HOMOLOGY OF DELETED PRODUCTS OF CONTRACTIBLE 2-DIMENSIONAL POLYHEDRA. II

C. W. PATTY

1. Introduction. The deleted product space X^* of a space X is $X \times X - \Delta$. In (4), I computed the homology groups of the deleted product of a polyhedron in a subcollection \mathfrak{B} (see §2 of this paper for the definition of \mathfrak{B}) of the finite, contractible, 2-dimensional polyhedra. In the present paper, I show that there is an infinite subcollection \mathfrak{G} of \mathfrak{B} such that the deleted product of each member of \mathfrak{G} has the homotopy type of the 2-sphere. One of these, call it C, can be embedded in the others, and we show that C can be embedded in a member Xof \mathfrak{B} if and only if $H_2(X^*) \neq 0$. Using this, I show that such a polyhedron Xcan be embedded in the plane if and only if $H_2(X^*) = 0$. It follows from my work in (4) that if X is a member of \mathfrak{B} , then $H_4(X^*) = 0$ and X^* does not have the homotopy type of a 3-sphere. However, here I show that there is a member CC of \mathfrak{B} which can be embedded in X if and only if $H_3(X^*) \neq 0$.

The homology groups used throughout this paper will be the reduced homology groups with integral coefficients, and the customary tilde over the H has been omitted. If X is a finite polyhedron, let

 $P(X^*) = \bigcup \{ \sigma \times \tau \mid \sigma \text{ and } \tau \text{ are simplexes of } X \text{ and } \sigma \cap \tau = \emptyset \}.$

Hu (1) has proved that X^* and $P(X^*)$ are homotopically equivalent.

2. Relation between $H_2(X^*)$ and embeddings. In (3), I defined a *c*-point as follows. A point *x* in a finite, contractible, 2-dimensional polyhedron *X* is called a *c*-point of *X* if there exist 2-simplexes, $\tau_1, \tau_2, \ldots, \tau_n$, of *X* and a simplex τ of *X* such that:

(a) τ is not a face of τ_i for any i,

(b) x is a vertex of τ and of τ_i for each i,

(c) $\tau_n \cap \tau_1$ is a 1-simplex,

(d) for each $i = 1, 2, ..., n - 1, \tau_i \cap \tau_{i+1}$ is a 1-simplex, and

(e) $\tau_i \cap \tau_j = \{x\}$ unless *i* and *j* satisfy the conditions of either (c) or (d).

In (4), I observed that if X is a finite, contractible, 2-dimensional polyhedron and A is a 2-simplex, then a homeomorph of X can be constructed out of A by appending *n*-simplexes (n = 1, 2). The construction may be factored

$$A = X_1 \to X_2 \to \ldots \to X_p = X$$

so that X_i is obtained from X_{i-1} by

Received October 12, 1966 and in revised form, May 7, 1968. This paper was presented to the American Mathematical Society on January 25, 1967. This research was partially supported by NSF Grant GP-7943.

POLYHEDRA. II

- (a) adding a 1-simplex which meets X_{i-1} in just one of its vertices,
- (b) adding a 2-simplex which meets X_{i-1} in just one of its vertices,
- (c) adding a 2-simplex which meets X_{i-1} in just one of its 1-faces, or
- (d) adding a 2-simplex which meets X_{i-1} in exactly two of its 1-faces.

We may choose the order in which we add simplexes so that if τ is a 2simplex such that $X_i = X_{i-1} \cup \tau$ and $X_{i-1} \cap \tau = s_1 \cup s_2$, where s_1 and s_2 are 1-simplexes of X_{i-1} and τ , $s_1 \cap s_2 = \{u_3\}$, and u_i is the vertex of s_i different from u_3 , then there is a sequence r_1, r_2, \ldots, r_n of 1-simplexes in $\partial(\operatorname{St}(u_3, X_{i-1}))$ such that u_1 is a vertex of r_1, u_2 is a vertex of $r_n, r_j \cap r_{j+1}$ is a vertex, and $r_j \cap r_k = \emptyset$ if |j - k| > 1.

Let \mathfrak{B} be the subcollection of the finite, contractible, 2-dimensional polyhedra consisting of those X which can be constructed so that if τ is a 2-simplex such that $X_i = X_{i-1} \cup \tau$ and $X_{i-1} \cap \tau = s_1 \cup s_2$, where s_1 and s_2 are 1-simplexes of X_{i-1} and τ , $s_1 \cap s_2 = \{u_3\}$, and u_i is the vertex of s_i different from u_3 , and S is a simple closed curve in $\partial(\operatorname{St}(u_3, X_{i-1}))$ such that u_1 and u_2 are not in S, then the sequence r_1, r_2, \ldots, r_n can be chosen so that $r_j \cap S = \emptyset$ for each j.

For each i = 1, 2, 3, let σ_i be a 2-simplex, and let r be a 1-simplex. Throughout this paper, let C denote the polyhedron, consisting of these simplexes and their faces, which satisfies the following conditions:

- (a) r is not a face of σ_i for any i,
- (b) there is a vertex c_0 which is a vertex of r and of σ_i for each i,
- (c) for each i < j, $\sigma_i \cap \sigma_j$ is a 1-simplex r_{ij} , and
- (d) $r_{ij} \neq r_{km}$ unless i = k and j = m.

THEOREM 1. If $X \in \mathfrak{B}$, then $H_2(X^*) \neq 0$ if and only if C can be embedded in X.

Proof. Suppose C can be embedded in X. By Theorem 9 of (3), either X has a vertex which is a c-point or X has a 1-simplex which is a face of at least three 2-simplexes. If X has a vertex v which is a c-point, let K be the subpolyhedron of X consisting of a collection of simplexes, $\tau_1, \tau_2, \ldots, \tau_n, \tau$, such that v and $\tau_1, \tau_2, \ldots, \tau_n, \tau$ satisfy the definition of c-point. If X does not have a vertex which is a c-point, let s be a 1-simplex which is a face of at least three simplexes, and let K be the subpolyhedron of X consisting of these three 2-simplexes. By Theorems 6 and 7 of (3), $H_2(K^*) \neq 0$. It follows immediately from my work (4) that $H_2(X^*) \neq 0$.

Suppose $H_2(X^*) \neq 0$. In the construction of X,

$$A = X_1 \to X_2 \to \ldots \to X_p = X,$$

since $H_2(A^*) = 0$, there is an *i* such that $H_2(X_i^*) \neq 0$ but $H_2(X_{i-1}^*) = 0$. It is sufficient to show that *C* can be embedded in X_i . Suppose X_i is obtained from X_{i-1} by addition of an *n*-simplex (n = 1, 2) at an *m*-simplex σ (m = 0, 1). Then, by Theorems 5 to 10 of (4), $H_1(\partial(\operatorname{St}(\sigma, X_{i-1}))) \neq 0$. Therefore X_{i-1} contains a disk with centre at the barycentre *v* of σ . Hence *v* is either a *c*-point of X_i or σ is a 1-simplex which is a face of at least three 2-simplexes of X_i . In either case *C* can be embedded in X_i . Suppose X_i is obtained from X_{i-1} by addition of a 2-simplex at two 1-simplexes. Let *B* be the 2simplex such that $X_i = X_{i-1} \cup B$, and let r_1, r_2, \ldots, r_n be a sequence of 1-simplexes in $\partial(\operatorname{St}(u_3, X_{i-1}))$ such that u_1 is a vertex of r_1, u_2 is a vertex of $r_n, r_j \cap r_{j+1}$ is a vertex, and $r_j \cap r_k = \emptyset$ if |j - k| > 1. For each *j*, let σ_j be the 2-simplex which has u_3 as a vertex and r_j as a face. Then

$$\left(\begin{array}{c}n\\\bigcup_{j=1}\sigma_j\right)\cup B$$

is a disk with centre at u_3 . By Theorem 14 of (4),

$$\partial(\operatorname{St}(u_3, X_{i-1})) - \bigcup_{k=1}^{2} \operatorname{St}(u_k, X_{i-1})$$

is not connected. Therefore there is a vertex w in $\partial(\operatorname{St}(u_3, X_{i-1}))$ such that

$$w \notin \bigcup_{j=1}^n r_j.$$

Hence u_3 is a *c*-point of X_i , and *C* can be embedded in X_i .

THEOREM 2. An element X of \mathfrak{B} can be embedded in the plane if and only if $H_2(X^*) = 0$.

Proof. Suppose $H_2(X^*) \neq 0$. Then, by Theorem 1, C can be embedded in X. It is obvious that C cannot be embedded in the plane, and therefore X cannot be embedded in the plane.

Now suppose X cannot be embedded in the plane. Define an equivalence relation on the collection of 2-simplexes of X by $\sigma_1 \sim \sigma_2$ if and only if there is a sequence $\tau_1, \tau_2, \ldots, \tau_n$ of 2-simplexes such that $\tau_1 = \sigma_1, \tau_n = \sigma_2$, and $\tau_i \cap \tau_{i+1}$ is a 1-simplex for each *i*. If *R* is an equivalence class, let $K_R = \bigcup \{\sigma \mid \sigma \in R\}$. Let K_1, K_2, \ldots, K_n denote the subpolyhedra of X obtained in this manner. If, for some i, K_i has a 1-simplex which is a face of at least three 2-simplexes, then C can be embedded in K_i and hence in X. Thus $H_2(X^*) \neq 0$ by Theorem 1. Suppose that, for each *i*, K_i does not have such a 1-simplex. Then each K_i is homeomorphic to a disk. If there exist i and j $(i \neq j)$ such that $K_i \cap K_j$ is an interior point of the disk K_i , then C can be embedded in $K_i \cup K_j$ and hence in X. Again, by Theorem 1, this means that $H_2(X^*) \neq 0$. Suppose that for each i and j, $K_i \cap K_j$ is either empty or a boundary point of each. Then, since X is contractible, $\bigcup_{i=1}^{n} K_{i}$ can be embedded in the plane. Let s_1, s_2, \ldots, s_m denote the 1-simplexes of X which are not faces of 2-simplexes, let L_1, L_2, \ldots, L_p denote the components of $\bigcup_{i=1}^{n} K_i$, and let T_1, T_2, \ldots, T_q denote the components of $\bigcup_{j=1}^{m} s_j$. Now, for each i and j, $L_i \cap T_j$ is either empty or a single point. If, for some *i* and *j*, $L_i \cap T_j$ is an interior point of L_i , then C can be embedded in $L_i \cup T_j$ and therefore $H_2(X^*) \neq 0$. Suppose that for each *i* and *j*, $L_i \cap T_j$ is either empty or a boundary point of L_i . Then, since X is contractible, it can be embedded in the plane.

For each i = 1, 2, 3, let σ_i be a 2-simplex, and suppose there is a 1-simplex r such that $\sigma_i \cap \sigma_j = r$ for all $i \neq j$. Throughout this paper, let D denote the polyhedron consisting of $\sigma_1, \sigma_2, \sigma_3$, and all their faces.

By Theorems 6 and 7 of (3), C^* and D^* have the homotopy type of the 2-sphere. By Theorems 13 and 16 of (3), there are two isotopy classes of embeddings of C in C, and, by Theorems 9 and 21 of (3), there are six isotopy classes of embeddings of C in D.

For each i = 1, 2, 3, let σ_i be a 2-simplex and r_i a 1-simplex. Let X_1 denote the polyhedron, consisting of these simplexes and their faces, which satisfies the following conditions:

- (a) r_i is not a face of σ_j for any *i* and *j*,
- (b) there is a vertex c_0 which is a vertex of σ_i and r_i for each i,
- (c) for each i < j, $\sigma_i \cap \sigma_j$ is a 1-simplex, r_{ij} ,
- (d) $r_{ij} \neq r_{km}$ unless i = k and j = m, and
- (e) $r_i \cap r_j = \{c_0\}$ for all $i \neq j$.

By Theorems 9, 11, 13, and 16 of (3), the number of isotopy classes of embeddings of C in X_1 is six. Therefore the number of isotopy classes of embeddings of C in X_1 is the same as the number of isotopy classes of embeddings of C in D. However, by Theorem 6 of (4), $H_2(X_1^*)$ is the free abelian group on five generators and $H_1(X_1^*)$ is the free abelian group on six generators.

The above examples show that if X is a finite, contractible, 2-dimensional polyhedron, then a combination of the homology groups of X^* and the number of isotopy classes of embeddings of C in X gives us more information about X than either one separately. However, as the following example shows, a combination of these two things does not distinguish finite, contractible, 2-dimensional polyhedra.

For each i = 1, 2, 3, let σ_i be a 2-simplex, and, for each j = 1, 2, let r_j be a 1-simplex. Let X_2 denote the polyhedron, consisting of these simplexes and their faces, which satisfies the following conditions:

(a) r_i is not a face of σ_j for any *i* and *j*,

- (b) there is a vertex c_0 which is a vertex of σ_i and r_j for each i and j,
- (c) for each i < j, $\sigma_i \cap \sigma_j$ is a 1-simplex, r_{ij} ,
- (d) $r_{ij} \neq r_{km}$ unless i = k and j = m, and
- (e) $r_1 \cap r_2 = \{c_0\}.$

For each i = 1, 2, ..., 7, let σ_i be a 2-simplex, and let r be a 1-simplex. Let X_3 denote the polyhedron, consisting of these simplexes and their faces, which satisfies the following conditions.

(a) $\bigcup_{i=1}^{6} \sigma_i$ is a disk as indicated below.

(b) If
$$v_1 = \sigma_1 \cap \sigma_5$$
 and $v_2 = \sigma_2 \cap \sigma_4$, then
 $\sigma_7 \cap \bigcup_{i=1}^6 \sigma_i = \{v_2\}$ and $r \cap \bigcup_{i=1}^7 \sigma_i = \{v_1\}$

By Theorems 9, 11, 13, and 16 of (3), for each i = 2, 3, the number of isotopy classes of embeddings of C in X_i is four. By Theorem 6 of (4), $H_2(X_2^*)$ is the free abelian group on three generators, $H_1(X_2^*)$ is the free abelian group on two generators, and $H_k(X_2^*) = 0$ if $1 \neq k \neq 2$. By Theorem 8 of (4), $H_2(X_3^*)$ is the free abelian group on three generators, $H_1(X_3^*)$ is the free abelian group on three generators, $H_1(X_3^*)$ is the free abelian group on three generators, $H_1(X_3^*)$ is the free abelian group on three generators, $H_1(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on three generators, $H_2(X_3^*)$ is the free abelian group on two generators, and $H_2(X_3^*)$ is the free abelian group on two generators.

For the sake of completeness, we observe that essentially the same thing happens for trees (finite, contractible, 1-dimensional polyhedra). It follows from Theorems 2.2 and 3.1 of (2) that if X is a tree, then $H_1(X^*) \neq 0$ if and only if the triod can be embedded in X. Let X_4 be the tree that has five vertices of order three and all other vertices of order one, and let X_5 be the tree that has one vertex of order four, one of order three, and the remainder of order one. Then, by Theorem 4 of (3), for each i = 4, 5, the number of isotopy classes of embeddings of the triod in X_i is 30. However, by Theorem 5 in (3), $H_1(X_4^*)$ is the free abelian group on nine generators and $H_1(X_5^*)$ is the free abelian group on seven generators.

Let X_6 be the tree that has four vertices of order three and all other vertices of order one. Then $H_1(X_6^*)$ is the free abelian group on seven generators and hence $H_1(X_6^*)$ is isomorphic to $H_1(X_5^*)$. However, the number of isotopy classes of embeddings of the triod in X_6 is 24.

The following example shows that if X is a tree, then a combination of the homology groups of X^* and the number of isotopy classes of embeddings of the triod in X does not give as much information as counting the orders of vertices. Let X_7 be a tree that has 60 vertices of order three, 10 vertices of order five, and all other vertices of order one. Let X_8 be a tree that has 40 vertices of order four and all other vertices of order one. Then, for each i = 7, 8, by Theorem 5 of (3), $H_1(X_i^*)$ is the free abelian group on 239 generators, and, by Theorem 6 of (3), the number of isotopy classes of embeddings of the triod in X_i is 960.

3. Homotopy type of the 2-sphere. In (4), I defined pronged and the simple 2-dimensional deleted product number as follows.

If X is a finite, contractible, 2-dimensional polyhedron and v is a vertex of X, then X is *pronged* at v provided $\partial(\operatorname{St}(v, X))$ contains a simple closed curve and if $\partial(\operatorname{St}(v, X))$ is a simple closed curve S, then there is a simple closed curve S' in the 1-skeleton of $X - \operatorname{St}(v, X)$, a 2-chain

$$c = \sum_{j=1}^{n} a_j \, \sigma_j$$

 $(a_j \neq 0 \text{ for each } j = 1, 2, ..., n)$ in $X - \operatorname{St}(v, X)$, and either a 1-simplex $r \in X - \operatorname{St}(v, X)$ such that $\partial c = z_s - z_{s'}$, $r \cap S' = \emptyset$, and

$$r \cap \bigcup_{j=1}^n \sigma_j$$

is a vertex, or a 2-simplex $\tau \in X - \operatorname{St}(v, X)$ and a 1-face μ of τ such that if L denotes the line segment in τ from the barycentre of τ to the barycentre of μ , then $\partial c = z_S - z_{S'}$, $L \cap S' = \emptyset$, and

$$L \cap \bigcup_{j=1}^n \sigma_j$$

is a vertex. If s is a 1-simplex of X, then X is *pronged* at s provided the first barycentric subdivision of X is pronged at the barycentre of s.

If X is a finite, contractible, 2-dimensional polyhedron, u_3 is a vertex of X, and u_1 and u_2 are vertices in a component of $\partial(\operatorname{St}(u_3, X))$, let $K = \bigcup \{\sigma \mid \sigma \text{ is a 2-simplex and there is a sequence } \sigma_1, \sigma_2, \ldots, \sigma_n \text{ of 2-simplexes in } X \text{ with the property that } \sigma = \sigma_1, u_1 \text{ is a vertex of } \sigma_n, \text{ and } \sigma_j \cap \sigma_{j+1} \text{ is a 1-simplex for each } j$ }. If

$$H_0\left(\partial(\operatorname{St}(u_3,X)) - \bigcup_{i=1}^2 \operatorname{St}(u_i,X)\right) = 0,$$

there is a vertex w in K such that $\partial(\operatorname{St}(w, K))$ contains a simple closed curve and w is a *c*-point of X, or there is a 1-simplex in K which is a face of at least three 2-simplexes, then the *simple 2-dimensional deleted product number* is 0. Otherwise, it is 1.

Let \mathfrak{A} be the collection consisting of the polyhedra C and D and all finite, contractible, 2-dimensional polyhedra A such that a homeomorph of A can be constructed out of D by appending 2-simplexes in such a way that if the construction is factored

$$D = X_1 \to X_2 \to \ldots \to X_p = A,$$

then X_i is obtained from X_{i-1} by adding a 2-simplex τ such that

$$X_{i-1} \cap \tau = s_1 \cup s_2,$$

where s_1 and s_2 are distinct 1-simplexes of X_{i-1} and τ , and, if $s_1 \cap s_2 = \{u_3\}$ and u_j is the vertex of s_j different from u_3 , then

$$\partial(\operatorname{St}(u_3, X_{i-1})) - \bigcup_{j=1}^{2} \operatorname{St}(u_j, X_{i-1})$$

is contractible. (Of course, one may take a finite subdivision of X_{i-1} before adding τ .)

If $A \in \mathfrak{A}$, let $E_A = \{x | x \text{ is in a 2-simplex of } A \text{ and } x \text{ is not the centre of a disk which is contained in } A\}$.

THEOREM 3. If $X \in \mathfrak{B}$, then X^* has the homotopy type of the 2-sphere if and only if there is a member A of \mathfrak{A} and a non-negative integer m such that a homeomorph of X can be constructed out of A by appending m 1-simplexes at m distinct points of E_A .

Proof. We have already observed that C^* and D^* have the homotopy type of the 2-sphere. Let $A \in \mathfrak{A}$ such that $C \neq A \neq D$. Since a homeomorph of A can be constructed out of D in the manner described above, in order to show that A^* has the homotopy type of the 2-sphere, it is sufficient to show that if X_{i-1} is a finite, contractible, 2-dimensional polyhedron such that X_{i-1}^* has the homotopy type of the 2-sphere and τ is a 2-simplex such that $X_i = X_{i-1} \cup \tau$ and $X_{i-1} \cap \tau = s_1 \cup s_2$, where s_1 and s_2 are distinct 1-simplexes of X_{i-1} and τ , and, if $s_1 \cap s_2 = \{u_3\}$ and u_j is the vertex of s_j different from u_3 , then

$$\partial(\operatorname{St}(u_3, X_{i-1})) - \bigcup_{j=1}^{2} \operatorname{St}(u_j, X_{i-1})$$

is contractible, then X_i^* has the homotopy type of the 2-sphere. Let *s* denote the 1-face of τ which is not in X_{i-1} . Then

$$P(X_i^*) = P(X_{i-1}^*) \cup \left(\left[X_{i-1} - \bigcup_{j=1}^3 \operatorname{St}(u_j, X_{i-1}) \right] \times \tau \right) \\ \cup \left(\left[\overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \right] \times s \right) \\ \cup \left(\tau \times \left[X_{i-1} - \bigcup_{j=1}^3 \operatorname{St}(u_j, X_{i-1}) \right] \right) \\ \cup \left(s \times \left[\overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \right] \right).$$

Since

$$P(X_{i-1}^*) \cap \left(\left[X_{i-1} - \bigcup_{j=1}^3 \operatorname{St}(u_j, X_{i-1}) \right] \times \tau \right) = \left[X_{i-1} - \bigcup_{j=1}^3 \operatorname{St}(u_j, X_{i-1}) \right] \times (s_1 \cup s_2),$$

then

$$P(X_{i-1}^*) \cup \left(\left[X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_j, X_{i-1}) \right] \times \tau \right)$$

is homotopically equivalent to $P(X_{i-1}^*)$. Now

$$\begin{bmatrix} P(X_{i-1}^*) \cup \left(\begin{bmatrix} X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times \tau \right) \end{bmatrix}$$

$$\cap \left(\begin{bmatrix} \overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^{2} \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times s \right)$$

$$= \left(\begin{bmatrix} \overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^{2} \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times \{u_1\} \right)$$

$$\cup \left(\begin{bmatrix} \overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^{2} \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times \{u_2\} \right)$$

$$\cup \left(\begin{bmatrix} \partial (\operatorname{St}(u_3, X_{i-1})) - \bigcup_{j=1}^{2} \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times s \right).$$

Since

$$\begin{bmatrix} P(X_{i-1}^*) \cup \left(\begin{bmatrix} X_{i-1} - \bigcup_{j=1}^3 \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times \tau \right) \end{bmatrix}$$

$$\cap \left(\begin{bmatrix} \overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times s \right)$$

is a deformation retract of

$$\left[\overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1})\right] \times s,$$

then

$$P(X_{i-1}^{*}) \cup \left(\left[X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_{j}, X_{i-1}) \right] \times \tau \right) \\ \cup \left(\left[\overline{\operatorname{St}(u_{3}, X_{i-1})} - \bigcup_{j=1}^{2} \operatorname{St}(u_{j}, X_{i-1}) \right] \times s \right)$$

is homotopically equivalent to $P(X_{i-1}^*)$. Continuing,

$$\begin{bmatrix} P(X_{i-1}^{*}) \cup \left(\begin{bmatrix} X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_{j}, X_{i-1}) \end{bmatrix} \times \tau \right) \\ \cup \left(\begin{bmatrix} \overline{\operatorname{St}(u_{3}, X_{i-1})} - \bigcup_{j=1}^{2} \operatorname{St}(u_{j}, X_{i-1}) \end{bmatrix} \times s \right) \end{bmatrix} \\ \cap \left(\tau \times \begin{bmatrix} X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_{j}, X_{i-1}) \end{bmatrix} \right) \\ = (s_{1} \cup s_{2}) \times \begin{bmatrix} X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_{j}, X_{i-1}) \end{bmatrix},$$

and therefore

$$P(X_{i-1}^{*}) \cup \left(\left[X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_{j}, X_{i-1}) \right] \times \tau \right)$$
$$\cup \left(\left[\overline{\operatorname{St}(u_{3}, X_{i-1})} - \bigcup_{j=1}^{2} \operatorname{St}(u_{j}, X_{i-1}) \right] \times s \right)$$
$$\cup \left(\tau \times \left[X_{i-1} - \bigcup_{j=1}^{3} \operatorname{St}(u_{j}, X_{i-1}) \right] \right)$$

is homotopically equivalent to $P(X_{i-1}^*)$. Also

$$\begin{bmatrix} P(X_{i-1}^*) \cup \left(\begin{bmatrix} X_{i-1} - \bigcup_{j=1}^3 \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times \tau \right) \\ \cup \left(\begin{bmatrix} \overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \times s \right) \\ \cup \left(\tau \times \begin{bmatrix} X_{i-1} - \bigcup_{j=1}^3 \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \right) \end{bmatrix} \\ \cap \left(s \times \begin{bmatrix} \overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \end{bmatrix} \right)$$

$$= \left(\{u_1\} \times \left[\overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \right] \right)$$
$$\cup \left(\{u_2\} \times \left[\overline{\operatorname{St}(u_3, X_{i-1})} - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \right] \right)$$
$$\cup \left(s \times \left[\partial \left(\operatorname{St}(u_3, X_{i-1}) \right) - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}) \right] \right),$$

and hence, for the same reason as above, $P(X_i^*)$ is homotopically equivalent to $P(X_{i-1}^*)$.

Now suppose $A \in \mathfrak{A}$, *m* is a positive integer, and a homeomorph of *X* can be constructed out of *A* by appending *m* 1-simplexes at *m* distinct points of E_A . The construction may be factored

$$A = X_1 \to X_2 \to \ldots \to X_{m+1} = X$$

so that X_i is obtained from X_{i-1} by adding a 1-simplex at a vertex of E_A . Thus, in order to show that X^* has the homotopy type of the 2-sphere, it is sufficient to show that if X_{i-1}^* has the homotopy type of the 2-sphere, then so does X_i^* . Let s be the 1-simplex such that $X_i = X_{i-1} \cup s$, let $v = X_{i-1} \cap s$, and let u be the vertex of s which is not in X_{i-1} . Then

$$P(X_i^*) = P(X_{i-1}^*) \cup ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s) \cup (\overline{\operatorname{St}(v, X_{i-1})} \times \{u\})$$
$$\cup (s \times (X_{i-1} - \operatorname{St}(v, X_{i-1}))) \cup (\{u\} \times \overline{\operatorname{St}(v, X_{i-1})}).$$

Now $P(X_{i-1}^*) \cap ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s) = (X_{i-1} - \operatorname{St}(v, X_{i-1})) \times \{v\}$, and hence $P(X_{i-1}^*) \cap ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s)$ is homotopically equivalent to $P(X_{i-1}^*)$. Also

$$[P(X_{i-1}^*) \cup ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s)] \cap (\operatorname{St}(v, X_{i-1}) \times \{u\}) = \partial(\operatorname{St}(v, X_{i-1})) \times \{u\}.$$

Since v is a point of E_A and every simplex of X_{i-1} which has v as a vertex is a simplex of A, then $\partial(\operatorname{St}(v, X_{i-1}))$ is contractible. Therefore

$$P(X_{i-1}^*) \cup ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s) \cup (\operatorname{St}(v, X_{i-1}) \times \{u\})$$

is homotopically equivalent to $P(X_{i-1}^*)$. Continuing,

$$[P(X_{i-1}^{*}) \cup ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s) \cup \overline{(\operatorname{St}(v, X_{i-1})} \times \{u\})]$$

$$\cap (s \times (X_{i-1} - \operatorname{St}(v, X_{i-1}))) = \{v\} \times (X_{i-1} - \operatorname{St}(v, X_{i-1})),$$

and hence

$$P(X_{i-1}^*) \cup ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s)$$
$$\cup \overline{(\operatorname{St}(v, X_{i-1})} \times \{u\}) \cup (s \times (X_{i-1} - \operatorname{St}(v, X_{i-1})))$$

is homotopically equivalent to $P(X_{i-1}^*)$. Finally,

POLYHEDRA. II

$$[P(X_{i-1}^*) \cup ((X_{i-1} - \operatorname{St}(v, X_{i-1})) \times s) \cup \overline{(\operatorname{St}(v, X_{i-1})} \times \{u\})$$
$$\cup (s \times (X_{i-1} - \operatorname{St}(v, X_{i-1})))] \cap (\{u\} \times \overline{\operatorname{St}(v, X_{i-1})}) =$$
$$\{u\} \times \partial(\operatorname{St}(v, X_{i-1})).$$

Therefore, for the same reason as above, $P(X_i^*)$ is homotopically equivalent to $P(X_{i-1}^*)$.

Now suppose $X \in \mathfrak{B}$ and X^* has the homotopy type of the 2-sphere. A homeomorph of X can be constructed out of a 2-simplex B, and the construction may be factored

$$B = X_1 \longrightarrow X_2 \longrightarrow \ldots \longrightarrow X_q = X$$

so that X_i is obtained from X_{i-1} by one of the four types of additions described in the second paragraph of §2. We may assume, without loss of generality, that, for i > 1, X_i is not homeomorphic to a disk. Since X^* has the homotopy type of the 2-sphere, $H_3(X_i^*) = 0$ for all *i* by my work in (4). Let *n* be the smallest integer such that $H_2(X_n^*) \neq 0$. Again, it follows from the theorems of (4) that $H_2(X_i^*)$ is isomorphic to the group of integers and $H_1(X_i^*) = 0$ for $n \leq i \leq q$ and, for i > n, X_i is obtained from X_{i-1} by

(1) adding a 1-simplex at a vertex v, where $H_k(\partial(\operatorname{St}(v, X_{i-1}))) = 0$ for all k,

(2) adding a 2-simplex at a 1-simplex s, where $H_1(\partial(\operatorname{St}(s, X_{i-1}))) = 0$, or

(3) adding a 2-simplex τ such that $X_{i-1} \cap \tau = s_1 \cup s_2$, where s_1 and s_2 are distinct 1-simplexes of X_{i-1} and τ , and, if $s_1 \cap s_2 = \{u_3\}$ and u_j is the vertex of s_j different from u_3 , then

$$H_k\left(\partial(\operatorname{St}(u_3, X_{i-1})) - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1})\right) = 0 \quad \text{for all } k.$$

If X_i is obtained from X_{i-1} by (2), then X_i is homeomorphic to X_{i-1} , and hence we may assume that X_i is obtained from X_{i-1} by either (1) or (3).

Now it follows also from the theorems of (4) that X_n is obtained from X_{n-1} by

(4) adding a 1-simplex at a vertex v, where X_{n-1} is not pronged at v and $H_1(\partial(\operatorname{St}(v, X_{n-1})))$ is isomorphic to the group of integers,

(5) adding a 2-simplex at a 1-simplex s, where X_{n-1} is not pronged at s and $H_1(\partial(\operatorname{St}(s, X_{n-1})))$ is isomorphic to the group of integers, or

(6) adding a 2-simplex τ such that $X_{n-1} \cap \tau = s_1 \cup s_2$, where s_1 and s_2 are distinct 1-simplexes of X_{n-1} and τ , and, if $s_1 \cap s_2 = \{u_3\}$ and u_j is the vertex of s_j different from u_3 , then

$$H_1\bigg(\partial(\operatorname{St}(u_3, X_{n-1})) - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{n-1})\bigg) = 0,$$

$$H_0\bigg(\partial(\operatorname{St}(u_3, X_{n-1})) - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{n-1})\bigg)$$

is isomorphic to the group of integers, and the simple 2-dimensional deleted product number of X_{n-1} is 1.

By my work in (4), $H_1(X_i^*)$ is isomorphic to the group of integers for $1 \leq i \leq n-1$ and, for $1 < i \leq n-1$, X_i is obtained from X_{i-1} by

(7) adding a 1-simplex at a vertex v, where $H_k(\partial(\operatorname{St}(v, X_{i-1}))) = 0$ for all k,

(8) adding a 2-simplex at a 1-simplex s, where $H_1(\partial(\operatorname{St}(s, X_{i-1}))) = 0$, or

(9) adding a 2-simplex τ such that $X_{i-1} \cap \tau = s_1 \cup s_2$, where s_1 and s_2 are distinct 1-simplexes of X_{i-1} and τ , and, if $s_1 \cap s_2 = \{u_3\}$ and u_j is the vertex of s_j different from u_3 , then

$$H_k\left(\partial(\operatorname{St}(u_3, X_{i-1})) - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1})\right) = 0 \quad \text{for all } k.$$

If X_i is obtained from X_{i-1} by either (8) or (9), then X_i is homeomorphic to X_{i-1} and hence we may assume that X_i is obtained from X_{i-1} by (7). Therefore, there is a non-negative integer α such that X_{n-1} is homeomorphic to a disk with α 1-simplexes attached to the disk at α distinct points of the boundary. If X_n is obtained from X_{n-1} by (4), then a homeomorph of X_n can be constructed out of C by appending α 1-simplexes at α distinct points of E_c . Therefore, there is a non-negative integer β such that a homeomorph of X can be constructed out of C by appending β 1-simplexes at β distinct points of E_c . If X_n is obtained from X_{n-1} by either (5) or (6), then there is a member A_1 of $\mathfrak{A}(A_1 \neq C)$ and a non-negative integer α_1 such that a homeomorph of X_n can be constructed out of A_1 by appending α_1 1-simplexes at α_1 distinct points of E_{A_1} . Therefore, there is a member A_2 of $\mathfrak{A}(A_2 \neq C)$ and a non-negative integer α_2 such that a homeomorph of X can be constructed out of A_2 by appending α_2 1-simplexes at α_2 distinct points of E_{A_2} .

4. Relation between $H_3(X^*)$ and embeddings. For each i = 1, 2, 3, let σ_i and τ_i be 2-simplexes, and let *CC* denote the polyhedron, consisting of these simplexes and their faces, which satisfies the following conditions:

(1) There is a vertex c_0 which is a vertex of σ_i and of τ_i for each *i*.

(2) $\sigma_i \cap \tau_j = \{c_0\}$ for each *i* and *j*.

(3) For each i < j, $\sigma_i \cap \sigma_j$ is a 1-simplex r_{ij} and $\tau_i \cap \tau_j$ is a 1-simplex s_{ij} . (4) If either $i \neq k$ or $j \neq m$, then $r_{ij} \neq r_{km}$ and $s_{ij} \neq s_{km}$.

Throughout this section, we let CC, σ_i , τ_i , and c_0 denote the specific objects described above.

Definition 1. Let X be a finite, contractible, 2-dimensional polyhedron. A point $x \in X$ is called a *double c-point* of X if there exist 2-simplexes $\lambda_1, \lambda_2, \ldots, \lambda_m$ and $\xi_1, \xi_2, \ldots, \xi_n$ of X such that

(1) x is a vertex of λ_i and of ξ_j for each *i* and *j*,

- (2) $\lambda_i \cap \xi_j = \{x\}$ for each *i* and *j*,
- (3) $\lambda_m \cap \lambda_1$ is a 1-simplex,
- (4) for each $i = 1, 2, \ldots, m 1, \lambda_i \cap \lambda_{i+1}$ is a 1-simplex,
- (5) $\lambda_i \cap \lambda_k = \{x\}$ unless *i* and *k* satisfy the conditions of either (3) or (4),

- (6) $\xi_n \cap \xi_1$ is a 1-simplex,
- (7) for each $j = 1, 2, ..., n 1, \xi_i \cap \xi_{i+1}$ is a 1-simplex, and
- (8) $\xi_j \cap \xi_k = \{x\}$ unless j and k satisfy the conditions of either (6) or (7).

THEOREM 4. If X is a finite, contractible, 2-dimensional polyhedron and f: $CC \rightarrow X$ is an embedding, then $f(c_0)$ is a double c-point of X.

Proof. It is easy to see that $f(c_0)$ is not an interior point of a 2-simplex. Suppose $f(c_0)$ is an interior point of a 1-simplex u. Now $f(c_0)$ is an interior point of

$$f\left(\bigcup_{i=1}^{3}\sigma_{i}\right).$$

Therefore there exist two 2-simplexes μ_1 and μ_2 , which have u as a face, and a disk D_1 such that

$$f(c_0) \in D_1^0 \subset D_1 \subset (\mu_1 \cup \mu_2) \cap f\left(\bigcup_{i=1}^3 \sigma_i \right).$$

Likewise, there exist two 2-simplexes ν_1 and ν_2 which have u as a face, and a disk D_2 such that

$$f(c_0) \in D_2^{\ 0} \subset D_2 \subset (\nu_1 \cup \nu_2) \cap f\left(\bigcup_{i=1}^3 \tau_i \right).$$

Therefore $D_1 \cap D_2$ contains a non-degenerate closed interval and f is not an embedding. Hence $f(c_0)$ is a vertex, and, using an argument similar to the one above, it is easy to see that $f(c_0)$ is a double *c*-point.

THEOREM 5. If $X \in \mathfrak{B}$, then $H_3(X^*) \neq 0$ if and only if CC can be embedded in X.

Proof. Suppose *CC* can be embedded in *X*. Then, by Theorem 4, *X* has a vertex v which is a double *c*-point. Let *K* be the subpolyhedron of *X* consisting of a collection of 2-simplexes, $\lambda_1, \lambda_2, \ldots, \lambda_m$ and $\xi_1, \xi_2, \ldots, \xi_n$ such that $\lambda_1, \lambda_2, \ldots, \lambda_m$, $\xi_1, \xi_2, \ldots, \xi_n$ and v satisfy the definition of double *c*-point. By Theorem 14 of (4), $H_3(K^*) \neq 0$. It also follows immediately from my work in (4) that $H_3(X^*) \neq 0$.

Suppose $H_3(X^*) \neq 0$. In the construction of X out of a 2-simplex,

$$A = X_1 \to X_2 \to \ldots \to X_p = X,$$

there is an *i* such that $H_3(X_i^*) \neq 0$ but $H_3(X_{i-1}^*) = 0$. It is sufficient to show that *CC* can be embedded in X_i . By my work in (4), X_i is obtained from X_{i-1} by adding a 2-simplex at two 1-simplexes. Let *B* be the 2-simplex such that $X_i = X_{i-1} \cup B$, and suppose $X_{i-1} \cap B = s_1 \cup s_2$, where $s_1 \cap s_2 = \{u_3\}$. For each *j*, let u_j be the vertex of s_j different from u_3 . Then, by Theorem 14 of (4),

$$H_1\left(\partial(\operatorname{St}(u_3, X_{i-1})) - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1})\right) \neq 0.$$

Let S be a simple closed curve in

$$\partial(\operatorname{St}(u_3, X_{i-1})) - \bigcup_{j=1}^2 \operatorname{St}(u_j, X_{i-1}),$$

and let r_1, r_2, \ldots, r_n be a sequence of 1-simplexes in $\partial(\operatorname{St}(u_3, X_{i-1}))$ such that u_1 is a vertex of r_1, u_2 is a vertex of $r_n, r_\alpha \cap r_{\alpha+1}$ is a vertex, $r_\alpha \cap r_\beta = \emptyset$ if $|\alpha - \beta| > 1$, and $r_\alpha \cap S = \emptyset$ for each α . For each α , let σ_α be the 2-simplex which has u_3 as a vertex and r_α as a face. Then

$$\binom{n}{\bigcup_{\alpha=1} r_{\alpha}} \cup B$$

is a disk with centre at u_3 . Let s_1, s_2, \ldots, s_m be the 1-simplexes of S, and, for each γ , let τ_{γ} be the 2-simplex which has u_3 as a vertex and s_{γ} as a face. Then

$$\bigcup_{\gamma=1}^m au_\gamma$$

is a disk with centre at u_3 , and

$$\left[\begin{pmatrix}n\\\bigcup\\\alpha=1\\r_{\alpha}\end{pmatrix}\cup B\right]\cap\left[\begin{matrix}m\\\bigcup\\\gamma=1\\r_{\gamma}\end{matrix}\right]=\{u_{3}\}.$$

Therefore CC can be embedded in X.

References

- S. T. Hu, Isotopy invariants of topological spaces, Proc. Roy. Soc. (London), Ser. A 255 (1960) 331–366.
- 2. C. W. Patty, The fundamental group of certain deleted product spaces, Trans. Amer. Math. Soc. 105 (1962), 314-321.
- 3. Isotopy classes of imbeddings Trans. Amer. Math. Soc. 128 (1967), 232-247.
- 4. —— Homology of deleted products of contractible 2-dimensional polyhedra. I, Can. J. Math. 20 (1968), 416-441.

The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Virginia Polytechnic Institute, Blacksburg, Virginia