t asymptotic theory. The
tests are extremely simple to implement, as they can be carried out in exactly the
same way as if the transformed regression is a classical linear normal regression.
In particular, critical values are from the standard F or t distribution. The proposed
F and t tests are robust in that they are asymptotically valid regardless of whether
the number of basis functions is held fixed or allowed to grow with the sample
size. The F and t tests have more accurate size in finite samples than existing tests
such as the asymptotic chi-squared and normal tests based on the fully modified
OLS estimator of Phillips and Hansen (1990) and can be made as powerful as the
latter test.

1. INTRODUCTION

This paper considers a new approach to statistical inference in a triangular cointe-
grated regression system. A salient feature of this system is that the I(1) regressors
are endogenous. In addition, to maintain generality of the short run dynamics, we
allow the I(0) regression errors to have serial dependence of unknown forms. One
of the most popular semiparametric estimators in this system is the fully modified
OLS (FMOLS) estimator of Phillips and Hansen (1990). The estimator involves
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using a long run variance and a half long run variance to remove the long run joint
dependence and endogeneity bias. Both the long run variance and the half long
run variance are estimated nonparametrically. Inference based on the FMOLS is
standard—the Wald statistic is asymptotically chi-squared as in the classical lin-
ear regression with stationary or iid data. This is perhaps one of the most elegant
and convenient results in time series econometrics. It releases us from having to
simulate functionals of Brownian motion.

One drawback of the FMOLS method is that the asymptotic chi-squared test of-
ten has large size distortion. The source of the problem is that the estimation errors
in the long run variance and half long run variance have been completely ignored
in the conventional asymptotic framework adopted in Phillips and Hansen (1990).
A new “fixed-b” asymptotic framework has been put forward by Vogelsang and
Wagner (2014), but the Wald statistic does not appear to be asymptotically piv-
otal, making inference difficult and inconvenient. For this reason, Vogelsang and
Wagner (2014) proceed to propose a different estimation method called the Inte-
grated Modified OLS (IMOLS). They show that the associated test statistics are
asymptotically pivotal under fixed-b asymptotics. However, the limiting distribu-
tions are nonstandard, and critical values have to be simulated.

In the same spirit of Vogelsang and Wagner (2014), we consider an alternative
estimation method that involves first transforming the data using orthonormal ba-
sis functions and then running an augmented regression based on the transformed
data in the second stage. This gives rise to our transformed and augmented (TA)
OLS (TAOLS) estimator. Augmentation removes the long run dependence prob-
lem, and transformation eliminates the second-order bias that plagues the OLS
estimator.

Our TAOLS estimator is closely related to the trend instrument variable (TIV)
estimator of Phillips (2014). Phillips (2014) considers the augmented regression
model in the time domain and runs an instrumental variable regression using or-
thonormal basis functions as instruments. Depending on the trend functions used,
the TAOLS and TIV estimators may be numerically identical or asymptotically
equivalent under the asymptotics considered in this paper. In essence, the two
estimators extract the signal on long run comovements in an identical way—both
involve projecting the underlying time series onto a set of orthonormal determin-
istic basis functions.

A key feature of our asymptotic analysis is that the number of basis functions
K is held fixed as the sample size goes to infinity, leading to our fixed-K asymp-
totic theory. Compared with existing methods such as the FMOLS of Phillips and
Hansen (1990) and the IMOLS of Vogelsang and Wagner (2014), our new method
enjoys several advantages.

First, under the fixed-K asymptotics, the test statistics based on the TAOLS
estimator are asymptotically standard F or t distributed. Since the critical values
from the F and t distributions are easily available from statistical tables, there
is no need to further approximate or simulate nonstandard limit distributions. In
addition, the test statistics can be obtained directly from statistical programs that
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can compute the F and t statistics in a classical linear normal regression. So, our
method is practically convenient and empirically appealing in comparison to the
IMOLS method, where the fixed-b limiting distribution is highly nonstandard and
the critical values have to be simulated.

Second, given that the TAOLS estimator is asymptotically equivalent to the TIV
estimator of Phillips (2014), we have also established the fixed-K asymptotics
of the TIV estimator and the associated test statistics. Under the increasing-K
asymptotics where K grows with the sample size at an appropriate rate, Phillips
(2014) shows that the Wald statistic and the t statistic are asymptotically chi-
squared and normal, respectively. While the fixed-K asymptotic distribution is
different from the increasing-K asymptotic distribution, we show that the fixed-
K asymptotic distribution approaches the increasing-K asymptotic distribution as
K increases. As a result, the fixed-K critical values are asymptotically valid re-
gardless of the type of asymptotics we consider. This is a robust property enjoyed
by our asymptotic F and t tests.

Third, our simulation results show that the asymptotic F and t tests have more
accurate size than existing tests such as the asymptotic chi-squared and normal
tests based on the FMOLS estimator. By choosing K appropriately, the asymp-
totic F and t tests can be as powerful as the latter tests. This is based on our simu-
lation evidence. It is also consistent with the asymptotic efficiency of the TAOLS
estimator under the increasing-K asymptotics. The asymptotic efficiency holds
because the TAOLS estimator and the asymptotically efficient FMOLS estimator
have the same asymptotic distribution under the increasing-K asymptotics.

Finally, taking it literally, the fixed-K asymptotics require us to use only low-
frequency information. Fundamentally, what a cointegrating vector measures is
the long run relation among economic time series. For this reason, it is natural to
estimate the cointegrating vector using only the long run variation of the under-
lying time series. Doing so helps us avoid high-frequency contaminations. From
this perspective, the fixed-K limiting thought experiment not only is an asymp-
totic device for developing new and more accurate approximations but also has
substantive empirical content in economic applications.

This paper contributes to a large body of literature on semiparametric estimation
of cointegrated systems with Phillips and Hansen (1990), Phillips (1991a), Phillips
and Loretan (1991), Saikkonen (1991), and Stock and Watson (1993) as seminal
early contributions. In the FMOLS setting, partial fixed-b asymptotic theory for
cointegration inference has been considered by Bunzel (2006) and Jin, Phillips,
and Sun (2006), but the fixed-b asymptotics is applied only to the standard error
estimator; see Vogelsang and Wagner (2014) for further discussion of this. Relative
to the TIV approach of Phillips (2014), the contributions of the current paper lie
more in the fixed-K asymptotics than in the proposed TAOLS estimator, as the
TIV estimator and the TAOLS estimator turn out to be essentially the same.

Transforming a time series using the basis functions considered in this paper
is equivalent to filtering the time series with a particular class of linear filters.
The filtering idea has a long history; see, for example, the seminal contribution of
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Thomson (1982). For a textbook treatment, see Chapter 5 of Stoica and Moses
(2005). This idea has been used in nonparametric cointegration analysis. Bierens
(1997) and Müller and Watson (2013) employ basis-function transforms in order
to extract the long run variation and covariation in the underlying time series.
Without imposing a parametric VAR structure as in Johansen (1991), Bierens
(1997) proposes nonparametric tests for the number of cointegrating vectors,
which is the same as the degree of rank deficiency of a standardized long run
variance matrix. Bierens’s test statistics involve functions of the eigenvalues of
this long run variance matrix and have nonstandard limiting distributions. A vari-
ant of Bierens’s method appears in Shintani (2001) who employs kernel long run
variance estimators instead of series long run variance estimators. This idea of
using rank deficiency to test for the cointegration rank can be traced to Phillips
and Ouliaris (1990). Müller and Watson (2013) use the Neyman-Pearson decision-
theoretic framework to design robust and nearly optimal tests about the cointegrat-
ing vectors when they are fully specified under the null hypothesis, that is, when
all the cointegrating vectors are known under the null hypothesis. Both Bierens
(1997) and Müller and Watson (2013) consider a fixed number of basis functions,
which is in the same spirit as the fixed-K asymptotics we consider here. However,
our paper has different objectives: our aim is to estimate the cointegrating vector
and to conduct inferences on both the full vector and a subvector.

Basis-function transformations have also been used in heteroskedasticity and
autocorrelation robust (HAR) inference. The most recent research along this line
was inspired by Phillips (2005b), although the idea can be traced back to the much
earlier literature on the multiple window method for spectral estimation, started
by Thomson (1982). The term “HAR” was first introduced by Phillips (2005a).
While the current paper employs basis-function transformation as a tool to esti-
mate the main parameters of interest, the HAR literature uses them to estimate the
asymptotic variances of parameter estimators, leading to the class of orthonormal
series HAR variance estimators. Using this type of variance estimators, F and t
limit theory has been established in the HAR literature. See Sun (2011) for trend
regressions, Sun (2013) for stationary moment processes, and Sun (2014c) for
highly persistent moment processes. Sun and Kim (2012) develop the F or t ap-
proximation to the J statistic, while Sun and Kim (2015) develop F and t limit
theory in a spatial setting. Hwang and Sun (2017a) develop the F or t limit theory
in a two-step generalized method of moments (GMM) framework with a series
HAR variance estimator used as the weighting matrix. This paper complements
the F and t limit theory established in these papers. Readers are referred to Müller
and Watson (2016) for further discussion on basis-function transformations and
their applications in econometrics.

The rest of the paper is organized as follows. Section 2 introduces a standard
linear cointegrating regression and discusses some of the drawbacks of existing
methods. Sections 3 and 4 introduce our TAOLS estimator and establish the fixed-
K asymptotic limits of the TAOLS estimator and the corresponding Wald and t
statistics. Section 3 is devoted to cointegration models that have no deterministic
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trend, and Section 4 deals with models that do have a deterministic trend.
Section 5 addresses implementation issues. Section 6 presents simulation evi-
dence. The last section concludes. Proofs are given in the appendix.

2. MODEL AND EXISTING LITERATURE

Following Vogelsang and Wagner (2014), we consider the cointegration model

yt = α0 + x ′
tβ0 + u0t (1)

xt = xt−1 + uxt

for t = 1, . . . ,T , where yt is a scalar time series and xt is a d × 1 vector of time
series with x0 = Op (1). The mean-zero error vector ut ≡ (u0t ,u′

xt )
′ ∈R

m for m =
d +1 is jointly stationary with long run variance (LRV) matrix �. We partition �
as

�
m×m

=
∞∑

j=−∞
Eut u

′
t− j =

⎛
⎜⎝

σ 2
0

1×1
σ0x
1×d

σx0
d×1

�x x
d×d

⎞
⎟⎠ , (2)

and write it as a sum of three conformable components: � = � +�+�′, where

� :=
∞∑

j=1

Eut− j u
′
t =

⎛
⎜⎝

�00
1×1

�0x
1×d

�x0
d×1

�x x
d×d

⎞
⎟⎠ and � := Eut u

′
t =

⎛
⎜⎝

�00
1×1

�0x
1×d

�x0
d×1

�x x
d×d

⎞
⎟⎠ .

The half long run variance � is defined to be

� = � +� =
(

�00 �0x

�x0 �x x

)
. (3)

We assume that �x x is positive definite so that xt is a full-rank integrated process.
We shall assume the Functional Central Limit Theorem (FCLT):

T −1/2
[T ·]∑
t=1

ut ⇒ B(·) = �1/2W (·), (4)

where W (·) := (w0(·),W ′
x (·))′ is an m-dimensional standard Brownian process.

Also, it will be convenient in our asymptotic development to represent the process
B(·) using the Cholesky form of �1/2:

B (·) =
(

B0(·)
Bx(·)

)
=
(

σ0·xw0(·)+σ0x�
−1/2
x x Wx (·)

�
1/2
x x Wx (·)

)
, (5)

where σ 2
0·x = σ 2

0 −σ0x�
−1
x x σx0 and �

1/2
x x is a symmetric matrix square root of �x x .
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To simplify the discussion, we assume that there is no intercept in the regres-
sion. Let X = [x ′

1, . . . ,x ′
T ]′ and Y = [y1, . . . , yT ]′. The OLS estimator of β0 is

given by β̂O L S = (
X ′ X

)−1
X ′Y . It follows from Phillips and Durlauf (1986) and

Stock (1987) that

T (β̂O L S −β0) =
(

1

T 2

T∑
t=1

xt x
′
t

)−1(
1

T

T∑
t=1

xtu0t

)
(6)

⇒
(∫ 1

0
Bx(r)B ′

x(r)dr

)−1(∫ 1

0
Bx(r)d B0(r)+�x0

)
, (7)

where �x0 reflects the second-order endogeneity bias.
Since Bx(·) and B0(·) are correlated, and � and hence �x0 are unknown, it is

not possible to make an asymptotically valid inference based on the naive OLS
estimator. To overcome these two problems (correlation Bx(·) and B0(·) and
second-order endogeneity bias), Phillips and Hansen (1990) suggest the FMOLS
method that involves estimating � and � in the first step. Typical estimators of �
and � take the following forms:

�̂ = 1

T

T∑
s=1

T∑
t=1

Qh

(
s

T
,

t

T

)
ût û

′
s , (8)

�̂ = 1

T

T∑
s=1

T∑
t=s

Qh

(
s

T
,

t

T

)
ût û

′
s , (9)

where ût = (
û0t ,u′

xt

)′
and û0t = yt − x ′

t β̂O L S . In the above definitions of �̂

and �̂, Qh (r,s) is a symmetric weighting function that depends on the smoothing
parameter h. For conventional kernel LRV estimators, Qh (r,s) = k ((r − s)/b)
and we take h = 1/b. For orthonormal series (OS) LRV estimators, Qh (r,s) :=
QK (r,s) = K −1∑K

j=1 φj (r)φj (s) and we take h = K , where
{
φj (r)

}K
j=1 are or-

thonormal basis functions in L2[0,1] satisfying
∫ 1

0 φj (r)dr = 0. For more back-
ground information on OS LRV estimation, see Sun (2011, 2013). We parametrize
h in such a way that h indicates the amount of smoothing for both types of LRV
estimators.

After partitioning �̂ and �̂ in the same way as � and �, we define

y+
t := yt − σ̂0x�̂

−1
x x �xt ,

u+
t := ut − σ̂0x�̂

−1
x x �xt ,

M := T (�̂x0 − �̂x x�̂
−1
x x σ̂x0). (10)

Then the FMOLS estimator is given by

β̂F M = (
X ′ X

)−1 (
X ′Y + −M)

, (11)
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where Y + = [y+
1 , . . . , y+

T ]′. On the basis of the kernel estimators of � and �,
Phillips and Hansen (1990) show that β̂F M is asymptotically mixed normal,
that is,

T (β̂F M −β0) ⇒ M N

⎛
⎝0,σ 2

0·x

[∫ 1

0
Bx(r)B ′

x(r)dr

]−1
⎞
⎠ . (12)

This is in contrast to the limiting distribution of β̂O L S , which is complicated
and has a second-order endogeneity bias. Based on a consistent estimator σ̂ 2

0·x
of σ 2

0·x , one can obtain t and Wald statistics that are asymptotically normal and
chi-squared distributed, respectively.

A key step behind Phillips and Hansen’s result is that �̂, �̂, and σ̂ 2
0·x are all

approximated by the respective degenerate distributions concentrated at �, �,
and σ 2

0·x . That is, regardless of the kernel function and the bandwidth used in the

nonparametric estimators �̂, �̂, and σ̂ 2
0·x , the same asymptotic approximations

are used. However, in finite samples, both the kernel function and the bandwidth,
especially the latter, do affect the sampling distribution of β̂F M and the associated
test statistics. For this reason, the normal and chi-squared approximations can
be very poor in finite samples. This is because these approximations completely
ignore the estimation uncertainty in the nonparametric estimators �̂, �̂, and σ̂ 2

0·x ,
which can be very high in finite samples. Bunzel (2006) and Jin, Phillips, and Sun
(2006) develop partial fixed-b asymptotic theory that accounts for the estimation
uncertainty in σ̂ 2

0·x but ignores that in �̂ and �̂.
The degenerate distributional approximations for �̂, �̂, and σ̂ 2

0·x with con-
sequential normal and chi-squared tests are obtained under the conventional
increasing-smoothing asymptotic theory. Instead of the conventional asymptotics,
we can use the alternative fixed-smoothing asymptotics to obtain more accurate
asymptotic approximations. The fixed-smoothing asymptotics include the fixed-b
asymptotics of Kiefer and Vogelsang (2005) as a special case. For further dis-
cussion of these two types of asymptotics, see Sun (2014a, 2014b). There is a
growing number of papers on fixed-b asymptotic theory for stationary data start-
ing with Kiefer and Vogelsang (2005). More recently, Vogelsang and Wagner
(2014) develop a fully-fledged fixed-b asymptotic theory for the FMOLS esti-
mator and show that when the estimation uncertainty in �̂ and �̂ is accounted for,
the FMOLS estimator still suffers from a second-order asymptotic bias and has
an asymptotic variance that is much more complex than that given by Phillips and
Hansen (1990). As a result, the Wald and t statistics depend on many nuisance
parameters even in the limit, and this makes the fixed-b asymptotic theory hard
to use.

As an alternative solution, Vogelsang and Wagner (2014) suggest the Integrated
Modified OLS (IMOLS) estimator, which is based on partial sums of the origi-
nal cointegrating regression augmented by the original regressor. They invoke the
fixed-b asymptotics to approximate the IMOLS test statistics and show that they
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are asymptotically pivotal. However, their limiting distributions are highly non-
standard; the critical values have to be simulated for practical implementation.

3. ESTIMATION AND INFERENCE IN THE ABSENCE OF TIME
TRENDS

To confront several challenges in the literature, we propose an alternative method
to estimate the cointegration model in (1) where no trend is present. We follow
Phillips (2014) and consider the augmented cointegration model

yt = α0 + x ′
tβ0 +�x ′

tδ0 + u0·xt, (13)

where δ0 = �−1
x x σx0 is the long run regression coefficient of �xt on u0t , and

u0·xt = u0t − δ′
0uxt is the long run regression error of u0t projected onto uxt .

The long run variance of u0·xt is σ 2
0·x .

Let {φi }∞i=1 be a set of orthonormal basis functions in the standard Hilbert space
L2[0,1]. Our method starts by transforming the original data {yt ,x ′

t ,�x ′
t }T

t=1
using the basis functions {φi }K

i=1 for a finite K and then conducts a regression
analysis based on the transformed data. For each i = 1, . . . , K , the transformed
data

{
W

·
i

}
are weighted averages of the original data:

W
α
i = 1√

T

T∑
t=1

φi

(
t

T

)
,

W
y
i = 1√

T

T∑
t=1

ytφi

(
t

T

)
= Y ′�i√

T
, Wx

i = 1√
T

T∑
t=1

xtφi

(
t

T

)
= X ′�i√

T
,

W
�x
i = 1√

T

T∑
t=1

�xtφi

(
t

T

)
, W0·x

i = 1√
T

T∑
t=1

u0·xtφi

(
t

T

)
, (14)

where �i = [φi (1/T ), . . . ,φi ((T − 1)/T ),φi (1)]′ is the basis vector correspond-
ing to the basis function φi (·). In the context of (realized) variance estimation,
such a transform has been used in Phillips (2005b), Sun (2006), and Müller
(2007), among others.

When φi (r) = φi (1 − r), which holds for the Fourier basis functions we use,
we can write, for example,

W
y
i = 1√

T

T −1∑
t=0

yT−tφi

(
T − t

T

)
= 1√

T

T −1∑
t=0

yT−tφi

(
t

T

)
. (15)

Therefore, Wy
i can be regarded as the output from applying a linear filter to

{yt }T
t=1. The transfer function of this linear filter is

HT i (ω) = 1√
T

T −1∑
t=0

φi

(
t

T

)
exp(ιtω) for ι = √−1. (16)
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To capture the long run behavior of the processes, we implicitly require that
HT i (ω) be concentrated around the origin. That is, HT i (ω) resembles a band-pass
filter that passes low frequencies within a certain range and attenuates frequencies
outside that range. This requirement can be met by any low-order trigonometric
basis such as

√
2sin (2π ir),

√
2cos(2π ir) for small i . In fact, the transfer func-

tions associated with the first few basis functions in a commonly-used base sys-
tem in L2[0,1] are often concentrated around the origin, so the requirement can
be easily met.

Based on the augmented regression and the transformed data, we have

W
y
i = α0W

α
i +W

x ′
i β0 +W

�x ′
i δ0 +W

0·x
i for i = 1, . . . , K . (17)

This can be regarded as a cross-sectional regression with K observations. We as-
sume that K is large enough so that the number of observations is not smaller
than the number of nondiminishing regressors. Obviously, there is no point
in considering K > T , as there is no extra information beyond the first T
transforms.

Under the assumption that each function φi (·) is continuously differentiable
and satisfies

∫ 1
0 φi (r)dr = 0, which we will maintain, we have

W
α
i = √

T
∫ 1

0
φi (r)dr +√

T O(1/T ) = O(1/
√

T ) = o(1), (18)

and so the effect of the constant term α0 in (17) is asymptotically negligible for a
large T . As a result, our asymptotic theory remains the same regardless of whether
an intercept is present. To simplify the presentation, we will assume without loss
of generality that there is no intercept in the model so that

yt = x ′
tβ0 + u0t , xt = xt−1 + uxt (19)

and

W
y
i = W

x ′
i β0 +W

�x ′
i δ0 +W

0·x
i for i = 1, . . . , K . (20)

Putting (20) in vector form, we have

W
y = W

xβ0 +W
�xδ0 +W

0·x , (21)

where Wy = (W
y
1 , . . . ,W

y
K )′ and W

x , W�x , and W
0·x are defined similarly. Run-

ning OLS based on the above equation leads to our transformed and augmented
OLS (TAOLS) estimator of γ0 = (β ′

0,δ
′
0)

′ :

γ̂TAOLS = (W̃′
W̃)−1

W̃
′
W

y,

where W̃ = (
W

x ,W�x
)
.
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The TAOLS approach is closely related to the trend instrumental variable (TIV)
approach of Phillips (2014), which involves solving

(β̂ ′
I V , δ̂′

I V ) = argmin
(β,δ)

(Y − Xβ −�Xδ)′�(�′�)−1�′(Y − Xβ −�Xδ)

= (X̃ ′ P� X̃ ′)−1(X̃ ′ P�Y ), where X̃ = [X,�X ] and PK = �(�′�)−1�′.
(22)

The basis functions � = [�1, . . . ,�K ] now play the role of instruments
for the augmented regression given in (13). When �′� = IK , the crite-
rion function in (22) becomes

∥∥�′(Y − Xβ −�Xδ)
∥∥2, which is the same as∥∥Wy −W

xβ +W
�xδ

∥∥2
, the sum of the squared residuals based on the trans-

formed and augmented regression in (21). Therefore, when �′� = IK , the TIV
estimator is numerically identical to the TAOLS estimator. We can show that when
K is fixed and

∫ 1
0 φi (r)φj (r)ds = 1{i = j}, the two estimators are asymptoti-

cally equivalent; see Proposition 2.
Let

Px = W
x(Wx ′

W
x)−1

W
x ′, P�x = W

�x(W�x ′
W

�x)−1
W

�x ′,

and Mx = IK − Px , M�x = IK − P�x . Then we can represent γ̂TAOLS as

γ̂TAOLS =
(

β̂TAOLS

δ̂TAOLS

)
=
(

(Wx ′M�xW
x )−1(Wx ′M�xW

y)

(W�x ′MxW
�x)−1(W�x ′MxW

y)

)
. (23)

To establish the asymptotic properties of γ̂TAOLS, we make the following
assumptions.

Assumption 1. (i) For i = 1, . . . , K , each function φi (·) is continuously dif-
ferentiable; (ii) for i = 1, . . . , K , each function φi (·) satisfies

∫ 1
0 φi (x)dx = 0;

(iii) the functions {φi (·)}K
i=1 are orthonormal in L2[0,1].

Assumption 2. The vector process {ut = (u0t ,u′
xt )

′}T
t=1 satisfies the FCLT

in (4).

Assumption 1 is mild and is satisfied by many basis functions. For example, the
Fourier bases

√
2cos(2π ir) and

√
2sin (2π ir) satisfy Assumption 1. Assump-

tion 2 is a standard FCLT for time series data.
Under Assumptions 1(i) and 2, we have

W
0·x
i = 1√

T

T∑
t=1

φi

(
t

T

)
u0·xt = 1√

T

T∑
t=1

φi

(
t

T

)(
u0t − δ′

0uxt
)

⇒
∫ 1

0
φi (r)d

[
B0(r)− δ′

0Bx(r)
]= σ0·x

∫ 1

0
φi (r)dw0(r)
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using the representation in (5). Here the weak convergence follows from summa-
tion by parts, the continuous mapping theorem, and integration by parts. Similarly,

W
�x
i ⇒

∫ 1

0
φi (r)d Bx(r) = �

1/2
x x

∫ 1

0
φi (r)dWx(r).

Invoking the continuous mapping theorem again, we have

W
x
i

T
= 1

T 3/2

T∑
s=1

φi

( s

T

)
xs = 1

T

T∑
s=1

φi

( s

T

) 1√
T

s∑
τ=1

uxτ +op (1) ⇒�
1/2
xx

∫ 1

0
φi (r)Wx (r)dr,

where the op (1) term follows from the assumption that x0 = Op (1) and
Assumption 1(ii).

To provide some intuition, we let

νi =
∫ 1

0
φi (r)dw0(r), ξi =

∫ 1

0
φi (r)dWx(r), and ηi =

∫ 1

0
φi (r)Wx (r)dr.

Then the TA regression in (20) can be regarded as asymptotically equivalent to
the pseudo-regression

W
y
i ≈ η′

i�
1/2
x x (Tβ0)+ ξ ′

i �
1/2
x x δ0 +σ0·xνi for i = 1, . . . , K . (24)

Because νi is a functional of w0(·), ξj and ηj are functionals of Wx (·), and
w0(·) is independent of Wx(·), the error term σ0·xνi is independent of the re-
gressors {η′

j�
1/2
x x , j = 1, . . . , K } and {ξ ′

j�
1/2
x x , j = 1, . . . , K }. More importantly,

Assumption 1(iii) ensures that σ0·xνi is iid normal N(0,σ 2
0·x ). So the TA regres-

sion resembles a classical linear normal regression.
Let

ν ≡ (ν1,ν2, . . . ,νK )′ ∈ R
K×1,

ξ ≡ (ξ1,ξ2, . . . ,ξK )′ ∈ R
K×d ,

η ≡ (η1,η2, . . . ,ηK )′ ∈ R
K×d ,

ζ̃ =
(
η�

1/2
x x ,ξ�

1/2
x x

)
, ν̃ = σ0·xν,

and

ϒT =
⎛
⎝T · Id 0

d×d
0

d×d
Id

⎞
⎠ .

We can write the pseudo-regression in vector form as

W
y ≈ ζ̃ (ϒT ·γ0)+ ν̃,

where ν̃ ⊥ ζ̃ and ν̃ ∼ N(0,σ 2
0·x IK ). The theorem below follows easily from the

above approximate formulation. A rigorous proof is given in the appendix.
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THEOREM 1. Let Assumptions 1 and 2 hold. Then under the fixed-K asymp-
totics where K is held fixed as T → ∞, we have

ϒT
(
γ̂TAOLS −γ0

)⇒ (ζ̃ ′ζ̃ )−1ζ̃ ′ν̃.

A direct implication of Theorem 1 is that

T (β̂TAOLS −β0) ⇒ σ0·x�−1/2
x x

(
η′Mξ η

)−1
η′Mξ ν, (25)

δ̂TAOLS − δ0 ⇒ σ0·x�−1/2
x x

(
ξ ′Mηξ

)−1
ξ ′Mην, (26)

where Mξ = IK −ξ
(
ξ ′ξ
)−1

ξ ′ and Mη = IK −η
(
η′η
)−1

η′. Conditional on (η,ξ),
both limiting distributions are normal:

σ0·x�−1/2
x x

(
η′Mξ η

)−1
η′Mξ ν

d= N
[
0,σ 2

0·x�
−1/2
x x (η′Mξ η)−1�

−1/2
x x

]
,

σ0·x�−1/2
x x

(
ξ ′Mηξ

)−1
ξ ′Mην

d= N
[
0,σ 2

0·x�
−1/2
x x (ξ ′Mηξ)−1�

−1/2
x x

]
.

Therefore, the unconditional limiting distributions are mixed normal. Further-
more, there is no second-order endogeneity bias in the TAOLS estimator. The
TAOLS approach has effectively removed the two problems that plague the naive
OLS estimator. The first problem, i.e., the asymptotic dependence between the
partial sum processes of the regressor and the regression error is eliminated be-
cause we augment the original regression by the additional regressor �xt . The
second problem, i.e., the second-order endogeneity bias, is eliminated because
we transform the original data and run the regression in the space spanned by the
basis functions. In general, both augmentation and transformation are necessary to
achieve asymptotic mixed normality and asymptotic unbiasedness. However, for
some special basis functions, augmentation is not necessary for asymptotic mixed
normality. Readers are referred to the working paper Hwang and Sun (2017b) for
more details.

The key result that drives the asymptotic unbiasedness of the TAOLS estimator
is that

ϒ−1
T W̃

′
W

0·x =
K∑

i=1

(ϒ−1
T W̃i )W

0·x
i ⇒ ζ̃ ′ν̃, (27)

which is mixed normal with mean zero. Note that the corresponding term in the
OLS estimator based on (13) is

ϒ−1
T

1√
T

T∑
t=1

x̃t ·u0·xt

for x̃t = (x ′
t ,�x ′

t )
′. It is well known that this term has an additive nuisance bias in

the limit, which necessitates the M correction in (11). In contrast, the limit in (27)
does not have such an additive bias term. Like the “partial sum” transforms
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in Vogelsang and Wagner (2014), basis-function transforms help eliminate the
additive bias. Both types of transforms resemble low-pass filters that reinforce
low-frequency components while attenuating high-frequency components. How-
ever, there is an important difference. While basis function transforms make the
error process asymptotically independent, “partial sum” transforms make it more
persistent with a consequential adverse effect on the asymptotic efficiency. See
Vogelsang and Wagner (2014) for more discussion on the efficiency of the IMOLS
estimator as well as its finite-sample bias-reduction property in certain scenarios.

We note that the TAOLS estimator δ̂ of δ0 is not consistent when K is fixed.
The consistency of δ̂ can be restored if we consider a different limiting thought
experiment where K increases with T but at a slower rate. See Phillips (2014) for
details.

Using Lemma A in Section 6 of Phillips (2005b), we have

�′� = IK + O

(
1

T

)
and (�′�)−1 = IK + O

(
1

T

)

under the fixed-K asymptotics. It then follows immediately that the TIV estimator
and the TAOLS estimator are asymptotically equivalent. We formalize the result
in the following proposition. The proof is omitted here but is available from the
working paper Hwang and Sun (2017b).

PROPOSITION 2. Let Assumptions 1 and 2 hold. Then under the fixed-K
asymptotics, T (β̂TIV −β0) = T (β̂TAOLS −β0)+ op(1).

Given the asymptotic equivalence, our fixed-K asymptotic theory applies to
the TIV estimator. This can be regarded as a by-product of our paper. The fixed-
K asymptotic theory for the TIV estimator was established by Phillips and Liao
(2014, Lemma 5.1), but they considered only the case with a scalar regressor and
did not pursue the limit t approximation theory established in this paper.

For the TIV estimator, Phillips (2014) considers only the increasing-K asymp-
totics under which T and K go to infinity and K/T → 0. A careful inspection
of his proof shows that it applies to the TAOLS estimator as well. Thus, in effect,
Phillips (2014) has also established the increasing-K asymptotics for the TAOLS
estimator. More specifically, assume that {φi (·)}∞i=1 is a complete orthonormal
system in

L2
0[0,1] :=

{
f (·) ∈ L2[0,1] :

∫ 1

0
f (r)dr = 0

}
.

Then under the linear process assumption and rate condition given in his equations
(L) and (R), we have

T (β̂TAOLS −β0) ⇒ M N

⎡
⎣0,σ 2

0·x�
−1/2
x x

(∫ 1

0
W̃x (r)W̃x (r)′dr

)−1

�
−1/2
x x

⎤
⎦ , (28)
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where W̃x (r) = Wx (r) − ∫ 1
0 Wx (s)ds is the demeaned version of Wx (r). The

above result is slightly different from what is given in the main theorem of Phillips
(2014, page 213). The difference arises because we require the basis functions to
integrate to zero in order to accommodate an intercept in the cointegration model.
The cointegration model considered in Phillips (2014) has no intercept, and so the
basis functions do not have to integrate to zero. This difference is innocuous, and
the proof in Phillips (2014) goes through with only minor modifications.

The conditional variance in (28) is the semiparametric efficiency bound in the
sense of Phillips (1991b). Here we do not aim to achieve that bound per se.
Instead, our goal is to come up with a more accurate approximation for the given
K value in a finite-sample situation. Nevertheless, the result in (28) indicates that
the TAOLS estimator could become more efficient for a larger K and ultimately
reach the semiparametric efficiency bound under the increasing-K asymptotics.
From this alternative asymptotic point of view, there is no loss of efficiency in our
TAOLS approach.

The result in (28) can also be obtained using the sequential asymptotics under
which we first fix K and let T → ∞ and then let K → ∞. More specifically, let

VK be a random variable with distribution M N
[
0,σ 2

0·x�
−1/2
x x (η′Mξ η)−1�

−1/2
x x

]
.

Then it can be shown that

VK ⇒ M N

⎡
⎣0,σ 2

0·x�
−1/2
x x

(∫ 1

0
W̃x (r)W̃x (r)′dr

)−1

�
−1/2
x x

⎤
⎦ as K → ∞.

Readers are referred to the working paper Hwang and Sun (2017b) for a proof of
the above result. The sequential asymptotics provide a smooth transition from our
fixed-K asymptotics to the increasing-K asymptotics.

We now go back to the fixed-K asymptotics. The asymptotic mixed normality
and unbiasedness of the TAOLS estimator facilitate hypothesis testing. Suppose
that we are interested in testing

H0 : Rβ0 = r vs. H1 : Rβ0 �= r, (29)

where R is a p×d matrix. If σ 2
0·x is known, then we would construct the following

Wald statistic:

F̃(β̂TAOLS) = 1

σ 2
0·x

(Rβ̂TAOLS − r)′
[

R(Wx ′M�xW
x )−1 R′]−1

(Rβ̂TAOLS − r)/p.

When p = 1, we would construct the following t statistic:

t̃(β̂TAOLS) = Rβ̂TAOLS − r√
σ 2

0·x R(Wx ′M�xW
x )−1 R′

.

Under the null hypothesis in (29), we can invoke Theorem 1 to obtain

F̃(β̂TAOLS) ⇒ Q′[R̃
(
η′Mξ η

)−1
R̃′]−1 Q/p, (30)
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where

R̃ = R�
−1/2
x x and Q = R̃(η′Mξ η)−1η′Mξ ν. (31)

By construction, Q follows the mixed normal distribution

M N
[
0, R̃

(
η′Mξ η

)−1
R̃′
]
. Conditional on R̃

(
η′Mξ η

)−1
R̃′,

Q′[R̃
(
η′Mξ η

)−1
R̃′]−1 Q/p ∼ χ2

p/p.

The conditional distribution does not depend on the conditioning variable
R̃
(
η′Mξ η

)−1
R̃′. So χ2

p/p is also the unconditional distribution. That is, the

infeasible test statistic F̃(β̂TAOLS) converges in distribution to χ2
p/p. Similarly,

t̃(β̂TAOLS) converges in distribution to the standard normal distribution.
The presence of the unknown long run variance σ 2

0·x in F̃(β̂TAOLS) and

t̃(β̂TAOLS) hinders their practical application. In practice, we have to estimate σ 2
0·x

in order to construct the test statistics. Given that σ 2
0·x is the approximate variance

of the error term in the TAOLS regression, it is natural to estimate σ 2
0·x by

σ̂ 2
0·x = 1

K

K∑
i=1

(
Ŵ

0·x
i

)2 = 1

K
W

0·x ′[IK −W̃(W̃′
W̃)

−1
W̃

′]
W

0·x,

where Ŵ
0·x
i = W

y
i −W

x ′
i β̂TAOLS −W

�x ′
i δ̂TAOLS. With the estimator σ̂ 2

0·x , we can

construct the feasible F(β̂TAOLS) and t (β̂TAOLS) as follows:

F(β̂TAOLS) = 1

σ̂ 2
0·x

(Rβ̂TAOLS −r)′
[

R(Wx ′M�xW
x )−1 R′]−1

(Rβ̂TAOLS −r)/p, (32)

t (β̂TAOLS) = Rβ̂TAOLS −r√
σ̂ 2

0·x R(Wx ′M�xW
x )−1 R′

.

The theorem below establishes the limiting null distributions of F(β̂TAOLS) and
t (β̂TAOLS) under the fixed-K asymptotics.

THEOREM 3. Let Assumptions 1 and 2 hold. Under the fixed-K asymptotics,
we have

F(β̂TAOLS) ⇒ K

K − 2d
· Fp,K−2d and

t (β̂TAOLS) ⇒
√

K

K − 2d
· tK−2d,

where Fp,K−2d is the F distribution with degrees of freedom p and K − 2d, and
tK−2d is the t distribution with degrees of freedom K − 2d.
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Theorem 3 shows that both F(β̂TAOLS) and t (β̂TAOLS) are asymptotically pivotal
and have standard limiting distributions. From an asymptotic point of view, the TA
regression is equivalent to a classical linear normal regression (CLNR), and so the
F and t limit theory is not surprising. The standard F and t limit distributions we
obtain here are in sharp contrast with the nonstandard limiting distributions in
Vogelsang and Wagner (2014). A great advantage of our approximations is that
the critical values can be obtained from statistical tables and software packages.
There is no need to simulate nonstandard critical values.

Our asymptotic distributions are also in sharp contrast to the chi-squared
(χ2

p/p) and standard normal distributions. The latter distributions are the weak
limits for the infeasible test statistics. In fact, under the increasing-K asymptotics
as developed in Phillips (2014), the latter distributions are also the weak limits of
the feasible statistics F(β̂TAOLS) and t (β̂TAOLS). So the increasing-K asymptotics
effectively assume that σ 2

0·x is known in large samples, and hence completely
ignore the estimation uncertainty in σ̂ 2

0·x .
To compare the critical values from the fixed-K approximation with those from

the increasing-K approximation, we consider the Wald-type test as an example.
Let Fα

p,K−2d and χα
p be the (1 −α) quantiles from the standard Fp,K−2d and

χ2
p distributions, respectively. Then we can use the modified F critical value

K/(K − 2d)Fα
p,K−2d to carry out our F test. This critical value is larger than the

scaled chi-squared critical value χα
p /p for two reasons. First, Fα

p,K−2d > χα
p /p,

because the F distribution Fp,K−2d has a random denominator, unlike the corre-
sponding chi-squared distribution. Second, the multiplicative factor K/(K − 2d)
is greater than 1. The difference between the two critical values depends on the
value of K . It can be quite large when K is small. However, as K increases,
K/(K −2d)Fα

p,K−2d approaches χα
p /p. There is a smooth transition from a fixed-

K critical value to the corresponding increasing-K critical value. So, the critical
value K/(K −2d)Fα

p,K−2d is asymptotically valid regardless of whether K is held
fixed or allowed to grow with the sample size. In this sense, K/(K −2d)Fα

p,K−2d
is a robust critical value.

To investigate the power of the F and t tests, we consider the local alternative
hypothesis

H1T : Rβ0 = r + θ/T for some θ ∈ R
p.

The following theorem establishes the limiting distributions of F(β̂TAOLS) and
t (β̂TAOLS) under H1T .

THEOREM 4. Let Assumptions 1 and 2 hold. Under H1T , we have

F(β̂TAOLS) ⇒ K

K − 2d
Fp,K−2d (‖λ‖2)

t (β̂TAOLS) ⇒
√

K

K − 2d
· tK−2d (λ) for p = 1
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as T → ∞ for a fixed K , where

λ =
[

R�
−1/2
x x

(
η′Mξ η

)−1
�

−1/2
x x R′

]−1/2
θ

σ0·x
,

and Fp,K−2d (·) and tK−2d (·) are noncentral F and t distributions with noncen-
trality parameters ‖λ‖2 and λ, respectively.

Since λ is random, the asymptotic distributions are mixed noncentral F and t
distributions. The mixed distributions are analogous to the mixed chi-squared or
normal distribution we would get in the conventional FMOLS framework. More
broadly, asymptotic mixed noncentral distributions are typical for experiments
that have the local asymptotic mixed normality property.

Under the null hypothesis, Theorem 3 shows that the basis functions have no ef-
fect on the asymptotic distributions. Under the local alternative, Theorem 4 shows
that the effect of the basis functions on the asymptotic distributions is manifested
through the noncentrality parameter λ only. Let φ(x) = (φ1 (x) , . . . ,φK (x))′ be
the vector of basis functions and A be any orthogonal matrix, then it is easy to see
that λ will not change if Aφ(x) is used as the vector of basis functions instead.
A direct implication is that the power of the F or t test is invariant to rotations of
the basis functions.

For a given value of K , we may choose the basis functions to maximize the
local asymptotic power, say P[Fp,K−2d (‖λ‖2) > Fα

p,K−2d ]. This is not an easy
task, as, in general, ξ and η are not independent of each other. The optimal choice
may also depend on R�

−1/2
x x and the direction of the local departure characterized

by θ . We leave this to future research.

4. ESTIMATION AND INFERENCE IN THE PRESENCE OF TIME
TRENDS

In this section, we consider a more general version of (1) by including a linear
time trend in the cointegration model. The model is now given by

yt = x ′
tβ0 +μ0t + u0t , (33)

xt = xt−1 + uxt .

Define Wtr
i = T −1/2∑T

t=1 φi (t/T )t for i = 1, . . . , K and W
tr = (Wtr

1 , . . . ,Wtr
K )′.

Then the transformed regression in (19) is naturally generalized to

W
y
i = W

x ′
i β0 +W

�x ′
i δ0 +W

tr
i μ0 +W

0·x
i for i = 1, . . . , K . (34)

As we discussed earlier, an intercept can be included in (33) and (34), but our
approach is asymptotically invariant to location shifts. The TAOLS estimator for
β0,δ0, and μ0 is now given by

(β̂ ′
TAOLS, δ̂

′
TAOLS, μ̂

′
TAOLS)

′ = (W̃′
trW̃tr )

−1
W̃

′
trW

y, (35)
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where W̃tr = (
W

x , W�x ,Wtr
)
.

Let

Ŵ
0·x
i,tr = W

y
i −W

x ′
i β̂TAOLS −W

�x ′
i δ̂TAOLS −W

tr
i μ̂TAOLS,

(σ̂ tr
0·x)

2 = K −1
K∑

i=1

(Ŵ0·x
i,tr )

2.

Then we can construct the Wald statistic and t statistic as follows:

Ftr (β̂TAOLS) = 1

(σ̂ tr
0·x)2

(Rβ̂TAOLS −r)
[

R(Wx ′M�x,trW
x )−1 R′]−1

(Rβ̂TAOLS −r)/p,

ttr (β̂TAOLS) = Rβ̂TAOLS −r√
(σ̂ tr

0·x)2 R(Wx ′M�x,trW
x )−1 R′

,

where M�x,tr = IK − W�x,tr

(
W

′
�x,trW�x,tr

)−1
W

′
�x,tr and W�x,tr =(

W
�x ,Wtr

)
.

THEOREM 5. Let Assumptions 1 and 2 hold. Assume that a :=(∫ 1
0 φ1 (r)rdr, . . . ,

∫ 1
0 φK (r)rdr

)′ �= 0. Under the fixed-K asymptotics, we

have (i)

ϒT ,tr

⎛
⎝ β̂TAOLS −β0

δ̂TAOLS − δ0
μ̂TAOLS −μ0

⎞
⎠⇒

⎛
⎜⎝σ0·x�−1/2

x x
(
η′Mξ,aη

)−1
η′Mξ,aν

σ0·x�−1/2
x x

(
ξ ′Mη,aξ

)−1
ξ ′Mη,aν

σ0·x
(
a′Mη,ξ a

)−1
a′Mη,ξ ν

⎞
⎟⎠ , (36)

where

ϒT ,tr =
(

ϒT 0
0 T 3/2

)

and Mυ is the projection matrix projecting onto the orthogonal complement of the
column space of υ.

(i i) Under the null hypothesis H0 : Rβ0 = r , we have

Ftr (β̂TAOLS) ⇒ K

K −2d −1
Fp,K−2d−1 and ttr (β̂TAOLS) ⇒

√
K

K −2d −1
tK−2d−1.

(37)

(i i i) Under the local alternative hypothesis H1T : Rβ0 = r + θ/T , we have

Ftr (β̂TAOLS) ⇒ K

K − 2d − 1
Fp,K−2d−1(‖λ‖2) (38)

and ttr (β̂TAOLS) ⇒
√

K

K − 2d − 1
tK−2d−1 (λ) , (39)
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where

λ =
[

R�
−1/2
x x

(
η′Mξ,aη

)−1
�

−1/2
x x R′

]−1/2
θ

σ0·x
.

Theorems 5(ii) and (iii) are entirely analogous to Theorems 3 and 4. The effect
of having an additional trend regressor Wtr

i is reflected by the adjustment in the
multiplicative correction factor and the degrees of freedom in the limiting F and
t distributions.

Again, the asymptotic F and t limit theory resembles the standard theory in the
CLNR with K iid observations. The multiplicative correction is a type of degrees-
of-freedom correction. Had we followed the standard practice in the CLNR and
defined

(σ̂ tr
0·x)

2 = 1

K − 2d − 1

K∑
i=1

(
Ŵ

0·x
i,tr

)2
, (40)

we would not have to make the multiplicative correction. That is, the (scaled)
Wald statistic would be asymptotically F distributed, and the t statistic would be
asymptotically t distributed.

Observing that we compute the standard error of the TAOLS estimator in the
same way we would if the errors in the transformed regression are homoskedas-
tic, which does hold in large samples, our Wald statistic Ftr (β̂TAOLS) with (40)
as the error variance estimator is numerically identical to the F statistic based
on the residual sum of squares under the restricted and unrestricted models. So,
we can obtain Ftr (β̂TAOLS) (and ttr (β̂TAOLS)) from the output of any simple and
very basic regression program as long as it works at least for the CLNR with ho-
moskedastic errors. The only step that we have to take is to get the data into the
transformed form. It should be noted, however, that we do not include the inter-
cept in the transformed and augmented regression when the basis functions satisfy∫ 1

0 φi (x)dx = 0.
As a by-product, we can perform a test of endogeneity, that is, the test of

whether δ0 = 0, in exactly the same way we would if the transformed regres-
sion is a CLNR. This can be justified asymptotically using the same argument as
in the proof of Theorem 5. We note that the test will be inconsistent for a fixed K ,
but our focus here is on obtaining more accurate approximations. The fixed-K
asymptotics do not require that we fix the value of K in finite samples. In fact,
in empirical applications the sample size T is usually given beforehand, and the
value of K needs to be determined using a priori information and/or information
obtained from the data. While the selected value of K may be relatively large for
large T , it is also true that it is a finite value for any given sample. Plugging this
finite value into the fixed-K asymptotic distribution gives us a practical way to
use the fixed-K approximation even when K is data-driven. As we have already
shown, the fixed-K critical value so obtained is asymptotically valid under the
increasing-K asymptotics.
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If we have the polynomial trends (t, t2, . . . , tg) for any integer g instead of a
linear trend, then the proof of Theorem 5 can be invoked to establish the asymp-
totic distributions under the null and the local alternative. For example, under the
null H0 : Rβ0 = r , we can show that when K > 2d + g̃,

Ftr (β̂TAOLS) ⇒ K

K −2d − g
Fp,K−2d−g̃ and ttr (β̂TAOLS) ⇒

√
K

K −2d − g
tK−2d−g̃,

(41)

where

g̃ = rank

(∫
(φ1 (r) , . . . ,φK (r))′

(
r,r2, . . . ,r g

)
dr

)
(42)

and 2d + g̃ is now the effective number of parameters to be estimated. The finite-
sample analogue of g̃ is just the rank of Wtr , the transformed trend matrix. If
clsp {r, . . . ,r g} ∩ [clsp {φ1 (r) , . . . ,φK (r)}]⊥ = {0}, where ‘clsp’ stands for the
closed linear span, then g̃ = g. If some nonzero linear combination of the polyno-
mial trends belongs to clsp {φK+1 (r) ,φK+2 (r) , . . .}, then g̃ < g. For the Fourier
basis functions, clsp {φ1 (r) , . . . ,φK (r)} is a lower-frequency space, as the en-
ergy of each nonzero function in this space concentrates only on lower frequen-
cies. Correspondingly, its orthogonal complement [clsp {φ1 (r) , . . . ,φK (r)}]⊥ is
a higher-frequency space. Given that there does not exist any nontrivial linear
combination of the polynomial trends whose energy concentrates only on the
higher frequencies, we have clsp {r, . . . ,r g} ∩ [clsp {φ1 (r) , . . . ,φK (r)}]⊥ = {0},
and so g̃ = g.

The above comments apply to any set of trend functions. For more general trend
functions, we define g̃ in the same manner as in (42) but with

(
r,r2, . . . ,r g

)
re-

placed by the general trend functions. In some statistical packages such as STATA,
we do not even need to compute g̃ theoretically. When g̃ < g and the sample size
is large enough, STATA will notice a multicollinearity problem and retain only g̃
transformed trend variables to avoid the multicollinearity. The asymptotic F test
and t test can then be performed based on the new transformed and augmented
regression.

It is important to point out that under the fixed-K asymptotics the exact forms
of the trend functions and hence their transforms have to be known in order to
ensure the consistency of the TAOLS estimator β̂TAOLS. If the trend functions are
misspecified, then the TAOLS estimator is in general inconsistent. However, if K
is large and the trend functions are smooth enough that they can be well approxi-
mated by a linear combination of a sufficiently large subset of the basis functions,
we can include this subset of basis functions in the TA regression. This will help
control for the unknown trend functions and reduce the asymptotic bias of the
TAOLS estimator. To eliminate the asymptotic bias altogether, we have to let K
grow with the sample size T at some rate, and we are no longer in the domain
of the fixed-K asymptotics but instead move into the domain of the increasing-K
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asymptotics. So, if K is held fixed literally, then the fixed-K asymptotics is not
robust to trend misspecification. This is in contrast with the increasing-K asymp-
totics under which the TAOLS estimator can still be made consistent, even if the
exact forms of the trend functions are not known. However, as we discussed be-
fore, we do not have to fix the value of K in order to use the fixed-K asymptotic
approximations. Even if K grows with the sample size T , we can still use the
fixed-K critical values (i.e., F and t critical values), as they remain valid under
the increasing-K asymptotics.

5. IMPLEMENTATION

5.1. The Form of Basis Functions

We consider the following two sets of basis functions on L2[0,1]:

Fourier basis functions{
φ2 j−1 (r) = √

2cos (2 jπr) , φ2 j = √
2sin(2 jπr) , j = 1, . . . , K/2

}
; (43)

Cosine basis functions{
φj (r) = √

2cos( jπr), j = 1, . . . , K
}

. (44)

Both sets contain orthonormal bases and satisfy Assumption 1. If we let
K → ∞, then the orthonormal basis functions in both sets are complete. Fourier
basis functions are the standard and commonly used basis functions. Cosine basis
functions are the eigenfunctions of the covariance kernel of the demeaned Brown-
ian motion. In the working paper Hwang and Sun (2017b), we consider the shifted
cosine functions {√2cos(2 jπ [r − 1/(2T )])}K

j=1, which are also used in Bierens
(1997). However, this set of basis functions is not complete even if K goes to
infinity, as {√2sin (2 jπ [r − 1/(2T )])}K

j=1 is not included. An advantage of using
the shifted cosine functions is that they are asymptotically orthogonal to the linear
trend. So we can drop the transformed trend from the TA regression even if the
original regression contains a linear trend. In fact, we can even drop W

�x
i and

still develop the F and t limit theory. However, the incompleteness of the basis
functions may have some adverse effect on asymptotic efficiency.

Another commonly used set of trigonometric basis functions consists of the
sine basis functions {√2sin ( jπr)}K

j=1 and {√2sin (( j − 1/2)πr)}K
j=1, which are

the eigenfunctions of the covariance kernel of the standard Brownian bridge and
Brownian motion, respectively. However, they cannot be used directly, as they do
not satisfy Assumption 1(ii).

From a theoretical point of view, any orthonormal basis can be used. For exam-
ple, one may use the Legendre polynomials (shifted and renormalized):{
φj (r) =√

2 j + 1Pj (2r − 1), j = 1, . . . , K
}
, (45)
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where

Pj (s) = 1

2 j j !

d j

ds j

(
s2 − 1

) j
for s ∈ [−1,1]

are the standard Legendre polynomials. Our simulation study not reported here
shows that Legendre polynomials do not deliver an accurate F test or t test in fi-
nite samples when high-order polynomials are used. The main reason is that while
these polynomials are orthonormal in L2[0,1], i.e.,

∫ 1
0 φi (r)φj (r)dr = 1{i = j},

the discrete version of the integral, namely, T −1∑T
t=1 φ (i/T )φ( j/T ), may not

be close to 1{i = j}, especially when i and j are large. So even if u0·x,t is iid
N(0,σ 2), the transformed error W0·x

i may be far from being iid N(0,σ 2) in fi-
nite samples. This can lead to substantial finite-sample size distortion. In contrast,
for the two sets of trigonometric basis functions given earlier, we can show that
because of cancellations,∣∣∣∣∣T −1

T∑
t=1

φ (i/T )φ( j/T )− 1{i = j}
∣∣∣∣∣ ≤ 2/T

for all integers i, j ∈ [1,T ). In fact, for Fourier basis functions,
T −1∑T

t=1 φ (i/T )φ( j/T ) is exactly equal to 1{i = j}. For this reason, we
recommend using the trigonometric basis functions, and hereinafter we do not
consider other basis functions such as Legendre polynomials.

5.2. The Number of Basis Functions

In principle, we can use any finite number of orthonormal basis functions in our
fixed-K framework. However, Proposition 2 indicates that a larger K leads to a
more efficient estimator. On the other hand, when K is too large, the TAOLS es-
timator will suffer from the asymptotic bias that is not captured by the fixed-K
asymptotics. For example, if we set K equal to the sample size, which is the
upper bound for K , the TAOLS estimator will be the same as the augmented
OLS estimator, which suffers from second-order asymptotic bias. Thus, there
is an opportunity to select K to trade off the variance effect with the bias
effect.

A direct approach to a data-driven choice of K is to first develop a high-
order expansion of β̂TAOLS from which we obtain the approximate mean squared
error (AMSE) of β̂TAOLS and then select K to minimize the AMSE of β̂TAOLS.
For hypothesis testing, a direct approach is to choose K to minimize the Type II
error of our proposed F test or t test subject to a control of the Type I error. The
direct approaches are ambitious. Phillips (2014) discusses some of the technical
challenges behind the direct approaches. We leave them for future research.

An indirect approach that appears to work reasonably well is based on the bias
and variance of the LRV estimator. Following a large literature on LRV esti-
mation, Phillips (2005b) proposes selecting K by minimizing the AMSE of �̂
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defined in (8). In the present setting, we have

�̂ = 1

K

K∑
i=1

(
Ŵ

u
i

)(
Ŵ

u
i

)′
for Ŵu

i = 1√
T

T∑
t=1

ûtφi

(
t

T

)
,

where either ût = (yt − xt β̂O L S,�x ′
t )

′ or ût = (yt − xt β̂O L S − μ̂O L St,�x ′
t )

′,
depending on whether a linear trend is present or not. For the Fourier basis
functions and cosine basis functions, the AMSE-optimal K ∗ for estimating �̂
is given by

K ∗
MSE =

⌈(
tr(Im2 +Kmm)(�⊗ �)

4vec (B)′ vec (B)

)1/5

T 4/5

⌉

for B = −π2

6

∞∑
h=−∞

h2�u(h), �u(h) = Eut u
′
t−h, (46)

where Kmm is the m2 ×m2 commutation matrix and Im2 is the m2 ×m2 identity
matrix. It is important to point out that the above formula is based on the AMSE
of the LRV estimator �̂, which is related to the TAOLS estimator but is essentially
a different problem. Therefore, the above rule of selecting K should be regarded
as only a rule of thumb.

Recall that K has to be large enough to ensure that the regressors in the TA
regression are not perfectly multicollinear. In the absence of a trend, it is necessary
to have K ≥ 2d . For one of his tests, Bierens (1997) recommends the rule-of-
thumb value K = 2d . In our setting, the limiting distribution of the Wald statistic
is the F distribution with the denominator degrees of freedom K −2d . For this F
distribution to have a finite mean, we require K − 2d ≥ 3, i.e., K ≥ 2d + 3. So in
finite samples it is reasonable to set K equal to K ∗

MSE,c with

K ∗
MSE,c = max(2d + 3, K ∗

MSE). (47)

When a linear trend is included, we make an obvious adjustment and set K equal
to the following K ∗

MSE,c:

K ∗
MSE,c = max(2d + 4, K ∗

MSE). (48)

There is another reason to avoid a large K . Cointegration is fundamentally a
long run relationship. To estimate the cointegrating vector, we should employ a
regression that uses only the long run variation of the underlying variables. The
short run variation can help only when the short run relationship coincides with
the long run relationship. If the two types of relationships differ from each other,
then going beyond a reasonable value of K runs the risk of being struck by short
run contaminations. A trade-off between the asymptotic efficiency and robust-
ness with respect to short run contaminations leads us to consider a moderate
K value.
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When the Fourier basis functions (43) are used, the transformed data consist
of the real and imaginary parts of the discrete Fourier transforms of the original
data. In this case, a useful rule-of-thumb choice is suggested by Müller (2014) and
Müller and Watson (2013). These papers propose selecting a K value to reflect
business-cycle frequencies or below. For example, with T = 64 years of post-
World-War-II macro data, the choice of K = 16 captures the long run movements
of macro data with periodicity higher than the commonly accepted business-cycle
period of T/(K/2) = 8 years. Most recently, after extensive simulations, Lazarus,
Lewis, Stock, and Watson (2016) suggest choosing K = 8 for HAR inference. To
follow the fixed-K spirit in the strictest sense, we will consider both K = 8 and
K = 16 in our simulations.

6. SIMULATION

We compare the finite-sample performance of our method with several existing
methods in the literature. For cointegration models without a time trend, we follow
Phillips (2014) and consider:

yt = α0 + x ′
tβ0 + u0t

xt = xt−1 + uxt
,ut =

(
u0t

uxt

)
= �ut−1 + εt , (49)

where x0 = 0,

εt =
(

ε0t

εxt

)
∼ i.i.d N (0,�) , � = ρ · Id+1, � = Jd+1,d+1 ·ϕ + Id+1 · (1 −ϕ),

and Jp,q is the p × q matrix of ones. The dimension d of xt is set to 2, and the
true regression coefficients are set to be α0 = 3 and β0 = (1,1)′. The parameter ρ
controls the persistence of individual components of ut = (u0t ,u′

xt )
′ ∈R

d+1. The
parameter ϕ characterizes the degree of endogeneity, as it is equal to the pairwise
correlation coefficient between the elements of ut in the above model. We set the
values of ρ and ϕ as follows:

ρ ∈ {0.05,0.20,0.35,0.50,0.75,0.90} and ϕ ∈ {0,0.75} .
We also consider a cointegration model that includes a linear time trend:

yt = α0 +μ0t + x ′
tβ0 + u0t

xt = xt−1 + uxt ,

where μ0 is set to 0.05 without loss of generality. Other configurations are exactly
the same as the model without a linear trend.

We are interested in testing H0 : β0 = (1,1)′ vs. H1 : β0 �= (1,1)′. We consider
the Wald-type tests based on four different estimators: the FMOLS estimator of
Phillips and Hansen (1990), the TIV estimator of Phillips (2014), the IMOLS
estimator of Vogelsang and Wagner (2014), and the TAOLS estimator proposed
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in this paper. The first two tests are chi-squared tests that employ the increasing-
smoothing asymptotic approximation and use chi-squared critical values. The last
two tests are fixed-smoothing tests. The IMOLS test employs the fixed-b asymp-
totic critical values, which are available from the supplementary appendix to
Vogelsang and Wagner (2014). The TAOLS test employs the fixed-K asymptotic
approximation and scaled standard F critical values.

For the FMOLS and IMOLS methods, we consider the Bartlett, Parzen, and
Quadratic Spectral (QS) kernels. For the TIV method, we choose the basis func-
tions {√2sin (( j − 1/2)πr)}, as suggested by Phillips (2014). Note that for the
TIV method, a constant vector should be included in the instrument matrix �
defined in (22). When the model includes a linear time trend, the linear trend
should also be included in �. For the TAOLS, we consider the Fourier basis func-
tions and cosine functions given in (43) and (44), respectively.

For fixed values of K , we set K = 8 and 16. The comparable values of b for
the kernel methods that deliver the same asymptotic variance are

b = (ca K )−1 for ca = 2/3,0.539285, and 1,

for the Bartlett, Parzen, and QS kernels, respectively. In particular, for the QS
kernel, which we will focus on, the corresponding b values are b = 0.13 and 0.06.

For data-driven values of K , we employ the formula in either (47) or (48), de-
pending on whether a linear trend is included in the model. For the data-driven
values of b, we employ the formulae in Andrews (1991), which are obtained by
minimizing the asymptotic (truncated) mean squared error of the kernel LRV es-
timator. The asymptotic mean squared error criterion is not necessarily the most
suitable one for the IMOLS based inference. Ideally, we should derive a formula
for b that optimally balances the size distortion under the null and size-corrected
power under the alternative. Like the AMSE-based rule given in (47) or (48), the
AMSE-based rule of choice for b should be regarded as only a rule of thumb. See
Vogelsang and Wagner (2014) for more discussion on the subtlety of choosing b.
When data-driven values are used for both K and b, the unknown parameters
B and � in the data-driven formulae are estimated by the plug-in method using
VAR(1) as the approximating model for {ût = (

ûO L S
0t ,�x ′

t

)′}, where ûO L S
0t is the

OLS residual based on the OLS estimators of slope coefficients.
We report the simulation evidence for only the model without a linear trend, as

the qualitative observations that follow remain valid for the model with a linear
trend. Figures 1 and 2 report the empirical size of five different tests; the labels
on the figures should be self-explanatory. The number of simulation replications
is 10,000, and the nominal size of all tests is 5%. To avoid overloading the fig-
ures, we report only the case with the QS kernel for the kernel-based methods.
While Figure 1 reports the case with a fixed smoothing parameter (i.e., K = 8),
Figure 2 reports the case with data-driven smoothing parameters. Several patterns
emerge from these figures. The case with a fixed K value of 16 is qualitatively
similar to the case with K = 8. It is omitted here but available from Hwang and
Sun (2017b).
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FIGURE 1. Empirical size of 5% fixed-smoothing tests (TA-Fourier-F,
TA-Cosine-F, IM-QS-b) and chi-squared tests (TIV-Sine-Chi2, FM-QS-Chi2) with
K = 8 and comparable b (b = 0.13).

First, it is clear that, for all values for ρ and ϕ and sample sizes T ∈ {100,200},
our proposed F tests, i.e., “TA-Fourier-F” and “TA-Cosine-F,” which are based
on the TAOLS estimator, outperform the chi-squared tests, i.e., “FM-QS-Chi2”
and “TIV-Sine-Chi2”, by a large margin. Simulation results not reported here
show that using F critical values can also dramatically reduce the size distor-
tion of the “TIV-Sine-Chi2” test. Our findings are consistent with the literature
on heteroskedasticity-autocorrelation robust inference such as Sun (2013, 2014a),
Sun, Phillips, and Jin (2008), and Kiefer and Vogelsang (2005), which provide
theoretical justifications and simulation evidence on the accuracy of the fixed-
smoothing approximations.

Second, among the two groups of fixed-smoothing tests, our proposed F
tests, “TA-Fourier-F” and “TA-Cosine-F,” outperform the nonstandard fixed-b test
“IM-QS-b.” This is true no matter whether the smoothing parameter is fixed
or data-driven. In the case with a fixed smoothing parameter (i.e., K = 8 or
K = 16), the fixed-smoothing tests are fairly accurate when ρ is small but become
somewhat size distorted when ρ is very large. The exception is that, when
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FIGURE 2. Empirical size of 5% fixed-smoothing tests (TA-Fourier-F,
TA-Cosine-F, IM-QS-b) and chi-squared tests (TIV-Sine-Chi2, FM-QS-Chi2) with
data-driven smoothing parameters.

b = 0.13, the “IM-QS-b” test under-rejects when ρ is small, suggesting that the
fixed-b critical value appears to be too large when ρ is small.

Third, the data-driven choices of smoothing parameters help improve the size
accuracy of the fixed-smoothing tests. In particular, our proposed F tests are very
accurate when K is data-driven. While it is convenient to set the smoothing pa-
rameter to a given value, it pays to use a data-driven rule, even though the rule
is designed for a different problem. The data-driven rule is more compatible with
the increasing-smoothing asymptotics, but the fixed-smoothing critical values are
adaptive in that they approach the increasing-smoothing critical value when the
amount of smoothing is large. In other words, coupling a data-driven smoothing
parameter with fixed-smoothing critical values can be theoretically justified using
the increasing-smoothing asymptotics under which K → ∞ as T → ∞.

Fourth, it is not surprising that endogeneity of a higher degree poses more
challenges for size accuracy. It is also well expected that when the smooth-
ing parameters are data-driven, a larger sample size helps reduce the size
distortion.
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Finally, for our proposed F tests, the finite-sample performances are virtually
the same across the two sets of trigonometric basis functions we consider. So, in
terms of size accuracy, it makes almost no difference which set of trigonometric
basis functions is used.

Next, we investigate the finite-sample power of each procedure. The power
is size-adjusted so that the comparison is meaningful. The DGP’s are the same
except that the parameters of interest are from the local alternative hypothesis
β = β0 + θ/T where θ/‖θ‖ is uniform on a sphere. The choice rules for K and
b are also the same as before. Each power curve is drawn against ‖θ‖, which
measures the magnitude of the local departure. Figures 3 and 4 present the size-
adjusted power curve of each procedure for ρ = 0.05,0.75, ϕ = 0,0.75, and T =
100,200 when the smoothing parameters are data-driven. The power curves for
other values of ρ are available from Hwang and Sun (2017b). We omit the TIV
test from these figures, as its power curve is close to that of the TA-Fourier test.
The closeness of the power curves is not surprising, because the TIV test and the
TA-Fourier test are based on essentially the same test statistic. The only difference

FIGURE 3. Size-adjusted power of different tests with data-driven smoothing parameters
when ρ = 0.05.
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FIGURE 4. Size-adjusted power of different tests with data-driven smoothing parameters
when ρ = 0.75.

lies in the critical values used. So upon size adjustment the two tests are essentially
the same test.

The simulation results are briefly summarized as follows.
First, the FM-QS test yields the highest power in almost all cases. This is not

surprising, as the FMOLS estimator effectively uses both low-frequency and high-
frequency components to estimate the cointegrating vector with modification in
only the second stage. However, the FMOLS estimator can be fragile if there are
high-frequency contaminations. In addition, the FM-QS test has very large size
distortion. As an example, for ϕ = 0.75 and T = 200, the empirical size of the
FM-QS test is 25% when ρ = 0.75. It increases to 45% when ρ = 0.90. These
numbers can be read from Figure 2 and are also available from tables not reported
here.

Second, the power of the “TA-Fourier” test is either close to or higher than the
power of the IM-QS test. When the serial dependence is weak, e.g., ρ = 0.05,
the “TA-Fourier” test is as powerful as the most powerful FM-QS test. Given
its accurate size, superior power, and convenience to use, we recommend the
“TA-Fourier-F” test for practical use.
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Third, among our proposed F tests, the power curve based on the Fourier bases
is close to that based on the cosine bases. While the Fourier bases perform slightly
better than the cosine bases when ρ is relatively small, their power curves are
virtually indistinguishable when ρ becomes large. In view of the similar size and
power properties, we can conclude that it does not matter much whether Fourier
bases or cosine bases are used.

To sum up, when the smoothing parameter K is data-driven, the TAOLS based
F tests have fairly accurate size. They are much more accurate than the FM-QS
and TIV tests that use the chi-squared approximation. They are also more accurate
than the IM-QS test, which also uses a fixed-smoothing approximation. While the
TAOLS based F tests are not as powerful as the FM-QS test for some simulation
configurations, they have competitive and often superior power relative to the
IM-QS test.

7. CONCLUSION

This paper provides a simple, robust, and more accurate approach to parame-
ter estimation and inference in a triangular cointegrated system. Cointegration
is fundamentally a long run relationship. Our approach echoes this key observa-
tion by focusing only on data transformations that capture the long run variation
and covariation of the underlying time series. From a practical point of view, our
approach enjoys two major advantages. First, the more accurate approximations
we derived under the so-called fixed-K asymptotics are the standard F and t dis-
tributions. Second, test statistics can be obtained from the usual regression output.
So, our asymptotic F and t tests are just as easy to implement as the F and t tests
in a classical linear normal regression. A simulation study shows that our tests are
much more accurate than the chi-squared tests. For practical use, we recommend
using the Fourier basis functions and employing the modified data-driven rule to
select the number of basis functions.

A key open question is how to select the number of basis functions optimally.
While we have suggested a data-driven approach, it does not directly target the
problem under consideration. It would be interesting to investigate selection of
the number of basis functions to minimize the approximate mean squared error
of the point estimator of the cointegrating vector. If we are interested in interval
estimation or hypothesis testing, then the number of basis functions should be
oriented toward optimizing the underlying objects such as the coverage probabil-
ity error, the interval length, and the type I and type II errors. There may also be
room to select optimal basis functions. We hope to address some of these ques-
tions in future research.
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APPENDIX OF PROOFS

Proof of Theorem 1. By the definition of γ̂TAOLS and ϒT , we have

ϒT
(
γ̂TAOLS −γ0

)= (ϒ−1
T W̃

′
W̃ϒ−1

T )−1ϒ−1
T W̃

′
W

0·x . (A.1)

Note that W̃ϒ−1
T =

(
W

x/T , W�x
)

, where

W
x/T = (

W
x
1/T, . . . ,Wx

K /T
)′ =

⎛
⎝ 1

T 3/2

T∑
t=1

φ1

(
t

T

)
xt , . . . ,

1

T 3/2

T∑
t=1

φK

(
t

T

)
xt

⎞
⎠

′

and

W
�x = (

W
�x
1 , . . . ,W�x

K

)′ =
(

1√
T

T∑
t=1

φ1

(
t

T

)
uxt , . . . ,

1√
T

T∑
t=1

φK

(
t

T

)
uxt

)′
.

By Assumption 1 and the continuous mapping theorem,

1

T 3/2

T∑
t=1

φi

(
t

T

)
xt ⇒ �

1/2
x x

(∫ 1

0
φi (r)Wx (r)dr

)
= �

1/2
x x ηi (A.2)

and
1√
T

T∑
t=1

φj

(
t

T

)
uxt ⇒ �

1/2
x x

(∫ 1

0
φj (r)dWx (r)

)
:= �

1/2
x x ξj (A.3)
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hold jointly over i, j = 1, . . . , K . Thus

W
x/T ⇒ (�

1/2
x x η′)′ and W

�x ⇒ (�
1/2
x x ξ ′)′

and

W̃ϒ−1
T ⇒ ((�

1/2
x x η′)′, (�1/2

x x ξ ′)′) = (η�
1/2
x x ,ξ�

1/2
x x ). (A.4)

Similarly, we have

W
0·x =

⎛
⎝ 1

T 1/2

T∑
t=1

φ1

(
t

T

)
u0·xt , . . . ,

1

T 1/2

T∑
t=1

φK

(
t

T

)
u0·xt

⎞
⎠

′

⇒ (σ0·xν1,σ0·xν2, . . . ,σ0·xνK )′ = σ0·xν, (A.5)

where ν = [ν1, . . . ,νK ]′ ∼ N(0, IK ). The above convergence holds jointly with (A.4), i.e.,

(W̃ϒ−1
T ,W0·x) ⇒ (ζ̃ , ν̃), where ζ̃ = (η�

1/2
xx ,ξ�

1/2
xx ), ν̃ := σ0·xν, and ζ̃ ⊥ ν̃. (A.6)

Using this result, we have

ϒT
(
γ̂TAOLS −γ0

)= (ϒ−1
T W̃

′
W̃ϒ−1

T )−1ϒ−1
T W̃

′
W

0·x

⇒ (ζ̃ ′ζ̃ )−1ζ̃ ′ν̃ d= M N
[
0,σ 2

0·x (ζ̃ ′ζ̃ )−1
]
.

The weak limit can be written more explicitly as

(ζ̃ ′ζ̃ )−1ζ̃ ′ν̃ = σ0·x
(

�
1/2
x x η′η�

1/2
x x �

1/2
x x η′ξ�

1/2
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�
1/2
x x ξ ′η�

1/2
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x x ξ ′

)
ν
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(

�
−1/2
x x 0

0 �
−1/2
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)(
η′η η′ξ
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)
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(
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(
η′Mξ η

)−1
η′Mξ ν

σ0·x�
−1/2
x x

(
ξ ′Mηξ

)−1
ξ ′ Mην

)
. (A.7)

So the representations in (25) and (26) hold. �

Proof of Theorem 3. We prove only the result for the Wald statistic, as the proof goes
through for the t statistic with obvious modifications. Using (A.6), we have

σ̂ 2
0·x = 1

K
W

0·x ′
[

IK −W̃

(
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′
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)−1
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ν.
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It is easy to show that

ζ̃
(
ζ̃ ′ζ̃
)−1
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η′η η′ξ
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we have
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where R̃ = R�
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η′ Mξ η
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Thus conditional on ζ , the numerator and the denominator in (A.9) are independent chi-
squared variates. This implies that
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(
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conditional on ζ . But the conditional distribution does not depend on the conditioning
variable ζ , so it is also the unconditional distribution. We have therefore proved that

F(β̂TAOLS) ⇒ K

K −2d
Fp,K−2d . (A.10)

�
Proof of Theorem 4. The proof is similar to that for Theorem 3. We prove the result for

the F statistic only. We still have
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where
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and Z is independent of ν′ Mζ ν conditional on ζ = (η,ξ). Using the same conditioning
argument as in the proof of Theorem 3, we have
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conditionally on ζ = (η,ξ). Unconditionally, the limiting distribution is a mixed noncen-

tral F distribution with a random noncentrality parameter θ ′ [R̃
(
η′ Mξ η

)−1 R̃′]−1
θ/σ 2

0·x ,

which is equal to ‖λ‖2. �
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Proof of Theorem 5. We follow the same steps as in the proof of Theorem 1. We con-
sider Ftr (β̂TAOLS) under only the null hypothesis. The proofs under the local alternative
hypothesis and for ttr (β̂TAOLS) are similar.

Let

ϒT ,tr =
(

ϒT 0
0 T 3/2

)
.

Then

ϒT,tr

⎛
⎝ β̂TAOLS −β0
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⎞
⎠= (ϒ−1
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′
trW̃trϒ

−1
T,tr )

−1ϒT,trW̃
′
trW

y ⇒
(
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tr ζ̃tr

)−1
ζ̃ ′

tr ν̃,

where

ζ̃tr =
(
η�
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x x ,ξ�

1/2
x x ,a

)
.

Some simple calculations show that

(
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x x
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(
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(
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⎞
⎟⎠ .

So part (i) of the theorem holds. In particular,

T (β̂TAOLS −β0) ⇒ σ0·x�
−1/2
x x

(
η′Mξ,aη

)−1
η′ Mξ,aν. (A.13)

Following the same steps as in the proof of Theorem 3, we have (σ̂ tr
0·x)2 ⇒

σ 2
0·x

1
K ν′ Mζ,aν. Combining this with (A.13), we have

Ftr (β̂TAOLS)
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