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HOPF ALGEBRAS AND PROJECTIVE 
REPRESENTATIONS OF G \ Sn AND G \ An 

PETER N. HOFFMAN AND JOHN F. HUMPHREYS 

In 1911, Schur published a rather formidable paper [9] in which he 
determined all the complex projective characters for the symmetric group 
(denoted 2„ here, despite the title), and for the alternating group An 

(A pronounced "alpha"). As far as we know, the construction of the 
modules involved is still an unsolved problem. The results of Schur can be 
expressed in terms of certain induced representations whose characters 
form a basis for the group of virtual characters, plus formulae expressing 
the irreducible characters in terms of these induced characters. Here we 
give a new formulation of the above induced characters in the spirit of the 
well known "induction algebra" approach to the linear representations of 
2„. We use some Hopf algebra techniques inspired by [5] to give new 
proofs of Schur's results, and to determine the extra structure which we 
define. 

The main object is a Z/2 X N-graded ring 

{Hij. i €E Z/2, j e N} 

such that in the simplest case: 
Hx j = group generated by the projective ^-representations with the 

unique non-trivial cocycle (for j i^ 4); 
H0j = group generated by the projective A -representations corre­

sponding to the restriction to A: of the above cocycle for j ~ 4. (This 
cocycle is also non-zero and is the only one in the Schur multiplier except 
when j = 6 and 7.) 

Our results are much more general than stated above in that this 
machinery works for all monomial groups (i.e., wreath products) T } 2-
and "even monomial" groups T I A-, again for the projective representa­
tions corresponding to the cocycle pulled back from the non-trivial 
cocycle above. Here T may be any finite group. We compute H as a 
function of the representation ring of T. At this point, we note that such 
projective representations bijectively correspond in a natural way to 
"negative" linear representations of covering groups 2 <T) and A:(T) 
defined in Section 1. Thus, in the body of the paper, we deal only with 
linear representations. The word "negative" above refers to the fact that 
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the central involution z in the kernel of the covering projections 

2/r> -» r i 2,. 

should act as — 1 on the modules. This emphasis on linear representations 
of covering groups also eliminates anomalies corresponding to the cases 
j <C 4. Here they are treated just as for y ^ 4, but are not interprétable as 
projective representations. 

A second source of anomalies corresponding to the cases j = 0, 1 where 
2- = Aj is eliminated by use of Z/2-graded representations, studied in 
Section 2. Applied to 2-(r>, these yield the representations of Aj(T) for 
y > 1. A more important reason for them is to simplify the definitions and 
properties of the four binary operations which give the multiplication in 
H. Any group equipped with a sign homomorphism x \-» (— \)s^x\ where 
s(x) e Z/2, has Z/2-graded representations. A general technical result, 
2.24 below, is the determination of the irreducible negative Z/2-graded 
and ungraded representations for r X A i n terms of those for T and A, 
using certain twisted tensor products. Here T and A are groups equipped 
with ' V and "z", and X is a twisted product of such objects from 
Section 1. 

In Section 3 the main result is stated as two theorems. In 3.4, we list the 
extra structure and its properties on the Z/2 X N-graded group H, 
where 

HQj = GR~(2j(T)) (negative graded representations) 

Hx j = JR~(2-(r)) (negative representations). 

In 3.3, whose proof occupies all of Section 4, we state a formal result about 
how a graded ring as in 3.4 must have a certain structure. Sections 5, 6 and 
7 give the proof of 3.4. In 5, we state facts about Clifford modules [1] 
needed for the basic representations which generate H as a ring. In 6, we 
give a slightly abstract version of how a Hopf algebra structure, central 
to the method of proof of 3.3, can arise in this context. Finally in 7 we 
verify the properties claimed for H in 3.4. The last section shows how to 
get the irreducible representations as linear combinations of the natural 
basis for H of induced representations. The case V trivial gives Schur's 
results [9]. Our method relies on an easy generalization of a very difficult 
identity in [9]. We use and do not reprove the special case given there. 

Here we have not produced the character formulae implicit in our 
results, nor have we reformulated our general constructions in terms of 
matrices and characters. This can be done. We hope in the future to 
produce an expository tract on this subject, hopefully including reformu­
lations of some of the fairly small number of post-Schur papers in this 
field, representations over fields other than C, and other questions. It 
follows, for example, from these results that the splitting field for the 
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collection {2 } is the field of straight-edge and compass constructible 
numbers (for characteristic zero representations). 

We wish to thank David Jackson, Adelbert Kerber and Alun Morris for 
helpful comments on parts of this material. 

Although not referred to in the body of the text, we have found very 
useful the papers [7] and [8], among others. 

1. Groups enriched with sign and involution. Let <& denote the category 
with objects (T, z, s), where T is a group, z is an element of order 2 in the 
centre of T, and s:T —» Z/2 is a homomorphism with s(z) = 0. Often Ker s 
will be denoted T0, and T — T0 denoted Tv Morphisms in ^will be group 
homomorphisms preserving z and commuting with s. Objects will often be 
ambiguously denoted simply F, with z r and sT specifying the other 
structure. 

Definition 1.1. For objects T and F in % T X r ' will denote the 
Cartesian product r X F together with the "twisted" multiplication 

(m, m')(/, /') = (zs{m')s{l)ml m'Y). 

A straightforward calculation yields 

PROPOSITION 1.2. F X r ' is a group, and has subgroup { (1, 1'), (z, z') } 
contained in its centre. 

Definition 1.3. As a group, define 

r x r = (r x F)/{(i, r),(*,0}. 
Note that a group canonically isomorphic to T X F would have been 

obtained had we chosen the twisted multiplication with factor z's(m^s^ 
in the second component. Elements of T X F will be denoted simply as 
ordered pairs (g, g'). To make r x F into an object in ^, use the element 
(z, 1') (which equals (1, zr) in T X r ' ) , and the map 

sT£r:T X Tf -> Z/2 

(g, g') ^ s(g) + s(g')-

The definitions are easily checked, yielding 
A 

PROPOSITION 1.4. T X T' is a ^-object; the maps 

r -> r x F r -> r x r 
and 

gi-»0r, i') g'i-»(i,«') 

ar^ &-morphisms mapping onto normal subgroups. 

Note that cokernels of these maps are isomorphic to T7{1, z'} and 
I7{1, z} respectively, and are not objects in ^ ; that the usual projections 
are not well defined on T X F ; and that 
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#(r x D = -(#rx#r). 

PROPOSITION 1.5. There are ^-isomorphisms 

i) r x F -̂  v x r give/» £>>> 

(g, g') ^ (g', ^ g); 

ii) ( r X F ) X P ^ r x ( F X T") given by 

l (g, g'), g"] i-» [g, te', g") ]• 

Proof. It is easy to check that the maps are well defined and are 
^-morphisms. Their inverses have obvious formulae, and are also in ^. 

Note that in i), (g, g') I—> (g'? g) will not work, and that in ii), both 
groups are isomorphic to T X F X Y" /N, where r X V X F" has a 
suitable twisted multiplication and 

N = {(\, 1', 1"), (1, z', z"), (z, 1', z"), (*, z', 1") }. 
A A A 

Iterating, there is a ^-object Tj X T2 X. . . X Tn determined up to a 
unique isomorphism by ^-objects T-. One makes X into a covariant 
functor in the obvious way. Then T and a are natural transformations. 

Example 1.6. Recall that the symmetric group 2W can be presented with 
generators { (12), (23), . . . , (n — In)} and relations 

(/ / + l)2 = [ (,' i + 1) • (/ + 1 / + 2) ]3 = 1 and 

(i i + 1) • 0'7 H- 1) = (77 + 1) • (/ / + 1) for7 > i + 1. 

Define 2„ to be the group with generators {z, th t2, . . . , tn-\) subject to 
relations z2 = 1; tf = (V* + i)3 = z ' an(* Vy = zt/i f° r./ > * + 1- We get a 
^-object using the given z and detennining s by s(z) = 0 and s(^) = 1. 
There is an epimorphism 

determined by #„(^) = (/ / + 1). Then 

Ker0„ = { l , z } , 

so # 2 n = A! • 2, and 5 is the composition of 0n with the parity 
homomorphism. 

We now generalize the covering 2 n of 2M to a covering 2„(T) of the 
monomial group 2„<T) (see [3] ). The latter is more often denoted as a 
wreath product T } 2W. It has elements (g l 5 . . . , gn\ u) with g- e T, 
w e 2 . We define 

https://doi.org/10.4153/CJM-1986-070-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-070-1


1384 P. N. HOFFMAN AND J. F. HUMPHREYS 

2„<r> = { ( g „ . . . , g „ ; v ) : f t e I\ v e %,} 

with multiplication 

(gi>. . .>&,;v) • ( s i , . . . , ^ ; V) 

It is easily checked that this gives a group of order (#T)W • «! • 2 which 
double covers 2 w ( r ) using 

(g b . . . , g w ; v) *-* (gx, . . . , gn', 0n(y)). 

This covering epimorphism will also be denoted 0n or just 6. There is a 
normal subgroup Tn of 2 w ( r ) , and a split epimorphism 2M(r> —» 2W, given 
using respectively the first "«" coordinates and the last one. We make 
2,7<T) into a ^-object using the element (1, . . . , 1; z) and the map 

52(i(r>:2„<r>->2„S.Z/2. 
Now we generalize the well known Young subgroups as follows. 

Definition 1.7. Define $ = 4>ab(T) as follows: 

*fl.*<r>:2fl<r> x 2,<r> -* 2a+/,<r> 

[ ( * „ . . . , & , ; 1), ( l , . . . , l ; l)]^(gl,...,gal, 1 1; 1) 

[(1 , l , . . . , l ; l ) , ( g „ . . . , g f c ; 1)] •-* <l l, gi,...,gh; l). 

For 1 ^ i < a 

[ (1 , 1 , . . . , 1 ; / , . ) ; ( 1 , 1 , . . . , 1 ; 1)] i-* (1 1 1; ry). 

For 1 ^j<b 

[ ( 1 , . . . , 1 ; l ) ; ( l , . . . , l ; f , . ) ] i - » ( l , . . . , l ; *„ + ,-). 

PROPOSITION 1.8. i) There is a unique homomorphism satisfying the 
formulae in 1.7, and it is a ^-map. 

ii) Letting 

ua,b (txt \l2 L + b-\ 2„+/> and 

abs(x) ^h(x) = za^xh[(l,\,...,\;uah)](x), 

- 1 where t(y)(x) = yxy , we have a commutative diagram 

2,<r> x 2,<r>—T—+zh(T) x 2,<r> 

<t>a,b 
\ 

WO- %a,b 
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iii) The following commutes 

(2a(T) x26<r>)x2 f<r>. *aj> X 1 X+b<J) x sc<r> 

2a<r> x(2ft<r> x2c<r>) 

f 
2a<r> x 2,+c<r> * * 

"fcj+/>,<• 

è + c 
-a+f t+ t <r> 

iv) If $ab denotes the usual embedding of generalized Young sub­
groups, (see [3] where these are denoted <j>), then the diagram below is 
commutative. 

2a<r> x s,<r>_ 

e x e\ 

2a<r> x 2„<r>-

•2fl<r> x 2&<r>_^2 a + ,<r> 

/ 
S / 

<l>a,b 

0 

•s f l + ,<r> 

Pra?/. Elements (g1? . . . , gn\ 1) and (1, . . . , 1; tt) generate 2„<T) 
subject to obvious relations, so the formulae certainly determine at most 
one homomorphism. Checking the relations shows that there is such a 
homomorphism, and it sends z to z. Analysis of each diagram is done by 
checking on generators as given in the definition. Only ii) requires some 
extra comment. We use the following calculations in 2 f l + f t : Let 

r = txt2...ta+b-X, and 

V = txt2 • • • ta + h-2
ta + b-\ta + b-2 ' ' ' hh' 

Then 

rtr 

rt a + b-\ 

a + b+\f 

r~l =za+bv 

for 1 â / < a + b - 1 

rvr = z 
-a + b< 

It follows easily, since uah = r , that 

ut-u 

Uta+jU 

zabth+l for 1 % i < a 

zabt t: for 1 ^j<b, 
j J 

as required. 
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Note that 

/ \y(ua,b) = [(—\)a+b~l]b = (—\)ab. 

Also using iii), if we iterate we get maps 

4w..:2„,<r> x 2n2(Y) x . . . -»2B i + B 2 + . . .<r> 
which are well defined modulo composing with the unique natural 
isomorphisms between different choices of "bracketing" the domain. By 
an iteration of iv), these maps have images which are the liftings of the 
generalized Young subgroups of 2„ +n (T). In [9, VII] the group 3?v v 

is the image of </>„ v above (for T trivial). 

PROPOSITION 1.9. Given non-negative integers zl9 i^h^Ji^ se* a = h ~*~ z2> 
b = jx + j 2 , c = /] + j \ 9 d = i2 + 7*2 aw<^ « = a + /? = c - f ( i . Le/ 

w = w ( / b /2 ,7j ,72) = (/,1 + i ^ + 2 • • • '<,+;,-1)'2 G 2>r 

77ze« the following diagram commutes 

2,,<r> x 2,.2<r> x 2,.<r> x 2,2<r> 

*M./2
 X *y,.y2 / \ ^ W , * ^WV*1 >< T X 1) 

2a<r> x 2h(T) 2e<r> x 2rf<r> 

*« , * 'c,rf 

2„<r> ^2„<r> 

7j\'2
s(x) U(W)](X) 

where w is identified with ( l , . . . , l ; w ) . 
Furthermore, for a given a, b, c, d with a 4- b = c + d, the elements 

w0\> h'Ji'Ji)' as we vary over aH matrices 

k/i Ji J 

w/7/z row sums 1,1 a«J column sums (c, d), are a complete set of double 

coset representatives for 2w(r> with respect to the images of<t>ab and<j>cd, i.e., 
2w(r> is the disjoint union 

J-L (Im <j>cd)w (Im <j>ah). 

Furthermore 

Im[<^ o ($,. . X ^ ) ] = [w~\lm <j>cd)w] n [Im < ^ ] . 
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Proof. The diagram is checked by calculating with generators. 
On generators (g l 5 . . . , gk\ 1) for k = ih i2, j \ or j 2 , this is trivial. On 
generators of the form (1, . . . , 1; tt), the calculation is very similar to that 
for 1.8 ii). The second half of 1.9 is immediate from the fact that the 
corresponding result holds before passing to covering groups [3], using 1.8 
iv) and the lemma below, whose proof is a straightforward manipulation 
with the definitions. 

LEMMA 1.10. If 0:T —» T is an epimorphism of groups and {/3r} is a 
complete set of (fi, A) double cosets for T, then {/?/} is a complete set of 
(0, A) double cosets for V, where Û = 0~lti, A = 0~lA and^j is any choice 
of element in 0~ fir. Furthermore, 

CM#/_1) n 0 = tf-'u/W/-1) n 0]. 
Definition 1.11. The alternating group An c 2W gives subgroups 

4 ,<r> = {(gl9...,gn;u):ueAn} c 2„<r> 

2„<r> = { (gl9 . . . , &,; v):v e An = 0'\An) } c 2n(T). 

Then An(T) = 0~lAn(T) double covers An(T), and is a ^-object with 
trivial homomorphism s. 

To count conjugacy classes we need the following definitions related to 
partitions. 

Definition 1.12. A partition a = (ax, . . . , at) is a finite non-increasing 
sequence of positive integers. Define \a\ = 2«- and 1(a) = I. Let ^deno te 
the set of all partitions (including the empty one), so 

oo 

&> = U 0>n, where ^ = {a G &\ \a\ = n). 

The integers at are the parts of a. Subsets of &>n are defined as follows: 

&„ = {a: #{i\at is even} is odd} 

&» = {a: #{i\at is even} is even} = &n - @n 

0>°n
dd = {a: all at are odd} 

oo 

3n = {a: a,- * a, if / ¥> j); 3) = ^ Sn. 

For * = ' or " or odd, let 2* = @>* n 3>n: For any set S (finite in the 
applications) define the sets 

2>(n, S) = U-.S^S): 2 \&s) \ = n\ 

®\n, S) = L G ®(n, S): Us Ms) G 0% J 
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2>"{n, S ) = L e 2(n, S): U </>(•?) <= 9>A = 3>(n, S) - 3>\n, S) 

&odd(n, S) = L:S-^&odd: 2 \<Ks) 1 = 4 
V ses > 

We define 

1*1 = 2 \<Ks) I and l(4>) = 2 Ws) )• 
S S 

Several times we shall use the well known fact that 

A proof in the spirit of later sections of this paper is discovered by 
calculating the rank in dimension n of the graded ring (with dim xt = i) 

Z[x{, x2, x3, x4, . . . ] ^ 
—^ — = L\XX, x3, x5, . . . j 
<*,• = x2i V / > 

using the obvious bases suggested by the two ways of writing the ring. It 
follows immediately that 

# ^ ( / i , S) = #&od\n, S) for all S. 

Denote the set of conjugacy classes of a group T by Con T. 

THEOREM 1.13. 

# C o n 2 „ < r > - # C o n 2 „ < r > 

= 2#3\n9 Con Y) + # 0 " ( / i , Con V) 

#ConAn(Ty- #Con An(T) 

= #3>'(n, Con r ) + 2#@"(n, Con T). 

See [4] for the proof. 

2. Products of Z/2-graded representations. Below we study representa­
tions of ^-objects (12, z, s) as vector spaces V with an action of 12. We 
restrict to "negative" representations, i.e., those where z acts as 
multiplication by — 1 . This is essentially irrelevant up to 2.13. All the 
propositions up to that point have (if anything, simpler) analogues which 
apply to the category of objects (12, s) with no restriction on the 
representation. Recall the notation 120 := ker s and 12j = 12 — 120. 

Definition 2.1. A negative Z/2-graded representation of 12 is a pair 
{V0, Vx} of complex vector spaces, plus an action 

4>:12 X (V0 0 Vx) -> F0 0 F, 
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making V0 © Vx into a (finite dimensional) representation of £2, in which z 
acts as — 1, and such that 

#af. x Vj) c rç+y, 
subscripts added mod 2. The letter F will sometimes denote just the space 
V0® Vl9 and ambiguously sometimes the representation (VQ © Kl9 <J>), and 
sometimes the Z/2-graded representation ({J^, F J } , <£>). Isomorphism 
and direct sums are defined as follows: 

{F0, Fi} = {WQ, Wx) ^ 3 an fi-isomorphism V0®VX^W0® Wx 

such that/(J/J) c Wt for / = 0, 1; 

{F0, F,} © {PT0, Wx) := {F0 © ^o, K, © ^ } 

with the obvious action. 

It is straightforward to check that © passes to isomorphism classes, and, 
up to isomorphism, is associative, commutative with zero ( = { {0}, 
{0} } ). Thus: 

PROPOSITION 2.2. The set of isomorphism classes of negative Z/2-graded 
representations of £2, which we denote GREP"(fi), is an abelian semigroup 
under ffi. 

We shall call by REP~(0) the analogous semigroup of negative 
(ungraded) representations. The next few definitions and propositions are 
the analogues for GREP~ of standard facts for R E P - and REP, and their 
proofs are the standard ones with minor embellishments to take account 
of the grading. At this point we should inform the reader that later we'll 
see 

G R E p - r f i ) ^ ( R E P _ ( ^ i f f i o ^ " 
W - ^ R E P - ( 1 2 ) 0 REp-(f i ) , if S20 = Œ. 

So these results could also be derived by referring to the analogous 
ungraded results, but no real economy would result. 

Definition 2.3. Let GR~(fi) denote the group completion of GREP-(£2). 
Subrepresentations and irreducibility are defined as follows: 

( ( ^ V\)> <t>) c ( {W0, Wxl +) ** Vt c Wi and <> = *|K 

{W0, Wx) is irreducible <^>[({V0, Vx) Ç {W0, Wx) => 

V0 = Vx = 0) and {W0, Wx) * {0, 0} ]. 

PROPOSITION 2.4. GREP" and GR~ are free on the set GIRREP~(£2) of 
isomorphism classes of irreducible s. 

Proof We need only prove it for G R E P - . To write a graded 
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representation as a sum of irreducibles, we need to show that a 
subrepresentation { V0, Vx} of { W0, Wx} always has a complement. Do this 
by constructing an Œ-invariant positive definite inner product in 
W0 © Wx for which W^ = Wt+X. This is done by the usual averaging trick 
starting from any inner product with Wt = Wt + V Then we have 

{v0, vx) © {vi n w0, vi n wx) s {wQ, w,} 

as required. To prove freeness, i.e., uniqueness of decomposition, apply 
the usual argument using the inner product constructed below. 

Definition 2.5. Denote by GHOMfi[ {F0, Vx}, {W0, Wx}] the set of 
ïï-invariant linear maps 

fVoeVx^W0@Wx 

for which/(J7;) c Wt. Evidently GHOM^ is a subspace of 

HOMC(F0 © Vl9 W0 © Wx) 

whose dimension depends only on the isomorphism classes of { V0, Vx} and 
{WQ, Wx), and is bi-additive with respect to ©. Hence this dimension 
yields an inner product 

( , >:GR~(S2) X GR~(£2) -* Z 

which is positive definite in that 

<JC, x) > 0 for all x ¥= 0. 

PROPOSITION 2.6. GIRREP~(S2) is an orthonormal set with respect 
to ( , ). Hence it is an orthonormal basis for GR-(12), and, in particular, 
( , ) is symmetric. 

Proof The usual argument for Schur's lemma, with a few checks on the 
grading, gives the required result for irreducibles V, W: 

GHOM f i t {V0, VX), {W0, WX) ] S { C l W» *tt S W, Wl} 

Below we use the notation R _ and IRREP~ in the obvious way 
applying to ungraded representations. We define restricting, inducing, and 
certain maps 77,77, rev and ass on representations, graded and ungraded as 
appropriate. In each case it is easy to verify that the construction is 
invariant up to isomorphism and additive with respect to ©. Thus in each 
case we get a homomorphism between the appropriate group completions 
which sends representations to representations. 

Definition 2.7. Let 6:£l —> £2' be a ̂ -map. Define restriction 

0*:GR~(O')-+GR_(£2) 

on graded representations by 
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6*({V0, Vl),<t>) = ({V0, Vx},$) 

with 

*:(g, v) H> 0(g) • v = 446(g), v). 

Clearly 1* = 1 and (0X o 02)* = 02* o 0X*, so GR~ has been made into a 
contravariant functor. 

Now assume 0 is injective. Then we define inducing 

0*:GR~(fi) -> GR~(Q') 

on graded representations as follows: If 

[{W09WX}]E: GREP-(O0 and [{V09Vx)]e GREP"(Q), 

we say [W0, Wx} is induced from [V09 Vx} via 0 if and only if V0 c W0; 
Vx c Wj; 0(g) • v = g • v for all g e £2, v G K0 © F,; and 

»& © »ï = © A,- • (K0 © KO, 

where hi ranges over some complete set of left coset representatives of 0(£l) 
in £2'. The usual arguments show that such a {W0, Wx} depends up to 
isomorphism only on the isomorphism class of {V0, Vx}, and that such a 
{WQ9 Wx} exists for each {V0, Vx}\ and of course we write 

[{w0,w,)] = em[{v0,v,}]. 
Clearly 

1* = 1 and (0X o 02)* = 0X* o 02*, 

so GR~ becomes also a covariant functor when we restrict to injective 
^-maps. 

Define 7r:GR_(Q) —> R~(£2) on representations by 

*i{V0,Vi)] = [V0®Vl]. 

Define rev:GR~(12) —» GR~(S) on representations by 

rev[{F0, K,}] = [ {F„ V0}], 

using the "same" action on Vx © ]^ = J^ © Fj. Sometimes rev(x) will be 
denoted by jcrev. 

Define ass: R~~(£2) —> R~(£2) on representations by 

ass[(K,*)] = (V,M 

where 

4>(g, v) = ( - l ) J t e ^ ( g , v), 

i.e., the new action * on F a s s is given in terms of the old action • on V 
by 
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g * y = ( - l ) ' V v. 

Sometimes ass(x) is denoted xass. 
Define T J : R _ ( 0 ) —> GR~(£2) on representations by 

r,[V) = \{DV,AV)] 

where the spaces are Dv := { (v, v):v e V} and Av := { (v, —v):v e F} 
and the action X is 

g x (vb v2) = (g- v l 5 g * v2), 

where • is the given action, and * the associate action as above. Thus 

irq(V) = V® F a s s . 

PROPOSITION 2.8. i) All the above maps are well defined and homo-
morphisms. 

ii) The latter four maps are natural with respect to both inducing and 
restricting. 

hi) rev o rev = 1G R ; ass o ass = 1R 

iv) 77 o rev = m = ass o IT 

v) 7] o ass = 7] = rev o TJ 

vi) 77 o j] = 1R + ass 
vii) 7] o IT = 1G R + rev. * 

Proof, i) The only points needing comment are that careful calculation 
shows that the action is well defined for F a s s and T](V); that Dv and Av are 
preserved (resp. inter-changed) by g, if g e Œ0 (resp. g e SI,); and that 17 is 
additive. The last point comes from the isomorphism 

{Dvew, AVQW] ^ {Dv, Av} ® {DW,AW} 

( v , , W j , V2, W 2 ) H> (V1? V2, W{9 W2). 

ii) Naturality with respect to restricting is in all cases straightforward. 
As for inducing: For rev, if {W0, Wx} is induced by {V0, Vx} just 
interchange the subscripts and use the same coset representatives to see 
that {Wx, W0} is induced by {Vx, V0}. For ass, W being induced by V 
implies WàSS is induced by Kass, simply noting that g * V = g • V for the 
coset representatives or any other g. For 77, it comes virtually by definition 
that V0 ® Vx is induced from W0 ® Wx if {V0, Vx} is induced from 
{W0, Wx}. Finally, for 77, suppose W is induced from V. Then V (z W 
so {Z>j/, Av} c {D^/, ^4^/}. Furthermore, with W = ® g • F for coset 
representatives g, we find 

DWQAW ^ W® W'dSS = © ( g - F © g * V) 
g 

= © g ( F © F a s s ) = 0 g - ( D K e ^ ) . 
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iii) It is obvious that rev and ass are involutions, 
iv) That 77 o rev = 77 is obvious. The map 

v0 © vx -* (v0 © F,)ass 

given by (v0, v,) I—» (v0, — v^ is an ^-isomorphism, so 

(ass o W){F0, F,} = (V0 © F,)ass S V0 © Vx = ^{F0, K,}. 

v) For this we use isomorphisms as follows 

{D,/**, AyBSs) = {Dy, Ay} {Dy, Ay} = {^K, D,/} 
Z)̂ ass —> Dy Dy —> Ay 
(v , V) r-> (v , V) (V, V) M> (v , — v ) 

AyaSS —> Ay Ay ~> Dy 

(V, —V) h-> ( — V, V) (V, —V) M> (v , V) . 

vi) The map 

[ 0 l > V } ) , (V2 , ~ V 2 ) ] H> (V! + V2, V! - V2) 

provides the required isomorphism Dv® Av = F © F a s s . 
vii) The maps 

F0 © K, -» Z ) ^ ^i © Vo -> ^ © r , 
and 

0o> vi) ^ [ Oo> viX (v0> vj) ] (v„ v0) H* [ (v0, v,), - (v0, V!) ] 

give the required isomorphism 

{Dym, AVoS)Vi} = {V0® K„ K, © F0}. 

PROPOSITION 2.9. 

i) TT GREP~(Œ) = {x G REP~S2:xass = * } . 

ii) i7 REP~(fi) = { j e GREP~fi : / e v = 7 } . 

Similarly with GR~ ««J R~ replacing G R E P - and R E P - , respectively. 

Proof. The last sentence clearly follows from i) and ii). The inclusions 
c are iv) and v) of 2.8, so we prove 

i) V = F a s s => 3{V0, Vx} with V0 © Vx = V. 

ii) {V0, Vx) = {Klf F0} => 3 F with {i)K, ^ K } = {F0, F J . 

i) Write V = ®a Va with [Va] e IRREP~Œ. Then 

F a s s ~ 0 Fass^ 

Since I R R E P - is clearly invariant under ass, there is a bijective map 
a \—> a with V% = F a s s . When a ¥= a, we have 

F © V~ = F © F a s s = r?K. 
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It remains only to consider the cases where a = a, that is 

V — F a s s 

This reduces the problem to the case where V is irreducible. Let / : V —> 
F a s s be an ^-isomorphism. Then / o / is multiplication by a non-zero 
complex number with square roots dbw. Let Vt be the (— l)'w-eigenspace 
of/. Then certainly V = V0 © V{9 and a mechanical check shows that 

S* */ c K'(g)+/> as required. 
ii) Here exactly as in the first part of i), but using rev in place of ass, we 

reduce to the case of irreducible {V0, Vx}. Let 

f:VQ®Vx->VxG>VQ 

realize the isomorphism {VQ9 Vx} = {Vl9 V0}. Since 

fof e GHOMfi[ {F0, Vx}9 {VQ9 Vx) I 

by 2.6 we can a l t e r / b y a scalar and a s s u m e / o / = 1. Let V be the 
4- 1-eigenspace of the endomorphism / of V0 © Vx. Then the maps 

Dv • F o ^ F ^Vx 

[ (V0 , V!) , (V0 , V!) ] \~* VQ [ (V0 , VX)9 - ( V 0 , Vj) ] h-^ V, 

yield the required isomorphism {DK, Y4F} = {V0, Vx}. 

THEOREM 2.10. For any ^-object fi, there exist integers ju, v and elements 
ai9 bi9 ct, dt so that 

GIRREP-(O) = {al9 a\e\ al9 aT
2
e\ . . . , ap a™9 b]9 bl9 . . . , bv) 

IRREP-(O) = {cl9 . . . , cM, dl9 d?s\ d29 d™\ ...9dv9 dD 

with 

at * ^ev
; bt = z>rv; ct = cfss-9 dt * d?ss; 

ira; = 7ra[ev = ct\ irbt = dt + Jfss; 

iic,: = £!,.+ flr;^,- = ^ r = *,-
Proof. List GIRREP~£2 as given, with at ¥* a-eY but bl = ^ e v . Then 

™,. = ™[ev by 2.8 iv). Call this ct. Then cz - cfs. Since ^ = bf\ by 
2.9 ii) we have an element dt e REP~Œ with r/^ = Z?̂  Then using 2.8 we 
get 

îï4ass = Ô,. and 

i7q = -q^a^ = at + tf[ev and 

77^ = T H ^ = dt + (ifss. 

What remains is to prove: 
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i) ct and dt are irreducible 
ii) dt * df™ and 

iii) IRREP_£2 has no elements other than the ci9 dt and dfss. 
i) Let ct =; [V] and suppose V = U@ Wwith both Uand Wnon-zero. 

Then 7][U] ¥= 0 ¥= K][W], SO (re-naming if necessary) we have 

T][U] = djandrilW] = a]e\ 

since 

n[U@W] = at + a[ev. 

But now 

< V = îj[f/]rev = V[U) = a,, 

a contradiction. Thus c, is irreducible. To show dt and dfss are irreduci­
ble is easier since they map to the irreducible bt under TJ. 

ii) Suppose dt = df\ Then TO = dt for some e e GREP~(£2). 
Hence 

/>, = 7]di = 'xyne = e + e r e v . 

But e ¥= 0 since J- ^ 0. Thus ^ is not irreducible, a contradiction, 
iii) L e t / G IRREP~Œ and write 

i?/ = 2 «A- + 2 «#ev + 2 £A 
for non-negative integers ai9 a\ and /?,. Then at = a- since j]f = (i]/) rev. 
Now 

/ + /ass = m,f = 2 2 a,c, + 2 /?,(</, + 4ass). 
Since/is irreducible, 2 2 «,- + 2 2 /?,- = 2. Thus all but one coefficient is 
zero, and 77/ = either at + <z[ev or bt. In the first case 

/ + /ass = 2c,, 

s o / = cy by uniqueness. In the second case 

f+f* = d. + d™t 

s o / i s either ^ or dfss, as required. 

PROPOSITION 2.11. Let x e GREP~fi. With notation as in 2.10, we 
have 

i) ifirx = C: then x = a: or a,rev 

.. r J J 
ii) if 7TX = d: then x = b. 
Proof. Simply write x as a non-negative linear combination from 

GIRREP~fi and use uniqueness. 

Note that 2.11 requires more than just that x G GR Œ. The reader may 
also have noticed the similarity between the relation of I R R E P - to 
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G I R R E P - and the relation of the irreducible representations of a group 
to those of a subgroup of index 2. By 2.12 below, this is no accident in the 
more interesting case when Q0 ¥= 12. 

PROPOSITION 2.12. Iftl0 ¥= 12, the formula 

induces a natural isomorphism 
0 

GR~12 -> R~12, '0 

such that the following diagrams commute: 

GR~12 GR~12 

GR~12 
A 

rev 

GR~12 

9 -R~120 

A 

O 
-R~12n 

where *:120 —•» 120 w conjugation by any element of£lx. 

Proof. Choose an element gx e 12} and define a map 

S:R~120 -> GR~12 

by ?[^1 = [ {̂ » ^ } ] where the action on f[F] is as follows 

g ' (v, V) 
(gv, gi ggiv') if g e 120 

, ( gg i^ gi V ) i f g e Q i -

This is easily seen to be a Z/2-graded representation. Also 

* o £ [ K ] = [VI 

Now f o O{F0, Fj} = {K0, F0} with action as above. But {F0, Vx) 
{F0, F0} using 

^o 

v 0 h ^ v 0 

and V, Vo 

g\ 

Thus $ is an isomorphism with inverse f. Since Fj = g ^ , we see that 
V0 © Fj is induced from J^ by the inclusion 120

 c^ 12, so the first dia­
gram commutes. The second one requires an 120-isomorphism Dv —» V 
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for all [V] e REP~B. The map (v, v) h^ v yields one. The third dia­
gram requires, for each [ {V0, Vx} ] e GREP~12, and O0-isomorphism 
i*V0 —> Vv Such a map is given by v0 I—> gjv0. 

PROPOSITION 2.13. Ifch:Q —> £2 is the inner automorphism g i—> hgh~\ 
then 

t/, * = ^ = rev5(/z):GREP~S2 -> GREP~£2. 

Proof. We have 

where \p(g, v) = <j>(h~lgh, v). The map v\-J> h~l • v is an isomorphism of 
representations 

If s(h) = 0, it maps Vt to P̂ . If ^(/z) = 1, it maps Vt to Vi+X, as required. A 
similar proof works for th , but alternatively note that 

PROPOSITION 2.14. For f/ze map $ab in 1.8 i), we have 

SaK = revab:GR~(2a+b(T) ) -* GR"(2 a + / ,<r> ) 

^ = assf l6:R-(2f l+/,<r> ) -> R- (2 û + é <r> ). 

Proof Recall that Ja b = a o j 8 where 

a(x) = zabs{x)x and £<» = uahxu~b. 

Now /?* = 1 on R~ since /? is an inner automorphism and clearly 

[x i-> 2?Mx]* = ass, 

so a* = ass^ on R~. Thus 

f * = «* o /?* = assaZ?. 

On GR~, a* = 1 since Z/2-gradable representations are self associate by 
2.9 i), but 

^ = rev5(M^ 

by 2.13. But, as noted after 1.8, 

s(uab) == aft mod 2, 

as required. 

PROPOSITION 2.15. Let X = {i , , x2,.. . , x\} c REP~ 12. /« order r/za/ 
X = IRREP~fi, it suffices that 

https://doi.org/10.4153/CJM-1986-070-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-070-1


1398 P. N. HOFFMAN AND J. F. HUMPHREYS 

2(dim xt)
2 = - # Q and (xi9 x) = 8tj. 

Proof. Since (JC/5 x,) = 1 and xt e REP £2, we have 

xt e IRREP~Œ. 

Also X; ¥* Xj for i ¥= j since (xi9 x) = 0. But, using a superscript + to 
refer to representations in which z acts as multiplication by + 1, we clearly 
have 

IRREP Q = IRREP+fi U I R R E P Î 2 (disjoint) 

and 

IRREP+Œ = IRREP(Î2/{1, z} ). 

That X is all of IRREP ~Q now follows, since 

2 (dim.y)2 = #(Q/{1, z } ) = -#£2 
^eIRREP + ïï 2 

and 

2 (dim uf = #£2. 
welRREPfl 

For later purposes, it is convenient to give an "external" version of 
Mackey's theorem. The word external indicates that we consider 
monomorphisms which are not necessarily inclusions of subgroups. This is 
only superficially more general than the usual version. Our version below 
for GR differs from that for R only by the appearance of the terms r e v 5 ^ 
(which cannot in general be eliminated by rechoosing double coset 
representatives). The proof differs from that for R only by a few em­
bellishments to take account of gradings. 

THEOREM 2.16. Let A, Q and T be ^-objects, and a:A -> T, fi:Q -> T 
be @-monomorphisms. Let {gA} be a set of representatives for the 
(a£2, fiAydouble cosets in T where A denotes the double coset (a£2)gA(/?A). 
Suppose, for each A, we have a ^-object ^ A and ^-monomorphisms 
«A : *A ~* A, j3A:^A -> Q> such that 

«A Ai 
A ^ * A • Q 

P\ a 
Y 
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is commutative. Assume also that 

P<*A*A = (gÂl<*tigA) n PA. 

Then 

a*P*x = 2 rev5(^/?A,aA*x for all x e GR~A. 
A 

Proof. We may take 

x = [ {W0, Wx) ] e GREP~A and 
£** = [{F0 , Vx}] e G R E P T , 

where Wt a Vt\ the actions of /?(/*) and h on W agree, for each /z e A; 
and where 

for any left coset decomposition 

r = ,-LLft-M. 

Define 

VA= ^2 g- W = 2 A - I f c F , and 

(*£)/ = ^ n ^ for/ = 0, 1. 

Then V^ is invariant under the action of fi, 

V = ® VA and ^ = © ^ , 
A A ' 

Thus it suffices to prove that 

/ V A * * = rev*teA>[{FAo,FA|}]. 

By the commutativity of the diagram, the two actions below of ^A on 
gA • W agree: 

(/z, gA • w) h-> gA • £aA(/0 • iv = gA • aA(A) • w and 

(A, gA • w) ^ a0A(A) • gA • w. 

The first action gives a graded representation [gA • W] which agrees 
with 

rev5(gA)a]J(jc) e GREP~* A 

since the map w \-» gA • w is a ^-isomorphism which either preserves or 
switches gradings depending on whether s(gA) = 0 or 1. But for any left 
coset decomposition 
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Q = 1 1 h^%, 

we have 

VA = © a(hj) • gA • W. 

Thus 

[^] = j8A<[gA- W] e GREp-fi , 

where gA • JT has the "second action" above. Since the actions agree, this 
completes the proof. 

To describe the representations of fi X T in terms of those of £2 and of T, 
we use certain external products defined below. 

Definition 2.17. To avoid cumbersome notation, we often use F to stand 
for a graded representation {V0, Vx}. Given 

[ {*o, v\) ] e GREP~£2 and [{W^WX}] ^ GREP~A, 

define [V \E1X W] e GREP~(S2 X A) by setting 

(V ISIj W)0 = (F0 ® Ŵ 0) 0 (J^ ® Wx) 

(vMx w\ = (v0 ® wx) e (vx ® w0) 
with action 

(<o, X) • (v ® w) = ( - l/(A)r(v)<ov ® Xw when v <= K,(V). 

For the rest of this section we use lower case Greek for group elements 
with w e fi, À e A, y e T, etc., to aid readability. 

PROPOSITION 2.18. The operation \Eix is well defined. 

Proof Firstly (z, z) acts trivially; (z, 1) acts as — 1; and the right side of 
the action formula is linear in v and w. So we get a function 

12 X A -» END~( { (V^x W)0, (V\Eix W)x) ). 

A mechanical check shows this to be a homomorphism, where verification 
that 

(co', X')[ (w, X)(v ® w) ] = [ (co', X')(<o, X) ](v ® w) 

uses 

s(X)t(v) + j(A')'(«v) - s(<4?(X') + s (XX')/(v). 

Definition 2.19. If [ {F0, F J ] e GREP~12 and [W] e R E P A , 
define 

[KlSI2 Ï F ] G REP~(Œ X A) 
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to be (V0 © Vx) ® Ĥ  with action as in the definition of [El,. Checking that 
this is well defined is the same as above. As noted later in 2.22, we have 

V\E127TU = TT{V^X U\ 

but there is no operation <§>on REP~ for which 

K E 1 2 W = (77F) <$>W. 

Definition 2.20. If [V] <= R E P Û and [W] e R E P A , let V E 3 wbe 
the sub-graded representation of 77 V E^ TJ W given by 

(V E E P^)0 = Spanc{ (v, v) ® (w, w) + z(v, - v ) ® (w, - w ) : 

v e K, w e ^ } 

( F E U JF), = Spanc{ (v, v) ® (w, - w ) - z(v, - v ) ® (w, w): 

v e F, w G W}. 

Caution. The groups act with sign on each second coordinate since 
7777F = V® F a s s , not V® V. 

PROPOSITION 2.21. The operation lx x l is well defined. 

Proof. One need only mechanically verify that (£2 X A)^ maps 
(V E 3 W)j into ( F EEI J F ) ^ . . 

Ao/e. It is easy to see that these operations are natural with respect to 
both restricting and inducing. Below V and W are sometimes graded and 
sometimes not. The operation makes this unambiguous. 

PROPOSITION 2.22. Recall r: 12 X A -> A X Si from 1.5 i). 

i) K O , IF = r*(WM} V) 

ii) ( K E J J J^) rev ^ V^ (WTCV) = F r e v [E]1 w 

hi) ( F E 1 2 ^ ) a s s = F 1 3 2 (JFass) = F r e v E l 2 ^ 

iv) ( F E 3 ^ ) r e v ~ j / a s s fxx| ^ ^ F [xx| (p^ass) 

= r*(^E3 K) 

v) (v EU ^) r e v e (v EE PF) = (r]F) El! (T\W) 

vi) TTCKIEI, JF) = V^2TTW 

V U ) T J ( F E 1 2 »F) = F El! T]Ĥ  

viii) 2 7 7 ( F E 3 PF) ^ T ] F E 1 2 (H^ass © JT) = WOJFIEI, JK) 

= r M ^ ^ E l j Î ] F ) = T*[TJWE] 2 (F a s s © K)] 

ix) TT(V E 3 W) = (T]F) El2 W = r*[ (7]W) El2 v] 

x) (77F) E E PF = T ] ( K E 1 2 W). 
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Proof, i) Use the map 

v® w^(-\)t(v)t(w)w®v. 

Checking that this commutes with the action uses 

s(X)t(v) + t(uv)t(Xw) = t(v)t(w) + s(o))s(X) + s(u)t(v) (mod 2). 

ii) The action and the graded parts are the same for all three of 
these. 

iii) Use the maps 

(KlEi2 wfss -* v^2(w
âss) -> vrev m2 w 

v ® w H > (— \)tvv ® u > ; v ® w M > v ® u > 

and check that the action is preserved. 
iv) and v) A sub-graded representation (V E3 wfomp of F [El! W is 

given as follows, where the checking is exactly as in 2.20: 

(V E H wf0
omp = Spanc{ (v, v) ® (w, w) ~ /(v, - v) ® (w, -w) } 

(V (xx| W)\omv = Spanc{ (v, v) ® (w, ~w) + i(v, - v ) ® (w, w) }. 

Then 

( K I E 3 P^)0 + ( K I E 3 W)g°mp 

= Span{ (v, v) ® (w, w) } + Span{ (v, — v) ® (w, — w) } 

= ZV ® A f + AV ® ^ V = 1*0 ® 1**0 + ^ 1 ® W\ 

Similarly 

( K E 3 W ) J + ( F I E S ^ ) f m p = ( Î ) F 0 , T\W)X. 

It remains to show that the following are all isomorphic 

(Flxxl wfomv (FlEEl W)TCV Kass IE3 JF 
// // r/ 

^ # c 
i/lxxl j ^ a s s

 T*(WEE v) 
r? n 

D E 

For is, recall that if 

/ 
fi —>Q', 

then/*f/ is the space U with the action 
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(<o, u) -*f(o) • u. 

Now determine maps by the following formulae: 

A —> B by (vl9 v2) ® (wl9 w2) i-> (vj, v2) ® (wb — w2) 

4̂ —» C by (vj, v2) ® (wl9 w2) I—> (V2, V^ ® (wl5 w2) 

A —» D by (vl5 v2) ® (wl5 w2) f—» (vl5 v2) ® (w2, w}) 

A -^ Eby 

(v, v) ® (w, w) — /(v, — v) ® (w, —w) 

I—> (w, w) ® (v, v) + i(w, —w) ® (v, —v) 

(v, v) ® (u>, — w) + /(v, — v) ® (w, w) 

l—> /'[ (w, w) ® (v, —v) — i(w, —w) ® (v, v) ]. 

In each case, check that a linear map is determined by the formula; that 
grading is preserved; that the image contains a spanning set of the 
codomain; and that domain and codomain have the same dimension. We 
thus get isomorphisms which by lengthy calculations may be checked to 
preserve the group action. 

vi) Both are (V0 @ Vx) ® (W0 © Wx) with the same action, 
vii) An isomorphism 

= {V0®DW + Vl®AmV0®Aw + VX®DW) 

is given by 

[ (V0 , V]) ® W, (V0 , V}) ® W] M> V0 ® (W, W) + Vj ® (W, ~w) 

[ (V0 , Vj) ® W, — (V0 , Vj) ® W] H> V0 ® ( w , ~W) + Vj ® (W, W ) . 

viii)2?7(F|xx| p^) ^ T T C F E I PT) 4- TT(F|XX| jp™) 

= T T [ ( F E 3 p^ ) r e v ©(FlEE w ) ] ^ 77(77 F E ^ T I ^ ) 
v) 

= (TJK) E | 2 (TTTJ^) = (77F) IEI2 ( ^ a s s © PT). 
vi) 2.8 

The last two follow from i). 

ix) (TJF) El2 (WâSS) = (î]F)rev IEI2 W s vV^i w-
iii) 2.8 

Thus 

2TT(F[XX| ^ ) ~ T]F[E12 PFass + Î ] F | X ] 2 P T = 2 Î ] F [ X ] 2 PF. 
viii) 

https://doi.org/10.4153/CJM-1986-070-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-070-1


1404 P. N. HOFFMAN AND J. F. HUMPHREYS 

Dividing by 2 in REP gives the result. 

x) Similarly, this is deduced from earlier identities, dividing by 2: 

2(TTV) EB w = (TTV) IES W 4- (7rVfss E 3 W 

= (yprV) E} r}W = (V + Krev) El, TJJT 
v) 

^ FlEI, ijJP + F [El, (TjPF)rev = 2KIE1! i\W. 

Again in the proposition below, which of U, V, W are graded (and 
which are not) is clear from the context. 

PROPOSITION 2.23. With T, A, £2 resp. acting on U, V, W resp., we have 
A A 

l X A X \l-isomorphisms 

i) I/IEIj (FlEl1 W) = (I/IElj F ) ^ W 

ii) I/IEI2(KlSI2 W) = ( t / ^ F)IEI2 W 

iii) t / ^ ( F E 3 W) = ( t / B 2 F) E 3 W 

iv) T*[ (F IE3 JF) [Sl2 C/] = (C/IS3 F) [E]2 PF. 

Proof. In both i) and ii) all spaces are U® V® Wwith the same action, 
and, in i), with the same grading. In iii), (U EJ2 V) [>1><I W is {Z0, Zj} 
where Z0 is the sub space of 

generated by elements a and ft below for all ut e [/,-, v ^ V and 

a(w0, v, w) = [ (w0, 0) ® v, (w0, 0) ® v] 0 [w, w] 

+ /[ (w0, 0) ® v, -(w0 , 0) ® v] ® [w, - w ] 

j8(w,, v, w) = [ (0, i^) ® v, (0, M,) ® v] ® [w, w] 

4- *[ (0, ux) ® v, - ( 0 , iij) ® v] ® [w, -w] 

and 

Z\ c ^(^/0©t/i)®K ® Aw + ^(u0eux)®v ® ^w 

has generators 

y(w0, v, w) = [ (w0, 0) ® v, (w0, 0) ® v] ® [w, — w] 

- i[ (w0, 0) 0 v, -(w0 , 0) ® v] ® [w, w] 

ô(wb v, w) = [ (0, ux) ® v, (0, I/,) ® v] ® [w, —w] 

- i[ (0, ux) ® v, - ( 0 , ii!) ® v] ® [w, w]. 
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Similarly UM} (V EE W) = {Y0, Y}} with 

Y0 c U0 ® [Dv ®DW + Av® Aw] 

+ ^ ®[DV®AW + AV®DW] 

being generated by 

a'(w0> v, w) = u0®[ 0 , v) ® (w, w) + /(v, — v) 0 O , — w) ] 

j8'(wl> V, W) = Wj ® [ (V, V) ® (W, —W) — /(V, —V) ® (w, W) ] 

and 

y, c f / 0 ® [Dv ®AW + AV® Dw] 

+ Ux® [2>K ®DW + Ay® Aw\ 

has generators 

yX^Q, v, w) = u0 ® [ (v, v) ® (w, — w) — i(v, — v) ® (w, w) ] 

8'(Mi» v, w) = Mj ® [ (v, v) ® (w, w) + /(v, —v) ® (w, —w) ]. 

A linear map is uniquely determined by requiring a H a', j8 H ij8', y H y' 
and 5 \—> —i8'. Its image spans U [Elj (V lx x l H )̂ which has the same 
dimensions as (U \E$2 V) lx x l W, so it is bijective. The proof of iii) is 
completed by a tedious calculation checking that the map commutes with 

A A 

the action of T X A X 12. To prove iv) we define an isomorphism 

(1/1x3 K)IEI2 W-+T*[(VE% W)&\2 U] 

by <f> H-» <£' + *// and \p I—> —itf + A// where the domain has generators 

<t>(u, v,w) = [ (w, u) ® (v, v) + I(M, - W ) ® (v, - v ) ] ® w 

\p(u, v, w) = [ (w, w) ® (v, —v) — z'O, —w) ® (v, v) ] ® w 

and the codomain has generators 

</>'(w, v, w) = [ (v, v) ® (w, w) + /(v, —v) ® (w, — w) ] ® w 

\p'(u, v, w) = [ (v, v) ® (w, — w) — /(v, — v) ® (w, w) ] ® u. 

THEOREM 2.24. Make lists as in 2A0for ^-objects £2 and £2: 

GIRREP~£2 = {al9 a\e\ . . . , a™\ bx, . . . , bv}\ 

GIRREP-O = { f l , , . . . , ^ } ; 

IRREp-fi = {c„ . . . , Cp dl9 d?s\ •. . , < s s } ; 

IRREP~0 = { q , . . . , ^ s s } . 

Then the corresponding lists for 12 X 12 are g/ve« Z?y //ze following diagram, 
which also gives the behaviour of rev, ass, IT and 17. (77ze notation I means 
"goes to the sum of the nearby elements"): 

https://doi.org/10.4153/CJM-1986-070-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-070-1


1406 P. N. HOFFMAN AND J. F. HUMPHREYS 

rev rev rey rev 

t i i i _ Cj O 
., fl|- IE), âp aT [El, âj,..., d,, ( E 3 </,-, J f s EE) </,•,..., a,- S , fcy- , . . . , T*5,. (El, 6, 

\ A ^ \ i / /Ik /I \ 
«/ 02 Ô . • • •. *i s 2 rf7- , •..,«,- s 2 J,, flr i 2 j ; , . . . ,T 7̂ 0 2 dr 7*a]™ IEI2 4 , . 
O O t î t î 

/« particular, the above lists are all distinct elements. 

Before proving 2.24 we discuss some corollaries. 

COROLLARY 2.25. Counting in this diagram, 

\x($l X 0 ) = KQ)/A(S) 4- i<Q)i<S) 

KQ x S) = /x(fl)KS) + KQ)KÔ). 

COROLLARY 2.26. Define a functor W by 

Then there is an isomorphism 

M4:WQ ®WÛ-+ WiSl X 0) 

defined by using [El1 on W(0) ® W(0); M2 on *F(0) ® JF(1); ESI OAI 
J ^ O ) 0 jp(D ; and T* o \Z\2 o o on W(l) ® TF(0), w/iere a(jc ® >>) = 
j ® x. 

Proof This is immediate from 2.24 as long as EO4 is well defined. A 
sample three of eight checks for this are as follows: 

(x mx x) r e v = xrev mxx = xmx *-, 
(x |x|2 y)ass = xrev 0 2 y = i 0 2 y . 

j ; = / s s =» (j; (XX) j?)«v = ^ass |xx| - = j ; |xx| -

COROLLARY 2.27. Define 

77ien we /zave a well defined homomorphism 

S 3 : R - ( B ) ® R,-(S) -> R-(S2 X 0) 

y ® J7 M> 7r[7r_ V 0 ! m~Xy\ 

This map is infective with image of index 2 in its codomain. More precisely, 
in notation from 2.24, 

CokerEE^ = ÇL/lf 

with generators being the images of the elements bt [HI 2 d-. The 
isomorphism 

[0 
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R^(fi) 0 RJfl(Q) ® Q = R~(Q X Q) ® Q 

w also an isometry with respect to the canonical inner products in these 
Q-spaces. 

Proof. This is again immediate from 2.24 modulo the well definition of 
E 3 . But 7TX = 7TX' implies 

TT(X IEI, y) = (rrx) M 2 y = (TTX') M2 y = <n(x' M2 y). 

Similarly for the right hand factor. The last sentence is just the fact 
obtained from 2.24 that 

(x ŒO3 x, y El3 y> = (x, y)(x, y) 

for the canonical basis elements ci9 dj + ^ass, q, dj + djss for these 
spaces. 

Proof of 2.24. The formulae for 77, 77, rev and ass are immediate 
from 2.22. Thus the list for GIRREP~(Œ X 0) follows from that for 
IRREP~(0 X 0) by 2.11. We use 2.15 to check the latter. As for the dim2 

condition, let yi = dim c- and 8k = dim dk, so 

2 if + 2 2 s / = -#a. 

Let y • = dim ~c- and 57 = dim db so 

2 7/ + 2 2 5/2 = - # S . 

Then 

dim a,- IEI2 9 = y,^ 

dim at ÏE$2 d: — yihl 

dim r*(^ EI2 dz) = Skjj and 

dim 6,. ÏSÏ2dj = dim 4. EEI 5. = 2 8 ^ . 

Hence the sum of squares of dimensions of the listed elements for 
IRREP~(& X 0) is 

2 (y^)2 + 2 W 7 ) 2 + 2 2 (yÂ)2 + 2 2 ( ^ ) 2 

= (2 y,2 + 2 2 S,2)(2 y/ + 2 2 ô7
2) 

= (-#fl](-#0j = -#(Q X 0), 

as required. The condition on inner products is immediately checked using 
2.30 below. This is the necessary modification of the usual proof for 
ordinary exterior tensor products of irreducibles to give the (ungraded) 
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irreducibles of the (untwisted) cartesian product of finite groups. Below 
we modify the usual adjointness to take account of mixtures of graded and 
ungraded representations. 

The Brothers HOM, GHOM, and TWOM. For [[/], [V] in REP"A, 

HOMA(U, V) = { / e HOMc(J7, V): /commutes with the action}. 

For [U], [V] in G R E P A , 

GHOMA(C/, V) = { (Ufx) G HOM(£/0, K0) X HOM(I/„ FJ): 

f = fo®f\ commutes with the action}. 

For [W], [Uf] G REP "A, define a Z/2-graded vector space 
TWOM A (^ , [/') by 

TWOM A (^ , I/')o = H O M A ( ^ , (70 

TWOM A (^ , £/')i = H O M A ( ^ , f/'ass). 

LEMMA 2.28. If U G REP~(T X A) W t/' - < |̂A (i.e., U' = ?*t/ 
w/2<?tt? *>(/*) = (1, /z)), //ze« TWOMA(W, £/') becomes Z/2-graded 
representation of Y if we define an action by 

g- / :wi ->(g , 1) - / (w) 

/or all g G r ûwrf/ G TWOMA(JF, [/')• 

Proof It is obviously an action, and a direct calculation shows that 
gradings are mapped properly. 

LEMMA 2.29. If in 2.28 we have U = V {El2 W where V is irreducible, 
and W ^ WâSS is also irreducible, then the map 

V ' H W ^ V ' ® Wj 

is an isomorphism of Z/'2-graded representations 

V = TWOMA(PF, V E32 W|A). 

Proof. The dimensions of the graded parts agree and the map is clearly 
injective, so we need only calculate to check that h , = g • hv, and that 
hv, G TWOM,- if v' G V\. 

THEOREM 2.30. i) Let [V], [V] be in G I R R E P T and [W], [W] in 
I R R E P A . Assume either W 3Ç WâSS or V ^ Krev. Then 

HOM r ^ A [F[El 2 W, V [X|2 W ] 

C / / V = V an d W = W 
C if F r e v = V and WâSS = W 
0 otherwise. 
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ii) If also [Y] e GIRREP~A and [Z] e IRREP~r, then 

HOMrÔA[Kia2 ^T*(yEi2z)] ^ { 0
c 5 w J z w ^ ^ ' y 

iii) For [£/], [£/'] m REP (A X T), there is an isomorphism of vector 
spaces 

HOMr£A(T**7, r*U') = UOMA$r(U, U'). 

Proof. The idea is first to prove that the map below is an isomorphism of 
vector spaces: 

HOM r £ A (FIE] 2 W, U) -» GHOM r[F, TWOMA (^ , U\A) ] 

e e 
f\-* (v h-> [w i-^/(v ® w) ] ). 

One first checks that v e Vi implies ev e T W O M Z ; then that e commutes 
with the action of I\ Bijectivity follows by writing down the obvious 
inverse. Now to prove i), note that (V' ÏE\2 W) |A is A-isomorphic to 

SO 

TWOMA(JF, V El 2 W'\A) = 0 if WâSS ^ Wf ^ W. 

So we are left with the cases W = W and W = Wass. Below we assume 
W 3£ Jj/ass; the alternative V 3£ F r e v is easier. In the first case 

HOM r£A(K[EI2 JP, K' El2 W) 

= GHOM r[F, TWOMA(JT, K' IEI2 W|A) ] 

^ GHOM r(F, V) = ( C if V = V 
2.29 \ 0 if not. 

In the second case, we get 

GHOM r[F, TWOMA(I^, V IS12 J^ass|A) ] 

= GHOM r[F, TWOMA(îf, F' r ev [H2 JF|A) ] 

{C if F r e v — F ' 
Oif n o , " 

To prove ii), again use the above adjointness isomorphism to yield 

GHOM r[F, TWOMA(W, r*(7 [El2 Z) |A) ]. 

Now 

r * ( y [ E l 2 z ) | A = (77 7) d i m Z , 

so we get zero if W ^ TTY. On the other hand, the maps 
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Dz -> HOMA(77Y, YIEI2 Z | A ) ; V4Z -> HOMA(7ry, 7IEI2 Zass|A) 

(z, z) H» (j> H>^ ® z) ; (z, - z ) h->(j/ H » ( - l ) ° > ® z) 
give an isomorphism 

ijZ -> T W O M A [ T 7 7 , T * ( 7 I 3 2 Z) | A ] . 

Thus when W = TTF, we get 

C H O M E Z ) S { ^ f " Z 

iii) More generally, 

for any isomorphism r:Q, —» £2' and any [[/], [£/'] in REP fi'. 

3. Determination of R (2„<r> ) and GR (2„<r> ). To state certain 
assumptions and results it is convenient to introduce a category of doubly 
graded rings as follows. 

Definition 3.1. Let ^denote the category whose objects are pairs (//,/?), 
where H is a (Z/2 X N)-graded ring with 1 e / / 0 0 and/? G //j 0, such 
that: p3 = 2p; and, with r := p2 — 1 e 7/00 , 

jcy = r e ô + V for all JC <= H i9 y €= / / 5 

Morphisms in # will be homomorphisms of graded rings mapping p to 
p. Not 
and r. 
p. Note that r = 1; pr = rp = /?; and all elements commute with p 

Example. Let S be a finite set. Define a ^-object / / £ by generators and 
relations: The generators are/? Œ HS] 0 and, for each / > 0 and s ^ S, a. 
generator h)s' where 

A&>+1 e 7/S0,2* + i and A# G / /S 1 2 y t . 

The relations are /? = 2/?; xy = r€ Vyx for all generators (hence all 
elements) and 

(Ah2 - (-\rip[h$+p'$ i-iM^ ] 
The first theorem below gives conditions on a ^-object which suffice to 

verify that it is isomorphic to HS. The second one asserts that these 
conditions hold when S = Con(T) for the object H for which 

H0<n = GR-(2„<r> ) and HXn = R~(2„(r> ). 

Together then they describe the structure of these latter groups and give 
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considerably more information about additional structures (products, 
inner products, coproducts, etc.) on these groups. 

Hypotheses. These will be the following conditions (I)-(VII) on a 
^-object H relative to a given finite set S. Recall the sets of functions into 
partitions &(n, S) etc. defined in 1.12. 

(I) There exists a set {ẑ :<J> G 3)(n, S) } such that H0n and HXn are free 
abelian groups with bases 

{z^ rz^ G 0"(/i, S) } U {pz+4 G 9\n, S) } 

and 

{pz+.t G &\n9 S) } U {z^ rz^ G i£'(*, S) }, 

respectively. 

Definition 3.2. 

Z)+ = Spanz{/^:<|> G ^"(n, 5) } 

D~~ = Spanz{ (1 -f r)z^:<j> G 0'("> 5) } 

so that D + © D~ = DH, where for any ^-object H we define 

DH:= @ PH0tn. 

Define also 

EH := # / / # , 

where 

77/ := {x G i/:rx - x} . 

We make D, E and I into functors in the obvious way. Clearly IH is a two 
sided ideal in H, so EH is a (Z/2 X N)-graded ring which is anti-
commutative in the following graded sense: 

xy = (-lf+Vyx for x e EH€j, y e EHaj. 

It is also clear that 

© Ker{#0,„ A //, J 

is a two-sided ideal in the N-graded ring H0*. Thus the induced 
multiplication on DH, denoted o, makes DH into a commutative N-graded 
ring. We have 

(px) o (py) := pxy. 

(II) There exist coproducts 

V.EH ^ EH 0 EH and A:DH -> £>// ® DH ® Q 
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making EH and DH ® Q into graded Hopf algebras. 

(III) A(DH) c D " ® D " ® - Z + M 0 M ® Z . 

(IV) There exist elements h{*} G ff, n > 0, s G S with 

*2/H-I G #o,2*+i and Â $ G # u * 

such that V and A act as follows: If 

[h&] = h(*] + iff G EH 

then 

V [ ^ s ) ] = [hi:)]®[\] + [\]®[h(;)i 

that is, [/z ̂ ] is primitive. 
If 

and 

then 

i +j — n 

where b^ is the identity element of DH, namely/?. 
(V) There exist positive definite symmetric bilinear forms 

(,y.Hl4 x # € , ->z 

such that (rx, ry) = (x, y) for all x, y. 
(VI) If < , > is the induced inner product on ff ® ff (that is, 

« « ® v, x ® j>» = {u, x)(v, y) ) 

then for JC, y, z in D / / we have 

(JC o y, z) = < x ® y, A z » . 

(VII) For the elements in (IV), we have 

<*£>, h<£>) = 8S, a n d <A £>, ,*<„'>> = 0 . 

THEOREM 3.3. The ^-object H S satisfies hypotheses (I) to (VII), and any 
^-object H which satisfies (I) to (VII) is ^-isomorphic to HS. More precisely, 
there exists a unique ^-isomorphism H S —> H sending h„ to h„. It is an 
isometry with respect to the inner products and induces isomorphisms 

EH(S) ~ Eff and DH(S) ® Q = M 0 Q 

of Hopf algebras. 

D2k + \ :=2k+lph®+\ e M 2 H , 

û(s) . _ 
°2k '-

2*(1 + r)h% e DH2k, 

A&<*> = 2 FWQbfK 
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This theorem is formal algebra and is proved in the next section. We 
have separated it from the next theorem in order to emphasize the relative 
simplicity of the method of proof. The basic idea is similar to a Hopf 
algebra technique used by Liulevicius [5] to give a novel proof of the 
structure of 0 R(2W). His method extends easily to © R(2w<r> )[3]. Note 
that we did not assume that/? and the h^ generate H as an algebra. This 
is the most important corollary to 3.3. Another corollary is that the h^ 
satisfy the relations given for h^ in the definition of H S and "only" these 
relations. 

THEOREM 3.4. Let T be any finite group and let S = Con T, the set of 
conjugacy classes in T. Then the Z/2 X N-graded abelian group H where 

H0„ = GR-(2„<r> ) and Hx,„ = R-(2„<r> ) 

can be made into a ^-object which satisifes (I) to (VII). More precisely, the 
multiplication fi on H is defined by commutative diagrams: 

/i(0,0) 
Ho,i ® H0J ^ #0,/+/ 

GR~(2, <r> ) 0 G R _ ( 2 / r > ) • G R - ( 2 , < r > X 2 / r > ) • G R - ( 2 / + / r > ) 

K0,D 

E]2 ^ 
GR-(2f.<r> ) ® R - ( 2 / r > ) • R " ( 2 / ( r > X 2 / r > ) • R " ( 2 / + / r > ) 

o _ _ /*(<>, 1) _ $jtim 

K1, 0)://lfJ. 0 H0J +»H0J<8>HU • Hu+j • # ! , / + , • 

R_(2f-<r> x 2/r> ) -
À 

*ij. 

R~(%(T) ) 0 G R " ( 2 / r > ) 

m2 

1.8ii) 

G R " ( 2 / r > ) 0 R"(2,.<r> ) - . R"(2/r> x 2f.<r> ) -
+jj. 

. R - ( 2 f . + / r > ) 

.R-(2 / + j , .<r>) 

KL 1) 
/ / , , 0 77, 

(xxl ^ 
R-(2,.<r> ) 0 R-(2/r> ) •GR-(2,.<r> x 2/r> ) •GR-(2I.+/r> ) 

Furthermore the element p is such that TT (resp. 77) is multiplication by p on 
i/o,* (resP- H\*)> whereas rev (resp. ass) is multiplication by r on i/o,* 
(resp. / / , * ) . 
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Combining 3.3 and 3.4 we obtain much information about 
GR~(2„<r> ) and R~~(2n(T) ). Together with the comments in the 
introduction and 2.12, this is equivalent when n ^ 4 to information about 
projective representations of 2 n (T) and An(T). In particular, as 
calculated in the next section, we obtain bases for the above groups. These 
consist of representations induced from certain products using lE^, I**!, 
[E^, of representations coming from Clifford modules (see Section 5). 
When T is trivial, these bases coincide (modulo choices made of one from 
associated pairs of Clifford modules) with bases found by Schur [9]. Our 
proof is very different from his, which emphasizes characters and certain 
symmetric polynomials whose coefficients involve these characters. 
Elsewhere we shall explain more carefully this connection and generalize 
to the case of any T. 

We should add here that A and V on H are obtained essentially by 
"reversing" where possible the arrows in the definitions of the product. 
Thus its computation gives what are sometimes called branching rules. 
Branching rules for restriction from 2W(T) to An(T) are just multiplica­
tion hyp. The inner product in H is the natural one for representations, so 
its computation has significance to the determination in Section 8 of the 
irreducibles, as well as to the proofs of 3.3 and 3.4. 

Addendum to Section 3. There is a more elegant way to formulate the 
results of this section, sketched below. We have not presented this in detail 
for two reasons: it is further removed from the usual calculations made in 
this subject; and more importantly, it has not yet lead to any genuine 
simplification of the proofs of 3.3 and 3.4. 

The idea is to regard HS and H as Hopf algebras over L, where 

L := H*0 = Z[p)/(p3 = 2p). 

If the coproduct is • we have 

E(*«}) = hn] ® 1 + 1 ® *£} + P ( 2 hV 0 /#! , • ) . 

This is a definition in HS. The analogous formula for D/i„ in H fol­
lows from 7.1 below, where the existence of • on H is a consequence of 
the following corollary to 2.24: 

If V(Q) := GR~(£2) 0 R"(Q) for 2 G % then 

V(Q) <8>L F(Q) = V(Q X 0) 

(using S , , |X|29 | x 3 and T* O S 2 O a). 
Now (I) to (VII) can be simplified somewhat. For example: H is the 

free L-module on {ẑ :<f> e 3)(n> S) }; and there are L-bilinear inner 
products 

with good properties. The difficulty is that L is not even an integral 
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domain. Furthermore Prim H is harder to work with. In even dimensions 
2k, it is 

= © (L/pL) 
s 

with generators (r — l)h$. I n °dd dimensions ilk + 1), it is 

s^S s 

where Ms has two generators 

*(*) = (r - l ) Â $ + i and 
A: 

/ 5 ) = (2* + 1)A$ + 1 + P 2 (-l)''(2fc - 2/ + 1)/T2,_, + 1 ^ 
/ = 1 

with relations 

px(s) = 0 and (r - l)y(5) = (2À: + l)x(5). 

Using this to give direct arguments for 3.3 seems difficult. However the 
original (I) to (VII) can be recovered from their analogues here, so 
the proofs of 3.3 and 3.4 are also recovered, although more direct proofs 
should be possible. 

Only A and V are not obvious to recover, so we give this below. This 
should also help reconcile readers who have detected an odour of 
arbitrariness in our approach using D and E. To recover E(H) and V note 
that/?// = {x:rx = x) since 

_ p _ r— 1 _ 

is exact, so that E(H) := H/pH is an algebra over L/pL = Z. 
Furthermore, 

E(H 0 L H) = (EH) ® z (EH), 

so we get V from the diagram 

• 
H *-H ®L H 

t_ I 
V.EH +~E(H ®L H) 2 (EH) <S>Z (EH). 

A similar argument gives the quotient H/(r — 1)77 the structure of a 
Hopf algebra over L/(r— \)L. The latter is Z[q], where q has Z/2-grading 
1 and minimal polynomial x2 — 2. By the exactness of 

_r-\ - p _ 
H ^77 ^ 77, 
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we have 

DH := pH0* = H0*/(r - l)H0* 

(with o chosen to make this an algebra isomorphism). Then A will be 
recovered by defining a coproduct Aj on (H0*/(r — l ) / / 0 *)'> where G 
means G localized away from 2 (so 

G := G®R R 

A2 

where R c Q and G is an /^-module). Now use the diagram 

(H0*/(r- \)H0*Y M f f 0 * / ( r - l)H0*Y ®2um(H0*/(r - 1 )//„,*)' 

(ff/(r - 1)#)' 0 ^ / 2 , (#/(r - 1)//)' 

- - - » * - -
( tf /(r - \)H)' • ( / / / ( r - 1)#) ' ®z[i/2«] ( # ' ( ' - ! ) # ) ' 

Here A2 is the localization of the coproduct for H/(r — \)H over 

Z[q] = L/(r - \)L. 

The right hand vertical composite is clearly mono, and (because of the 
localization) maps onto the 0-component of its Z/2-graded codomain. 
Thus we get the required Aj. 

Note that we have used exactly the two integral domain quotients of 
characteristic zero, 

L/pL = Z and L/(r - \)L = Z[V2], 

of L. 

4. Proof of 3.3. Recall the example H S after 3.1, and the squaring 
relation which expresses (h^)2 in 

Spzn{h%l$s):0 ^ j < i). 

Definition 4.1. For $ e S)(n, S), define 

K = II II h\s) e (HSltl if * e &(n, S) 
s<=s i*=4>(s) \HS0t„ if <j> e ^"(w, S). 

In the above product, multiply with "/" decreasing from left to right and 
in some ordering for S fixed a priori. The dependence of h^ on this choice 
is only up to a factor r. 

PROPOSITION 4.2. The groups HS0 and HSX are free abelian with 
bases 
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{^, rh+:4> e 2"(n, S) } U {ph^ e 2)\n, S) } and 

{ph^.<j> G ®\n, s) } U {/^, r / ^ e ®'(n, S) } 

r£s/?£c/zve/y. 

Proof. The list of generators plus the pseudo-commutativity relation 
shows that the elements pk • (monomial in h^) generate H S as a group. 
But using p = 2/>, replacing p by 1 + r, and eliminating higher powers 
of h^ using the squaring relations, we see that the elements h^, rh^ and ph^ 
generate H as a group. Now take a free abelian group with these as a basis, 
and make it a ring using the relations for HS. Since HS maps to this, we 
have a basis, as required. 

PROPOSITION 4.3. i) The ring E(HS) is "pseudo-exterior" on genera­
tors [Irf']: it has structure Z[ [hj] ] / / , where J is given by the relations 
[h^f = 0 and 

[*Js)][Aj°] = (- ly4"7^1^)0]^]-

i i ) / / 
^ = ( ^ /or * e 0"(w, 5) 
a * \(1 + r)^ /or* e 0'(", S), 

then D(HS)n has basis {d^.fy e i^(«, S) }. /to ring structure under o /s 
determined by a) a « J b) : 

a) D(HS) is torsion free. 
b ) / / 

^ : = 2> 2 ' ^ 

where \ \ denotes the integer part 

BS := Spanz{Z :̂<J> G ^ ( W , 5) } 

w « subring of D(HS) whose structure is 

z[^>]/ (#> o #> = 2 2 (-iy+j+lb$_jo ij'^. 

Note. Here bf^ is ^ for that <j> mapping s to (/') and all other t e S to the 
empty partition. As seen below, Z^ is the o product of tif^ for s ^ S and 
/ G <j>(s). On the other hand d^ is the analogous product of dy divided 
by a suitable power of 2. The relations for BS can be written more 
symmetrically 

2 ( - l y ^ o ^ = o. 
j + k = 2i 
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Proof of A3, i) Since r = — 1 mod E(HS), the relations certainly hold. 
By 4.2, the set { [/̂ ]:<J> G S(S) } spans E(HS). It remains only to prove 
linear independence. But if we assume 

we immediately get /x̂  = 0 for all <j> using 4.2. Similarly for ^ ( ^ S). 
ii) The set {<̂ :<?> G ^ ( « , £) } is the image under multiplication by;? of 

the basis in 4.2 for H0 *, so it spans D(HS). It is easy to check linear 
independence using 4.2. Since the {b^} basis for BS consists of scalar 
multiples of the {d^} basis for D(HS), it is clear that the ring structure of 
D(HS) is determined by that of BS. Now it is a matter of straightforward 
calculation that 

(product using o) 

and that the relations in BS hold (using the squaring relations defining 
HS). But these relations show that the ring generated by 

{bW: s G S, i > 0} 

is spanned by {b^:<j> G Si {S) }. It therefore coincides with B(S), and 
satisfies no further relations since {b^} is linearly independent. 

PROPOSITION 4.4. E(HS) and D(HS) 0 Q have H opf algebra structures 
{graded over Z/2 X N and N respectively} given by maps 

V\E -> E® E and A:D -> D 0 D 0 Q 

for which 

V([M;>]) = [ ^ ) ] ® [ i ] + [ i ] ® [ ^ ] 

and 

A(#>) = 2 #> ® èf, 

wiïA Z#} =p = 1DHS. 

Proof It is only necessary to check that the relations given in the 
structures for E(HS) and D(HS) in 4.3 are mapped to zero. 

Definition 4.5. Define subgroups of D(HS): 

D' := Spanz{^:«j> G ^'("> S) } 

£>" := S p a n z { ^ : * G ^ " ( / I , S) }. 

Define elements 
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2n + l 

A , : - 2---' 2 (-iy+1itf>o&>+1_. 

LEMMA 4.6. 

i) AD(HSya D' ® D' ® - Z + D 0 Z) ® Z; 

f/m-s, localized at odd primes q, D(HS), ^ is a Hopf algebra under A. 
ii) For odd primes q, the space of primitives in the XI q-Hopf algebra 

D(HS) ® XI q is spanned over XIq by 

iii) Define a subgroup P' c D = D(HS) by 

F = { X G D : A I G D ® D and 

2| (AJC - x ® 1 - 1 0 J C ) I / I D 0 D/Z)' ® !>'}. 

77ie« 2D c P ' a/id P'/2D is spanned over Z/2 Z?y //ze image of 

{d$:k > 0} U {/$+,:/ s 0}. 

Proof. See the appendix to this section. 

Note. The first claim in 3.3 [that HS satisfies (I) to (VII) ] follows from 
the rest of 3.3 plus the fact that an object H satisfying (I) to (VII) does 
exist (as follows from 3.4). In the preceding 4.2 to 4.6, we have given direct 
proofs of those properties from (I) to (VII) for HS which are needed in 
the proof of the main assertion of 3.3 and the proof of 3.4. These are (I) 
[taking z^ = h^], (II), (III) [since D~ for HS with z^ = h^ is exactly D'], 
and (IV) [taking h^ to be h^ in HS], 

THEOREM 4.7. Let H^ and H^ be ^-objects. Assume that H^ has no 
2-tors ion, and that, for both H^ ' and H^ \ the zero sequence 

p \—r 
H^H • # 

is exact (that is, if rh = h thenph! = h for some hf). Let 0:H^ ' to H^ be a 
^-map. Then, for 0 to be bijective, it suffices that D(8) and E(0) are both 
bijective. 

Proof. For injectivity, 

x e Ker 0 =» [x] e Ker E(0) => rx = x. 

If x e H(
0
ll,px e Ker D(0) so px = 0. But then 

0 = p2x = (1 + r)x = 2x, 

so x = 0 since H^ ' has no 2-torsion. If x e ^ {, we can write 
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x = py G Ker D(0), 

so again x = 0. 
For surjectivity, first let z G H fi. If E(0)[x] = [z] in EH(2\ we have 

r(z — Ox) = z — 0x, 

so z — Ox = pu for some w G # 0 * . Since Z)0 is onto, write pu = 0(pv). 
Then z = 0(x + /?v), as required. Finally, let w G ^ J l and find /i with 

r(w - Oh) = w - Oh 

since £# is epi. Then w — Oh = pg for some g G //*[*, and g = 0(f) 
for s o m e / b y the first part. Now w = 0(h 4- pf), as required. 

A more learned (but no shorter) proof can be based on the 5-lemma. 
The proof of the substantial part of 3.3 now proceeds using 4.7 with 
H{]) = HS and H{2) = H. Note that the hypotheses of 4.7 hold by 4.2 and 
(I). First we must show 

h{p ^ /T/5) 

determines a well defined ^-map by proving that the h^ satisfy the 
"same" squaring relations as do the hf-s\ These are deduced in 4.14 from 
knowing that the bf^ satisfy the same relations as do the tif\ The latter 
follow in 4.13 by combining the Hopf algebra structure, which tends to 
force the rank to be large, with the rank restriction given by (I). At this 
point, one will know that the h\s^ generate H ® Q as a Q-algebra. To 
finish the proof we need to show that the D(0)n and E(0)n, mappings 
between equal rank free abelian groups, are actually epi. This will follow 
by combining the Hopf structure with the inner products. 

The completed ring I I ^ o DHn
 n a s a g r o u P of invertibles with subgroup 

1 + n „ > 0 DHn of "special units". Also A extends to 

A: E[ DHn -* I I DHi ® DK ® Q. 

Define elements 

â(s) : = 2 nb(
n
s) 

b{s) := 1 4- 2 b(
n

s) and 

^ := â<*> o (b(s)") := 2 ffl. 

LEMMA 4.8. 

i) Ab(s) = b(s) ® b(s). 

ii) Aa(s) = a{s) ® b{s) + b(s) ® a(s\ 

iii) Ap(s) = 1 ®p(s) + p{s) ® 1. 
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Proof. 

i) A* <*> = 2 A(F£>) = 2 #*> ® 5?> 

= 2 b\s) ® 2 ^ = b{s) ® ï<'>. 

ii) Aâ(s) = 2 *AF<5) = 2 (i +7>/5) ® */5) 

i > 0 i^O 
7^0 y>0 

= â(5) 0 6(J> + b{s) ® Â(*}. 

iii) 1 ® 1 = Â1 = A(b(s) o 6^>~1) = A(b{s)) o Â(ft(5)~!), 

so 

A(PS^') = Mb(s)rl = i ^ ' o i " ' " ' . 
Hence 

A^> = A(â<'>) o A(fc<*>~') 
= ( A ( , ) ® ft(s) + b(s) ® a(s)) o(b^s)~ ®b{s) ) 

= a(s)b(s)'] ® 1 + 1 ® â ( i )fc (s)"' = /3<5) 0 1 + 1 ®p{s\ 

Definition 4.9. Define / ^ by 

[1 + 11 

LEMMA 4.10. We /wive 

/><*> e M „ W <l$ + „/4+,> = «„• 

vi>o 7 v^o 7 

where 

(2^»)o(2^) = i. 

Since, by definition, V 2 ' divides b^ in D/ / , it follows by induction on 
j that 

fz±il 
21 2 ' divides bjs) in £»//. 
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Hence 

[L±I1 + [Z±11 

21 -2 ' I 2 I divides 6/ j ) o S/5), 

and since 

[L±i] + \l±l) B [L±i±il, 
we get that 

2 ' ^ " ' divides 2 ib$s)ob}s\ 
iJrj = n 

as required. For the inner product, it follows from the definitions that we 
must prove 

\/>2/ + l> D2j+\> — 4 °?p 

since ^ = 2 ^ 5 ) ; that is, 

The formula for Ab^ and the equation 

« i ® y, A z > = (x o y, z) 

imply that the map 

F(t): I I D#n - Z[ [x] ] 

is a ring homomorphism. Thus 

= (2H2"+ ,*„*")(I+ 2 r+\A~\ 
X n > V «>0 7 

since 

<F<S>, ft <"> = « „ 

if s ^ /, giving the result in that case. 
Continuing if s = t: 
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= (2x(d/dx)[(l - 2x) _ 1 ] ) ( l + 4x(l - 2x )~ , )~ ' 

= 4x(l - Ax1)'' = 2 4j+]x2J+\ 
y so 

as required. 

Note. This also shows 

but in fact p^ = 0 as we see below in 4.12. 

LEMMA 4.11. i) The set of primitives {py+x'-j — 0> s e S} is algebrai­
cally independent. 

ii) DHn has rank #@(n9 S), as have the nl groups in the subalgebras 
generated by 

{Pij+x'j = 0, s e S} and {bfs):i > 0, s e S}. 

Proof, i) The given set is linearly independent by 4.10, and consists of 
primitives by 4.8 iii), so is algebraically independent. See [2] for this basic 
fact about graded Hopf algebras in characteristic zero. 

ii) We have 

*b{P%+i'J ^ <U e S}„ c Alg{5/5):i > 0 , . e S}„ c DHn. 

The first has rank #0>odd(n, S) by i), and the third has rank #@(n, S) 
by (I). But these numbers are equal, as required. 

LEMMA 4.12. Pnm(DH ® Q)2n = Ofor all n. (Prim denotes the module of 
primitives.) 

Proof If it were non-zero, we would have an element of DH which is 
transcendental over Alg{/)^+ 1}, contradicting 4.11. 

LEMMA 4.13. 

bjs) o F/S) = 2 2 (-iy+;+1ï£) o up. 
7 = 0 

Proof. Let 

H^ = 2 (-i)^/5). 

The relation to be proved is equivalent to w^& ^ = 1, since 

HW*> = 1 + 2 v* 

with v2/ equal to the difference of the two sides in the relation to be 
proved. Now 
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Aw(s) = w(s) ® w(s\ 

so 

A(l + 2 v2i) = (1 + 2 y*) 0 ( 1 + 2 y*). 

Assuming inductively that v2i = 0 for all i < n, we get 

Av2„ = v 2 „ ® H l ® v2„, 

so v2„ - 0 by 4.12. 

Note. This shows that {̂ :<J> e ^ ( « , 5) } spans A l g { ^ } } , and 
is therefore linearly independent by 4.11 ii). It is therefore a Q-basis for 
DH ® Q. We need more work to prove the analogue over Z, viz. that {d^} 
spans DH over Z. 

LEMMA 4.14. 

(/r/s>)2 = (-îy+vfe + p 2 ( - I ) ^ Â H -

Proof. Drop the superscripts (s) for this proof. When /' = 2k, the 
equation of 4.13 is 

k-i 

22k(p2h2k)o(p2h2k) = -2b4k - 2 2 l^-'^h^-^op2^ 

S=\ 

k~\ 

+ 2 2 22/c + ^ _ 2 5 _ l 0 ^ 2 , + 1. 
5 = 0 

Re-written in the multiplication of H (rather than the o of DH) we get 

2k-\ 

P^ik = -P2h4k ~ 2p 2 (-l)rh4k_rhr, 

after dividing by 22/c + 1 in the torsion free H. Since h\k = rh\k by 
"pseudo-commutativity", there exists >> with py = h lk. Substitute this, 
multiply by /?, replace p3 by 2/?, divide by 2 and the required relation 
appears. The proof for odd / is exactly similar. 

COROLLARY 4.15. There is a unique ^-map 0:HS —> H with 

Bh\s) = h~ls) for all i, s. 

Note. By (IV) and 4.4, DO ® 1Q and EO are homomorphisms with 
respect to A and V, respectively. 
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LEMMA 4.16. For all n, D0n is a monomorphism between equal {finite) 
rank free abelian groups. 

Proof This is immediate from 4.3 ii) and 4.13. (See the note after 
4.13.) 

LEMMA 4.17. For all odd primes q, 

DO ® l:D(HS) ® Z/q ~* DH ® Z/q 

is injective. 

Proof. Being a morphism of Z/g-Hopf algebras, a non-zero element of 
least dimension in its kernel is primitive. If such an element exists, we 
have, by 4.6 ii), integers j and / /^ such that 

2 M(s)^2/+i i s divisible by q in DH, 
s 

but 

2 P{s)Pij+\ is not divisible by q in D(HS). 
s 

But the first statement implies that for all / e S, the integer 

(by 4.10) is divisible by q, and this contradicts the second statement. 

LEMMA 4.18. DO ® \.D(HS) ® Z/2 -> DH ® Z/2 is mono. 

Proof. For a contradiction, let x ® 1 be a non-zero element of least 
dimension « in the kernel of DO ® 1. Then 2 j JC in D(HS)n, but 2|0JC in 
£>//„. First we show x e P' (defined in 4.6 hi) ). By 4.16 and minimality 
of n, 

D0:D(HS\ -> DHt 

is bijective for all i < n. If / -f j = n with i > 0 and j > 0, the 
diagram 

DO 
D{HS\ *»DHn 

A A 
DO® DO® \ 

D(HS\ ® D(HS)j ® Q +»DHt ® DHj ® Q 

u u 
D(HS), ® D(HS)j *-DHi ® DHj 
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shows that 

\j{x) e D(HS)t 0 D(HS)j, 

since 

Ai9/2DHH) c DHl 0 DHj 

by (III) for H. Since 

Ao,«00 = 1 ® JC and Aw 0(JC) = x ® 1, 

we have 

A x e Z)(#S) 0 D(HS). 

The same diagram and the condition 

A(2DH) c D ~ ® D " ® Z + M ® M ® 2 Z 

from (III) shows that 

2\AitJ{x) in [D(HS)i 0 D(HS)j]/[ (DO 0 D t f ] " 1 ^ ® Z)y~) ]. 

But 

D~/2DH = p1Hl*/2DH 

by (/) for H, and 

D'/2D(HS) = p2HSh*/2D(HS) 

by 4.3 ii). Thus 

2| Af-/jc) in [D(HS\ ® Z)(JTS),.]/[/>; 0 £>;], 

and we have proved x e P'. By 4.6 hi), there exist integers v^s' such 
that: 

if n = 2/, 

2| 2 /s\l 4- r)A$ in £>(#S), 
s 

but 

2| 2 */5)(l + r)h$ in 7 )5 ; 

if n = 2/ + 1, 

but 

2| 2 ^ $ - 1 in DH. 
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The second case leads to a contradiction exactly as in 4.17. The first case is 
also an inner product argument, as follows. For all / e S, 

by (VII) for H and the divisibility in DH, but this contradicts the 
non-divisibility in D(HS). 

COROLLARY 4.19. DO is bijective. 

Proof. This is immediate from 4.16, 4.17 and 4.18. 

Note. In 4.20 and 4.21 below, we use the elementary fact that for any 
commutative ring K, in a K-Hopf algebra which is "pseudo-exterior" on 
primitive generators, the ÀT-module of primitives is spanned by these 
generators. 

LEMMA 4.20. For all (e, «), 

{Ee\n.E(HS\n -» EHln 

is a monomorphism between equal {finite) rank free abelian groups. 

Proof. By (I) and 4.3 i), we see that the ranks are equal (to #<^"(«, S) or 
#3)\n, S) depending on whether € is 0 or 1). To show EO is injective, note 
that the subgroup of primitives 

Spanz{ [h^Y.i > 0, s €= S] 

maps monomorphically to 

Spanz{ [hfs)]:i > 0, s G S}. 

LEMMA 4.21. For all primes q, 

EO 0 l:E(HS) 0 Z/q -> EH 0 Z/q 

is a monomorphism. 

Proof Here the space of primitives of the domain is 

S p a n z / ^ { $ 5 ) ] ® l:i > ( U e= S), 

so we must show that 

s 

unless all the integers v^ are divisible by q. This follows by noting that 
(. . . , (1 — r)h^) defines a map 

EH*ti -> Z, 

since 
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<JC, (1 - r)A/°> = 0 if rx = x, 

and furthermore, that 

(h\s\ (1 - r)*/'>> = 8st. 

COROLLARY 4.22. E0:E(HS) -> EH is bijective. 

Proof. This is clear from 4.20 and 4.21. 

Now 4.19 and 4.22 complete the proof of 3.3 using 4.7 as noted after 
4.7. 

Appendix — Proof of 4.6. We first eliminate dependence on S. Since HS 
is the tensor product over the Z/2-graded H*Q of the algebras generated 
by {hff^'.i > 0}, one for each s e S, and for each of these the cor­
responding D is "coclosed" under A, it is straightforward to see that we 
need only verify 4.6 for each of these separately. In effect, we have reduced 
to the case # 5 = 1 . We shall drop the superscripts (s). 

For a sequence y, let y denote the underlying partition. We refer to 
elements dy and by9 even though they depend only on y. Sequences are 

convenient because the formula for Abn leads immediately to 

Aby = 2 K ® 6T, 

where the summation is over all pairs (a, T) of sequences whose sum is y 
under term-by-term addition. Thus, since 

^ = 2[i/2(M+/(v))]^ 

[lvl+/(r)| 
Ad= 2 2 " 1 2 h0®br 

SUBLEMMA (A). Expand the above term 

[M±M] _ 
2 - ' 2 l * a ® i T = = 2 zapda®d^ 

using the squaring relations in the definition of HS. Then: 

i) za^ e -Zfor all a and /?; 

ii) zap e Z if any of the following hold: y e 3fn U ^ o d d ; 
or a Œ Q>£\ or /? e «^"; or a £ ^w; or r S ®n\ 

iii) za^ G 2Z (fy G ̂  W é>///z<?r a £ ^ or T £ <^. 

Proof. Each time a squaring relation is used, a factor 2 appears. For 
some s, t ^ 0, the term oa arises from ba after ' V such uses, and the term 
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bp from bT after "f uses. Thus 2 5 + \ ® bp will come from ba ® bT, and 

The proof will analyze the above exponent of 2. Call it N. 
Now l(o) ^ 1(a) 4 j and /(T) ^ /(j8) 4 f, so 

W ~ \ l(o) 4 /(r) - 1 ^ /(a) 4 
if s = t = 0 

4- /(j8) 4- J 4 t - 1 if j + / > 0. 

The term —1 occurs when s 4 t > 0 because y has distinct parts and there 
must be at least one place where o and T both have positive parts, since 
either a î ® B o r T Î S n and a 4 r = y. 

Proceed now case-by-case: 
i) and ii) when s 4 / > 0: Here 

|y| 4 /(y) ^ ( M 4 1(a)) 4 ( |j3| 4 /(£) ) 4 (5 4 * - 1), 

so 

, v , i , [l«l + '<">] 1 [W + 'Wj [W + 'W] 

- [ ^ 1 - f i± i^ l - . 
_I + ( - f i ± i ^ i l - i a o . 

using the fact that 

f ^ ^ i - f?i+GI + [;i 2 J I 2 « ' 2 f 

ii) when a ^ ®w or T Ê ^ n is the above, 
i) when s = t = 0: 

|y| 4 /(y) ^ ( W 4 1(a) ) + ( |j8| + /(jB) ), 

so 

v s p r i + /(r)| x prl + /(Y)| t 

using the fact that 

f ^ i - r§i + [*i+•• 
ii) when s = t = 0 and a e @£ or /? e ^ " or y G ^ : Proceed as 

immediately above, but use the fact that 
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x+y - f?l + f';l 
if x is even or y is even or x + y is odd. This yields TV ̂  0, as required, 

ii) when s = t = 0 and y G Sn°
 d: By the case above we can assume 

a G 2f^ and /? e «^ . But here a = a, T = /? and o + T = y, so we 
have 

/(y) ^ /(a) + /OS) - 1 

(otherwise y £ ^ o d d ) . Hence 

N = Haï + /(a)l + [111 +/Q8)| _ [M + /(v)| 

= \a\ + 1(a) - 1 + |j8| + /Q8) - 1 _ /|vl + Ky)\ 

2 2 V 2 / 

_ \a\ + 1(a) - 1 + |0| + / (# - 1 - ( \a\ + \P\) - (1(a) + /(#> - 1) 1 

2 

Since iV e Z, we have iV ^ 0, as required, 
iii): Here s 4- / > 0 and |y| + /(y) is odd, so 

TV = s + / + 

3 = - + 
2 

«!+ / (« ) | + [Ij8|+/Q8)| _ / M + / ( y ) - i \ 

+ r k l + / ( a ) 1 + rij81 + /Q8)1 _ /la|H-|jSl+/(a) + /Q8)\ 

«!+/(«)] _ / M + / ( « ) \ + [lj8|+/QS)1 _ /lj81 + /(jS)\ 

2 \ 2 / \ 2 / 2 

But TV e Z, so TV i^ 1, as required. 
This completes the proof of (A). 

Proof of 4.6 i). This is immediate from (A) since terms da ® d^ when 
a e î w" orj8 G î w" have integer coefficients by part ii) of (A). 

SUBLEMMA (B). IfOx<E Z for all \ e ^ ant/ 

A ( 2 MM ^ D® D®Z, 

then 6X e 2Z/or A// A G ^ - ^ o d d . 

Proof. Fix À G ,@w" — i^° , so À has a positive even number of even 
parts. Let 2k be the largest even entry of X. If À = (2k) U ju, then the 
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1 . 
coefficient of d2k ® d^ in Adx is ~> s i n c e 

[W + /(*)] + [2fc+ l l + H/il + /(M)| = _ j 

It suffices to prove that for all y ^ 3n with y ¥= À, the coefficient of 
^2£ ® ^ i n A<afy i

s i n Z. Applying (A) we need only consider the case where 
o^= a = (2k), T = ft = ji and y e 3}£. But since y ¥* X, y must be ju, with 
2A: added to one entry. Thus y e ^ , and this case does not arise. 

Proof of 4.6 iii). 

AD c Z)' ® D' ® - Z + D 0 D 0 Z , 

so 

A(2D) aD'®D'®Z + D®D®2Z<zD®D 

and the image of A(2D) in D ® D/D' (2) D' is contained in 

2(D ® DID' ® D'\ 

Thus 2D c P\ as required. 

Now let g G P'. By definition of P\ 

Ag <E D® D®Z, 

so, using (B), for some 0X e Z, 

g - 2 M x (mod 2D). 

We proceed in three steps to show g = d2l or/?2/-M> if S is homogeneous 
and non-zero. 

Step I. If À has more than one odd part, then 0X e 2Z. TO see this, 
proceed by contradiction. For those X where it fails, choose one whose 
smallest odd part is largest, and call this smallest odd part 2/ + 1. 
Write 

X = (2/ + 1) U p. 

The coefficient of rf2/+i ® ^3 i n &dx i s *> anc* 

4/+1 ® ^ G ^ " ® D-
We therefore need only show that for all y e. 3)^ U i^° with y ^ À , 
either the coefficient of J2/+i ® <̂g in Ady is even, or else 6y is even. Using 
(A) iii), with a = a = (2/ -f 1), we have y equal to r with 2/ + 1 added to 
one part. But T ¥= /? gives 
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y = (2m + 2/ + 1) U S, T = (2m) U 8 

s o T G ^ , a contradiction. So T = /? and Y is /? with 2/ + 1 added to one of 
its parts. Since 

Y e ^ ; u ^ o d d , 

that part must be the unique even part in /?. Thus 

Y = (2m + 2/ + 1) U 8 

where 

P = (2m) U 8 and a = (2/ + 1, 2m) U 8, 

and 8 has only odd parts larger than 2/ + 1. But now y ^ @° has 
smallest odd part larger than 2/ 4- 1 and more than 1 odd part and so 0y is 
even. 

Step II. If X has at most one odd part, but more than one even part, 
then 0X e 2Z. To see this, let 2/ be the smallest even part of X, with 
X = (21) U /}. The coefficient of d2l ® dp in Adx is 1, and 

d2l®dp^D® D\ 

so it suffices to show that if Y e ^ U £&° has at most one odd part 
and y ¥= \, then the coefficient of d2l ® do in Ady is even. Taking 
a = (11) in (A) hi), we are left with the case where Y is fi with 2/ added to 
one part. But then 

Y £ % U ^ o d d . 

Step III. We now know that (P'/2D)n is spanned by the image of 

{dx:X has at most one odd part and one even part}. 

If n = 2/, this leaves only d2l as required. If n = 2/ + 1, we must show 
that 

/ 

^27+1 + 2 ^ 2 / + l - , 4 ^ P ' 
i = l 

implies 07 is odd for ally, since/?2/+i n a s this form mod 2. But this follows 
by applying A to the above element and considering the coefficient of 
dj ® d2l+x_j. This completes the proof of 4.6 iii). 

Proof of A.6 ii). A tedious combinatorial proof similar to the one above 
may be given. However we sketch a better approach, partly to indicate the 
kind of proof we would have preferred to have found for 4.6 iii). 

Let A = Z[ex(x), e2(x), . . . ] be the ring of stable symmetric polynomials 
in a "potential infinity" of variables x, where e(x) is the j t h elementary 
symmetric polynomial. A has basis {S(7T):TT e ^ } where (̂77) is the 
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monomial symmetric function corresponding to 77. Let / be the ideal 
generated by the subring of polynomials which are symmetric in the 
squares of the variables x. Then / is generated as an ideal by 
foQc2), e2(x^\ . . . } and 

ek(^) = el(x) - 2ek + ](x)ek_l(x) 

+ 2ek + l(x)ek-2(x) ~ ' • ' — 2e2kW' 

Thus A/1 has the same structure as B, namely 

Z [ g „ g 2 . . . ]  

(4 = 2ek + \ek-\ - 2 . . . ± 2e2k)' 
Under the isomorphism B —> A/1 sending bk to ek our coproduct on 
B ® Z^q) corresponds to the canonical coproduct on A 

V i+j = k ' 

for which it is well known that 

s(w) i-> 2 s(a) ® s(#) 

(see [5], on which this proof is modelled). Furthermore, since for all 77, 

S(ir) = s(7Tev)s(7Tod)mod Span{s(À):#Àe v < #77e v}, 

where 77ev consists of the even parts of 77, and 770 of its odd parts, it follows 
that 

(5(77) + I:TT G ^ o d d } is a basis for A / / . 

But in the coproduct for (A/I) ® Z/q, 

{S(TT) 4- / H^ 2 (•*(«) + / ) ® W#) 4- / ) . 

But the term (s(a) + I) ® (sfi 4- / ) occurs only for 77 = a U /?, and the 
only 77 for which 

[ a U / ? = 77=>a = <J>or/? = <J>] 

is 77 = (21 4- 1) for some /. Thus the primitives in (A/1) ® Z( ^ are spanned 
by 

{$(2/ 4- 1):/ è 0}. 

The result for B Q Z/q now follows, since 5(2/ 4- 1) corresponds to 
Pu+\ u n der the isomorphism. (This last statement needn't be checked, 
since all we needed to prove was that 

Prim„(£ ® Z/q) 
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was a cyclic module and zero for n even, knowing already that/>2/+i *s 

primitive and indivisible in B ® Z( ).) 

5. Clifford modules. We have yet to exhibit a single "negative" 
representation (although they obviously exist for any ^-object). This is 
remedied here. Sufficiently many are produced to give the required 
generators h^ for H in 3.4. 

Let R^ have a positive definite form g with orthonormal basis ex, . . . , ek 

(the standard ones, if desired). Denote by CL(k) the real Clifford algebra 
of the negative definite form — g[l]. Then CL{k) has R-basis 

{eheh...eir:r^0,l ë /, < i2 .. . ^ k), 

with multiplication determined by 

ex-, = — 1 and efij = ~efi for j ^ /. 

We have CL(k) = CL0(k) @ CLx(k) is a Z/2-graded algebra, where the 
above basis element is in CL-(k) if and only if r = y(mod 2). 

We shall find a subgroup of invertibles in CL(n — 1) which is 
isomorphic to 2W, and use this to convert each CL(n — l)-module into 
2^-representation, which will be "negative" since z corresponds to — 1 in 
CL(n — 1). The idea is fairly obvious: 2„ has an irreducible faithful 
representation o n R " " ; namely, the non-trivial summand in the standard 
permutation representation. This gives a map 

2 w *0( / i - 1), 

which lifts to 2n -» Pin(w - 1). 

But Pin(« — 1) c CL(n — 1)*, as required. Making suitable choices, a 
formula is 

Since t\ G R"_ 1 c CLx(n — 1) and the generators ti e (2„) l5 we see 
that 

An = (2w)o embeds in CL0(n — 1), and 

(2w)j embeds in CLx(n — 1). 

Note that {t\, . . . , t'n_x} is a basis for Rw_1 , and so it generates CL(n — 1) 
as an algebra. Thus we have proved all but the last part of the following. 
(See also [1] and [7].) 

PROPOSITION 5.1. There is an embedding 

|„:2„ -» CL(n - 1)* 
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of groups which preserves Z/2-grading and whose image generates 
CL(n — 1) as an algebra. Furthermore, there is an isometric embedding 

*a,b' 
>a + b-2 R a + b-\ 

whose induced Clifford algebra morphismfits into the following commutative 
diagram: 

(x, y) e 2 a x 2* 
Kb 

* H 

& O iby e CL(a - 1) ® CL(6 - 1)- »CL(a + 6 2) • C L ( a + 6 - 1 ) 

/fer£ 0 w //ze graded tensor product of algebras, and y is the standard 
isomorphism 

1 h-> e- and 1 ,[!]• «7" ' c < i - l + y t 

Proof To construct /c, note that the diagram need only be checked on 
generators (tt, 1) and (1, *•). The map y is essentially CL(8) for the 
orthogonal decomposition 

i f l - i ,/>-! Ra+/?~2; (*,, 0) H> *,-; ( 0 , ^ ) ^ ^ _ 1 + 7 , 

We find that /coô must satisfy 

(e/9 0) i-> ef. and (0,tj)t-*t'a+j. 

These formulae do in fact give an isometric embedding, so we compose 
with S~l to obtain the required K. 

Now let Mi denote the Grothendieck group of finitely generated 
complex modules over CL(i), and GMt the one generated by Z/2-
graded complex modules. There are operations rev, ass, m and 77 relating 
these just as in the group representation case, and in fact 

®o (GM„ © M„) 

has the structure of a Z/2 X N-algebra, in fact a ^-object. We don't really 
use these last facts, so they will be treated elsewhere in detail. We'll use 
only information essentially contained in [1], but express it using a 
convenient notation dependent on the structure of the above ring. That 
structure is in fact 
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Z[/>, m]/(p3 = 2p) 

where p e M0 and m G MX . Thus 

GM2j = Z © Z with generators ra2-7, rra2y 

M2/ + i = Z © Z with generators m2j + 1, rm2 7 + 1 

GM2j+\ = Z with generator/?m 7 

M21 = Z with generator pm À 

Here r = p — 1. These generators actually represent modules, where 
m27 + 1, rra2y + 1, and /?ra27 have dimension 2y, whereas the graded modules 
ra2-7 and rm2j have graded parts each of dimension 2J~~\ but the graded 
parts of pm 7 have dimension V. 

We need to calculate the effect of restriction along CL(Kah), giving 
maps 

Ma + b-\ ^ M a + b-2 a n d 

GMa + b~\ ^ G M a + b-2-

Suppose given an isometric embedding (V, q) <+ (V\ q') of inner 
product spaces. When V = V, this is given by conjugation with an 
element of CL(V\ q'), and so induces the identity on M[CL(V\ q')]. 
On GM[CL(V, q')] it induces either the identity or multiplication by 
r (i.e., reversing), depending on whether the element is in CL0 or CLX i.e., 
whether the isometry of (V, q') preserves orientation or not. 

Now consider the case where dim V < dim V. Any two isometric 
embeddings differ by an orientation preserving isometry of (V\ q'). By the 
previous paragraph they have the same effect on both M and GM. Thus we 
can replace K by the standard inclusion 

j^a + fc-2 c£ j^a + b-l 

and its effect has already been calculated in [1] (or follows very easily by 
their methods in cases where it is not made explicit). We state the 
result. 

PROPOSITION 5.2. Any isometric embedding R'~ <=• Rz has the following 
effect on modules: 

VÏJ. 

1; pm2j\—^(\ + r)m2j~{ 

i = 2/ + 1: pmljJt\ ^ ( 1 + r)m2j; 
TTTTTTTm-rr-

In effect, "replace one copy of m by p"'. 
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In fact this proposition can also be proved directly by counting 
dimensions and taking note of the effects of rev and ass. 

6. How to get a Hopf algebra. Let ^ be the subcategory of ^consisting 
of all ^-objects and those ^-maps which are injective as functions. Here we 
give a slightly abstract version of how functors on <&' can give graded 
algebras and Hopf algebras when applied to the objects 2„<T). This is 
analogous to the classical case of ordinary groups and 2„, but slightly 
more complicated. In the next section we apply the considerations below 
to several different functors, so this abstractness is merely for efficiency. 
First we state some standing assumptions, then make a list of labelled 
hypotheses which will occur in different combinations in the following 
propositions. 

Suppose given two functors (both called W) from <&' to Z/2-graded 
abelian groups. These functors are to agree on objects (denoted 

o i-> wa = w(0)v e w(l)ai 

but one of them is contravariant (denoted /? 
covariant (denoted /? i—» ft*). 

Suppose also given natural transformations 

/?*), while the other is 

io.WA ® WSl-> W(A X Q) 

p:WA -> WA 

(natural for both the contra- and covariant versions). Here the tensor 
product has the usual grading: 

(W® W){0) = W(0) ® W{0) + W(]) ® W{1) 

(W® W){X) = W{0) ® W(l) + W{1) ® W{0\ 

Assume that p is an involution: p o p = 1. Assume finally that the 
following diagram is commutative: 

WA ® Wti—%*W{A X &)+-

p ® 1 

WA ® W&—%*W(A X £2)-*^-

WA® WQ, 

1 ® p 

WA ® Wti 

Now fix a finite group T, and for the rest of this section denote 2^(T) 
by r„. The first two "hypotheses" are as follows: 

(UN) There exists 1 e *F (0)ro such that 

</>*co(l ® x) = x = <t>M* ® 1) for all x <E W(TJ), ally. 

(Here <£ is <f>0 • and <fy0 from 1.7.) 
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(AS) For all A, A', A" in ^ the following commutes 

WK ® WM ® Wk" ** ® 1 > W(A X A) ® Wk" 

1 ® <o 

WA® W(N X A")-

W[ (A X A) X A"] 

.PT[A X (A X A")] 

PROPOSITION 6.1. /H order that © z ^ 0 ^ ^ ^ a r*n8 {graded over 
Z/2 X N #«d associative with 1) w«<ier f/ze multiplication 

wYt ® wTj -> ^(rz. x r7) 4 ^ r / + y , 

/f suffices that (UN) W (AS) /zoW. 

Proof. Obviously we get a 1 by (UN), and associativity is proved by the 
following diagram: 

wYt 0 wTj ® wr* — " 0 1 > H/(r, x ry) ® w/r̂  —^* ® 1 » n/r,+7® *rr* 

1 ® w (AS) ^[(r, x r7) x iv 

(naturality) 

(<t> X 1)* 

wr,. ® H/(r7 x r^)-

1 ® </>* 

H r̂ ® H r̂ . / + * • 

^(r,+/ x r,) 

• w W x ( i } x r , ) ] [ 1 8 i i i ) ] 

(naturality) I A ^ 

^W(Tt X T i + , ) Î* ^WTl 

+j+k 

The next hypotheses are: 
(IS) co is an isomorphism; 
(IN) If ft is a bijective ^-map, then £* = /3~l. 

PROPOSITION 6.2. With assumptions (UN), (AS), (IS) and (IN), it follows 
that ©;^o WTt is a graded coalgebra (coassociative with counit) under the 
comultiplication 

4> CO 

\j-WTi+j - W{Yt X I}) - WT, 0 WTj. 
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Proof. Just reverse all arrows in 6.1, replacing <£* by <j>* and o by 

The last five hypotheses are 
(C)* The following diagram commutes 

W&A ® W<*>Q - i W « + * > ( A X 12) 

T * O P
(S 

y™x W<*>Q ® ^ « A - ^ ^ « + 5 > ( S 2 X A) 

(C)* Replace T* by T* in (C)*. 
(S) The map A —» A given by JC ̂  z5(*lx induces 

pe:P^ (€ )A-^ W(€)A 

on both functors, covariant and contravariant. 
(IA) For all w e A, the inner automorphism L(W) induces 

p ^ ) ( € + l ) : ^ ( € ) A _ ^ j ^ ( € ) A 

on both functors. 
(M) Mackey's theorem holds for W in the following sense: In the 

statement of 2.16, replace GR~ by W^\ replace rev by p 1 + € , and re­
interpret a*, a*, etc. (We are assuming this for both e = 0 and c = 1.) 

PROPOSITION 6.3. (IN) =* [ ( Q * <^ (C)*]. 

Proof. Since T O T = 1, and T* O T* = 1 by (IN), we have T* = T*. 

Aote. We could have similarly divided both (S) and (IA) into covariant 
and contravariant parts, but enough is enough. 

PROPOSITION 6.4. (M) =^> (IN). 

Proof In (M) take all groups equal, gA = 1, a = ft and aA = ftA = 1. 
We get ft* o ft* = 1. But ft* and /?* are bijective. 

PROPOSITION 6.5. (M) =» (IA). 

Proof In (M), take all groups equal, gA = w, aA = /?A = /? = 1 and 
a = t(w). We get 

i(w)*U(x) = p5(w)(€ + 1 )Ul*(x) 

or 

x 09 y 
A 
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The argument for L(W)* is the same, except a = 1, ft = i(w). 
(Alternatively, use 6.4.) 

COROLLARY 6.6 If (IA) and (S) both hold, then for 

*a,b-^a + b ~^ ^a + b 

as in 1.8 ii), we have 

&J, = SaJ» = Pûh--W{€) - " Wi€)f°r £ = 0 and L 

Proof. The argument is exactly the same as given in the proof of 2.14. 

PROPOSITION 6.7. Assuming (UN), (AS), (IA), (S), (C)*, the algebra of 
6.1 is pseudo-commutative in that, for all x e W^Tt and y e W T-, we 

xy = pa+Hyx). 

Proof Use the diagram 

to 

W^Tt® W{b)Yj • H / ( f + ô ) ( i ; X Yj) 1* +»W{t+d)Ti+j 

,t~<s eô [1-8 ii) and e6 v 
(C)* | T * ° ^ natLlhyofp] \ P ° ^ 

H/(5)I;<S> n/(e)i; '« » t^ + 5 Vr. x i;.) ^ • w / ( £ + 5 ) ç + 7 

««J note that p€Ô o fz ^ = pe8^ij by 6.6. 

PROPOSITION 6.8. Assuming (UN), (AS), (IS), (IA), (IN), (5), (C)*, f/je 
coalgebra of 6.2 satisfies the pseudo-co-commutative condition: 

AMUS)(z) = cAum,^P^s(z) 

for all z e IF ( € + ^ + / ' wnere ^(ie)(/8) *s A followed by projection to 
W{t)Ti ® W(8)Tr 

Proof Reverse the arrows in 6.7. 

THEOREM 6.9. Assume (UN), (AS), (IS), (S), ( Q * and (M). Then the 
algebra-co-algebra © / ^ 0 ^ 1 / becomes a Hopf algebra which satisfies 
the commutativity conditions of 6.1 and 6.8. 

Proof We get (C)*, (IA), and (IN) for free by 6.3, 6.4 and 6.5. All that 
remains is to prove that A is an algebra homomorphism. Note that in 
defining the multiplication in the tensor product algebra of two algebras 
in this category of Z/2 X N-graded algebras which are pseudo-
commutative, we introduce the appropriate "sign", namely p'y + e when 
interchanging the two middle factors; that is 

(xx®x2){yx ®y2):= P ^ W I ® x2y2) 
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where 

x2 e W^ and yx e W^Tj. 

The homomorphism property is equality of the outside arrows in the 
commutative diagram below, where we are given 

a j r b = k = c + d 

e -f 8 = y - €r + 5' 

and the direct sums J_L are over all matrices 

Mi 72 J 

with non-negative integer entries, row sums I 1 and column sums (c, d), 

and in two cases also over all matrices 

Jf= 8, S J '1 U 2 J 

with Z/2-entries, row sums ( . ) and column sums (e', ô'). (Here and 

below we write W^ as j*L). 

Lu 09 to 

wr. 0 n/i\ L^(r„ x r,2) ® w(Th x rJ2) 

(naturality) 

(*) 
^(rfl x rA)- '2 y'l 72 ' 

(M) and (1.9) 

«1 «2 ^1 &> 

•li^r,.. 0 wr,.., 0 î r,, 0 n?rrt 

y'2 7"l+«2«»i 1 ® or ® 1 

c, 5, e2
 ô2 

11 w/,. ® wr... ® ^r... ® wrn 

lpnJ2 o (1 X T X 1)„ 

lia: 
lw{Yn x ryi x r,2 x ry2) i^(rM x r;1) ® w(r/2 x r/2) 

mrk) 

(naturality) 

-*»W{YC X Td) • H T , . ® H/r , 

To apply (M) and (1.9) for the bot tom left square, we must alter 
the diagram in 1.9, replacing the bot tom arrow by just *(w), and 
composing 1 X T X 1 on the top right with 

(x ^ zjM(x) • JC). 
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The new diagram still commutes, and (M) is now applicable. We get a 
factor 

from the Mackey formula assumed in (M). But we have 

[x h-> ^x]* = p€ on W(€) by (S), 

so 

[X h-> Z^^x]* = p '2J i (€ i+c 2 + « ,+« 2 ) 

here. Thus the "s ign" here is p'2Jl, as required. The top right square 
commutes as follows, (where here T1?. . . , T4 may be any ^-objects): 

«I e2 °1 °2 

WYX ® wr2 ® wr3 ® ^ r 4 -
o,-ro2 A 

f l + f 2 A 51 ^2 

H/ (r, x r2) ® w/r3 ® **r4 

£, € , + Ô 2 A J ® l 

- • w (r, x r2) ® w (r3 x r4> 

(AS) 

A A A A A 

w\x ® w r(r2 x r3) ® wvA • w(r, x r2 x r3) ® HT4 —-•^(r, x r2 x r3 x r4) 

HT, ® H/(T3 X T2) ® WT4 • 

5 (T„ O pf2°l) ® 1 (1 X T)# O p t 2°' ® 1 (1 X T X l ) , o p ' ^ 

« • H/(T, x r3 x r2)® wvA—•n/(r1 x r3 x r2 x r4) 

(same as top third with 
T2, T3 interchanged) 

~W(YX X r3) ® W{\\ X r4) w\\ ® wr3 ® n/r2 ® HT4 

The squares in the middle commute by naturali ty and by the diagram 
relating to and p given at the beginning. We have included only sufficient 
c's and S's to make the diagram unambiguous. 

7. Proof of 3.4. We must verify that H is a ^-object and that (I) to (VII) 
hold, with definitions as given in the statement of 3.4. 

To prove H is a ^-object, take the functor W in Section 6 to be 
GR~ 0 FT, that is W{0) = GR~, W{1) = R" . Take p to be rev on fK(0), 
and ass on W^ \ To make the product defined in 3.4 compatible with that 
in 6.1, we take cc to be the following: 

0 : ^ ( 0 ) ® ^ ( 0 ) ^ w(0). 

[xx| : j pU) ® w{X) -> W{0)\ 
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and the fourth component of co will be the composite 

[xl 
w(\) ® w(0) °> w(0) 0 W{\) __? w{\) T_X wV)m 

Finally take 

1 := [ {C, 0} ] G ^ ( 0 ) ( r 0 ) = GR-(2 0 <r> ) = GR-(2o). 

Here 2 0 = {1, z} and z acts as — 1 on C. Let r = rev(l) and/? = 77(1). 
Note first that (Q* holds for € = 3 = 0 by 2.22 i), for c - S - 1 by 

2.22 iv) and for e = 0, 8 = 1 or 6 = 1,8 = 0 tautologically. Verification of 
(UN) is trivial from the definition of 1. The proof of (AS) divides into 
eight cases by restricting to 

W{€l)A ® W(t2)A' ® J ^ H V ' . 

The four cases (eh c2, e3) = (0, 0, 0), (1, 0, 0,), (1, 1, 0) and (1, 1, 1) are 
exactly the four parts of 2.23. But the other four cases follow from these 
four, as discussed below. 

First of all we have the formulae 

rev(jcy) — (rev x)y = x rev y (x, y G W^ ') 

rev(xy) = (ass x)y =x assy (x, y G W^ ') 

ass(jcy) = (XQ\ x)y = x(ass y) (x G W(0\ y G W(])) 

7r(xy) = x(7ry) = (<nx)y (x G W{0\ y G W(0)) 

i)(xy) = X7](y) = (7Tx)y (x G W{0\ y G W{])). 

These are immediate using the definition of the multiplication, naturality 
and 2.22 ii), iv), iii). 

It now follows that 

rx = xr = rev(x) (x G W(0)) 
rx = xr = ass(x) (x G W^) 
px = xp = nix) (x G Wi0)) 
pX = xp = 7](X) (X G W{X)) 

verifying that last statement of 3.4. To prove these, for example 

rev(x) = rev(l • x) = (rev l)x = rx for x G W^°\ 

and similarly for the others. 
Next we get p2 = 1 + r, pr = rp = p and p3 = 2p. The first since 

P2 = V(P) = W(l) = (1) + rev(l) = 1 + r. 

Then 
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pr = 7r(r) = 7r(lrev) = 77(1) =p = (77l)ass - rp, 

and 

p3 = p(\ + r) = p + pr = p + p = 2p. 

The verification of the four remaining cases of (AS) can now be done, 
but it is easier to see how to deduce directly the four cases of associativity 
for the multiplication that these would be used to deduce. For example, in 
the case (cl9 c2, €3) = (0, 1, 1), with 

x G W(0)Ti9 y e W(l)Tj9 z e W{l)Tk, 

we have 

(xy)z = (riJyx)z = ri\{yx)z\ 

= rl^^k[(z)(yx)] = r ^ + ^ [ ( z y ) * ] 

= rv+'*+;V*[<.yz)jc] = r'U+/c)[(.yz)x] 

= x(yz)9 

as required. We have used only cases of (AS) already proved, the 
pseudo-commutativity which follows from (C)*, and the fact that r can be 
moved around at will because of the previous identities. The other three 
cases are similar manipulations. 

It remains to verify (I) to (VII). 
(I) We can take the required bases to be 

GIRREP"(2„<r> ) and IRREP~(2„<T> ), 

by 2.10 with 12 = 2W(T), as long as we verify that the integers \i and v in 
2.10 are #0"(w, S) and #3f\n9 S) respectively, with S = Con(T). Using 
the numerical equality of # IRREP and #Con, this goes as follows: 

Since 

R(2„<r> ) = R+(2„<r> ) e R~(2„<r> ), and 

R+(2„<r>)sR(2„<r>), 

the conjugacy class count for 2 w ( r ) in 1.13 yields 

2v 4- /i = 2#2\n9 S) + # ^ " ( « , S). 

Using ad hoc arguments for n = 0 and 1 (where An = 2W), and the 
isomorphism 

GR(2„<r> ) = R(An(T) ) for n ^ 2 of 2.12, 

together with the conjugacy class count of An(T) in 1.13, we obtain 

„ + 2/i = #@'(n, S) + 2#@"(n9 S), 

as required. 
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Next we must verify (II). To construct V, we again use Section 6, but 
this time let 

W{0) = GR~/{x:xTey = x}, W{]) = R~/{y:yâSS = y). 

This is exactly the functor Woi 2.26, and for œ we use \E14 as defined there. 
Since S4 is just passing to the quotient with the previous œ used to define 
multiplication in H, verifications of (UN) and (AS) are immediate. Define 
p here to be multiplication by — 1. Since [r] = [ — 1] in EH, the diagram 
connecting <o and p and hypothesis (C)* follow from the fact that they held 
in the previous application of Section 6. To get a Hopf algebra, apply 6.9. 
We must still verify (IS), (S) and (M). But (IS) is given by 2.26. (S) is 
immediate, since [x M> zs^x]* is ass on R~, and is the identity on GR~ 
because Z/2-gradable representations are self-associate. Finally, using the 
classical Mackey theorem for R~ (with no "sign" in the formula) and using 
2.16 for GR~ (where the "sign" rev occurs), then passing to the quotient, 
we get (M) for this choice of W. 

To complete the verification of (II) we make yet another application of 
Section 6. Here we take W^ = R~a 0 Q as defined in 2.27, and take 
W^ = 0, so the Z/2-grading here is more apparent than real. Take co to 
be IEI3 from 2.27, and p = 1. The hypotheses of 6.9 are now easy to verify. 
(IS) is given by 2.27. For (UN), we take " 1 " to be/? = 7r(l), since 

4>*K1) S 3 7T(X) ] = 4>*77(1 El, je) = 7TX. 

For [E^, (AS) follows immediately from (AS) for E^ given by 2.23 i). (S) is 
clear, since, by definition, ass is the identity on R^. (C)* holds for 
o) = [1)3, p = 1 since we have only e = S = 0 to consider, and since (C)* 
holds in that case for co = \E$X. Finally (M) holds by the ordinary Mackey 
theorem for (ungraded) representations. 

Next we must check hypothesis (III). But this is given by the third 
sentence of Corollary 2.27, in view of the definition of A and the choice 
of {z^} in (I). 

For hypothesis (IV), we use the modules in Section 5 to define the 
elements h^\ Pick some bijective function (recalling S = Con T) 

S - > I R R E P r ; si-*[Vs]. 

Let N2r be a module representing m2r~l e Mlr_x, and let 
{^2H-i> M H - I ) be a graded module representing m2r e GM2r Using the 
embeddings 

i:%*CL(i- 1), 

we get an action of 2 2 r on N2r and of 2 2 r + ] on {N^/+], N\/+i). Finally, 
let 

Â£> = [Vf2r 0 N2r] e R~(22r <r> ) = Hiar 
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e G R i S ^ K r » » ^ , 

Here the action of 22r<r> on vf2r ® 7V2r is 

( g l , . . . , g 2 r ; s)(vx ® ...®v2r®n) 

= felV^)->l) ® • • • ® ( f e ^ r ^ r ) ® is ' /I). 

The formula for the action of 2 2 r + 1 ( r ) on 

A®(2r+1) 7(0) 
® [ ^ V l © ^ + U rO) 

9a,bn a + b 

is the same, with 2r replaced by 2r 4- 1. In this case, we see that the action 
respects the Z/2-grading. In both cases, it is easily checked that we have a 
well defined linear action. To check the required formulae for V and A 
given in (IV) one simply runs through the definitions of these coproducts, 
and uses the following result. 

PROPOSITION 7.1. If a > 0 and b > 0, we have 

T]h(
a
s) \S\X his) (a even, b odd) 

r)ha IE12 hjf' (a even, b even) 

7r(h^s) IEIJ h^) {a odd, b odd). 

Proof. In the case (a, b) = (2z, 2/), we must show that, when restricted 
to 

22xr> x 22y<r>, 
F®(2/+2/) 0 Nii+2j i s isomorphic to 

V(V®2l®N2l)®2(V®2J®N2J). 

The latter is 

[Vf2i ® (N2i 0 JV£S) ] (El2 (Vflj ® N2j). 

The question thus becomes whether N2i+2j restricted to 22 / X 22y- is iso­
morphic to r\N2i El 2 N2: This follows immediately by using 5.2 to follow 
the motion around the diagram below of the elements m2i + y-{ and 

pmr m 
2 / -1 

R (22l+2,) 

from the bottom corners: 
0 , 

A/[CL(2i + 2/ - 1) ] - *M[CL(2i + 2/ - 2) ] -

GR-(22|.)®R"(22 /.) 

^A/[CL(2/ - 1 )® CL(2j - 1) ] ^ _ G M [ C L ( 2 i - 1 ) 0 A/[CL(2/ - 1) ] 
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The left half of the diagram is induced by the diagram in 5.1. The bottom 
right horizontal map is the tensor product of Clifford modules with the 
same action formula as for Œ02. 

The other two formulae are proved in an exactly similar way. The case 
(a, b) = (2/, 2/ + 1) reduces to showing by 5.1 and 5.2 that 

l 7 V2i+2/+l» YV2/ + 2 / + l ) 

when restricted to 2 2 / X 2 2 + 1 , becomes isomorphic to 

The remaining case (a, b) = (2/ + 1,2/— 1) reduces to using 5.1 and 5.2 
to show that N2i+2j>

 w n e n restricted to 2 2 / + 1 X 22j-\, becomes iso­
morphic to 

The verification of (V) for H is immediate. One uses the usual inner 
product of representations on Hlt, and the inner product of graded 
representations constructed in 2.5 and 2.6 on H0 .. The formula 

(rx9 ry) = (x, y) 

comes from the obvious 

HOMfi(F, W) = HOM f i(Fass, WâSS) 

for representations, and 

GHOMf i(F, W) = GHOM f i(F r e v , Wvtw) 

for graded representations. 
The verification of (VI) is an application of Frobenius reciprocity. If 

x G R;a(%(T)),y G R-(2 ,<r>) 

and 

z e R-(2,+y<r> ) 

we have 

(xoy, z) = (^j^x^yX z> 

= (x Eï3 y, *#) = «x 0 y, E^1 < *̂z» 

(x o y, z> = <JC ®y9 A ^ z » 

as required. The second last equality is the last sentence of 2.27. 
Finally, to verify (VII), we must show that the h^ are all irreducible, 

with 
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In the case where T is the trivial group, this is immediate from the fact in 
5.1 that the image of 2W in CL(n — 1) generates CL(n — 1) as an algebra, 
so that irreducible modules remain irreducible on restriction to 2W, and 
non-isomorphic pairs of modules remain non-isomorphic. Thus we have 

H O M ^ (JV2„ N2i) = C 

HOM22<JV2;, Ntf*) = 0 

GHOM 2 i + ] ( {N^+l, N$li), {N$>+1, *£>.,} ) = C 

and 

GHOM22i+i(N^\(N^T)n = 0. 

The case of general T now goes as follows: First take n = 2i. To show 

(h£\ rhg) = 0: 
On restriction to 22 / c 22/<T), 

h^ = [V?2'® N2,] 

goes to a direct sum of (dim Vs)
2t copies of N2i, whereas rh2^ goes to 

copies of N2/
ss, and N2i S£ A^/S from above (and both are irreducible). 

Thus 

dim HOMl2i(r)(Vf2' 0 ^V2„ V?2' 0 Nft) 

S dim H O M ^ K f 2' 0 N2l\2 , V?2' 0 N?,\) = 0. 

To show 

<*<;>, Kg) = s,„ 
we restrict instead to 

r2/ c 22;<r>. 

Note that Vs
 l ® N2i, on restriction to T2z, goes to dim N2j copies of the 

irreducible representation Vs
 l of T2/. The case s ¥= t now gives zero as 

required, since Vs
 l 3£ Vt

 l as representations of T2z. For the case s = /, 
we get 

HOMS2i<r )[Ff2 ' 0 N2i, vf2i 0 N2i) 

= HOMr2,[Ff2', HOMl2(N2l, vf2' 0 N2,\t) ] = Z (say), 

by adjointness. But Vs is irreducible, and 

HOM2iiN2„ Vf2' 0 N2l\%2) 

has dimension at most (in fact, equal to) (dim Vs)
2t since N2i is irreducible. 

Thus Z has dimension at most one, as required. 
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The case general T with n = 2/ + 1 proceeds in exactly analogous 
fashion, with HOM replaced by GHOM and ass by rev. 

This completes the proof of 3.4. 

8. Inner products and irreducibles. We now have the isomorphism 
H S = H. We shall identify these groups with each other, and refer to the 
ring generators as h^\ Also abbreviate D(HS) = DH to D. It has basis 
{d^} and elements 

K - *4. s - [ *±n 
In most of this section we work in D, and shall therefore from here 
until the proof of 8.5 write its multiplication (called o previously) as 
juxtaposition. 

The identity 

(xy, z> = <JC ® y, A z > 

plus the formula 

<#>,#>> = 2"+ ,* f / 

allow one to calculate completely the inner product in D. In fact, when T 
is trivial, a calculation analogous to [3, 5.7] yields 

/u I, \ _ 9" V 9 #(non-zero entries of M) 

where the summation is over matrices M with non-negative integer entries, 
row sums a, and column sums /?, and where \a\ = |/?| = n. A calculation 
analogous to [3, 7.6] will yield a specific and even less enlightening 
formula for (b^9 be) in the case of general S. One then gets (d^, de) by 
dividing by a power of 2. When combined with 8.6 below, one can 
compute inner products for the basis of H in 4.2. In principle, one then 
has 

IRREP -(2„<r> ) and GIRREP"(2„<T> ), 

since they are characterized up to sign by being orthonormal bases. In 
practice, it turns out to be better to first determine the subset 

IRREP"(2„<r> ) 

of D consisting of those self-associates which are irreducible with respect 
to the monoid of self-associate representations. Its elements are those 
c e IRREP" for which cass - c, plus the elements d + dass where 

J a s s ^ d e I R R E P - . 

These elements are characterized up to sign as forming an orthogonal 
basis all of whose elements e satisfy 

https://doi.org/10.4153/CJM-1986-070-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-070-1


1450 P. N. HOFFMAN AND J. F. HUMPHREYS 

(e, e) = either 1 or 2. 

This is clear from the fact that for integers at and /}• we have: 

2 a] + 2 2 pj = 1 implies that all jfy - 0 

whereas 

az = 0 for all i except one *0 for which a • = 1 ; 

and 

2 a ? + 2 2 i 8 ? = 2 gives one j8 = 1, 

all other a and /? = 0. 
Now let us define certain elements /?, g and f oî D (the last being in 

D ® Q until we have proved "integrality"). 

Definition 8.1. For Î// e ^ o d d ( « , 5), let 

A/, = I I I I i ^ + i (defined before 4.8). 

For a e ^ , let b^ denote that b^ where <j> maps s to a, all other t to the 
empty partition. 

Define g^ inductively on 1(a): 

g ^ = ^ ; i f / > 7 , 

g f = bf - 2 ^ , , , _ , + 2bflXj-2 - • • • + (-WUtflj. 

If m > 1 is odd, define 

és) . = b{s)^s) • - b(s)s(s) 

+ . . . + ^>g/S) ,. . 
lm &lX,...,lm-\ 

If m > 2 is even, define 

*.<*> • = cr.<*.UJ> . - a( J) eW 
o / j , . . . , / m < 5 ; , / 2 < 5 i 3 , . . . , z T O

 6 / l > ' 3 6 | 2 > z 4 > - - - > ' m 

+ ... +£.(5V> • 
S ' l ' m S ' 2 ' m - l " 

For £ e ^ ( S ) , let 

g<f> = 1 1 &^s)-

Let 

specializing to f^ for that <£ mapping s to a, all other t to the empty 
partition. 
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THEOREM 8.2. With S = Con T, we have 

IRREP-(2„<r> ) = {/,:* e 2>(n, S) ) . 

The proof proceeds using three lemmas: 

LEMMA 8.3. An orthonormal basis for Dn ® R is given by 

{ (2» + / %(^) )-%-4 e 0>odd(n, S) } , 

where C:0>odd(S) -» N w de/merf 6y 

?«<) = I In«i ) ) 

with 

LEMMA 8.4. In D ® D ® Q we have 

summations over $ G ^ o d d ( £ ) owd <J> G ®(S). 

LEMMA 8.5. For all <J> G 3)(S\ we have f^ G D. Furthermore 

f+ == ^ mod SpanQ{^:<£ -< 0}, 

where < is any linear order on @(n, S) which satisfies the partial order 
condition 

[ (\/s, <j>(s) ^ 0(s) ) and (3/, « 0 < #(0 ) ] => * "< ^ 

w/Y/z < denoting lexicographic order. 

Note. It follows from the proof of 8.5 that we could replace d0 by 2de 

except in the cases when <j> G Si "(S) and 0 G ®'(S\ and replace SpanQ by 
Spanz. 

The proof of 8.2 from these lemmas is straightforward. By 8.3, 8.4, and 
elementary multilinear algebra (namely: 

m m 

2 ax 0 a,- = 2 bi ® bt 
l l 

for some orthonormal basis {at} of an inner product space implies {bf} is 
also orthonormal), we see that 

{ 2 - 2 C + / ( « ) g : ^ e ^ ( „ > S ) } 
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is also an orthonormal basis for D 0 R . A quick calculation then shows 
that {f^ty ^ 3(n, S) }, a subset of D by 8.5, is an orthogonal basis 
satisfying 

f f =[\X*2»{n9S) 
\J4»J4>? \ 2 if> e ®'(n, S), 

as required. That f^ and not ( —f^)9 is a representation is clear from the 
second part of 8.5. 

Proof of 8.3. If neither x nor y is in Z>0, then 

< * * $•>+,> = 0 

by the primitivity of / ? ^ + j and the formula 

(jty, z) = < x ®j% A z > . 

In particular, if l(fi) > 1, 

An easy induction on /(/x) yields 

summation over ordered pairs (a, /?) of partitions whose union is /x. Thus, 
if \ = a0 U ft0 for non-empty a0 and /?0, we have 

- Zi (Pcto'Pa >\Pfi0>Pp >' . 

This yields by induction on |X|, that 

(*) X *v implies (p^J^) = 0. 

If À = /A, we get 

<^J). AJ)> = Hfrfio = iS c A} • <>«J,#>><>g, $>>. 

Since 

r ( « 0 U A,) = #{/J:y60 = £ c a0 U #,} • ?'(«<>) • ?(&>), 

we find by induction l(X) that 

<M , ).AJ)> = 2 | X I + / ( X )nx). 
The initial case of this induction is 

(P^+i.pf+ù = (Pill,® + O ^ + i + products) 
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= (2/ + Ï)22J+2, 

using a formula from the proof of 4.10. Finally, to do the general case, 

= (A-(n^4 .?*&)#*• 
•e 

A#S:D --> D ® D ® . . .® D ( # 5 copies) 

is the appropriate iterate of A, and ( , ) # s is the induced inner product on 
D ® . . . ® D\ continuing, 

#s 

2 ( n %i ®... ® #& $>> ®... ® i^> 
« I J U . . . Uai/c = \l/si W = l 

(where # S = k, S = { s , , . . . , ^ } ) 

a,j U . . . =\pSj 

...,>fc)
1)®...®^;)>*. 

The equations 

< / ^ , /zf >> = 0 = </*|5\ r/z|°> 

for s ¥= t imply easily that D^ is orthogonal to the ideal generated by 
U / # s Z)(0, where 

£>(*) = Q[b\s):i > 0] c D ® Q. 

Thus we get zero above as required, unless, for all /', ait = \pst and atj is 
empty for / ¥* j . In the latter case, we get 

i i 

By (*), we get zero again, as required, unless \pst = 0s ; for all /, that is, 
\p = 0. In the latter case, we get 

s s 

= 2I*I+W)f(^), 
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as required. 

Proof of 8.4. We shall violate the spirit of the rest of this paper and 
essentially quote from Schur [9] the special case of this identity when T is 
trivial, namely 

2 2 - % r f 0 ^ » = 2 2-'««!?>®«i?>. 

This maps under F ® F to precisely the identity (92) from [9], where F is 
the isomorphism 

D{s) = Q[bf\ b{{\ . . . ] h-> A ® Q 

given by 

b<f> H* q.(x). 

Here A is the ring of stable symmetric polynomials, and 

ft(*) = 2 hjtyej-jix), 

where h- (resp. ef) is the / complete (resp. elementary) symmetric 
function. The reason that F ® F maps our asserted identity to Schur's 
proven identity is that Schur's Qa(x) are defined in terms of qt(x) exactly 
as gy were defined here in terms of tff\ and further, that the odd power 
sums are the same polynomials in qt(x) that p^d are in b\s\ (Another 
proof of Schur's identity may be obtained by substituting t = — 1 in a 
general identity for Hall-Littlewood polynomials given by MacDonald 
[6, III (4.1) and III (4.4)]). 

To complete the proof for the case of general S: 

?odd(S) 

n 2H 2 -%)- ' (n^®nf) 

yP^0>°dd(S) 

= n 2 2-^) ® & 

(by the special case above) 

Proof of 8.5. First we prove, by induction downwards on the 
lexicographic order of ju, that fi e 0>n implies 
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b^ e Spmz{2l{fx)'liv)b^:v e 3n9 v â ji, l(v) ^ /<» }. 

This is vacuous for /x e ^ , taking care of the initial case n = (n) and of 
the inductive step unless /i has a repeated entry "z". In that case, writing 
/x - (z, /) U a with /(a) = /(/i) - 2, 

*?> = #W})2 - Zb^bfttfli - bU2b?l2 + . . . ± $>). 
But now apply the inductive hypothesis to the partitions (z + j,i — j) U a 
and (2/) U a to get the required result. 

Next proceed by induction on /(y) to prove 

g ^ ^ ^ ) m o d S p a n z { 2 1 + l 2 '$>: 

^ ^ J > y , /(j8) ^ /(y) }• 

This is done by direct calculation with the definition of g ^ and simple 
arguments about the integer part function f 1. 

Now we obtain 

(*) f(s) 
Jy 

i < } + 2 *r , /^ / 

where 

%y,P A *2Z 
Z 

if P G ^ or 
otherwise. 

Y G ^ 

This is obtained by dividing by V 2 ' the relation expressing g!^ in 
terms of b^\ The condition ^ G 2Z follows in those cases because 

j + p(Y) ~ /(/?)! + f/i + /QS)1 _ fn + / (Y)1 

is positive there. Furthermore, noting that 

4S) ^p2Hu for p e^„' , 

we obtain 

(**) fy] G ^ i , „ + 2 ^ for Y e ^ . 

Now 

S [frfr) !+/(»(*)) ]-[M+/(0)1 
(***) /^ = 2 - ' ^ I I 2 l n / ^ v 
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If we multiply relations (*) together as y ranges over cj>(s) for s e S we 
then obtain the second part of 8.5. The first part follows since f ^ e D 
and since I I 5 f ^ is divisible in D by the reciprocal of the power of 2 
in (***). To prove the last point, let S = {s]9 s2, . . .} with <£>(•?/) = 
y h IT/! = ni9 Kyd = h- We must show II ; /y 5 ' is divisible by 

2m-4^ j 
in D. If all ni 4- lt are even there is nothing to prove. Let N be the number 
of ni 4- lt which are odd and suppose N > 0. The previous power of 
2 is 2[A72]. But «z + /z odd is equivalent to y, e ^ ' so apply (**). It remains 
to show that for I 4- J = N. I = 0, J i^ 0 and elements x,: <E H, and 
yt G Z>, we have 

( / x j ) o (/?2x2) o . . . o ( / x 7 ) o (2^) o (2y2) o . . . o (2yy) 

is divisible by 2^ 7 J in Z). Here the product o is that in D, reintroducing 
the old notation, whereas p x is product in H. But 

(p2xr) o (p2x") = p3x'x" = Ipx'x". 

Iterating we get the required power of 2. 
This completes the proof of 8.5. 

In order to pass from IRREP~(2„<r> ) to IRREP" and GIRREP", 
we need one more lemma. 

LEMMA 8.6. If <f> and 0 are distinct elements of Q)(S}, then 

Proof. By definition of products in H and reciprocity, 

(n^n^) 
\ n m I 

has the form 

(say), where y is a product using S ] , [E^, lx x l of 

h{'<\ h{<J, ... 
J\ ' Jl ' 

(and similarly x). To show 

(x, zp) = (x, z), 

where p is ass or rev as appropriate, apply Mackey's theorem to z. Unless 
h = J\> h = Ji> - • - > w e 'U have a factor 

*JU • • • (4°) 
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with more than one kt. By 7.1 this is invariant under p. In the case ix = j \ , 
etc., the same argument applies to all terms except one, namely (x,y). But 
this term is zero since tt ¥^ st for at least one /', using iterations of 2.30. 

THEOREM 8.7. If we list the basis from 4.2 for R~(2„<T) ) with subscripts 
<j> in non-increasing order with respect to <, and with h. and rh, adjacent in 
either order for <f> e Q)\n, S), then the Gram-Schmidt process will produce 
IRREP~(2„<T) ). The same is true for GRT, except h^ and rh^ are adjacent 
for 4> G Q)"(n, S), and Gram-Schmidt produces GIRREP~(2„<r> ). 
Specific formulae are as follows: 

GIRREp-(2„<r> ) = {c^ rC<t):<t> e <&"(*, S) } U 

{pc^ e S\n9 S) } 

IRREP7(2„<r> ) = {pc+4 e 9'\n, S) } U 

{c^ rc^ e 9'(n9 S) } 

where, if> e 9>"{n, S) and 

U = d<t> + 2 Wtfdo + 2 P$ed0i 

then 

fy = \ + 2 Ptftfi9 + rhe) + 2 Ptfphe\ 

whereas, if <j> e Q)'(n, S) and 

then 

Note that the / ^ are easily computed from the inductive definition 
for g^. 

Proof. Let c^ be the irreducible for which 

By 8.5 and 8.6, c^ — h^ is a linear combination of those /?/*# and /? he for 
which <j) < 6. But the given linear combinations are the only ones 
compatible with the above relations between f^ and c^. 
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