
HOMOLOGY OF DELETED PRODUCTS OF 
CONTRACTIBLE 2-DIMENSIONAL POLYHEDRA. II 

C. W. PATTY 

1. Introduction. The deleted product space X* of a space X is X X X — A. 
In (4), I computed the homology groups of the deleted product of a polyhedron 
in a subcollection 33 (see §2 of this paper for the definition of S3) of the finite, 
contractible, 2-dimensional polyhedra. In the present paper, I show that there 
is an infinite subcollection (S of S3 such that the deleted product of each member 
of S has the homotopy type of the 2-sphere. One of these, call it C, can be 
embedded in the others, and we show that C can be embedded in a member X 
of S3 if and only if H2(X*) ^ 0. Using this, I show that such a polyhedron X 
can be embedded in the plane if and only if H2(X*) = 0. I t follows from my 
work in (4) that if X is a member of S3, then i74(X*) = 0 and X* does not have 
the homotopy type of a 3-sphere. However, here I show that there is a mem
ber CC of S3 which can be embedded in X if and only if Hz (X*) 9e 0. 

The homology groups used throughout this paper will be the reduced 
homology groups with integral coefficients, and the customary tilde over the 
H has been omitted. If X is a finite polyhedron, let 

P(X*) = \J{a X T\ a and r are simplexes of X and a P\ r = 0}. 

Hu (1) has proved that X* and P(X*) are homotopically equivalent. 

2. Relation between H2(X*) and embeddings. In (3), I defined a opoint 
as follows. A point x in a finite, contractible, 2-dimensional polyhedron X is 
called a c-poinl of X if there exist 2-simplexes, n , r2, . . . , rnj of X and a 
simplex T of Z such that: 

(a) T is not a face of n for any i, 
(b) x is a vertex of r and of n for each i, 
(c) rn Pi n is a 1-simplex, 
(d) for each i = 1, 2, . . . , n — 1, rt C\ ri+i is a 1-simplex, and 
(e) Tt C\ TJ = {%} unless i and j satisfy the conditions of either (c) or (d). 
In (4), I observed that if X is a finite, contractible, 2-dimensional polyhedron 

and A is a 2-simplex, then a homeomorph of X can be constructed out of A 
by appending n-simplexes (n = 1, 2). The construction may be factored 

A = A I —> X2 —^ . . . —*• Xp = X 

so that Xi is obtained from Xz_i by 
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(a) adding a 1-simplex which meets Xt-i in just one of its vertices, 
(b) adding a 2-simplex which meets Xt-i in just one of its vertices, 
(c) adding a 2-simplex which meets Xt^i in just one of its 1-faces, or 
(d) adding a 2-simplex which meets Xt-i in exactly two of its 1-faces. 
We may choose the order in which we add simplexes so tha t if r is a 2-

simplex such t h a t Xt = X z _i W r and I j _ i Pi r = S\\J s2, where Si and s2 

are 1-simplexes of X^_i and r, Si H s2 = {u^\, and w* is the vertex of st diff
erent from Us, then there is a sequence n , r2} . . . , rn of 1-simplexes in 
d(St(w3, Xi-i)) such tha t wi is a vertex of fi, w2 is a vertex of rn, r ; P\ r m is 
a vertex, and r$ C\ rk = 0 if | j — fe| > 1. 

Let 33 be the subcollection of the finite, contractible, 2-dimensional polyhedra 
consisting of those X which can be constructed so t ha t if r is a 2-simplex such 
t h a t Xi = I j - i U T and I j _ i H T = 5 i U s2j where si and s2 are 1-simplexes 
of Xi-i and r, 5 i H 52 = {^3}, and ut is the vertex of st different from ui, and 
5 is a simple closed curve in d(St(^3 ,X*_i)) such t h a t u\ and u2 are not in S, 
then the sequence ri , r2, . . . , rn can be chosen so t ha t r;- Pi 5 = 0 for each j . 

For each i = 1, 2, 3, let <n be a 2-simplex, and let r be a 1-simplex. Through
out this paper, let C denote the polyhedron, consisting of these simplexes and 
their faces, which satisfies the following conditions: 

(a) r is not a face of <rt for any i, 
(b) there is a vertex c0 which is a vertex of r and of at for each i, 
(c) for each i < j , 0^ P\ 0^ is a 1-simplex r 0 , and 
(d) r^- 7e rkm unless i = k and 7 = m. 

T H E O R E M l.IfX Ç 33, Jfeew H2(X*) 9e Oif and only if C can be embedded in X. 

Proof. Suppose C can be embedded in X. By Theorem 9 of (3), either X 
has a vertex which is a c-point or X has a 1-simplex which is a face of a t least 
three 2-simplexes. If X has a vertex v which is a c-point, let K be the sub-
polyhedron of X consisting of a collection of simplexes, n , r2, . . . , rw, r, such 
t ha t v and r i , r2, . . . , rw, r satisfy the definition of c-point. If X does not 
have a vertex which is a c-point, let 5 be a 1-simplex which is a face of a t 
least three simplexes, and let K be the subpolyhedron of X consisting of these 
three 2-simplexes. By Theorems 6 and 7 of (3), H2(K*) ^ 0 . I t follows 
immediately from my work (4) t ha t H2(X*) ^ 0. 

Suppose H2(X*) 9^ 0. In the construction of X, 

A . = JC1 —> -A. 2 —* • . • —* -A-p == ^ > 

since H2(A*) = 0, there is an i such tha t H2(Xt*) 9* 0 bu t H2(Xt^) = 0. 
I t is sufficient to show tha t C can be embedded in Xt. Suppose Xt is obtained 
from Xt-i by addit ion of an ^-simplex (n = 1, 2) a t an w-simplex 0- (ra = 0, 
1). Then , by Theorems 5 to 10 of (4), Hx(d(St0, X,_i))) ^ 0. Therefore 
Z i - i contains a disk with centre a t the barycentre v of a. Hence v is ei ther 
a c-point of J j or a is a 1-simplex which is a face of a t least three 2-sim
plexes of X t. In either case C can be embedded in Xf. Suppose Xt is obtained 
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from X i-i by addition of a 2-simplex at two 1-simplexes. Let B be the 2-
simplex such that Xt = Xt-i KJ B, and let ri, r2, . . . , rn be a sequence of 
1-simplexes in d(St(w3, -XVi)) such that ^i is a vertex of rh u2 is a vertex 
of rn, rj P\ rj+i is a vertex, and r j C\ rk = 0 if | j — &| > 1. For each j , let 
(7; be the 2-simplex which has uz as a vertex and ry as a face. Then 

( U er, j U B 

is a disk with centre at w3. By Theorem 14 of (4), 

2 

ô(St(«8,-XVi)) - U S t ( ^ , Z , _ ! ) 
J f c = l 

is not connected. Therefore there is a vertex w in d(St(uz, Xi-\)) such that 

w 

w (£ U *> 

Hence w3 is a £-point of Xu and C can be embedded in Xt. 

THEOREM 2. An element X of 33 ca?z ôe embedded in the plane if and only if 
H2(X*) = 0. 

Proof. Suppose H2(X*) ^ 0. Then, by Theorem 1, C can be embedded in 
X. It is obvious that C cannot be embedded in the plane, and therefore X 
cannot be embedded in the plane. 

Now suppose X cannot be embedded in the plane. Define an equivalence 
relation on the collection of 2-simplexes of X by <j\ <^ a2 if and only if there 
is a sequence ri, r2, . . . , rn of 2-simplexes such that n = ai, rn = a2, and 
T iHr j+ i is a 1-simplex for each i. If R is an equivalence class, let 
KR = U {cr| G Ç R}. Let Ki, K2, . . . , Kn denote the subpolyhedra of X 
obtained in this manner. If, for some i, Kt has a 1-simplex which is a face 
of at least three 2-simplexes, then C can be embedded in Kt and hence in X. 
Thus H2(X*) 9^ 0 by Theorem 1. Suppose that, for each i, Kt does not have 
such a 1-simplex. Then each Kt is homeomorphic to a disk. If there exist i 
and j (i ^ j) such that Kt C\ Kj is an interior point of the disk Ku then C 
can be embedded in Kt \J Kj and hence in X. Again, by Theorem 1, this 
means that H2(X*) 9^ 0. Suppose that for each i and j , Ki C\ Kj is either 
empty or a boundary point of each. Then, since X is contractible, Uni=iKi 
can be embedded in the plane. Let su s2, . . . , sm denote the 1-simplexes of 
X which are not faces of 2-simplexes, let Li, L2, . . . , Lv denote the com
ponents of Ul=i Ki} and let Ti, T2, . . . , Tq denote the components of UJLi Sj. 
Now, for each i and j , LtC\ Tj is either empty or a single point. If, for some 
i and 7, Lx C\ Tj is an interior point of Lu then C can be embedded in Lt KJ Tj 
and therefore H2(X*) 9e 0. Suppose that for each i and 7, Lt Pi Tj is either 
empty or a boundary point of Lt. Then, since X is contractible, it can be 
embedded in the plane. 
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For each i = 1, 2, 3, let at be a 2-simplex, and suppose there is a 1-simplex 
r such tha t <rtr\ aj — r for all i ^ j . Throughout this paper, let D denote 
the polyhedron consisting of ai, a2, o-3, and all their faces. 

By Theorems 6 and 7 of (3), C* and D* have the homotopy type of the 
2-sphere. By Theorems 13 and 16 of (3), there are two isotopy classes of 
embeddings of C in C, and, by Theorems 9 and 21 of (3), there are six isotopy 
classes of embeddings of C in D. 

For each i = 1, 2, 3, let at be a 2-simplex and rt a 1-simplex. Let A î denote 
the polyhedron, consisting of these simplexes and their faces, which satisfies 
the following conditions: 

(a) r i is not a face of a j for any i and j , 
(b) there is a vertex Co which is a vertex of at and rt for each i, 
(c) for each i < j , vi C\ GJ is a 1-simplex, rijt 

(d) Yij ^ rkm unless i = k and j = m, and 
(e) rt r\ Tj = {co} for all i ^ j . 

By Theorems 9, 11, 13, and 16 of (3), the number of isotopy classes of em
beddings of C in Xi is six. Therefore the number of isotopy classes of embed
dings of C in Xi is the same as the number of isotopy classes of embeddings 
of C in D. However, by Theorem 6 of (4), H2(Xi*) is the free abelian group 
on five generators and Hi(X±*) is the free abelian group on six generators. 

T h e above examples show tha t if X is a finite, contractible, 2-dimensional 
polyhedron, then a combination of the homology groups of X* and the num
ber of isotopy classes of embeddings of C in X gives us more information 
about X than either one separately. However, as the following example 
shows, a combination of these two things does not distinguish finite, con
tractible, 2-dimensional polyhedra. 

For each i = 1, 2, 3, let a t be a 2-simplex, and, for each j = 1, 2, let r j 
be a 1-simplex. Let X2 denote the polyhedron, consisting of these simplexes 
and their faces, which satisfies the following conditions: 

(a) ri is not a face of a3 for any i and j , 
(b) there is a vertex c0 which is a vertex of <Tt and r j for each i and 7, 
(c) for each i < j , (rt P\ a j is a 1-simplex, rti, 
(d) rtj 9^ rkm unless i = k and j = m, and 
(e) rxr\ r2 = {c0}. 
For each i = 1, 2, . . . , 7, let at be a 2-simplex, and let r be a 1-simplex. 

Let X 3 denote the polyhedron, consisting of these simplexes and their faces, 
which satisfies the following conditions. 

(a) Ul=i o"i is a disk as indicated below. 
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(b) If Vi = ai C\ (j5 and v2 = v2 (^ o-4, then 
6 7 

(77 r\ U <?i = {̂ 2! and r H U o-t = {fli}. 
i = l z = l 

By Theorems 9, 11, 13, and 16 of (3), for each i = 2, 3, the number of 
isotopy classes of embeddings of C in Xt is four. By Theorem 6 of (4), H2(X2*) 
is the free abelian group on three generators, i7 i (X 2*) is the free abelian 
group on two generators, and Hh(X2*) = 0 if 1 ^ k ^ 2. By Theorem 8 of 
(4), H2{X$*) is the free abelian group on three generators, Hi(Xz*) is the 
free abelian group on two generators, and Hk(Xz*) = 0 if 1 ^ k ^ 2. 

For the sake of completeness, we observe t ha t essentially the same thing 
happens for trees (finite, contractible, 1-dimensional polyhedra) . I t follows 
from Theorems 2.2 and 3.1 of (2) t ha t if X is a tree, then Hi(X*) ^ 0 if 
and only if the triod can be embedded in X. Let X 4 be the tree t h a t has 
five vertices of order three and all other vertices of order one, and let X 5 be 
the tree t ha t has one vertex of order four, one of order three, and the remainder 
of order one. Then , by Theorem 4 of (3), for each i = 4, 5, the number of 
isotopy classes of embeddings of the triod in Xt is 30. However, by Theorem 5 
in (3), H\(X*) is the free abelian group on nine generators and Hi(X5*) 
is the free abelian group on seven generators. 

Let X% be the tree t h a t has four vertices of order three and all other vertices 
of order one. Then Hi(Xe*) is the free abelian group on seven generators and 
hence Hi(Xe*) is isomorphic to H^(X^). However, the number of isotopy 
classes of embeddings of the triod in XQ is 24. 

The following example shows t h a t if X is a tree, then a combination of 
the homology groups of X* and the number of isotopy classes of embeddings 
of the triod in X does not give as much information as counting the orders 
of vertices. Let X 7 be a tree t h a t has 60 vertices of order three, 10 vertices 
of order five, and all other vertices of order one. Let X8 be a tree t h a t has 
40 vertices of order four and all other vertices of order one. Then , for each 
i = 7, 8, by Theorem 5 of (3), Hi(X *) is the free abelian group on 239 gener
ators , and, by Theorem 6 of (3), the number of isotopy classes of embeddings 
of the triod in Xt is 960. 

3. H o m o t o p y t y p e of t h e 2 - sphere . In (4), I defined pronged and the 
simple 2-dimensional deleted product number as follows. 

If X is a finite, contractible, 2-dimensional polyhedron and v is a vertex 
of X, then X is pronged a t v provided d(St(z/, X)) contains a simple closed 
curve and if d(St(v, X)) is a simple closed curve 5 , then there is a simple 
closed curve S' in the 1-skeleton of X — St(p, X), a 2-chain 

n 

C — 2 a3 aJ 

(cij 9e 0 for each j = 1, 2, . . . , n) in X — St(v, X), and either a 1-simplex 
r G X — St (y, X) such t ha t dc = zs — zs^ r C\ Sf = 0, and 
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r r\ U a j 

is a vertex, or a 2-simplex r £ X — St(u, X ) and a 1-face /z of r such t h a t 
if L denotes the line segment in r from the barycentre of r to the barycentre 
of ^, then dc = zs — zS', L r\ S' = 0, and 

3=1 

is a vertex. If 5 is a 1-simplex of X , then X is pronged a t 5 provided the first 
barycentric subdivision of X is pronged a t the barycentre of s. 

If X is a finite, contractible, 2-dimensional polyhedron, u% is a vertex of 
X, and z*i and u2 are vertices in a component of d(St(w3, X))» let K = U{<H 
cr is a 2-simplex and there is a sequence <TI, a2, . . . , on of 2-simplexes in X with 
the property that a- = ci, Wi is a vertex of orw, and Vj P <r;-+i is a 1-simplex 
for each j } . If 

H0[d(St(uZjX)) - U S t ( ^ , X ) j = 0, 

there is a vertex w m K such tha t d(St(w, K)) contains a simple closed 
curve and w is a c-point of X, or there is a 1-simplex in X which is a face 
of at least three 2-simplexes, then the simple 2-dimensional deleted product 
number is 0. Otherwise, it is 1. 

Let 21 be the collection consisting of the polyhedra C and D and all finite, 
contractible, 2-dimensional polyhedra A such tha t a homeomorph of A can 
be constructed out of D by appending 2-simplexes in such a way that if the 
construction is factored 

D = Xi-+X2-*.. . - > X „ = A, 

then Xi is obtained from X 7 _i by adding a 2-simplex r such tha t 

Xi-i P T = 5] U S2, 

where Si and s2 are distinct 1-simplexes of Z j _ i and r, and, if Si C\ s2 = {u$\ 
and ^ j is the vertex of Sj different from w3, then 

2 

a(St(̂ 3,x,_!)) - u s t ^ x ^ ) 
is contractible. (Of course, one may take a finite subdivision of Xt_i before 
adding r.) 

If A £ 2Ï, let £ A = {x\ x is in a 2-simplex of 4̂ and x is not the centre of 
a disk which is contained in A}. 

T H E O R E M 3. If X £ 33, /feew X* has the homotopy type of the 2-sphere if and 
only if there is a member A of 21 and a non-negative integer m such that a homeo
morph of X can be constructed out of A by appending m 1-simplexes at m distinct 
points of EA. 
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Proof. We have already observed that C* and D* have the bomotopy 
type of the 2-sphere. Let A Ç 21 such that C ^ A ^ D. Since a homeomorph 
of A can be constructed out of D in the manner described above, in order 
to show that A* has the homotopy type of the 2-sphere, it is sufficient to 
show that if Xt-i is a finite, contractible, 2-dimensional polyhedron such that 
I j _ i * has the homotopy type of the 2-sphere and r is a 2-simplex such that 
Xt = Xt-i \J r and I i _ i H T = 5 i U s2, where s± and s2 are distinct 1-sim-
plexes of I j _ i and r, and, if $i P\ 52 = {̂ 3} and w, is the vertex of Sj different 
from Uz, then 

2 

d(St(^3 ,X,_i)) - U St(%,X*_i) 

is contractible, then X* has the homotopy type of the 2-sphere. Let 5 denote 
the 1-face of r which is not in Xz_i. Then 

p(xn = p(ïw*) u 

u 

X 
' ) 

Since 

P(X*-i*) H 

then 

St(^ 3 ,^z- i ) — U St(%, I i _ i ) 
3=1 

u 

X,_!~ U St(^,X,_!) X r = 

X < - 1 - U S t ( ^ , I M ) X (5i U S2), 

p(x,_!*) u ([x^x - u stK-y^o J x rj 
is homotopically equivalent to P ( X *_]*). Now 

P(X «-1*) U (I X M - U St(tt„X<_i) X 0] 

= (^stô^Zô - y st(M„.xY-i)J x {»i}j 

U (Ĵ St(««, X~~ï) - U St(«),X1_i)J X {«2}J 

U (^(StO^X^)) - U St(«i,X,_i)J X s J . 
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Since 

P&t-i*) U X 4 _x- U S t K . Z ^ x ) 

(! 

x -)] 
St(u3,Xt-i) - U St(uj,Xt-

3=1 
4-i)J XsJ 

is a deformation retract of 

then 

St (« 8 ,^ i - i ) - U St(w„X,_i) 
3 = 1 

X J , 

Xtr-1- U S t ^ I w ) 
;'=1 

p(x{-n u ([ 

u (]_st(w8, XTJ - u sto^x^J x s J 

is homotopically equivalent to ?(Xj_i*). Continuing, 

[P(X,_I*) U ([xM - U S t^X^J X rj 

u (|sT(^x~~ô - u st^-.x^oj x s J J 

D n(rx 

= Oi u 52) x 

X « _ i - USt(« J ,X«_i) 
; = 1 

*=1 J 
and therefore 

P(Xt^*) U 

(D 
I M - U S t («„X, -.)] x ,) 

U 1| St(«,,Xt_i) - U S t ( M j , I w ) X J , 

u ( T X |_X,_! I) 
is homotopically equivalent to P(Xf-i*). Also 

P ( X r-i*) U (| X ^ - U St(« i ,X,_1) 
*=1 

X , ) 

u ([st(^x~7) - u s t^x^oj x 5J 

U (r X [xt._! - U S t^X^J j J 

n(sx[st^.Zi-x) - ustc^.x^jj 
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({«*} X \_ u 

u Ux 

St(uz,X{^) - U S t ( a „ I ( _ , ) 

diStfaX^)) - U Stiuj.Xt-.i) 
! ) • 

and hence, for the same reason as above, P(X*) is homotopically equivalent 
t o ? ( Z M * ) . 

Now suppose A £ 21, m is a positive integer, and a homeomorph of X can 
be constructed out of A by appending m 1-simplexes at m distinct points 
of EA. The construction may be factored 

X\ —> X2 • Xm+i — X 

so that Xi is obtained from X2_i by adding a 1-simplex at a vertex of E^. 
Thus, in order to show that X* has the homotopy type of the 2-sphere, it is 
sufficient to show that if -X\_i* has the homotopy type of the 2-sphere, then 
so does X*. Let 5 be the 1-simplex such that Xt = Z ^ i U s, let v = X ^if^s, 
and let u be the vertex of 5 which is not in X z _ i . Then 

p(x,*) = PiXiS) u ((x^ - st(p,xM)) x 5) u (st^7x~7) x {«}) 
U M (Z,_i - St(»,^,_i))) U ({«} X St(», * , _ ! ) ) . 

Now P(X4_!*) H ((Xt_x - St(», I ( - i ) ) X 5) = (Z,_i - St(», I f - . ) ) X {»}, 
and hence P(X f_i*) ^ ((X4_i — St(z», X(-i)) X 5) is homotopically equiva
lent to P(Xt-i*). Also 

[PCx-,-1*) u ((x;_! - s t ^ x ^ ) ) x 5)]n (St(»,Xi_i) x {«}) = 
diStfaX,^)) X {«}. 

Since » is a point of £ A and every simplex of Xj_i which has s a s a vertex 
is a simplex of A, then d(St(z>, X<_i)) is contractible. Therefore 

PCX"*-!*) U ((X"«-i - S t ( r , X w ) ) X 5) U ( S t ^ X ^ ) X {«}) 

is homotopically equivalent to P(Xt-i*). Continuing, 

[P(X-|_i*) U ( ( I w - Stfo-XVO) X s) U ( S t ( j J w ) X {«})] 

r\(sx (1,-1 - st(»,z*_i))) = {v\ x (x^ - st(», A-!_!)), 
and hence 

P M u ((̂ .-1 - st^x^i)) x 5) 
U (Stfo-XVi) X {«}) U (J X ( l i - : - St(»,X«_i))) 

is homotopically equivalent to P ( X {_!*). Finally, 
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[P(X(^*) U ((XVi - StfaX^t)) X s) U (St(v,Xt^) X {«}) 

u(sx (x4_! - st^z^)))] n ({«} x st(»,x,_i)) = 
{«} xa(St(ï,XM)). 

Therefore, for the same reason as above, P(Xt*) is homotopically equivalent 
to P{X,_,*). 

Now suppose X G 33 and X* has the homotopy type of the 2-sphere. A 
homeomorph of X can be constructed out of a 2-simplex B, and the con
struction may be factored 

B = X\ —> X2 —> . . . —» X9 == X 

so that Xi is obtained from Xt-\ by one of the four types of additions de
scribed in the second paragraph of §2. We may assume, without loss of 
generality, that, for i > 1, Xt is not homeomorphic to a disk. Since X* has 
the homotopy type of the 2-sphere, Hz(X *) = 0 for all i by my work in (4). 
Let n be the smallest integer such that H2(Xn*) 9^ 0. Again, it follows from 
the theorems of (4) that H2(X *) is isomorphic to the group of integers and 
Hi(X*) = 0 for n < i < q and, for i > n} Xt is obtained from XV-i by 

(1) adding a 1-simplex at a vertex y, where Hk(d(St(v, X^i))) = 0 for all k, 
(2) adding a 2-simplex at a 1-simplex 5, where Hi(d(St(s, X t-i))) = 0, or 
(3) adding a 2-simplex r such that Xt_i H\ T = SiVJ s2, where s^ and s2 

are distinct 1-simplexes of Xt-\ and r, and, if Si C\ s2 = {̂ 3) and ^ is the 
vertex of Sj different from u%, then 

i f t (d(St( t t 8 ,* i - i ) ) - \JSt(ujtXt^)J = 0 lor all k. 

If X7 is obtained from Z ^ i by (2), then 1^ is homeomorphic to Xz_3, and 
hence we may assume that Xt is obtained from Xt-i by either (1) or (3). 

Now it follows also from the theorems of (4) that Xn is obtained from 
Xn-i by 

(4) adding a 1-simplex at a vertex v, where X„-i is not pronged at v and 
Hi(d(St(v, Xn_i))) is isomorphic to the group of integers, 

(5) adding a 2-simplex at a 1-simplex s, where Xv_\ is not pronged at 
5 and Hi(d{St(s, X„_i))) is isomorphic to the group of integers, or 

(6) adding a 2-simplex r such that Xn_\ C\ r = S\\J s2, where Si and s2 

are distinct 1-simplexes of Xn-\ and r, and, if S\ C\ s2 = {u<6} and uù is the 
vertex of Sj different from w3, then 

iïi(d(St(tt8,*»-i)) - U S t K - Y ^ O j = 0, 

ffo(d(St(«8,*»-i)) - U S t ^ I ^ ) ) 

is isomorphic to the group of integers, and the simple 2-dimensional deleted 
product number of Xn-\ is 1. 
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By my work in (4), Hi(X*) is isomorphic to the group of integers for 
1 < i < n — 1 and, for 1 < i < n — 1, Xt is obtained from Xz_i by 

(7) adding a 1-simplex at a vertex v, where Hk(d(St(v, X ^ ] ) ) ) = 0 for 
all k, 

(8) adding a 2-simplex at a 1-simplex 5, where Hi(d(St(s, Xf-i))) = 0, or 
(9) adding a 2-simplex r such that Zf_i P\ r = Si U s2, where $i and s2 

are distinct 1-simplexes of Xf-i and r, and, if Si C\ s2 = {uz\ and ttj is the 
vertex of Sj different from w3, then 

# id (S t (>3 ,X;_ i ) ) - U St(wy,Xi_i)J = 0 for all k. 

If Xt is obtained from X2_i by either (8) or (9), then Xt is homeomorphic 
to Xi-i and hence we may assume that Xt is obtained from Xz_i by (7). 
Therefore, there is a non-negative integer a such that Xw_i is homeomorphic 
to a disk with a 1-simplexes attached to the disk at a distinct points of the 
boundary. If Xn is obtained from Xn_\ by (4), then a homeomorph of Xn 

can be constructed out of C by appending a 1-simplexes at a distinct points 
of Ec. Therefore, there is a non-negative integer fi such that a homeomorph 
of X can be constructed out of C by appending /3 1-simplexes at $ distinct 
points of Ec. If Xn is obtained from Xn^\ by either (5) or (6), then there is 
a member A\ of 21(̂ 41 ^ C) and a non-negative integer «i such that a homeo
morph of Xn can be constructed out of A i by appending a\ 1-simplexes at a\ 
distinct points of EAl. Therefore, there is a member A2 of 9I(^42 ^ C) and a 
non-negative integer a2 such that a homeomorph of X can be constructed out 
of A2 by appending a2 1-simplexes at a2 distinct points of EM. 

4. Relation between HZ(X*) and embeddings. For each i = 1, 2, 3, let 
at and Tt be 2-simplexes, and let CC denote the polyhedron, consisting of 
these simplexes and their faces, which satisfies the following conditions: 

(1) There is a vertex c0 which is a vertex of at and of rt for each i. 
(2) <Ji(~\ TJ = {co\ for each i and j . 
(3) For each i < j , af C\ <rj is a 1-simplex rtj and rt C\ T3 is a 1-simplex sijm 

(4) If either i ^ k or j ^ tn, then r ^ 7^ ^W and s^ 3^ skm. 
Throughout this section, we let CC, au n, and c0 denote the specific objects 
described above. 

Definition 1. Let X be a finite, contractible, 2-dimensional polyhedron. A 
point x £ X is called a double c-point of X if there exist 2-simplexes Xi, X2, . . . , 
Xw and £1, £2, . . . , £ „ of X such that 

(1) x is a vertex of X* and of £̂  for each i and j , 
(2) X* P\ £;- = {x} for each i and 7, 
(3) \m C\ Xi is a 1-simplex, 
(4) for each i = 1, 2, . . . , m — 1, X7- P\ Xz+i is a 1-simplex, 
(5) \iCWk = {x} unless i and k satisfy the conditions of either (3) or (4), 
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(6) £n P\ £ i is a 1-simplex, 
(7) for each j = 1, 2, . . . , ?z — 1, £f P\ £y+i is a 1-simplex, and 
(8) £j ^ £* = {#} unless j and & satisfy the conditions of either (6) or (7). 

THEOREM 4. If X is a finite, contractible, 2-dimensional polyhedron and 
f: CC —> X is an embedding, then f(c0) is a double c-point of X. 

Proof. I t is easy to see that f(cG) is not an interior point of a 2-simplex. 
Suppose f(co) is an interior point of a 1-simplex u. Now f(cQ) is an interior 
point of 

(£")• / 

Therefore there exist two 2-simplexes y\ and n2} which have u as a face, and 
a disk Di such that 

/(co) e D1° C D i C (MI U /x2) H / ( U at). 

Likewise, there exist two 2-simplexes v\ and v2 which have u as a face, and a 
disk Z)2 such that 

/(co) 6 #2° CftC fa u v2) n / ( y rt). 

Therefore Di C\ D2 contains a non-degenerate closed interval and / is not an 
embedding. Hence /(co) is a vertex, and, using an argument similar to the 
one above, it is easy to see that /(c0) is a double c-point. 

THEOREM 5. If X £ S3, then Hz(X*) 9e 0 if and only if CC can be embedded in 
X. 

Proof. Suppose CC can be embedded in X. Then, by Theorem 4, X has a 
vertex v which is a double c-point. Let K be the subpolyhedron of X con
sisting of a collection of 2-simplexes, Xi, X2, . . . , Xm and £i, £2, . . . , £» such 
that Xi, X2, . . . , Xm, £1, £2, . . . , fn and v satisfy the definition of double 
c-point. By Theorem 14 of (4), HZ(K*) 9e 0. It also follows immediately from 
my work in (4) t h a t # 3 ( ^ * ) ^ 0. 

Suppose Hz(X*) 9e 0. In the construction of X out of a 2-simplex, 

A = X1 -> X2 - > . . . -> Xp = X, 

there is an i such that H^X?) 9* 0 but # 3 ( ^ - 1 * ) = 0 . It is sufficient to 
show that CC can be embedded in Xt. By my work in (4), Xt is obtained from 
Xi-i by adding a 2-simplex at two 1-simplexes. Let B be the 2-simplex such that 
Xi = I i _ i U 5 , and suppose I j _ i H J3 = Si U s2, where S\ C\ s2 = {u%}. For 
each 7, let Uj be the vertex of Sj different from u^. Then, by Theorem 14 of (4), 
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Let S be a simple closed curve in 
2 

d(St(«3,-XV-i)) - U S t K - X V i ) , 

and let ru r2, . . . , rw be a sequence of 1-simplexes in d(St(z/3, ^z - i ) ) such 
that u\ is a vertex of r\, w2 is a vertex of rn, r« C\ ra+i is a vertex, ra Pi r̂  = 0 
if |a — j8| > 1, and ra P 5 = 0 for each a. For each a, let cra be the 2-simplex 
which has u% as a vertex and ra as a face. Then 

is a disk with centre at u%. Let Si, s2, . . . , sOT be the 1-simplexes of S, and, 
for each 7, let r7 be the 2-simplex which has u% as a vertex and sy as a face. 
Then 

m 

7=1 

is a disk with centre at w3, and 

Therefore CC can be embedded in X. 
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