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1. Introduction

The Lebesgue differentiation theorem states that, for a function f ∈ L1
loc(Rd), there is a

null set E ⊂ Rd so that, if x ∈ Rd \ E, then

lim
r→0

1

|Br(0)|

∫
Br(x)

f(y) dy = f(x).

A natural question, in that regard, is whether the same convergence holds if one
replaces averages over balls by averages over spheres. In addition, the study of such
spherical averages is deeply connected with the study of dimension-free bounds for the
Hardy–Littlewood maximal function, as highlighted by Stein [31].
In this direction, such a theorem on spherical averages induces the study of the spherical

maximal function defined by:

S(f)(x) := sup
t>0

∣∣∣∣∫
Sn−1

f(x− ty)dσn−1(y)

∣∣∣∣ . (1)
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The study of bounds for the spherical maximal function was initiated by Stein [30],
who obtained its boundedness from Lp(Rn) → Lp(Rn) when n ≥ 3 and p > n

n−1 and
showed that it is unbounded when p ≤ n

n−1 and n ≥ 2. The analogue of this result in
dimension n =2 was established later by Bourgain in [6], who also obtained a restricted
weak type estimate in [5] in the case n ≥ 3.
Further developments have been obtained by Seeger, Tao, and Wright, which, in [29],

proved that the restricted weak type estimate does not hold in dimension n =2. A number
of other authors have also studied the spherical maximal function, among which we
highlight [3, 9, 11, 25, 27, 28] and the references therein. Extensions of the spherical
maximal function to different settings have also been established by several authors; for
instance, see [8, 14, 20, 24].
The main object of this work is them-linear analogue of the spherical maximal function,

given by:

Sm(f1, . . . , fm)(x) := sup
t>0

∣∣∣∣∣∣
∫
Smn−1

m∏
j=1

fj(x− tyj)dσmn−1(y
1, . . . , ym)

∣∣∣∣∣∣ , (2)

defined originally for Schwartz functions, where dσ stands for the (normalized) surface
measure of Smn−1.
The m =2 case of (2) is called the bi(sub)linear spherical maximal function, and it was

first introduced by Geba, Greenleaf, Iosevich, Palsson, and Sawyer [16], who obtained the
first bounds for it. Later improved bounds were provided by [4, 18, 21, 22]. A multilinear
(non-maximal) version of this operator when all input functions lie in the same space
Lp(R) was previously studied by Oberlin [26].
It was not until the work of Jeong and Lee [22] that the sharp open range of bound-

edness would be proved for the bilinear operator. Indeed, the authors proved in [22] that
when n ≥ 2, the bilinear maximal function is pointwise bounded by the product of the
linear spherical maximal function and the Hardy–Littlewood maximal function, which
implies boundedness in the optimal open set of exponents. This was generalized to the
multilinear setting in [12]. See also [1, 2, 7, 13] for further developments.
The purpose of this work is to complement the results of [12, 22] in the n =1 case. The

spherical maximal operators are generally more singular when the dimension is smaller,
which is reflected by the fact that the decay of the Fourier transform of the surface
measure is smaller in low dimensions.
When n ≥ 2, where the optimal boundedness range of the bilinear operator is p > n

2n−1 .
The optimality of the condition is found in [18] and yields the necessary condition p> 1
when n =1. However, as was shown by Heo, Hong, and Yang in [21], when n =1 the
conditions p1, p2 ≥ 2 are also necessary which further restricts the possible boundedness
range.
Our first result establishes the Lp1 × Lp2 → Lp boundedness of the one-dimensional

bilinear operator (m =2) in the region p1, p2 > 2 (see Figure 1). We show that this range
is optimal via a modification of the counterexample in [21], which excludes the possibility
of even a weak-type bound when p1 or p2 equals 2.

Theorem 1. Let p1, p2 > 1 and p =
p1p2
p1+p2

. Then, there is a constant C = C(p1, p2) <

∞ such that:

‖S2(f, g)‖Lp ≤ C‖f‖Lp1‖g‖Lp2 , (3)
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Figure 1. Range of Lp1 × Lp2 → Lp boundedness of S2(f, g), when n =1.

if and only if p1, p2 > 2. In this case S2 admits a unique bounded extension from Lp1(R)×
Lp2(R) to Lp(R).
Moreover, for the end-point cases p1 = 2 and p2 = 2 the bilinear spherical maximal

function S2 fails to be weak type bounded. In particular, for any 1 ≤ p1, p2 ≤ ∞, 1
p1

+ 1
p2

=
1
p , S

2 does not boundedly map L2 × Lp2 → Lp,∞ nor Lp1 × L2 → Lp,∞.

The boundedness result of Theorem 1 was also obtained independently by Christ and
Zhou in [10], where the lacunary operator, with the supremum taken over the set t ∈
{2k : k ∈ Z}, is also treated.
The proof of this result is based on a decomposition of the circle into sectors, in which

we may safely parametrize it. We then use the curvature of the circle in our favour, in
order to show a different kind of pointwise domination with respect to the n ≥ 2 case:
instead of bounding pointise by a product of the Hardy–Littlewood and spherical maximal
functions, we obtain bounds with products of suitable p-maximal functions. In order to
obtain these bounds, the curvature helps us by allowing us to insert power weights into
the strategy, which effectively enable us to ‘transfer’ decay from one maximal function
to the other.
Our second result deals with the multilinear case m ≥ 3. Using the coarea formula (see

[15, Theorem 3.2.22]), we see that the following pointwise bound holds, for fixed t > 0:

|Sm
t (f1, . . . , fm)(x)| =

∣∣∣∣∣
∫
Sm−1

m∏
k=1

fk(x− tyk)dσ(y)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bm−2

m∏
k=3

fk(x− tyk)

∫
ryS1

f1(x− ty1)f2(x− ty2)dσ(y1, y2)
dy3 · · · dym

ry

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Bm−2

m∏
k=3

fk(x− tyk)

∫
S1

f1(x− tryy1)f2(x− tryy2)dσ(y1, y2)dy3 · · · dym

∣∣∣∣∣
≤ S2(f1, f2)(x) ·Mm−2(f3, · · · , fm)(x),
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where Bκ stands for the unit ball in Rκ,

Mm(f1, · · · , fm)(x) = sup
t>0

∫
Bm

m∏
i=1

|fi(x− tyi)|dy1 · · · dm,

is the m-(sub)linear Hardy–Littlewood maximal function (first defined in [23]), and ry =√
1−

∑m
k=3 y

2
k. Since Mm is pointwise bounded by the product of m Hardy–Littlewood

maximal functions (denoted Mf := M1f), we arrive at the following estimates:

|Sm
t (f1, . . . , fm)(x)| . S2(fi1 , fi2)(x)

∏
j 6=i1,i2

M(fj)(x), (4)

using the fact that the operator Sm is symmetric with respect to permutations of the
functions fi. From these estimates and interpolation, we obtain Lp1 × · · · × Lpm → Lp

boundedness for Sm in a certain range of exponents (see Figure 2). The range of exponents
thus obtained turns out to be the optimal for the strong-type bounds. Unlike Theorem 1
our counterexamples here do not exclude the possibility of weak-type bounds on parts of
the boundary; we discuss this point at the end of the section.

Theorem 2. Let n=1, m ≥ 2, 1 ≤ pi ≤ ∞ for i = 1, . . . ,m, and
1

p
=

m∑
i=1

1

pi
. Then

there is a constant C < ∞, only depending on p1, . . . , pm, such that

‖Sm(f1, . . . , fm)‖Lp(R) ≤ C
m∏
i=1

‖fi‖Lpi (R), (5)

for all Schwartz functions fi, i = 1, . . . ,m if and only if all three of the following conditions
hold:

a)
1

p
=

m∑
i=1

1

pi
< m− 1,

b) for every i = 1, . . . ,m,
∑
j 6=i

1

pj
< m− 3

2
,

c)
(

1
p1
, . . . 1

pm

)
6∈ {0, 1}m \ {(0, . . . , 0)}.

Additionally, if
(

1
p1
, . . . 1

pm

)
∈ {0, 1}m \{(0, . . . , 0)}, then we have the weak-type bound

‖Sm(f1, . . . , fm)‖Lp,∞(R) ≤ C
m∏
i=1

‖fi‖Lpi (R), (6)

for some constant C = C(p1, . . . , pm) if and only if (a) and (b) both hold.

As an example we graph the region of boundedness for the trilinear spherical maximal
function.

https://doi.org/10.1017/S0013091524000191 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000191


The multilinear spherical maximal function in one dimension 5

(1, 1
2 , 0)

(1, 0, 1
2)

(1
2 , 1, 0)

(0, 1, 1
2)

(0, 1
2 , 1)

(1
2 , 0, 1)

(1
2 , 1, 0)

1/p1

1/p2

1/p3

Figure 2. The Lp1 × Lp2 × Lp3 → Lp boundedness region of the trilinear spherical maximal
operator (n =1).

In order to prove the necessity of the conditions on the exponents in Theorem 2,
we shall employ two different kinds of counterexamples: the first is where all functions
involved are similarly concentrated around the origin, which gives us condition (a), and
the second in which all but one function – at entry i – are similarly concentrated around
the origin, whereas fi is spread out; this gives us condition (b). A modification of such
examples in the spirit of Stein’s original counterexample allows us to obtain condition
(c) and the asserted lack of endpoint bounds.
Finally, let us mention for a brief moment the boundary case: for shortness of notation,

define, for i = 1, . . . ,m, the sets H,Hi as:

H := [0, 1]m ∩
{ m∑

j=1

xj = m− 1

}⋂ m⋂
i=1

{∑
j 6=i

xj ≤ m− 3

2

} ,

and

Hi = [0, 1]m ∩
{∑

j 6=i

xj = m− 3

2

}⋂{ m∑
j=1

xj ≤ m− 1
}
.

In the diagram above, the set H denotes the middle triangle in red, whereas each
of the Hi, i = 1, 2, 3, denote one of the red rectangles. In spite of Theorem 2 and
the counterexamples it provides, the question of weak-type boundedness of Sm when
( 1
p1
, . . . , 1

pm
) belongs in H or Hi remains open, as our counterexamples lie (sharply) in

the corresponding Lebesgue spaces.
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We would like to express our gratitude towards the anonymous referee for their helpful
remarks that helped improve the exposition.

2. Boundedness of the multilinear spherical maximal function

Let m ∈ N be the index of multilinearity, and t > 0. Define for Schwartz functions
f1, . . . , fm on the real line:

Sm
t (f1, . . . , fm)(x) =

∫
Sm−1

m∏
i=1

fi(x− tyi)dσ(y),

where Sm−1 is the unit sphere in Rm, y = (y1, . . . , ym) ∈ Smn−1, yi ∈ R for i = 1, . . . ,m,
and dσ is the (normalized) surface measure on Sm−1. The multilinear spherical maximal
operator is defined by:

Sm(f1, . . . , fm)(x) = sup
t>0

Sm
t (|f1|, . . . , |fm|)(x) = sup

t>0

∫
Sm−1

m∏
i=1

|fi(x− tyi)|dσ(y).

Proof of Theorem 1, boundedness part. By sublinearity, we can assume without
a loss of generality that f, g ≥ 0. Fix then two indices p1, p2 > 2.
Decomposing the integral over S1 as the sum of the integrals over eight parts of the

circle, we see that it is enough to deal with the integral over the set:{
(y1, y2) ∈ S1 : 0 ≤ y1 ≤ 1√

2
≤ y2 ≤ 1

}
,

as the treatment over the other sets is essentially equivalent. We then explicitly
parametrize the circle over this arc, to obtain:

S2
t (f, g)(x) =

∫ 1/
√
2

0

f(x− ty1)g(x− t
√
1− y21)

dy1√
1− y21

≤
∫ 1/

√
2

0

f(x− ty1)g(x− t
√
1− y21)dy1

=

∫ 1/
√
2

0

f(x− ty1)y
− 1−ε

2
1 g(x− t

√
1− y21)y

1−ε
2

1 dy1

≤

(∫ 1/
√
2

0

f2(x− ty1)y
−1+ε
1 dy1

)1/2(∫ 1/
√
2

0

g2(x− t
√
1− y21)y

1−ε
1 dy1

)1/2

,

where ε> 0 small, to be chosen later. Since y−1+εχ0≤y≤1/
√
2 ∈ L1 and is decreasing for

any ε > 0, the maximal function:

f 7→ sup
t>0

(∫ 1/
√
2

0

f2(x− ty1)y
−1+ε
1 dy1

)1/2

,
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is bounded on Lp1 , since p1 > 2. For the second term, we change variables by setting
z =

√
1− y21 to get:(∫ 1/

√
2

0

g2(x− t
√
1− y21)y

1−ε
1 dy1

)1/2

=

(∫ 1

1/
√
2

g2(x− tz)
(√

1− z2
)−ε

zdz

)1/2

≤

(∫ 1

1/
√
2

g2(x− tz)
(√

1− z2
)−ε

dz

)1/2

≤

(∫ 1

1/
√
2

g2q(x− tz)dz

)1/2q (∫ 1

1/
√
2

1
√
1− z2

εq′
dz

)1/2q′

,

for any 1 ≤ q, q′ ≤ ∞ with 1
q + 1

q′ = 1. We choose q sufficiently close to 1 so that

2 < 2q < p2 and then we choose ε to be sufficiently small so that εq′ < 2. In this way
the second term in the above product is finite, and the maximal function:

g 7→ sup
t>0

(∫ 1

1/
√
2

g2q(x− tz)dz

)1/2q

,

is bounded on Lp2 . Finally, taking supremum over t > 0 on both sides, we have:

S2(f, g)(x)

.

sup
t>0

(∫ 1/
√
2

0

f2(x− ty1)y
−1+ε
1 dy1

)1/2
sup

t>0

(∫ 1

1/
√
2

g2q(x− tz)dz

)1/2q
 .

Taking Lp norms on both sides and using Hölder’s inequality and the bounds discussed
above completes the proof of Equation (3). �

Before moving on to the proof of the boundedness part of Theorem 2, we remark that
the approach adopted below of using the Kolmogorov–Seliverstov–Plessner linearization
and complex interpolation is by no means the only possible one; indeed, it has been
brought to our attention by the anonymous referee that the results by Grafakos and
Kalton in [19] may also be used to prove that part of Theorem 2.

Proof of Theorem 2, boundedness part. Again, by sublinearity, it is enough to
assume that fi ≥ 0 for all i = 1, . . . ,m. For i1, i2 ∈ {1, . . . ,m} we define the half-open
tubes (see Figure 3):

Ti1,i2
:=

{
(y1, . . . , ym) ∈ [0, 1]m : yi1 , yi2 <

1

2

}
.

The pointwise bound in Equation (4)

sup
t>0

|Sm
t (f1, . . . , fm)(x)| . S2(fi1 , fi2)(x)

∏
j 6=i1,i2

M(fj)(x),
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Figure 3. The tubes T1,2, T2,3 and T1,3.

along with Theorem 1, the well-known bounds for the Hardy–Littlewood maximal
function, and Hölder’s inequality yield strong-type bounds (5) for all:

(
1

p1
, . . . ,

1

pm

)
∈
(
Ti1,i2

\ {0, 1}m
)⋃

{(0, . . . , 0)},

and weak-type bounds (6) for

(
1

p1
, . . . ,

1

pm

)
∈
(
{0, 1}m \ {(0, . . . , 0)}

)⋂
Ti1,i2

.

We graph the tubes Ti1,i2
in Figure 3 for m =3. The multilinear Riesz–Thorin theorem

[17, Corollary 7.2.11] states that, for a multilinear operator, strong-type bounds (5) on
two points in [0, 1]m yield strong-type bounds on the line segment connecting them.
The operator Sm is not linear, but we can use the Kolmogorov–Seliverstov–Plessner
linearization (cf. [32, Chapter XIII]): Let τ : R → (0,∞) be a measurable function and
define:

Sm
τ (f1, . . . , fm)(x) :=

∫
Sm−1

m∏
j=1

fj(x− τ(x)yj)dσm−1(y
1, . . . , ym).

If Sm
τ is uniformly bounded from Lp1×· · ·×Lpm to Lp for all such measurable functions

τ , then Sm is bounded on the same space. For any given measurable function τ , the
operator Sm

τ is linear and we can thus use complex interpolation from the bounds on the
Ti1,i2

’s. Since these bounds do not depend on τ , we also obtain them for Sm. Therefore,

we conclude that Sm is strong-type bounded (5) for all
(

1
p1
, . . . , 1

pm

)
that satisfy the

conditions (a)–(c) in the statement of the theorem, which are precisely the points in the
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The multilinear spherical maximal function in one dimension 9

convex hull of ⋃
i1,i2

(
Ti1,i2

\ {0, 1}m
)⋃

{(0, . . . , 0)}.

To confirm this, let 1
~p =

(
1
p1
, . . . , 1

pm

)
∈ [0, 1]m be in the set of exponents such that

(a), (b), and (c) are satisfied. If there at least 2 indices i1,i2 such that pi1 , pi2 > 2 then
1
~p belongs in the tube Ti1,i2

. If pi ≤ 2 for all i = 1, . . . ,m, then the critical condition is

(a) and 1
~p belongs to the convex hull of H∪{0}. We interpolate the bounds on the tubes

Ti1,i2
to obtain strong-type bounds on the convex hull of H ∪ {0}, except for H itself.

Similarly, if pi > 2 and pj ≤ 2 for all j 6= i, then the critical condition is:

∑
j 6=i

1

pj
< m− 3

2
,

one of the conditions in (b). Then 1
~p belongs in the convex hull of Hi ∪ {tei, t ∈ (0, 1/2)}

and interpolation between points in ⋃
j 6=i

Ti,j

yields strong-type bounds on this region minus Hi itself. �

3. Counterexamples

Our starting point is Stein’s counterexample for the (sub)linear spherical maximal func-

tion in [30], which is the function f(x) = |x|−n/p (− log(|x|))−
1+ε
p χ|x|<1/2(x) for some

ε> 0. Then f ∈ Lp(Rn), while Sf ∈ Lp(Rn) if and only if p > n
n−1 .

For the bilinear case the authors in [18] use the same functions along with a geometric
argument to ensure that in the diagonal (y, y) ∈ R2n, y ∈ Rn, of the sphere S2n−1 the
integral in the definition of S2(f1, f2)(x) is large enough to provide a counterexample.
This was further expanded to the multilinear case in [12].
This counterexample is not optimal in one dimension, as was shown in [21], and a

Knapp-type example further restricts the boundedness range from p> 1 (which the exam-
ple in [18] implies) to p1, p2 ≥ 2. Here we improve the example in [21], by introducing
a blow-up function as in [30] in order to tackle the boundedness in the end-point cases
p1 = 2 and p2 = 2.

Proof of Theorem 1, counterexample part. In [21] the authors showed that if
the strong type bound Equation (3) holds, then p1, p2 ≥ 2. Moreover, in [4] it was shown
that p =

p1p2
p1+p2

> 1. A combination of the two examples shows that p1, p2 > 2 necessarily

holds even for the weak type bound. We thus focus on this latter observation.
Let g = χ[−10,10] and f(x) = |x|−1/2 (− log(|x|))−1

χ[−1/2,1/2](x). Then f ∈ L2(R) and
g ∈ Lp2(R) for any p2 ≥ 1. For any 1/4 ≤ x ≤ 1/2 we choose t = x in the definition of
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S2(f, g) to estimate it from below by:

S2(f, g)(x) ≥
∫ 1

0

|x− xy|−1/2 (− log(|x− xy|))−1 dy√
1− y2

≥
√
x√
2

∫ 1

0

(x− xy)−1 (− log(x− xy))
−1

dy

≥ 1√
2x

∫ x

0

u−1 (− log(u))
−1

du = +∞,

where we changed variables u = x− xy in the passage from the second to the third line.
Therefore S2(f, g)(x) = +∞ on a set of positive measure and the result follows for the
p1 = 2 case. Since the case p2 = 2 is symmetric, this finishes our proof. �

For the multilinear function we have two critical boundary cases: H and Hi, since all of
the Hi’s are similar by the symmetry of the operator. In the first case the counterexample
is a characteristic function at the origin, similar to the functions in [12, 18, 30]. For the
Hi’s we use a Knapp-type example similar to the one in [21], a tube at the origin tangent
to the sphere along the ith axis.
For the benefit of the reader, we first show that the open set of exponents is optimal. In

this case characteristic functions suffice, which simplifies the computations and showcases
the relevant geometry of the examples. We then include the appropriate blow-up in order
to exclude strong-type bounds on H and Hi, i = 1, . . . ,m.

Proof of Theorem 2, counterexample part. We start by showing that the open
set of exponents in Theorem 2 is optimal.
Necessity of condition (a): If f1 = · · · = fm = χ[−δ,δ], then for 1/2 ≤ x ≤ 1 and t = x

√
m,

we have:

Sm(f1, . . . , fm) ≥
∫
Sm−1

m∏
i=1

χ[−δ,δ](x(1−
√
myj))dσ(y1, . . . , ym)

≥
∫
Sm−1

m∏
j=1

χ
[− δ

x
√
m

− 1√
m

, δ
x
√
m

− 1√
m

]
(yj)dσ(y1, . . . , ym)

&
∫ m∏

j=1

χ
[− δ

x
√
m

− 1√
m

, δ
x
√
m

− 1√
m

]
(yj)dy1 . . . dym−1 & δm−1,

and thus, if Sm is bounded from Lp1 × · · · × Lpm → Lp, we should have

δm−1 . ‖Sm(f1, . . . , fm)‖Lp .
m∏
i=1

‖fi‖Lpi ≤ δ
∑m

i=1
1
pi ,

and therefore
m∑
i=1

1
pi

≤ m− 1.
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Necessity of condition (b): We set f1 = χ[−10
√
m,10

√
m] and f2 = · · · = fm = χ[−δ,δ]. For

1/2 ≤ x ≤ 1 we choose t = x
√
m− 1 to estimate Sm from below. Analogously to the

previous case, we have then:

Sm(f1, . . . , fm) ≥
∫
Sm−1

χ[−10
√
m,10

√
m](y1)

m∏
j=2

χ[−δ,δ](x(1−
√
m− 1yj))dσ(y1, . . . , ym)

≥
∫
Sm−1

m∏
j=2

χ
[− δ

x
√
m−1

− 1√
m−1

, δ
x
√
m−1

− 1√
m−1

]
(yj)dσ(y1, . . . , ym)

&
∫
|y1|≤

√
2δ/x

∫ m∏
j=2

χ
[− δ

x
√
m−1

− 1√
m−1

, δ
x
√
m−1

− 1√
m−1

]
(yj)

dy2 . . . dym−1) dy1

& δm−3/2.

Thus, if Sm is bounded from Lp1 × · · · × Lpm → Lp,

δm−3
2 . ‖Sm(f1, . . . , fm)‖Lp .

m∏
i=1

‖fi‖Lpi .m δ
∑m

i=2
1
pi ,

and therefore
m∑
i=2

1
pi

≤ m− 3
2 . �

We have thus showed that, in order for strong-type bounds to hold in Theorem 2, the
set of exponents needs to be in the closure of the set defined by (a)–(c) in the statement
of that result. With that proved, we move on to proving that the strong-type bounds fail
also on the boundary sets H and Hi, i = 1, . . . ,m.
First of all, we note the following calculus fact, which was also used in [18].

Lemma 1. Let r1, r2 > 0, t, s < e
− r2

r1 and t ≤ Cs for some C ≥ 1. Then, there exists
an absolute constant C

′
(depending only on C, r1, r2) such that:

s−r1

(
log

1

s

)−r2

≤ C ′t−r1

(
log

1

t

)−r2

. (7)

We then let fi = |x|−1/pi (− log |x|)−2/pi χ[−1/2,1/2] for i = 1, . . . ,m, and note that

fi ∈ Lpi(R). For large x > 0, we choose t = x
√
m to estimate Sm(~f)(x) from below by

focusing on the region:

Vm(x) :=

{
(y1, . . . , ym) ∈ Sm−1 :

∣∣∣∣ 1√
m

− y1

∣∣∣∣ , · · · , ∣∣∣∣ 1√
m

− ym−1

∣∣∣∣ < 1

300m · x
√
m

}
.
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This yields the lower bound:

Sm(f1, . . . , fm)(x) ≥
∫
Vm(x)

m∏
i=1

fi(x−
√
mxyi)dσ(~y)

≥
∫
Vm(x)

m∏
i=1

|x−
√
mxyi|−1/pi

(
− log(|x−

√
mxyi|)

)−2/pi dσ(~y).

Notice now that, for ~y ∈ V +
m (x) = {~y ∈ Vm(x) : ym > 0}, we have,

∣∣∣∣ 1√
m

− ym

∣∣∣∣ = 1

| 1√
m

+ ym|

∣∣∣∣ 1m − y2m

∣∣∣∣ ≤ √
m

∣∣∣∣∣∣ 1m −

1−
∑

j≤m−1

y2j

∣∣∣∣∣∣
≤ 3

∑
j≤m−1

∣∣∣∣yj − 1√
m

∣∣∣∣ < 3(m− 1)
1

300m · x
√
m

<
1

100x
√
m
.

This in turn implies that the new variables ui := x − x
√
myi, i = 1, . . . ,m, satisfy

(
∑

i≤m−1 |ui|2)1/2, |um| < e−2, which allows us to use Lemma 1 since maxi,j
pi
pj

= 2 for

indices in H.
With this in mind, we locally parametrize V +

m (x) in terms of the first (m−1) coordinates
and use the aforementioned change of variables ~y 7→ ũ in the lower bound above, noticing
we are in a position to use Lemma 1, between |ui| and |ũ|, where ũ := (u1, . . . , um−1).
This implies, thus,

Sm(f1, . . . , fm)(x) ≥ Cm|x|1−m

∫
Bm−1(0, 1

300m )

|ũ|−
1
p (− log(|ũ|))−

2
p dũ

&

|x|1−m if 1
p = m− 1,

∞ if 1
p > m− 1.

This deals with the lack of strong-type bounds for the set H.
We deal with the lack of strong-type bounds in each Hi in a similar manner. Without

loss of generality we focus on Hm. Let then fi = |x|−1/pi (− log |x|)−2/pi χ[−1/2,1/2] for

i = 1, . . . ,m− 1, and fm = |x|−1/pm (log |x|)−2/pm χR\[−2,2]. Note that fi ∈ Lpi(R). For
large x > 0, we choose t = x

√
m− 1 to estimate Sm(~f)(x) from below by focusing on the

region:

Wm(x) :=

{
~y ∈ Sm−1 :

∣∣∣∣ 1√
m− 1

− y1

∣∣∣∣ , · · · , ∣∣∣∣ 1√
m− 1

− ym−1

∣∣∣∣ < 10−4

mx
√
m− 1

}
,

over which |1 − ym
√
m− 1| ≈ 1. Moreover, it can be seen that - by similar meth-

ods to the ones employed in the analysis of Vm(x) above - for ~y ∈ Wm(x), we have(
1−

∑
i≤m−1 y

2
i

)−1/2

≥ cm

(
x
|ṽ|

)1/2
, where cm > 0 is a constant depending only on m,
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and ṽ = (v1, . . . , vm−1), where vi = x−x
√
m− 1yi. Parametrizing locally in terms of the

first (m−1) coordinates, changing variables ~y 7→ ṽ and using Lemma 1 again, we obtain:

Sm(f1, . . . , fm)(x) ≥
∫
Wm(x)

m∏
i=1

fi(x−
√
m− 1xyi)dσ(~y)

&x
3
2−m− 1

pm (log x)
− 2

pm

∫
Bm−1(0,10

−4
m )

|ṽ|
− 1

2−
m−1∑
i=1

1
pi (− log(|ṽ|))

−
m−1∑
i=1

2
pi dṽ

&


x− 1

p (log x)
− 2

pm if
∑

i≤m−1

1
pi

= m− 3
2 ,

∞ if
∑

i≤m−1

1
pi

> m− 3
2 .

Thus, when
m−1∑
i=1

1
pi

= m − 3
2 , the above calculation shows that Sm(~f)(x) &

x− 1
p
(
log 1

x

)− 2
pm for x sufficiently large, and thus Sm(~f) 6∈ Lp, since 2p

pm
< 1. This

completes the proof of the fact that no strong-type bounds can hold in the sets Hi.
Finally, suppose that (c) is not satisfied. The counterexample in [12, Proposition 2]

shows that the strong-type bound in Equation (5) cannot hold, since if, for instance,
p1 = · · · = pk = 1 and pk+1 = · · · = pm = ∞, we may take f1 = · · · = fk = χ(−1,1) and

fk+1 = · · · = fm ≡ 1. Then, for large x > 0 and t = x
√
k:

Sm(f1, . . . , fm)(x) ≥
∫
Bk(0,1)

k∏
i=1

|fi(x− x
√
kyi)|dy1 . . . dyk

& |x|−k,

pointwise, which shows that Equation (5) cannot hold in this case. �
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