HOMOLOGY OF DELETED PRODUCTS OF
CONTRACTIBLE 2-DIMENSIONAL POLYHEDRA. II

C. W. PATTY

1. Introduction. The deleted product space X* of a space X is X X X — A.
In (4), I computed the homology groups of the deleted product of a polyhedron
in a subcollection B (see §2 of this paper for the definition of B) of the finite,
contractible, 2-dimensional polyhedra. In the present paper, I show that there
is an infinite subcollection € of B such that the deleted product of each member
of € has the homotopy type of the 2-sphere. One of these, call it C, can be
embedded in the others, and we show that C can be embedded in a member X
of B if and only if H,(X*) # 0. Using this, I show that such a polyhedron X
can be embedded in the plane if and only if Hy(X*) = 0. It follows from my
work in (4) that if X is a member of B, then H,(X*) = 0 and X* does not have
the homotopy type of a 3-sphere. However, here I show that there is a mem-
ber CC of B which can be embedded in X if and only if H3(X*) 5 0.

The homology groups used throughout this paper will be the reduced
homology groups with integral coefficients, and the customary tilde over the
H has been omitted. If X is a finite polyhedron, let

P(X*) = Ules X 7| ¢ and 7 are simplexes of X and ¢ N 7 = 0}.
Hu (1) has proved that X* and P(X*) are homotopically equivalent.

2. Relation between H,(X*) and embeddings. In (3), I defined a c-point
as follows. A point x in a finite, contractible, 2-dimensional polyhedron X is
called a c-point of X if there exist 2-simplexes, 71, 79, ..., ™, of X and a
simplex 7 of X such that:

(a) 7 is not a face of 7, for any ¢,

(b) «x is a vertex of 7 and of 7, for each 1,

(¢) .M 71is a 1-simplex,

(d) foreach i =1,2,...,n — 1, 7,/ 7,4 is a 1-simplex, and

(e) 7:M 7; = {x} unless 7 and j satisfy the conditions of either (c) or (d).

In (4), I observed thatif X isa finite, contractible, 2-dimensional polyhedron
and A4 is a 2-simplex, then a homeomorph of X can be constructed out of 4
by appending n-simplexes (z = 1, 2). The construction may be factored

A=X1-Xo—>...2X, =X
so that X ; is obtained from X, ; by
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(a) adding a 1-simplex which meets X;_; in just one of its vertices,

(b) adding a 2-simplex which meets X,_; in just one of its vertices,

(c) adding a 2-simplex which meets X ;_; in just one of its 1-faces, or

(d) adding a 2-simplex which meets X,_; in exactly two of its 1-faces.

We may choose the order in which we add simplexes so that if r is a 2-
simplex such that X; = X, 1 U7 and X, N\ 7 = 5, U s,, where s; and s,
are l-simplexes of X, 1 and 7, s1 M ss = {us}, and u; is the vertex of s; diff-
erent from u; then there is a sequence 7y, 73, ..., 7, of l-simplexes in
9 (St(us, X 1)) such that u, is a vertex of 71, u» is a vertex of 7,, 7, M 7,41 is
a vertex, and 7, N\ r, =@ if |j — k| > 1.

Let B be the subcollection of the finite, contractible, 2-dimensional polyhedra
consisting of those X which can be constructed so that if 7 is a 2-simplex such
that X, = X, 1 Urand X,—1 M 7 = 51U 55, where s; and s, are 1-simplexes

of X, jand 7, s/ sz = {us}, and u, is the vertex of s; different from u;, and
S is a simple closed curve in 9(St(u3,X ;_;)) such that #; and u, are not in .S,
then the sequence 7y, 73, . . ., , can be chosen so thatr; M S = @ for each j.

Foreachz = 1, 2, 3, let o; be a 2-simplex, and let » be a 1-simplex. Through-
out this paper, let C denote the polyhedron, consisting of these simplexes and
their faces, which satisfies the following conditions:

(a) 7 is not a face of ¢, for any 1,

(b) there is a vertex ¢, which is a vertex of » and of ¢; for each 1,

(c) foreachz < j, o,M o;is a l-simplex r,;, and

(d) 7,; % 74w unless ¢ = kand j = m.

THEOREM 1. If X € B, then Hy(X*) £ 014f and only if C can be embedded in X .

Proof. Suppose C can be embedded in X. By Theorem 9 of (3), either X
has a vertex which is a ¢-point or X has a 1-simplex which is a face of at least
three 2-simplexes. If X has a vertex v which is a ¢-point, let K be the sub-
polyhedron of X consisting of a collection of simplexes, 71, 72, . . . , Tu, 7, such
that v and 71, 79, . . ., s, 7 satisfy the definition of ¢-point. If X does not
have a vertex which is a ¢-point, let s be a 1-simplex which is a face of at
least three simplexes, and let K be the subpolyhedron of X consisting of these
three 2-simplexes. By Theorems 6 and 7 of (3), H.(K*) # 0. It follows
immediately from my work (4) that H,(X¥*) # 0.

Suppose H»(X*) #£ 0. In the construction of X,

A=X1-Xs—>...» X, =X,

since Hy(A*) = 0, there is an 7 such that Ho(X *) # 0 but H.(X,_,*) = 0.
It is sufficient to show that C can be embedded in X ;. Suppose X ; is obtained
from X ;_; by addition of an n-simplex (n = 1, 2) at an m-simplex ¢ (m = 0,
1). Then, by Theorems 5 to 10 of (4), H1(d(St(s, Xi_1))) # 0. Therefore
X ,_1 contains a disk with centre at the barycentre v of ¢. Hence v is either
a c¢-point of X, or ¢ is a l-simplex which is a face of at least three 2-sim-
plexes of X ;. In either case C can be embedded in X ;. Suppose X ; is obtained
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from X, ; by addition of a 2-simplex at two l-simplexes. Let B be the 2-
simplex such that X; = X,_1\U B, and let 7y, 7y, ..., 7, be a sequence of
1-simplexes in 9(St(u;, X ;1)) such that u; is a vertex of 7y, u, is a vertex
of 7, 7;M\ 741 is a vertex, and 7, N7, =@ if |[j — k| > 1. For each j, let
o; be the 2-simplex which has #; as a vertex and 7, as a face. Then

(U O’j) UB
j=1

is a disk with centre at u#3. By Theorem 14 of (4),
2
i) (St(ug, X¢_1)) —_ ;}Jl St(uk, Xi—l)
is not connected. Therefore there is a vertex w in 9 (St(us, X)) such that
n
w e U Y.
=1
Hence u; is a ¢-point of X ;, and C can be embedded in X ,.

THEOREM 2. An element X of B can be embedded in the plane if and only if
Hy(X*) = 0.

Proof. Suppose H»(X*) % 0. Then, by Theorem 1, C can be embedded in
X. It is obvious that C cannot be embedded in the plane, and therefore X
cannot be embedded in the plane.

Now suppose X cannot be embedded in the plane. Define an equivalence
relation on the collection of 2-simplexes of X by o1 ~ ¢ if and only if there

is a sequence 7y, 72, ..., 7, of 2-simplexes such that 7, = o1, 7, = 03, and
7; M 7,41 is a l-simplex for each 2. If R is an equivalence class, let
Kg=U{olo € R}]. Let K, K,,...,K, denote the subpolyhedra of X

obtained in this manner. If, for some ¢, K; has a 1-simplex which is a face
of at least three 2-simplexes, then C can be embedded in K;and hence in X.
Thus Hy(X*) % 0 by Theorem 1. Suppose that, for each ¢, K; does not have
such a l-simplex. Then each K, is homeomorphic to a disk. If there exist 7
and j (z # j) such that K, M K, is an interior point of the disk K;, then C
can be embedded in K;\U K, and hence in X. Again, by Theorem 1, this
means that H.(X*) # 0. Suppose that for each ¢ and j, K; M K, is either
empty or a boundary point of each. Then, since X is contractible, U1K,
can be embedded in the plane. Let sy, ss, ..., s, denote the 1-simplexes of
X which are not faces of 2-simplexes, let Ly, L, ..., L, denote the com-
ponents of U1 K, and let 7'y, T, . . ., T, denote the components of U7, s,.
Now, for each 7 and j, L; M T, is either empty or a single point. If, for some
iand j, L; M T';is an interior point of L;, then C can be embedded in L;\U T,
and therefore H.(X*) £ 0. Suppose that for each ¢ and j, L; M T, is either
empty or a boundary point of L;. Then, since X is contractible, it can be
embedded in the plane.
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For each ¢ = 1, 2, 3, let ¢, be a 2-simplex, and suppose there is a 1-simplex
7 such that ¢;/M ¢; = r for all 7 # j. Throughout this paper, let D denote
the polyhedron consisting of ¢i, g2, 03, and all their faces.

By Theorems 6 and 7 of (3), C* and D* have the homotopy type of the
2-sphere. By Theorems 13 and 16 of (3), there are two isotopy classes of
embeddings of C in C, and, by Theorems 9 and 21 of (3), there are six isotopy
classes of embeddings of C in D.

Foreach i = 1, 2, 3, let ¢; be a 2-simplex and 7; a 1-simplex. Let X; denote
the polyhedron, consisting of these simplexes and their faces, which satisfies
the following conditions:

(a) 7,is not a face of ¢, for any ¢ and j,

(b) there is a vertex ¢q which is a vertex of ¢; and 7; for each 1,

(c) foreachi < j, 0; M g;isa l-simplex, 7,

(d) 745 # 74 unless 7 = k and j = m, and

(e) oM\ r; = {co} forall 7 5 j.

By Theorems 9, 11, 13, and 16 of (3), the number of isotopy classes of em-
beddings of C in X is six. Therefore the number of isotopy classes of embed-
dings of C in X, is the same as the number of isotopy classes of embeddings
of Cin D. However, by Theorem 6 of (4), H,(X*) is the free abelian group
on five generators and H;(X*) is the free abelian group on six generators.

The above examples show that if X is a finite, contractible, 2-dimensional
polyhedron, then a combination of the homology groups of X* and the num-
ber of isotopy classes of embeddings of C in X gives us more information
about X than either one separately. However, as the following example
shows, a combination of these two things does not distinguish finite, con-
tractible, 2-dimensional polyhedra.

For each ¢ = 1, 2, 3, let ¢; be a 2-simplex, and, for each j = 1,2, let r,
be a 1-simplex. Let X, denote the polyhedron, consisting of these simplexes
and their faces, which satisfies the following conditions:

(a) 7, is not a face of ¢, for any 7 and j,

(b) there is a vertex ¢, which is a vertex of ¢; and 7; for each 7 and 7,

(¢) foreach s < j, o;,M o;isa l-simplex, 7,

(d) 7y &% 74 unless 7 = k and j = m, and

(e) r1Mry = {co}.

For each i = 1,2,...,7, let ¢; be a 2-simplex, and let 7 be a 1-simplex.
Let X; denote the polyhedron, consisting of these simplexes and their faces,
which satisfies the following conditions.

(a) U%.10; is a disk as indicated below.
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(b) If U1 = 01m0'5 and Vo = 0’2[-\0'4, then
6 7
o7ﬂUa,-= {vz} and TmUG'iZ {7}1}.
i=1 i=1

By Theorems 9, 11, 13, and 16 of (3), for each ¢z = 2, 3, the number of
isotopy classes of embeddings of Cin X ;is four. By Theorem 6 of (4), H,(X*)
is the free abelian group on three generators, H;(X,*) is the free abelian
group on two generators, and H(X.*) = 0 if 1 # &k # 2. By Theorem § of
(4), H.(X;*) is the free abelian group on three generators, H;(X:*) is the
free abelian group on two generators, and H,(X;*) = 0 if 1 = & = 2.

For the sake of completeness, we observe that essentially the same thing
happens for trees (finite, contractible, 1-dimensional polyhedra). It follows
from Theorems 2.2 and 3.1 of (2) that if X is a tree, then H,(X*) # 0 if
and only if the triod can be embedded in X. Let X, be the tree that has
five vertices of order three and all other vertices of order one, and let X; be
the tree that has one vertex of order four, one of order three, and the remainder
of order one. Then, by Theorem 4 of (3), for each 7 = 4, 5, the number of
isotopy classes of embeddings of the triod in X ;is 30. However, by Theorem 5
in (3), H,(X*) is the free abelian group on nine generators and H,;(X;*)
is the free abelian group on seven generators.

Let X ¢ be the tree that has four vertices of order three and all other vertices
of order one. Then H;(X*) is the free abelian group on seven generators and
hence H,(X¢*) is isomorphic to H;(X;*). However, the number of isotopy
classes of embeddings of the triod in X is 24.

The following example shows that if X is a tree, then a combination of
the homology groups of X* and the number of isotopy classes of embeddings
of the triod in X does not give as much information as counting the orders
of vertices. Let X5 be a tree that has 60 vertices of order three, 10 vertices
of order five, and all other vertices of order one. Let X5 be a tree that has
40 vertices of order four and all other vertices of order one. Then, for each
1 = 7,8, by Theorem 5 of (3), H{(X *) is the free abelian group on 239 gener-
ators, and, by Theorem 6 of (3), the number of isotopy classes of embeddings
of the triod in X ; is 960.

3. Homotopy type of the 2-sphere. In (4), I defined pronged and the
simple 2-dimensional deleted product number as follows.

If X is a finite, contractible, 2-dimensional polyhedron and v is a vertex
of X, then X is pronged at v provided 9(St(v, X)) contains a simple closed
curve and if 9(St(v, X)) is a simple closed curve S, then there is a simple
closed curve S’ in the 1-skeleton of X — St(v, X), a 2-chain

n
4 =Zaj0'j
=1

(a¢; # 0 for each j =1,2,...,n) in X — St(y, X), and either a 1-simplex
r € X — St(v, X) such that dc = zg — 25, v M S’ = @, and
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n
1’[\ U aj
j=1

is a vertex, or a 2-simplex 7 € X — St(v, X) and a 1l-face u of 7 such that
if L denotes the line segment in 7 from the barycentre of = to the barycentre
of u, then d¢c = 33 — 25, LM .S’ = @, and

Lm U (]
=1

is a vertex. If s is a 1-simplex of X, then X is pronged at s provided the first
barycentric subdivision of X is pronged at the barycentre of s.

If X is a finite, contractible, 2-dimensional polyhedron, u; is a vertex of
X, and u; and u, are vertices in a component of 8(St(u;, X)), let K = (U{q]
o is a 2-simplex and there is a sequence o1, g, . . ., 0, of 2-simplexes in X with
the property that ¢ = oy, #; is a vertex of ¢,, and ¢; /M 041 is a 1-simplex
for each j}. If

H0<6(St(u3,X)) — kij St(u,-,X)) =0,

there is a vertex w in K such that 9(St(w, K)) contains a simple closed
curve and w is a ¢-point of X, or there is a l-simplex in K which is a face
of at least three 2-simplexes, then the simple 2-dimensional deleted product
number is 0. Otherwise, it is 1.

Let A be the collection consisting of the polyhedra C and D and all finite,
contractible, 2-dimensional polyhedra 4 such that a homeomorph of 4 can
be constructed out of D by appending 2-simplexes in such a way that if the
construction is factored

D=X-X,—...—2X, =4,
then X; is obtained from X, ; by adding a 2-simplex 7 such that
X,-_lf\r = & USz,

where s; and s, are distinct 1-simplexes of X;_; and 7, and, if s1 /M 55 = {u3}
and u; is the vertex of s, different from #;, then

2
d(St(us, Xi1)) — -U1 St (s, Xi1)

is contractible. (Of course, one may take a finite subdivision of X ,_; before
adding 7.)

If A €U let E, = {x| x is in a 2-simplex of 4 and x is not the centre of
a disk which is contained in A4}.

TueorREM 3. If X € B, then X* has the homotopy type of the 2-sphere if and
only if there is « member A of A and a non-negative integer m such that a homeo-
morph of X can be constructed out of A by appending m 1-simplexes at m distinct
points of E 4.
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Proof. We have already observed that C* and D* have the homotopy
type of the 2-sphere. Let 4 € U such that C # 4 # D. Since a homeomorph
of 4 can be constructed out of D in the manner described above, in order
to show that A* has the homotopy type of the 2-sphere, it is sufficient to
show that if X ,_; is a finite, contractible, 2-dimensional polyhedron such that
X ;_1* has the homotopy type of the 2-sphere and 7 is a 2-simplex such that
X, =X, 1 UYUrand X, .17 =51 Us,, where s; and s, are distinct 1-sim-
plexes of X,_j and 7, and, if s; N s; = {u3} and u, is the vertex of s; different
from u3, then

3(St(us, X1.1)) — u Sty X o)
L

is contractible, then X ;* has the homotopy type of the 2-sphere. Let s denote
the 1-face of 7 which is not in X,_;. Then

PX*) =PX,1*)U ([Xi_l - QSt(ZLj,Xi“I):‘ X T>

3
U (T X [Xi—l - Ul St(”j, Xi~l):|>
jz

I 2
U] (s X I:St(zm,Xi_l) — U St(uj,Xi_l):D .
j=1

Since

3
P(Xi_.l*) N <[Xi~1 — U St(u,-, Xi-l)} X T> =
=1

3
I:Xi_l —_ yl St(uj,Xi_l)] X (Sl U S2>y
then ”
3
P(X,1*) U ([Xt-l - Ul St(u]-,X,-l)] X 7'>
j=

is homotopically equivalent to P (X ,_;*). Now

[y (e Gstnn o))

e — 2 7]
St(us, Xi1) — Ul St(uy, Xi1) | X 5>
L = |

a

St X — U Stlu o) | )

—S_t(u3v X_l—i—lj - ‘L;)l St (ujy Xi—l) X {7"2}>

d(St(us, Xi1)) — yl St(“iji-l):l X s> .

C

C
TN SN SN TN
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Since

)

is a deformation retract of

[St(u3y l*l) - U St(u;, X i—l)jl X's

then

P(Xi_l*) U <|:Xi_1 bl C) St(u]-,Xiﬁl):l X T)

([St(us, Xia) — U St(us X H)] X s)

is homotopically equivalent to P(X,_;* ). Contmumg,

it (o O sml.,xi_l)} )
N <T X [Xi_l -y St(uj,Xi_l):D

3
= (51U $2) X I:Xi—l — yl St(“j,XiAl)] ,

and therefore

3
P(XiAl*) U <|:Xi._1 —_ U St(uj,Xi_l)} X 7'>
U <T X l:Xi_l — L_)l St(uj, X1~1):|>

is homotopically equivalent to P(X;_1*). Also

|:P(Xi_1*) U ([XH - }; St(u; X i_l)] X r)
([St(ug, X = U St<u],Xi_1)] >
o (rx - 0 Stwﬂxf—o])]
N ( [sma, X - u St(u;, X H)])
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= (1 ¢ | St i = U Setw X ])

U ({%2} X |:§£(7¢3_» Xi—l) - Ql St(ueri—l)]>

U <S X |:6(St(u37Xi—l)) - Q)l St(ujyXi—l)jI> )

and hence, for the same reason as above, P(X *) is homotopically equivalent
to P(Xi_l*)

Now suppose 4 € 9, m is a positive integer, and a homeomorph of X can
be constructed out of 4 by appending m l-simplexes at m distinct points
of E,. The construction may be factored

A =X1—‘>X2‘—>...—)Xm+1=X

so that X, is obtained from X, ; by adding a 1-simplex at a vertex of E,.
Thus, in order to show that X* has the homotopy type of the 2-sphere, it is
sufficient to show that if X, * has the homotopy type of the 2-sphere, then
so does X ;*. Let s be the 1-simplex such that X; = X, Us, let v=X,_1Ns,
and let « be the vertex of s which is not in X ,_;. Then

PX#*) = PX1*) U ((Xim1 — St(v, X 1)) X s) U (St(v, Xim1) X {u})
U (s X (X1 — St(v, X,21))) U (lu} X St(, X, 1)).

Now P (X ;—1*) N (X1 — St(v, X 1)) X'5) = (X1 — St(y, Xi1)) X {9},
and hence P (X ,—*) N ((X,—1 — St(v, X,_1)) X s) is homotopically equiva-
lent to P(X,_;*). Also

[PX ™) U (X o1 — St, X 1)) X )1 N (Stv, Xo1) X {u}) =
d(St(, X 1)) X {u}.

Since v is a point of E, and every simplex of X,_; which has v as a vertex
is a simplex of A4, then d(St(v, X,_1)) is contractible. Therefore

PX*) U (X = St@, X i0) X ) U (Stlo, X i) X {u))
is homotopically equivalent to P (X, ,*). Continuing,
[PX 1) U (X i1 = Ste, Xim1)) X 8) U (St, Xen) X {u))]
M (s X X1 — St(w, X41))) = {o} X (Xem1 — St(o, Xi1)),

and hence
PXia*) U (X1 — St(v, X 1)) X 5)
U (St X o) X (1)) U (s X KXo — St(v, X 1))
is homotopically equivalent to P (X ;_;*). Finally,
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[PXr*) U (X1 = St@, X i1) X 5) U (St@0, X ) X {u))
U (s X (X1 = St(e, X)) N () X Sto, X)) =
{u} X 9(St(, Xi1)).
Therefore, for the same reason as above, P(X ;*) is homotopically equivalent
to P(X —1*).
Now suppose X € B and X* has the homotopy type of the 2-sphere. A

homeomorph of X can be constructed out of a 2-simplex B, and the con-
struction may be factored

B=X-X,—»...»X,=X

so that X, is obtained from X, ; by one of the four types of additions de-
scribed in the second paragraph of §2. We may assume, without loss of
generality, that, for ¢ > 1, X, is not homeomorphic to a disk. Since X* has
the homotopy type of the 2-sphere, H3(X *) = 0 for all ¢ by my work in (4).
Let # be the smallest integer such that H.(X,*) # 0. Again, it follows from
the theorems of (4) that H,(X *) is isomorphic to the group of integers and
Hi(X*) =0forn <7< qand, for 7> n, X, is obtained from X,_; by

(1) adding a 1-simplex at a vertex v, where H;(9(St(v, X ;,-1))) = Oforall k,

(2) adding a 2-simplex at a 1-simplex s, where H;(d(St(s, X,_1))) = 0, or

(3) adding a 2-simplex 7 such that X, M 7 = s1\U 53, where s; and s,
are distinct 1-simplexes of X, ; and 7, and, if s1 M 52 = {us} and u, is the
vertex of s; different from s, then

2
Hk<8(st(u3, X-[;l)) - U St(u]', Xi_1)> =0 forall%.
j=1

If X, is obtained from X ,_; by (2), then X; is homeomorphic to X,_;, and
hence we may assume that X, is obtained from X, ; by either (1) or (3).

Now it follows also from the theorems of (4) that X, is obtained from
X,_, by

(4) adding a l-simplex at a vertex v, where X,_; is not pronged at » and
H,;(d(St(v, X,—1))) is isomorphic to the group of integers,

(5) adding a 2-simplex at a 1l-simplex s, where X,_; is not pronged at
s and H1(d(St(s, X,—1))) is isomorphic to the group of integers, or

(6) adding a 2-simplex 7 such that X,_1 /M 7 = 51U s, where s; and s,
are distinct l-simplexes of X,_; and 7, and, if s; M sy = {us} and u, is the
vertex of s, different from u3, then

2
H1<6(St(u3y)(n—1)) - Ul St(ujr Xﬂ—1)> = 01
j=

H0<6(St(u3,Xn_1)) - £_Jl St(u;, Xn_1)>

is isomorphic to the group of integers, and the simple 2-dimensional deleted
product number of X,_, is 1.
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By my work in (4), H:1(X;*) is isomorphic to the group of integers for
1<i<n—1and, for1 <i<#n—1, X;is obtained from X,_; by

(7) adding a 1l-simplex at a vertex v, where H(d(St(v, X;_1))) = 0 for
all &,

(8) adding a 2-simplex at a 1-simplex s, where H1(d(St(s, X,_1)))= 0, or

(9) adding a 2-simplex 7 such that X, M 7 = s; U s,, where s; and s»
are distinct 1-simplexes of X, ; and 7, and, if s;1 M s = {us} and u; is the
vertex of s; different from u;, then

2
H,C<6(St(ug,Xi_1)) Y St(uj,Xi_1)> =0 forall k.
j=1

If X, is obtained from X, ; by either (8) or (9), then X, is homeomorphic
to X;_; and hence we may assume that X, is obtained from X, ; by (7).
Therefore, there is a non-negative integer a such that X,_; is homeomorphic
to a disk with « 1-simplexes attached to the disk at « distinct points of the
boundary. If X, is obtained from X,_; by (4), then a homeomorph of X,
can be constructed out of C by appending a 1-simplexes at «a distinct points
of E. Therefore, there is a non-negative integer 8 such that a homeomorph
of X can be constructed out of C by appending 8 1l-simplexes at 8 distinct
points of E¢. If X, is obtained from X,_; by either (5) or (6), then there is
a member 4; of A(4; # C) and a non-negative integer a; such that a homeo-
morph of X, can be constructed out of 4; by appending «; 1-simplexes at ay
distinct points of E,4,. Therefore, there is a member 4, of A (4, # C) and a
non-negative integer as such that a homeomorph of X can be constructed out
of 4, by appending @, 1-simplexes at a, distinct points of E4,.

4. Relation between H;(X*) and embeddings. For each 7 = 1, 2, 3, let
o; and 7; be 2-simplexes, and let CC denote the polyhedron, consisting of
these simplexes and their faces, which satisfies the following conditions:

(1) There is a vertex ¢y which is a vertex of ¢; and of r, for each <.

(2) o; M 7; = {co} for each 7 and j.

(3) Foreachi < j, 0;M o;isa l-simplex 7;;and 7, M 7, is a 1-simplex s;,.

(4) If either 7 # k or j # m, then r;; 5% 74, and si; = Sin.

Throughout this section, we let CC, ¢;, 74, and ¢, denote the specific objects
described above.

Definition 1. Let X be a finite, contractible, 2-dimensional polyhedron. A
point x € X is called a double c-point of X if there exist 2-simplexes Ay, Ay, .« . .,
M and &1, &2, ..., & of X such that

(1) xis a vertex of \; and of &; for each 7 and j,

(2) Ny &; = {x} for each 7 and j,

(8) Mn M M is a l-simplex,

(4) foreachz =1,2,...,m — 1, A\; M Ayp1 is a 1-simplex,

(5) Ni M\ A, = {x} unless 7 and k satisfy the conditions of either (3) or (4),
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(6) & M & is a 1-simplex,
(7) foreachj =1,2,...,n — 1, £, M ;41 is a 1-simplex, and
(8) £, M & = {x} unless j and k satisfy the conditions of either (6) or (7).

TuEOREM 4. If X is a finite, contraciible, 2-dimensional polyhedron and
f: CC — X is an embedding, then f(co) is a double c-point of X.

Proof. It is easy to see that f(cy) is not an interior point of a 2-simplex.
Suppose f(cy) is an interior point of a l-simplex #. Now f(cy) is an interior

point of
3
(5m)

Therefore there exist two 2-simplexes u; and w2, which have u as a face, and
a disk D; such that

flco) € Di* C Dy C (w1 U p) ﬂf( CJ cri>.

i=1

Likewise, there exist two 2-simplexes v; and v, which have u as a face, and a
disk D, such that

3
flco) € D" C Dy C (1 U »2) mf( _L=Jl7'i)-

Therefore D; M D, contains a non-degenerate closed interval and f is not an
embedding. Hence f(cy) is a vertex, and, using an argument similar to the
one above, it is easy to see that f(cy) is a double ¢-point.

THEOREM 5. If X € B, then H3(X*) 5 0 if and only if CC can be embedded in
X.

Proof. Suppose CC can be embedded in X. Then, by Theorem 4, X has a
vertex v which is a double c¢-point. Let K be the subpolyhedron of X con-
sisting of a collection of 2-simplexes, Ay, Ay, ..., Ay and £y, &, ..., &, such
that M, Ne, . .., Ay, &1, £2,. .., &, and v satisfy the definition of double
c-point. By Theorem 14 of (4), H3(K*) £ 0. It also follows immediately from
my work in (4) that H;(X*) 5 0.

Suppose H;(X*) 0. In the construction of X out of a 2-simplex,

A=X-Xs—...—2X, =X,

there is an 7 such that H;(X . *) # 0 but H3(X,;1*) = 0. It is sufficient to
show that CC can be embedded in X ;. By my work in (4), X is obtained from
X ,_1byadding a 2-simplex at two 1-simplexes. Let B be the 2-simplex such that
X:= X,_1\U B, and suppose X ;_1 M B = 51U sq, where s; M 52 = {us}. For
each j, let #, be the vertex of s, different from ;. Then, by Theorem 14 of (4),

2
H1<3(St(u3,Xi—1)) - »L—)1 St(uirXi—1)> # 0.
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Let S be a simple closed curve in
2
6(St(7ft3, Xi_l)) - jk—Jl St(ujy Xi—l)v

and let 71,7, ...,7, be a sequence of 1-simplexes in 9 (St(us, X;_1)) such
that u, is a vertex of 7y, u, is a vertex of 7,, 7, M 7,41 is a vertex, 7, M rg=0
if @ — Bl > 1, and r, S = @ for each a. For each «, let o, be the 2-simplex
which has u3 as a vertex and 7, as a face. Then

< CJ ra> U B
a=1

is a disk with centre at u;. Let si1,s2, ..., s, be the l-simplexes of S, and,
for each «, let 7, be the 2-simplex which has u; as a vertex and s, as a face.
Then

m

U Ty

y=1

is a disk with centre at u3, and

(9 us]nlgn]=

Therefore CC can be embedded in X.
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