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SOME RESULTS ON THE SCHUR INDEX OF 
A REPRESENTATION OF A FINITE GROUP 

CHARLES FORD 

Let © be a finite group with a representation as an irreducible group of 
linear transformations on a finite-dimensional complex vector space. Every 
choice of a basis for the space gives the representing transformations the form 
of a particular group of matrices. If for some choice of a basis the resulting 
group of matrices has entries which all lie in a subfield K of the complex field, 
we say that the representation can be realized in K. It is well known that every 
representation of © can be realized in some algebraic number field, a finite-
dimensional extension of the rational field Q. 

Let x be the character of an irreducible complex representation T of @. We 
shall denote by Qix) the field extension of Q obtained by adjoining all the values 
x(G) for G € ©. Then Qix) is contained in any field extension K of Q in which 
T can be realized. The Schur index mix) of x over the rational field is the 
minimum possible dimension (K:Q(x)) taken over all algebraic number fields 
K in which T can be realized. This number mix) n a s two additional properties. 
First, mix) divides the dimension (K:Q(x)) for any algebraic number field K 
in which T can be realized. For the second, suppose that K is a field containing 
<2(x) and that T appears as a component with multiplicity one in some repre
sentation which can be realized in K. Then T can be realized in K. See 
[3, § 70, theorem 70.12; 4, theorem (11.4)] for these results. The number we 
have called mix) is there called mQ{x). 

The problem of determining mix) has been greatly simplified by a theorem 
of R. Brauer, which we state after the following definition. For a prime number 
p, a group is said to be elementary with respect to p if it is the semi-direct 
product of a normal cyclic ^'-group with a ^?-group. 

THEOREM (Brauer). Let x be an irreducible complex character of a finite 
group ©. Let m(x) be the Schur index of x over the rational field. For each prime 
divisor p of m(x) there is an elementary subgroup of © with respect to p, and an 
irreducible complex character of that subgroup whose Schur index is the p-part 
of mix)-

See [5 or 3, § 42 and § 70, pp. 475-479]. Elementary subgroups are called 
Ç-elementary and, as with mix) and mQix), the definitions given here are 
easily seen to be special cases of the definitions given in [3; 4; 5]. 

Received April 7, 1969 and in revised form, February 5,1970. The research for this paper was 
done while the author was a post-doctoral fellow at the University of Toronto and was sup
ported by the National Research Council under grant number A-3022. 

626 

https://doi.org/10.4153/CJM-1970-069-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-069-3


SCHUR INDEX 627 

Let n be the exponent of © and let € be a primitive nth root of unity. Then 
the field Q(e) is a Galois extension of Q with an Abelian Galois group over Q. 
Thus if Ki and K2 are subfields of Q(e) with K\ C K2, then K2 is a Galois 
extension of Ku and the Galois group, which will be denoted by GaliK2/K1)1 

is Abelian. The field Q(e) contains the field Qi^) for any character \p of a sub
group of @. 

Suppose that {qt} is the set of prime divisors of the order of @. Let 
k = 2Uqi and let 77 be a primitive &th root of unity. Solomon [5] has shown 
that any irreducible complex representation of © can be realized in the field 
Q(VJ X)> where x is the character of the representation. The first property of 
the Schur index then implies that mix) divides the dimension (QO?, x)'Qix))-
This equals the dimension (Q(r)):QM ^ Q(x)) which is a divisor of (Q(y):Q). 
Using the Euler $-function, this last dimension is either 211 (qt — 1) or 
n(<Zi — 1). Hence mix) divides 211 (qt — 1). The first theorem of the present 
paper is the following, which strengthens this result. This theorem may also 
be deduced from Witt's paper [6, Satz 12, p. 245]. 

THEOREM. Let x be an irreducible complex character of a finite group ©. Let 
mix) be the Schur index of x over the rational field. Then for each prime divisor p 
of m(x), there is a prime q dividing the order of © such that the p-part of mix) 
divides (q — 1). An exception can occur if © is a 2-group. We may have m (x) = 2 
in this case. 

The second main result of the paper appears as the corollary to Theorem 2. 
It is a new result which relates the Schur index to the field of characters. 

THEOREM. Let % be an irreducible complex character of a finite group @. Let 
m — m{x) be the Schur index of x over the rational field. For each odd prime 
divisor p of m, let pe be the p-part of m. Then p*~l divides the dimension (Ç (x) : (?). 

Similar techniques are used in the proofs of the two theorems, and we begin 
by considering the first one. In view of Brauer's theorem, it is sufficient to 
prove this theorem for elementary groups, and we assume at the outset that 
@ = Jl^, where SI is a cyclic normal ^'-group and $ is a ^-group. We shall use 
standard notation and basic properties of representation theory which can 
be found in either [3] or [4]. We begin with a result found in [6] with a proof 
adapted from [5]. See [4, theorem (14.3)]. 

LEMMA 1. Let © = Sl^ be an elementary group with respect to the prime p. 
Let x be an irreducible complex character of ®. Then there exist subgroups § and 
% in © and a linear character X of § such that: 

(1) 21 C § C g and % normalizes § , 
(2) (?(£) = Qix)j where £ is the character of % induced by X, 
(3) g / $ - Gal(Q(X)/Qtt))f 

(4) m(£) = mix). 

Proof. There exist subgroups § and % in © and a character X (not neces
sarily linear) of p̂ which satisfy conditions (1) and (2) above, for example 

https://doi.org/10.4153/CJM-1970-069-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-069-3


628 CHARLES FORD 

take ^ = $ = ® and X = x- Among all such triples ( § , §f, X), choose one 
for which | § | + X(l) is minimal. Letting £ be the character of g induced by X, 
we have assumed that ()(£) = Q(x). We will show that ^ = Gal((?(X)/Q(x)) 
is isomorphic to a subgroup of § / § . Using the definitions of induction and 
irreducibility, it is not difficult to justify the following line of argument. Since 
X induces an irreducible character, it must itself be irreducible. By the transi
tivity of induction, £ induces Xi and hence £ is also irreducible. Let a Ç &. 
Since X is irreducible, Xe7 is irreducible and X0- induces £*. But we assumed that 
(?(?) = (?(x) which is the field fixed by &. Thus X* induces £. By the Frobenius 
Reciprocity Theorem, X0- appears once as a component in £|$. Clifford's theorem 
shows that £|§ is the sum of the group-theoretic conjugates of X given by the 
factor group § / § . Thus X0" = XG for a uniquely determined coset G § of $ / § . 
Since the processes of algebraic conjugation and group conjugation of a 
character commute, and since ^ is Abelian, the corresponding mapping 
(j —> G& of & into § / § is multiplicative. 

Let g i / § be the image of ^ in $ / § , and let £i be the character of $i induced 
by X. Then the restriction £i|§ is, by the choice of §i, the sum of the conjugates 
of X under ^ , and is therefore invariant under @. Since %i normalizes § , 
and £i is induced from § , £i must vanish off § . Together, these statements 
show that £i is invariant under &. Since Q(x) is the subfield of Q(X) fixed by 
&, Q(x) must contain <2(£i)- But £i induces x, and thus the reverse contain
ment must also hold. Therefore £i and x generate the same field. Thus by our 
minimality assumption, gi = g, £i = £, and condition (3) holds. 

Now suppose that X is not linear. Since § is a subgroup of an elementary 
group, it is also elementary. As is the case for ^-groups, our character X is 
induced from a character X0 of a normal subgroup § 0 of index p in § . (See 
[4, the proof of theorem (10.2)].) Since 21 is a ^'-group contained in § , 21 is 
contained in § 0 . Since X is induced from a normal subgroup 4>o> it must vanish 
off £o. Then, for G Ç J , X° vanishes off ^^G~\ But \G = \* for some a € ^ ; 
thus X* and therefore X vanish off §oG_1. Let 3 be the intersection of the 
conjugates of §o in g. Then X vanishes off 3>, and 3» is normal in g. Since 21 
is normal in ®, 2Ï C $ . By choosing a chief series for $/$ which includes 
§ / 3 , we can find a subgroup § i normal in g with 3 £ § i C § a n d £>i of 
index £ in § . The inner product formula involves division by the group 
order, and so since X vanishes off § i , the inner product of X|^j with itself 
equals the index p of § i in § . This means that X|̂ x is reducible. If Xi is an 
irreducible component of X]^, then X is an irreducible component of Xi . But 
the degree of Xi is strictly less than that of X while the degree of X is at most 
the degree of Xi which is p times the degree of Xi. Since these degrees are 
all ^-powers, X and Xi have the same degree, which makes them equal. 
Since the use of Xi in place of X would contradict our minimality assumption, 
X must be linear. 

We now prove (4). We have T as the representation affording x> and we 
let U afford £. Suppose that T can be realized in some field K. By reciprocity, 
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£ is a component with multiplicity one in %|$- Thus by the second property of 
the Schur index, U can be realized in K. On the other hand, since £ induces 
X, T can be realized in any field in which U can be realized. Thus both repre
sentations can be realized in the same fields, and so £ and x must have the same 
Schur index. This proves the lemma. 

In view of this lemma, the first main theorem will be proved if we can show 
the following: ra(£) divides q — 1 for some prime q dividing the order of g. 
Given the nature of the result we are trying to prove, we may as well assume 
that £ is faithful. Thus we shall identify 31, § , and § with their images under 
the representation U affording £. We know from Lemma 1 that £| ^ is the sum 
of the algebraic conjugates of X by the group ^ = Gal(Q(X)/(?(£))• Therefore 
any element in the kernel of X would also be in the kernel of £. Hence X is also 
faithful, and § must be cyclic. Since the correspondence between § / § and 
Ŝ  is one-to-one, § must be its own centralizer in %. 

It is not difficult to turn this argument around. Assume that § is a cyclic, 
normal self-centralizing subgroup of a group g a n d that X is a faithful linear 
character of &. Then the character £ of g induced from X is irreducible, and 
the correspondence between the coset G& and cr £ & determined by XG = \a 

is an isomorphism between %/Sfr and &. Notice that since the prime q we 
are trying to produce will be different from p, it will have to be a divisor of 
the order of SI. In view of these remarks, the theorem we are trying to prove 
may be stated as follows. 

THEOREM 1. Let p be a prime and let g = 3133 be an elementary group with 
respect to p. Let & be a cyclic, normal self-centralizing subgroup of % with a 
faithful linear character X and let f be the character of g induced by X. Then £ is 
an irreducible character of g, and there is a prime divisor q of the order of 31 such 
that the Schur index ra(£) divides q — 1. An exception can occur when p = 2 
and % = 33 is a 2-group. We may have m{£) = 2 in this case. 

Proof. Let U be the representation affording £. As in [6], we shall use U to 
produce a simple algebra. The index of this algebra, or of the associated divi
sion algebra, will be our Schur index m{£). (See [1, p. 58].) This algebra will 
have a natural representation as a crossed product, and using the corresponding 
factor set we shall prove that the exponent of this algebra in the class group 
divides q — 1 (see [1, Chapter V]). By a famous theorem [1, p. 149, Theorem 32] 
the exponent of our algebra is its index, which will complete the proof. 

Let F = <2(£) be the field of characters of J, and let 

be the algebra of F linear combinations of the linear transformations U(G) 
for G G %• If n is the degree of U and C is the complex field, we know from 
Burnside's Theorem [3, theorem (27.4)] that TC, the complex linear combina
tions of the U(G), G G g, is the full algebra of linear transformations on the 
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underlying w-dimensional vector space. Since this is a simple algebra, it is 
not difficult to show that T is also simple. Therefore T is isomorphic to the 
k X k matrix algebra over a division algebra A, for some integer k. In 
[3, pp. 468, 469], the following results are proved. The field F is the centre 
of r and therefore of A. The dimension of A over F is m2, where m = m(£), 
and n = mk. It follows that the dimension of T over F is n2. The number m 
is the index of T. 

Let h be the order of § . Since X is a faithful linear character of § , Q(\) is 
just the field of hth roots of unity over Q. We know that the character £|$ is 
the sum of conjugates of X by the group & = Gal(Ç(X)/Q(£)). Thus a basis 
of the space may be found for which the corresponding matrices U (H), H £ § , 
are diagonal, with the elements \ff(H), a £ &, as the diagonal entries. But 
this representation is similar to the regular representation of the field Q(\) 
over (?(£). Recall that Q(f), which we call 7% is the field fixed by &. 

The argument just given shows that the algebra 

K = £ MJ(tf) 

generated by the elements \J(H) over 7MS a field isomorphic to Ç(X). With this 
isomorphism we shall identify the group Ŝ  with Gal (if/i7)- For each < 7 ^ , 
let G> be chosen as a representative of the coset of $ / § corresponding to a. 
Conjugation of K by the element \J(G<r), which we shall call Ua, is easily seen 
to induce the automorphism on K corresponding to a. Our hypotheses clearly 
imply that § contains §1, and therefore § = 213» where 3 is a cyclic ^-group. 
Then since % = 2193 and § = 213» the Ga can be chosen as coset representatives 
of 93/3- Therefore, for all c, r Ç ^ , the elements GaGTGa~

l will lie in 3 - Let 
Y<r,r be the image of this element under U, and let f be the image of a generator 
of 3- Then the Y<T,T are all powers of f and we have, for all <r, r Ç ^ , 

UaUr = UaT7cT,T-

Thus we have a particular expression of the algebra T as a crossed product 
of the field K by the group ^ = Gal (if/i7). The elements {y^A of K form 
the factor set for the representatives {Ua} of &. For a positive integer d, let 
Td denote of d-fold tensor product of V. Then the algebra Td is similar to a 
crossed product of K by ^ with representatives {F,} of ^ for which the 
elements \yfflT

d} form a factor set. (See [1, p. 71, Theorem 6].) This algebra has 
if as a maximal subfield, and for all a, r € ^ , p € if, we have 

F„FT = F „ T Y , , A 7 . - ^ 7 , = p*. 

If the representatives F , are replaced with multiples VJ = Vapa by elements 
p<r of if, the { F /} are a new set of representatives of & and a new factor set 
is obtained from them. If this new factor set is trivial, with all members 
equal to 1, then the algebra Td must be trivial in the class group. Thus the 
exponent of I\ and therefore its index, will divide d. 
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Let S be the centralizer of 21 in $. Then (S contains § , and § / 6 acts faith
fully as a £-group of automorphisms on 21. We shall apply the remarks of the 
last paragraph with d as the exponent of g/(S. 

Let {qi} be the prime divisors of the order of 2Ï. The automorphism group 
Aut 21 of 21 is the direct product of the groups Aut 21*, where 2Ï* is the ^-Sylow 
subgroup of 21. Since 21 is a £'-group, each qt is different from p. Thus, since 
211 is cyclic, the £>-Sylow subgroup of Aut 21 i is cyclic with order equal to 
the £-part of qt — 1. Choose the qt for which g* — 1 has maximal £-part and 
call it q. Then d, the exponent of $/(£, divides q — 1. 

Thus our proof will be complete if we show that Td is trivial in the class 
group. This will be accomplished by producing a particular set of new repre
sentatives { VJ} which have trivial factor set. 

Let ^ i be the subgroup of & fixing F(Ç), where f is the image in if of a 
generator of £. The corresponding subgroup of %/S& is $ / § , where $ is the 
centralizer of £. Since § is self-centralizing, § = $ P\ £. Thus for T € S^i, 
the corresponding GT lies in $ . The order t of r in & is the smallest power 
of GT which lies in § . The remarks above show that this is also the smallest 
power of GT to lie in E. Thus t divides d, the exponent of JJ/Ê. 

Let r Ç f i, a Ç ^ . Recall that with U(GT) = £/T, U(G„) = £/,, we have 

Inverting the first equation and multiplying, we obtain 

Since <TT = ra, the right-hand side becomes yfftT-lyTi(n which we will call ÇatT. 
Thus UT~~1U<r1UTUv = fcr.r. Since V0Vr = 7 ^ 7 , , / for all a, r Ç G, a similar 
argument will show that 

(i) r r 1 7 ^ 7 , 7 , = r,iT
d. 

Rewriting the equation for the Us yields 

Since the order of r is t, there is a power fT of f for which Z7T* = fr. Since r 
belongs to ^ i , Z7T centralizes f. Taking powers, we obtain: 

which yields 

(2) f/ = frf,,/. 

If o- also belongs to ^ i , then f/ = fT and f*,,-' = 1. Since 2 divides d, equation 
(1) shows that, for all a, r G ^ i , Vff and 7T commute. 

We could have chosen U\ = 1 when we began and it is not difficult to show 
now that V± may be chosen equal to 1. Let a £ @ have order s. Then for some 
power fo- of f, £7/ = f,. Using an induction argument, one shows that 
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A similar argument shows that 

7/ = VA7:c-i)a(y*.o-*)d • • • (r<r,,)d. 

Since Ua
s = f«r, and since Uas = V^ = 1, we have 

(3) 7 / = f / . 

Let us make the following notational convention. We have used exponential 
notation for automorphisms, and since automorphisms obey all the rules of 
exponentiation, there will be no confusion if we use such expressions as f0--1 for 
f T"1* $wa for (ÇWY o r f(r+r f° r f T r- Thus we shall use as exponents any member of 
the integral group ring of the automorphism group. 

Our element T G ^ I has order t = pc for some integer c, and d =- pe for 
some integer e ^ c. Equation (2) becomes 

(2') i = ^ - ( r ^ r . 
Equation (1) becomes 

(i') Vr-w.-'VrV. = (r.,Tr 
and equation (3), with r in place of a, becomes 

(3r) vr = r/a. 
Define 

(4) 7 / = Vrïrve-C. 

Then substitute into the commutator formula for 7 / and V„. Recall that 7T 

commutes with any power of f and that Va~lÇ = ^aVa~
1. We obtain 

which equals 1 as can be seen by raising equation (2') to the powrer pe~c. 
Therefore the F / , r G ^ i , commute with all Vff, a € S \ In addition, 

(F/)^c = (FTfT-*-c)*e = 7/cfT-*e, 

which equals 1 by equation (3'). Since the { VT) commute with each other 
for all r Ç ^ i , the { 7 / } will also commute with each other. 

We now turn our attention to V„ for e g ^ i . At this point, the proof must 
be divided into two parts in order to treat the cases where p is odd and p' = 2 
separately. We shall first consider the case p odd and begin with some necessary 
results in the form of a lemma. Suppose that S has order pr. Essentially, the 
lemma investigates how the £-group g / § can act on £- This lemma is related 
to work in [5]. 
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LEMMA 2. Let p be an odd prime, r a positive integer, and let f be a primitive 
prth root of unity. Let [f ] be the cyclic subgroup generated by f. Then the p-Sylow 
subgroup of the automorphism group of [f] is cyclic of order pr~l. For each 
positive integer a rg r — 1, any automorphism a of order pa leaves fixed exactly 
those powers of f which are powers of Çpa. We also have the identity 

Proof. The automorphism group of [f] is isomorphic to Gal (Ç(f )/()). The 
order of this group is the dimension (Q(t):Q) which is, using the Euler 
$-function, pr~l(p — 1). The dimension {Q(Çpr~l)'-Q) is p — 1. Therefore 
Gal((?(f)/(?(f2,r"1)) has order Z?7-1 and is the £-Sylow subgroup of Gal (<2(f )/(?). 
The automorphism defined by f —> f1+2? fixes only the field QC?2'"-1), and so 
the group Gal(<2(f)/<2(r_1)) is cyclic. 

For a positive integer a ^ r — 1, the subfield Q(tpa) has index £a in (?(f). 
Any automorphism a of order £a generates the unique subgroup of Gal (Q(£)/Q) 
of order pa, and so by the Galois correspondence, a must generate the group 
Gal(Q(f)/(?(fpa)). For an indeterminate x, the polynomial xpa — fpo is satis
fied by f and has coefficients in the field Ç(fp°). Since the dimension 
((?(f):<2(?p°)) îs a l s o the degree of this polynomial, it must be the minimum 
polynomial of f over the field Q($pa). Since a generates Gal(Ç(r)/QG*a)), 
this polynomial must equal the product TL(x — fa*) over all powers 
i = 0, . . . , pa — 1. Comparing the constant term in the two expressions for 
the polynomial, we obtain 

-{*• = n(-r'), 
the product taken over i = 0, . . . , pa — 1. Since £ is odd, the minus signs 
can all be removed, and this proves the lemma. 

We chose & \ as the subgroup of & fixing F(£)\ hence ^ / ^ i is isomorphic 
to Ga\(F(Ç)/F) ^Gal(<2(f)/<2(f) H F). Since ^ is a £-group, we see from 
Lemma 2 that S^/S^i is cyclic of order £a for some integer a ^ r — 1. Let a 
be a generator of @ modulo ^ i . 

Let pb be the order of a in &. Then b ^ a. Equation (3') with a in place of a 
becomes 

(3") F / 6 = f/e. 

U e ^ b, define 

(5) VJ = Vata-pe~\ 

Using the identity in Lemma 2, we shall show that (Va')
pb = 1. 

(V f)pb = (V t ~pe~b)pb = yaP
6fa-p

e~6(i+a+---+ap6-1) 
= Y VhÇ -P e-&(l+a+.. .+aP°-1)Pb-° 

y 2?̂ 5- —pe—bpapb—a 

— T/ P 6 ;—^ e 

— y a Sa » 

which equals 1 by (3")-
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Suppose that e < b. Recall our correspondence between G«§ in @/§ and 
a G &. Since pe is the exponent of $ / S and (S is the centralizer of 21, e < b 
simply means that Ga

pb is not the smallest power of Ga to centralize 21. Since 
a f ^ has order pb, Ga

pb is the smallest power of Ga to lie in § . Therefore 
since § = 213 is self-centralizing, Ga

pb must be the smallest power of Ga to 
centralize £. This means that a Ç ^ acts faithfully on [f]. Since @i is the 
subgroup of & fixing F(f ) and apa is the smallest power of a contained in & i, 
we must have a — b. Since Ça

pe = F / & must be centralized by Va, Lemma 2 
shows that it must be a power of Çpa. Let us say that Va

pb = Çwpa. Define 

(6) VJ = Var
w> 

Then 
fy t\Va __ /y ç-W\pa __ y paç.-W(1+a+a2+_.+aPa-l) _ y pa^_wpa __ ^ 

Since a = b, we have shown that (Va')
pb — 1. 

We know that Va commutes with all VT
r for r 6 ^ i , and it follows easily 

that F a ' also commutes with the VT'. We have proved that VT' has order at 
most the order of r and since ( F / ) " 1 ? ^ / = 7 r for all 7 £ K, VT' must have 
the same order as r. Similarly, VJ has the same order as a. 

The set {a, @ 1} generates È ,̂ and thus by the Burnside Basis Theorem, 
this set contains a basis of &. Suppose that {a, n , . . . , TX] is such a basis. 
The element a actually appears in the basis unless S? = & \. Since each 
( j f ^ has a unique expression as a product of members of {a, n , . . . , r^}, 
we define F / ' to be the corresponding product of the { Va', VT1', . . . , F T / } . 
It follows that the set {F*"} is actually a group isomorphic to &. Thus we 
have expressed the algebra as a crossed product by the {Vff") with trivial 
factor set, and Theorem 1 is proved for odd primes p. 

To complete the proof for p = 2, we begin with a lemma, analogous to 
Lemma 2, concerning the automorphism group of a cyclic 2-group. 

LEMMA 3. Let Ç be a primitive 2rth root of unity, r ̂  3, and [f ] the cyclic 
group generated by f. Le/ Auto[f] be the subgroup of Aut[f ], the automorphism 
group of [f], consisting of those automorphisms which fix f2r"2 = (—1)1/2. Le/ 
£ fre //ze conjugation automorphism defined by Ç& = f_1. 77^» Aut0[f ] is a ejc/ic 
group of order 2r~2 and Aut[f] is the direct product of Aut0[f ] with the group of 
order 2 generated by /3. If a Ç Aut0[f] has order 2a, a S r — 2, then the subgroup 
°f [f] fixed by a is exactly [f2°]. We also have the following identities 

f l + a + . . .+ a2«-i = _ f 2 a = f 2a^ y an odd integer, 

and 
J-l+afl-K-H-Ca/S)20-1

 = >2»-l _ __ \ 

Proof. We will use the isomorphism between Aut[f] and Gal(Ç(f)/Ç) 
under which Aut0[f] corresponds to Gal(Ç(f)/Ç(f r~2)). The dimension 
(<2(f):(?(f2r"2))> and hence the order of Aut0[f], is 2r~2. Since the automor
phism a0 defined by fao = f1+22 fixes only the powers of f2r"2, a0 is a generator 
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of Auto[f]. Conjugation does not fix f2r~2 = (—1)1/2, and so, since Aut[f] 
has order 2 r_1 , a0 and /3 are generators for Aut[f]. 

To prove the first identity, we proceed exactly as in the proof of Lemma 2, 
except in the last step, where a negative sign occurs since p is even. This 
yields -̂i+«+---+a2a-i = — f2a. Now since ^2° is a root of unity of order at least 4, 
— f2° has the same order as f2a. Thus — f2° is a power f2<xy for some odd integer y. 
This proves the first identity. To prove the second identity, we use the fact 
that P2 = 1, and collect alternate terms. 

M+aj8+(a/3)2+...+ (a /3)(2 a-0 _ > l + a 2 + . . .+a(20~2) . fa/3(l+a2+. • .+a(20~2)) 

_ > l+(a 2 )+ . . .+ (a 2 ) ( 2° _ 1 - 1 ) . >-a/3(l+(a2)+...4-(a2)(2a-1-l)) 

_ s.2«-lwxj8(2«-i) 

where the last equality comes from applying the first identity for a2, which 
has order 2a~l. The automorphism aft does not fix f2r"2 = ( —1)1/2. Our 
expression fi+«/3+---+(«0)(2a_1) i s obviously left fixed by a/3, and hence it must 
equal either f2r_1 = — 1 or f2r = 1. Suppose that we had the latter case. Then 
from the computation above, since Ç& = f_1, we have f2a_1 = f«(2°-1). But 
we know that a fixes only powers of f2°; hence this cannot happen. Thus the 
second identity is proved. 

We now return to the proof of Theorem 1 for p — 2. We chose ^ i as the 
subgroup of & fixing F(Ç ), and so @/&i corresponds to a subgroup of Aut[f]. 

Suppose first that &/&i corresponds to a subgroup of Aut0[f]. Then 
2^/S^i is cyclic of order 2a, a ^ r — 2. The proof in this case is almost identical 
with the proof given for odd p. The only difference comes from the integer y 
appearing in Lemma 3, for which we make a slight adjustment. Since y is odd, 
we may choose an integer y' such that yy' = 1 (mod 2 r). 

Let 2b be the order of a in &. Proceeding as we did for odd p in formulas (5) 
and (6), we define Vd for the two cases 

(50 Vd = VoXoT^"' if e ^ b, 

(60 Va' = Vaïa-*"' M e < b. 

Then following the earlier proof, one can show that (TV)26 = 1. 
Now suppose that, in addition to a, & contains an automorphism /3 corre

sponding to conjugation. We first define VJ exactly as it was defined in the case 
just discussed in formulas (5') and (60- Then we need to define Vp in such a 
way that Vp commutes with Va'. 

Suppose first that e ̂  b. Raise the equation Uf~lUaUp = UaÇp,a to the 
power 2b and use the first identity of Lemma 3 to obtain 

(US»)17? = (Uah,«)2b = f/«2^V1 + a +-+ a ( 2 6 _ l ) ) 

= Ua
2b^,aa+a+-+a{2a~l))2b~a = Ua

2b(Ç(},a)2aH2b~a). 

Since UJb — fa this becomes 

(2") i = (r«)(1-»G>.«)2'1'. 

https://doi.org/10.4153/CJM-1970-069-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-069-3


636 CHARLES FORD 

We now define Vp = Vp and we will use identity (2") to prove that Vd 
and Vp commute. This proof is very similar to the proof that VT

f and Va 

commute given just after definition (4). The commutator formula for VJ 
and Vp is 

Va-'VfT'VaVfi = (ft,*)2'. 

Into this we substitute equation (5') and we obtain 

(vjywp-^v^Vp = (ft)2e-V(1-^,«)2e 

which equals 1, as can be seen by raising equation (2") to the power 2e~by' 
For the case e < b, let the commutator of VJ and Vp equal ft. Then 

Vp-WjVp = Va'Çl. 

Then raise this to the power 2b and use the first identity of Lemma 3 as we 
did above to see that 

v0-
l(Va')2hvfi = {vjyhu2hy 

However, since (VJ)2b = 1, this shows that ft2&2/ = 1. Assuming that 
e < by we showed just before definition (6) that a — b. Thus, since y is odd, 
we have now shown that ft2° = 1. Since f has order 2r, ft must be a power 
of f 2r"a, say 

(7) ft = f2r"°2. 

Define Vp = VpÇz and compute the commutator 

= ftr*^". 
This equals 1 from equation (7), provided we can choose a in such a way that 

(8) r-1 = r~° or r = f i+2'-. 
But the automorphism a defined by this equation clearly fixes only the powers 
of f 2° and must have order 2a by Lemma 3. Thus we can assume that a satisfies 
this equation and we have proved that Vd and Vp commute. 

We know that /3 has order 2 modulo &\. Suppose that /3 has order 2 r in &. 
Now since ft is fixed by /3 it must be either 1 or — 1 . By equation (3), 

V = h" 
and therefore Vp2f = 1 unless e = 0. Recall that pe is the exponent of g / 6 , 
where S is the centralizer of 21. Thus e = 0 means that g = 6 and g = SÏ33 
is a direct product. 

The group corresponding to ^ i in g / § is $ / § , where $ is the centralizer 
of 3 a n d satisfies S H Ë = § . Since Ê = g, we must have $ = § or &x = 1. 
Therefore /5 has order 2 in ^ and / = 1. Let Z be a generator of 3 corre-
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sponding to f under the representation U. Then we have shown that 93 has 
generators A, B, and Z satisfying the following relations: 

Z2r = E, AB = BA, ZA = Z1+2r-°, ZB = Z~\ 

A2a = E, B2 = Z2*-1 orE. 

It is in this case, with e = 0 and d — 1 that the exception can occur, for T 
need not have exponent 1. If B2 = E, then Va

f and TV have trivial factor set 
and T has exponent 1. If B2 = Z2r-1, then the exponent of T is 2, since for 
any choice of y$ £ K, any new representative IV = V$y$ would still satisfy 

(TV)2 = VmVm = 7 f l V ^ = r2'"1 

and we could never produce a set of representatives { VJ' } which has a trivial 
factor set. If 21 = 1, then the exceptional case occurs since there are no gs to 
choose. Although we assumed that r ^ 3 in Lemma 3, the cases where r < 3 
follow very easily from our considerations thus far. 

The final possibility is that S?/S?i is cyclic but does not correspond either 
to conjugation or to a subgroup of Aut0[f]. Then we can pick a generator a 
of & modulo ^ i corresponding to a product afi for some a £ Aut0[f]. Let a 
have order 2° in Ê?. Then c ^ a, where a has order 2a in Aut0[f]. Now fa is 
left invariant by a/3, and so is either + 1 or — 1. If Çff = 1, then by equation (3) 
our proof is complete. Thus we may assume that fff = — 1 . Let VJ = V^. 
Then we use the second identity of Lemma 3 to see that 

(VJ)2C = TVC(-1) = 1. 

The remainder of the proof of Theorem 1 proceeds exactly as in the case 
for odd p. First we expand generators of & modulo ^ i t o a basis for ^ , using 
the Burnside Basis Theorem. Then we pick new representatives { VJ'} which 
have trivial factor set. This completes the proof of Theorem 1. 

Another theorem of this general nature can be proved with the techniques 
presented here. 

Suppose that â ^ / ^ i has order pa for an odd prime p. Recall that Z is the 
generator of S corresponding to f. A power of Z is central in 21 if and only if 
the corresponding power of f is fixed by a generator a of ^ modulo S^i. 
Therefore by the third sentence in Lemma 2, [Zpa] is the largest subgroup of 
3 central in g. In fact, since § is self-centralizing, [Zpa] is the £-Sylow sub
group of the centre of g. We may state our second theorem as follows. 

THEOREM 2. Let g = 2193 be an elementary group at the odd prime p. Let X be 
a faithful linear character of a cyclic, normal, self-centralizing subgroup § . Let 
£ be the (irreducible) character of % induced by X and let m(£) be the Schur index 
of £ over the rational field. Then m (£) divides the order of the centre of %. 

Proof. We use the notation and the method of proof of the last theorem, 
except this time d is the order of the ^-Sylow subgroup of the centre of g. 
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For a and r in S^i, the commutator 

U.-lUrlU0UT = frf. 

is left invariant under conjugation by Un for any ju in &. Therefore fT|<7 is 
central in U(g) and fT,/ = 1. In view of equation (1), Vff and VT commute. 

Suppose that &/&i has order pa. We may argue as we did earlier for p = 2 
that a generator a for ^ modulo S î may be chosen in such a way that 

(8') f*"1 = r r"° or f« = f1+pr~°, 

for since the automorphism a defined by this equation fixes only the powers 
of fpo, it must have order pa by Lemma 2. For r in ^ we define VT' — VTÇa,T~l> 
We compute the commutator to obtain 

In view of the remarks preceding the theorem, d is the order of [Çpa] which is 
d = pr-a. This fact together with (8') show that the commutator that we just 
computed equals 1, and Va commutes with all F / , r Ç ^ i , Next we compute 
(VT

f) ', where / is the order of r. 

The second equality follows from (3). But from (2) we know that f^-1 = fa>T*. 
Putting this together with the two facts used above yields (V/)1 = 1. Only 
Va remains. But obviously fa G [fpa] and so Va

pb = £a
d = 1. This proves 

Theorem 2. Notice that this theorem and its proof hold equally well if p = 2 
and @/&i corresponds to a subgroup of Aut0[f]. 

The following corollary can be deduced from Theorem 2. 

COROLLARY. Let © be a finite group. Let \p be an irreducible character of © 
with Schur index m(\p) over the rational field. If, for an odd prime p, pe is the 
p-part of m(\l/), then pe~l divides the dimension (Q($):Q). 

Proof. For our proof we must use Brauer's theorem together with part of 
its proof [3, pp. 477-478]. Our field Qty) corresponds to the field K in [3]. 
We conclude that the existence of a field L containing Q(yp) and a character % 
of an L-elementary subgroup §1̂ )3 such that the dimension of L over Q(\f/) 
is a ^'-number and the £-part oim(\p) i s m ^ ) (x). The Schur index with respect 
to Q is divisible by the Schur index with respect to an extension field. There
fore, letting mix) = Pfy we have / *t e. Also a group which is elementary 
with respect to any extension field of Q must be elementary with respect to Q. 
Thus §1̂ 3 is elementary in the sense of the present paper. We can now complete 
the proof by showing that pf~x divides the dimension of Q(\p) over Q. 

Choose £ and % as given in Lemma 1 to satisfy Q{%) = Q(x) and 
m(£) = mix) = PT- We have just shown in Theorem 2 that there is a central 
element Z0 of order pf in %. The trace £(Zo) is an integral multiple of a primi
tive ^ ' th root of unity which means Q(£) contains a primitive pfth. root of 
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unity. Therefore L contains a primitive pfÛi root of unity and the dimension 
of L over Q must be divisible by pf~1(p — 1). Since the dimension of L over 
<20/0 is a ^'-number, the dimension of Q(\[/) over Q must be divisible by pf~x. 

In view of Theorem 1, it might be plausible to suppose that for some prime 
divisor q of the order of 21 the representation U could be realized in the field 
Q(v> x)i where -q is a primitive gth root of unity. We conclude this paper with 
an example to show that this is not the case. 

Let © be the group defined by the following relations: 

AJ = 1, A2™ = 1, AXA2 = A2AU 

XJ = Z, X2
3 = Z, Z9 = 1, Z central in ©. 

X1~
1A1X1 = A J, XrlA2X2 = ^2

3 , 

AXX2 = X2Ah A2XX = XXA2. 

Let X be a faithful linear character on 21 = {A\, A2, Z}. For i = 1, 2 define 

® , = (^1 ,^2 ,X„Z) 

and let x* be the character of ®* induced by X. Let x be the character of © 
induced by X. Then one easily sees that 

<2(x) C 0(x<) C Q(x), Q(x) * Q{xù * Q(x), * = l, 2, 

where the relative dimension at each step is 3. Also, Q(xi) = (?(x> V2) and 
(KX2) = <2(x> 7̂1), where 77! and rj2 are, respectively, primitive 7th and 13th 
roots of unity. Now it follows from the work of Amitsur [2, Theorem 5 (2a)] 
that ra(xi) = tn(x2) = 3. Suppose that the representation T affording x 
could be realized in (?(xi)- Since xi appears once in x|@i> the second property 
of the Schur index shows that then the representation affording xi could be 
realized in <2(xi)- This is impossible since ra(xi) = 3. A similar argument 
works for %2. 

This also shows that mix) ^ 1- We will show that m(x) = 3. There are 
four fields lying strictly between <2(x) and Q(\) and except for Q(xi) and 
Q(xù we will show that T can be realized in each of the remaining two fields. 
Let %j = (A 1, A2, XiX2

j, Z) for j = 1 or 2 and let £; be the character of %j 
induced by X. The fields (?(£;)> 7 = 1 or 2, are the remaining two fields and it 
follows from [2, Theorem 5] that ra(£y) = 1. Therefore the representation 
affording each ^ can be realized in Q(£j) a n d , since £; induces x> T can be 
realized in Q(£j), j = 1 or 2. 
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