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Abstract

A bootstrap percolation process on a graph with n vertices is an ‘infection’ process
evolving in rounds. Let r ≥ 2 be fixed. Initially, there is a subset of infected vertices.
In each subsequent round, every uninfected vertex that has at least r infected neighbors
becomes infected as well and remains so forever.
We consider this process in the case where the underlying graph is an inhomogeneous
random graph whose kernel is of rank one. Assuming that initially every vertex is
infected independently with probability p ∈ (0, 1], we provide a law of large numbers
for the size of the set of vertices that are infected by the end of the process. Moreover,
we investigate the case p = p(n) = o(1), and we focus on the important case of inho-
mogeneous random graphs exhibiting a power-law degree distribution with exponent
β ∈ (2, 3). The first two authors have shown in this setting the existence of a critical
pc = o(1) such that, with high probability, if p = o(pc), then the process does not evolve
at all, whereas if p =ω(pc), then the final set of infected vertices has size �(n). In this
work we determine the asymptotic fraction of vertices that will eventually be infected
and show that it also satisfies a law of large numbers.

Keywords: Bootstrap percolation; random graphs; sharp threshold

2020 Mathematics Subject Classification: Primary 05C80
Secondary 60K35

1. Introduction

A bootstrap percolation process with activation threshold an integer r ≥ 2 on a graph
G = G(V, E) is a deterministic process evolving in rounds. Every vertex has two states: it
is either infected or uninfected (sometimes also referred to as active or inactive, respectively).
Initially, there is a subset A0 ⊆ V that consists of infected vertices, whereas every other vertex
is uninfected. Subsequently, in each round, if an uninfected vertex has at least r of its neigh-
bors infected, then it also becomes infected and remains so forever. The process stops when no
more vertices become infected, and we denote the final infected set by Af .
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The bootstrap percolation process was introduced by Chalupa, Leath and Reich [16] in 1979
in the context of magnetic disordered systems. This process (as well as numerous variations
of it) has been used as a model to describe several complex phenomena in diverse areas, from
jamming transitions [35] and magnetic systems [31] to neuronal activity [4, 34] and spread of
defaults in banking systems [5, 7]. Bootstrap percolation also has connections to the dynamics
of the Ising model at zero temperature [23, 29]. A short survey of applications can be found
in [1].

Several qualitative characteristics of bootstrap percolation, and in particular the dependence
of the initial set A0 on the final infected set Af , have been studied on a variety of graphs,
such as trees [12, 22], grids [10, 15, 24], lattices on the hyperbolic plane [32], and hyper-
cubes [9], as well as on many models of random graphs [3, 13, 26]. In particular, consider the
case where r = 2 and G is the two-dimensional grid with V = [n]2 = {1, . . . , n}2 (i.e., a vertex
becomes infected if at least two of its neighbors are already infected). Then, for A0 ⊆ V whose
elements are chosen independently at random, each with probability p = p(n), the following
sharp threshold was determined by Holroyd [24]. The probability I(n, p) that the entire square
is eventually infected satisfies I(n, p) → 1 if lim infn→∞ p(n) log n>π2/18, and I(n, p) → 0
if lim supn→∞ p(n) log n<π2/18. A generalization of this result to the higher-dimensional
case was proved by Balogh, Bollobás and Morris [11] (when G is the three-dimensional grid
on [n]3 and r = 3) and by Balogh, Bollobás, Duminil-Copin and Morris [10] (in general).

In this paper we study the bootstrap percolation process on inhomogeneous random graphs.
Informally, these random graphs are defined through a sequence of weights that are assigned
to the vertices, which in turn determine the probability that two vertices are adjacent. More
specifically, we are interested in the case where this probability is proportional to the product
of the weights of these vertices. In particular, pairs of vertices such that at least one of them
has a high weight are more likely to appear as edges.

A special case of our setting is the G(n, p) model of random graphs, where every edge
on a set of n vertices is present independently with probability p. Here every vertex has the
same weight. Janson, Łuczak, Turova and Vallier [26] presented a complete analysis of the
bootstrap percolation process for various ranges of p. We focus on their findings regarding
the range where p = d/n and d> 0 is fixed, as these are most relevant for the setting studied
in this paper. In [26] a law of large numbers for |Af | was shown when the density of A0 is
positive, that is, when |A0| = θn, where θ ∈ (0, 1). It was further shown that when |A0| = o(n),
typically no evolution occurs. In other words, the density of the initially infected vertices must
be positive in order for the density of the finally infected vertices to increase. This fact had
been pointed out earlier by Balogh and Bollobás; cf. [13]. A similar behavior was observed in
the case of random regular graphs [13], as well as in random graphs with given vertex degrees.
These were studied by the first author in [3], in the case where the sum of the squares of the
degrees scales linearly with n. As we shall see shortly, the random graph model we consider
here is essentially a random graph with given expected degrees. Finally, more recently the
bootstrap process was considered in another type of inhomogeneous random graph, namely
the stochastic block model [36].

The main result of this paper provides a law of large numbers for |Af | given |A0| for weight
sequences that satisfy fairly general and natural regularity conditions. We then consider weight
sequences that follow a power-law distribution, i.e., where the proportion of vertices with
weight w scales like w−β for some β > 2, with a particular focus on the case where β ∈ (2, 3).
The parameter β is called the exponent of the power law. Note that although in this case the
weight sequence has a bounded average weight, its second moment grows with the number of
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vertices. Power laws emerge in several contexts, ranging from ecology and economics to social
networks (see e.g. the survey of Mitzenmacher [28]). Already in the late 19th century, Pareto
observed a power law in the distribution of wealth within populations [30]. In a completely
different context, in 1926 Lotka [27] observed a power-law distribution on the frequencies of
scientists whose works had been cited a certain number of times in Chemical Abstracts during
the period 1910–1916. The article of Albert and Barabási [2] provides several examples of
networks that exhibit power-law degree distributions. In fact, most of these examples exhibit
power laws that have exponents between 2 and 3. This range of exponents is also associated
with ultra-small worlds. Chung and Lu [18] showed that for the model which we will consider
in this paper, the average distance between two vertices in the largest (giant) component scales
like log log n.

The methods of our paper have also been applied in the context of directed inhomogeneous
random graphs [20]. Furthermore, they have found application in the analysis of bootstrap-like
processes which model cascading phenomena between financial institutions [21].

In this work we extend a theorem proved by the first two authors in [6], which gives a thresh-
old function ac(n) = o(n) such that if a(n) grows slower than ac(n), then with high probability
no evolution occurs, but if a(n) grows faster than ac(n), then even if a(n) = o(n), the final set
contains a positive fraction of the vertices. Here we determine this fraction exactly, and we
show that as long as a(n) = o(n), it does not depend on a(n) itself. In the rest of this section we
provide the definition of the random graph model that we consider and the statements of our
theorems.

Notation. For non-negative sequences xn and yn, we write xn = O(yn) if there exist N ∈N and
C> 0 such that xn ≤ Cyn for all n ≥ N, and we write xn = o(yn) if xn/yn → 0 as n → ∞. We
also sometimes write xn 	 yn for xn = o(yn).

Let {Xn}n∈N be a sequence of real-valued random variables on a sequence of probability

spaces {(�n, Pn)}n∈N,Fn . If c ∈R is a constant, we write Xn
p→ c to denote that Xn converges in

probability to c, that is, for any ε > 0 we have Pn(|Xn − c|> ε) → 0 as n → ∞. Moreover, let
{an}n∈N be a sequence of real numbers that tends to infinity as n → ∞. We write Xn = op(an) if
|Xn|/an converges to 0 in probability. If En is a measurable subset of �n for any n ∈N, we say
that the sequence {En}n∈N occurs asymptotically almost surely or with high probability (w.h.p.)
if Pn(En) = 1 − o(1) as n → ∞.

2. Models and results

The random graph model that we consider is an extension of a model considered by Chung
and Lu [18], and is a special case of the so-called inhomogeneous random graph, which was
introduced by Söderberg [33] and defined in full generality by Bollobás, Janson and Riordan
in [14].

2.1. Inhomogeneous random graphs with rank-1 kernel

Let n ∈N and consider the vertex set [n] := {1, . . . , n}. Each vertex i is assigned a positive
weight wi(n), and we will write w = w(n) = (w1(n), . . . ,wn(n)). We will often suppress the
dependence on n, whenever it is obvious from the context. For convenience, we will assume
that w1 ≤ w2 ≤ · · · ≤ wn. For any S ⊆ [n], set

WS(w) :=
∑
i∈S

wi.
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In our random graph model, the event of including the edge {i, j} in the resulting graph is
independent of the inclusion of any other edge, and its probability equals

pij(w) = min

{
wiwj

W[n](w)
, 1

}
. (1)

This model was studied by Chung and Lu in a series of papers [17–19] for fairly general
choices of w. Chung and Lu studied several typical properties of the resulting graphs, such as
the average distance between two randomly chosen vertices that belong to the same component,
and the component size distribution. Their model was defined under the additional assumption
that maxi∈[n] w2

i <W[n]. We drop this assumption and use (1) instead. We will refer to this
model as the Chung–Lu model, and we shall write CL(w) for a random graph in which each
possible edge {i, j} is included independently with probability as in (1). Moreover, we will
suppress the dependence on w if it is clear from the context which sequence of weights we are
referring to.

Note that in a Chung–Lu random graph the weights (essentially) control the expected
degrees of the vertices. Indeed, if we ignore the minimization in (1), and also allow a loop
at vertex i, then the expected degree of that vertex is

∑n
j=1 wiwj/W[n] = wi.

2.2. Regular weight sequences

Following van der Hofstad [37], for any n ∈N and any sequence of weights w(n), let

Fn(x) = n−1
n∑

i=1

1[wi(n) ≤ x] ∀x ∈ [0,∞)

be the empirical distribution function of the weight of a vertex chosen uniformly at random.
We will assume that Fn has a certain structure.

Definition 1. We say that (w(n))n≥1 is regular if it has the following properties:

• Weak convergence of weight: There is a distribution function F : [0,∞) → [0, 1] such
that for all x at which F is continuous, limn→∞ Fn(x) = F(x).

• Convergence of average weight: Let Wn be a random variable with distribution
function Fn, and let WF be a random variable with distribution function F. Then
limn→∞ E (Wn)=E (WF) <∞.

• Non-degeneracy: There is an x0 ∈R
+ such that Fn(x) = 0 for all x ∈ [0, x0) and n ∈N.

(That is, the weights are bounded from below by x0.)

The regularity of (w(n))n≥1 guarantees two important properties. First, the weight of a random
vertex is approximately distributed as a random variable that follows a certain distribution.
Second, this variable has finite mean, and it is easy to see that the associated Chung–Lu random
graph has bounded average degree w.h.p. The third property in Definition 1 is a minor restric-
tion guaranteeing that no vertex has a vanishing expected degree; it is added for convenience
in order to simplify several of our technical considerations.

At many points in our arguments it will be important to select vertices randomly accord-
ing to their weight, i.e. so that the probability of choosing i ∈ [n] equals wi/W[n](w). This is
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the so-called size-biased distribution, and we denote by W∗
Fn

a random variable with this dis-
tribution. A straightforward calculation shows that for every bounded continuous function f ,

E
(
f
(
W∗

Fn

))= E
(
WFn f

(
WFn

))
E
(
WFn

) . (2)

2.3. Results

The main theorem of this paper gives a law of large numbers for the size of Af when A0
has positive density, in the case where the underlying random graph is a Chung–Lu random
graph with a regular weight sequence. Let ψr(x) for x ≥ 0 be equal to the probability that a
Poisson-distributed random variable with parameter x is at least r, i.e.,

ψr(x) := P
[
Po(x) ≥ r

]= e−x
∑
j≥r

xj/j!.

Let X be a non-negative random variable and p ∈ [0, 1]. For any r ≥ 1 and y ∈R
+ set

fr (y; X, p)= (1 − p)E
[
ψr(Xy)

]+ p − y.

Theorem 1. Let (w(n))n≥1 be regular with limiting distribution function F. Consider the boot-
strap percolation process on CL(w) with activation threshold r ≥ 2, where A0 ⊆ [n] includes
any vertex independently with fixed probability p ∈ (0, 1). Let ŷ be the smallest positive solution
of

fr
(
y; W∗

F, p
)= 0. (3)

Assume also that f ′
r (ŷ; W∗

F, p)< 0. Then

n−1|Af | p→ (1 − p)E
[
ψr

(
WFŷ

)]+ p as n → ∞. (4)

We remark that a solution ŷ to (3) always exists, because fr(y; W∗
F, p) is continuous,

fr(0; W∗
F, p)> 0, and fr(1; W∗

F, p) ≤ 0. Note that the conclusion of our results is valid only
if f ′

r (ŷ; W∗
F, p)< 0. This fails to happen only if

E

[
e−ŷW∗

F
(
W∗

Fŷ
)r

r!

]
= ŷ

(1 − p)r
,

and for such (rather exceptional) weight sequences we expect a different behavior. Moreover,
we show (cf. Lemma 6) that if the weight sequence has a power-law distribution with exponent
between 2 and 3, this case will not happen (i.e., we always have f ′

r (ŷ; W∗
F, p)< 0).

Intuitively, the quantity ŷ represents the limit of the probability that infection is passed
through a random neighbor of a vertex. The fixed-point equation fr(y; W∗

F, p) = 0, whose solu-
tion is ŷ, effectively says that a vertex is infected if either it is initially infected (which occurs
with probability p) or (if not, which occurs with probability 1 − p) it has at least r infected
neighbors. The latter is a Poisson-distributed random variable with parameter equal to W∗

Fŷ.
The first factor essentially states the fact that a vertex becomes some other vertex’s neigh-
bor with probability proportional to the latter’s weight, whereas it is infected with probability
approximately ŷ.

We will now see an extension of the above theorem to the case where p is no longer bounded
away from 0. Under certain conditions the above theorem can be transferred to this case simply
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by setting p = 0. These conditions ensure that a positive but rather small fraction of the vertices
become infected, and this effectively corresponds to taking a p that is in fact bounded away
from 0 but small.

2.4. Power-law weight sequences

Our second result focuses on an important special case of weight sequences, namely those
following a power-law distribution. This is described by the following condition.

Definition 2. We say that a regular sequence (w(n))n≥1 follows a power law with exponent β
if there are 0< c1 < c2, c3, x0 > 0, and 0< ζ ≤ 1/(β − 1) such that for all x0 ≤ x< c3 · nζ ,

c1x−β+1 ≤ 1 − Fn(x) ≤ c2x−β+1,

while Fn(x) = 0 for x< x0 and Fn(x) = 1 for x ≥ c3 · nζ . Moreover, for any x> x0, we have for
some c> 0 that

lim
n→∞ Fn(x) = F(x) = 1 − cx−β+1.

We say that such a sequence belongs to the class PL(β, ζ ).

In the above definition, the maximum weight of a vertex is close to c3 · nζ for any n sufficiently
large. Furthermore, if ζ = 1/(β − 1), then c3 ≤ c1/(β−1)

2 .
A particular example of a power-law weight sequence is given in [18], where the authors

choose wi = d(n/(i + i0))1/(β−1) for some d> 0. This typically results in a graph with a power-
law degree sequence with exponent β, average degree O(d), and maximum degree proportional
to (n/i0)1/(β−1); see also [37] for a detailed discussion. When β ∈ (2, 3), these random graphs
are also characterized as ultra-small worlds, because of the fact that the typical distance
between two vertices that belong to the same component is O( log log n); see [18, 37].

Theorem 1 addresses the case where the initial set A0 has positive density. Our second result
is complementary and considers the setting where p = p(n) = o(1), with a particular focus on
the case where the exponent of the power law is in (2,3). Assume that A0 has density a(n)/n.
In [6] the first two authors determined a function ac(n) (which we also give in the statement of
the next theorem) such that, for ζ satisfying

r − 1

2r − β + 1
< ζ ≤ 1

β − 1
,

if a(n) = o(ac(n)), then w.h.p. |A0| = |Af |, whereas if a(n) =ω(ac(n)) but a(n) = o(n), then
w.h.p. |Af |> εn, for some ε > 0. However, for

ζ ≤ r − 1

2r − β + 1

they showed a weaker result and identified two functions a−
c (n) 	 a+

c (n) = o(n) such that if
a(n) � a+

c (n), then |Af |> εn for some ε > 0, but if a(n) 	 a−
c (n), then w.h.p. |A0| = |Af |.(

In particular, a−
c (n) = ac(n) and a+

c (n) = n1−ζ r−β+2
r−1 .

)
We refine this result using the proof of

Theorem 1 and determine the fraction of vertices that belong to Af .
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Theorem 2. Let (w(n))n≥1 ∈ PL(β, ζ ) for some β ∈ (2, 3). Consider the bootstrap percolation
process on CL(w) with activation threshold r ≥ 2. Let

ac(n) = n(r(1−ζ )+ζ (β−1)−1)/r

and

a+
c (n) = n1−ζ r−β+2

r−1 .

Assume that A0 is a random subset of [n] where each vertex is included independently with

probability a(n)/n. If a(n) = o(n) and a(n) =ω(ac(n))
(

for r−1
2r−β+1 < ζ ≤ 1

β−1

)
and a(n) =

ω(a+
c (n))

(
for ζ ≤ r−1

2r−β+1

)
, then

n−1|Af | p→E
[
ψr

(
WFŷ

)]
as n → ∞,

where ŷ is the smallest positive solution of

y =E
[
ψr

(
W∗

Fy
)]

.

When β > 3, the regularity assumptions of Theorem 1 are satisfied, and the asymptotics of the
size of the final set is given by this. When β = 3, these assumptions are no longer satisfied.
Consequently, the techniques that are used for the proof of Theorem 2 in Section 3.2 do not
apply immediately but need significant refinement.

Let us remark here that the (rescaled) size of the final set does not depend on |A0|.
More generally, the above theorem holds as long as the initial density is such that,

asymptotically almost surely, most vertices of weight exceeding some large constant become
infected.

2.5. Outline

The proofs of Theorems 1 and 2 are based on a finitary approximation of the weight
sequence w(n). In the following section we construct a sequence of weight sequences hav-
ing only a finite number of weights and that ‘approximate’ the initial sequence in a certain
well-defined sense. Thereafter, we show the analogue of Theorem 1 for finitary sequences;
this is Theorem 3, stated below. The proof of Theorem 3 is based on the so-called differential
equation method, which was developed by Wormald [38, 39] and is used to keep track of the
evolution of the bootstrap percolation process through the exposure of the neighbors of each
infected vertex. Such an exposure algorithm has also been applied in the homogeneous setting
[26]. Of course, the inhomogeneous setting imposes significant obstacles. We close the paper
with the proofs of some rather technical results, which transfer the condition on the derivative
that appears in the statement of Theorem 1 to the finitary setting.

3. Finitary weight sequences

In this section we will consider so-called finitary weight sequences on [n] that are suitable
approximations of an arbitrary weight sequence w(n). As a first step we are going to ‘remove’
all weights from w that are too large in the following sense. Suppose that w(n) is regular and
that the corresponding sequence of empirical distributions converges to F. Let (cj)j∈N be an
increasing sequence of points of continuity of F with the following properties:
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1. limj→∞ cj = ∞.

2. 2cj is also a point of continuity.

For γ > 0 let
Cγ = Cγ (F) := min

{
cj : F

(
cj
)≥ 1 − γ

}
.

Then, as n → ∞, the following facts are immediate consequences. Let Cγ = Cγ (n, F) be the
set of vertices in [n] with weight at least Cγ (F). Then the following hold:

1. With hF(γ ) := 1 − F(Cγ ) ≤ γ , we have |Cγ (n, F)|/n → hF(γ ).

2. n−1WCγ (n,F)(w(n)) → ∫∞
Cγ

xdF(x) =: Wγ (F), where the latter is the Lebesgue–Stieltjes
integral with respect to F.

3. The assumption E [WF] = d<∞ implies that P [WF > x] = o(1/x) as x → ∞. Thus

Cγ (F)P
[
WF >Cγ (F)

]→ 0, as γ ↓ 0. (5)

Also, Wγ (F)/Cγ (F) → 0 as γ ↓ 0. We will be using this observation in several places
in our proofs.

We will approximate a regular weight sequence (w(n))n≥1 by a sequence where most vertices
have weights within a finite set of values, and moreover the weights are bounded by 2Cγ (F)
(cf. [37] where a similar approach is followed in a different context).

Definition 3. Let � ∈N and γ ∈ (0, 1).

For a function n′ = n′(n) ∈N with n′ ≥ n − |Cγ (F)|, we say that a regular weight sequence(
W(�,γ ) (n′))

n≥1
=
(

W(�,γ )
1

(
n′) , . . . ,W(�,γ )

n′
(
n′))

n≥1

is an (�, γ )-discretization of a regular weight sequence (w(n))n≥1 with limiting distribution
function F if the following conditions are satisfied. There are an increasing sequence of natural
numbers (p�)�∈N and positive constants γ1, . . . , γp(�) ∈ (0, 1) such that

∑p�
i=1 γi = 1 − hF(γ ),

and there are real weights 0<W0 <W1 < · · ·<Wp� ≤ Cγ (F) which satisfy the following
properties. There is a partition of [n] \ Cγ (F) into p� parts, denoted by C1(n), . . . ,Cp�(n),
such that the following hold:

1. For all 1 ≤ i ≤ p� and for all j ∈ Ci(n) we have W(�,γ )
j (n′) = Wi.

2. Let C′
γ (n) := [n′] \ ∪p�

i=1Ci(n). Then Cγ (F) ≤ W(�,γ )
j (n′) ≤ 2Cγ (F) for all j ∈ C′

γ (n).

Moreover, as n → ∞, the following hold:

3. For all 1 ≤ i ≤ p�, n−1|Ci(n)| → γi.

4. There is an hF(γ ) ≤ γ ′ < hF(γ ) + 2Wγ (F)/Cγ (F) such that n−1|C′
γ (n)| → γ ′.

5. There is a 0 ≤ W ′
γ ≤ 4Wγ (F) such that n−1WC′

γ (n)(W
(�,γ )(n′)) → W ′

γ .

6. The weight sequence W(�,γ )(n) gives rise to a sequence of the corresponding empirical
distributions which we denote by F(�,γ )

n , and we assume that they converge weakly to a
limiting distribution F(�,γ ).
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The upper bounds in Items 4 and 5 are tailored to the proof of Theorem 1. Note that in the
previous definition no assumption is made on the Wi, and thus W(�,γ ) might look very different
from w. The next definition quantifies when an (�, γ )-discretization is ‘close’ to a given regular
(w(n))n≥1 with limiting distribution function F. For a cumulative distribution function G, let G∗
denote the distribution function of the size-biased version of a G-distributed random variable.

Definition 4. Let (w(n))n≥1 be regular and let F be its limiting distribution function. A family((
W(�,γ )(n′)

)
n≥1

)
�∈N,γ∈(0,1) of (�, γ )-discretizations of (w(n))n≥1 with limiting distribution

functions F(�,γ ) is called F-convergent if the following hold:

1. For every x ∈R that is a point of continuity of F, we have

lim
γ↓0

lim
�→∞ F(�,γ )(x) = F(x), lim

γ↓0
lim
�→∞ F∗(�,γ )(x) = F∗(x).

2. We have

lim
γ↓0

lim
�→∞

∣∣∣∣∫ ∞

0
xdF(�,γ )(x) −E(WF)

∣∣∣∣= 0,

lim
γ↓0

lim
�→∞

∣∣∣∣∣
∫ Cγ

0
xdF(�,γ )(x) −E(WF)

∣∣∣∣∣= 0.

Let U(�,γ )
(
resp. U∗(�,γ )

)
be a random variable whose distribution function is F(�,γ )

(
resp.

F∗(�,γ )
)
. Let us observe that

P
[
U∗(�,γ ) >Cγ

]=
E

[
U(�,γ )1U(�,γ )>Cγ

]
E
[
U(�,γ )

] ≤ 2/W0 ·E
[
U(�,γ )1U(�,γ )>Cγ

]
,

since E
[
U(�,γ )

]≥ W0/2 for any γ and any � sufficiently large. By Part 2 of Definition 4, we
have

lim
γ↓0

lim
�→∞ E

[
U(�,γ )1U(�,γ )>Cγ

]
= 0.

We can thus deduce the following lemma, which will be used later.

Lemma 1. If f : R→R is a bounded function, then

lim
γ↓0

lim
�→∞

∣∣∣E (
f (U∗(�,γ ))1U∗(�,γ )>Cγ

)∣∣∣= 0.

For technical reasons we consider a slightly different definition of the random graph model
that we denote by CL′(W(�,γ )). In this modified model the edge probabilities are proportional
to the product of the weights of the vertices, except that the normalizing factor is equal not to
the sum of the weights in W(�,γ ), but rather to W[n](w(n)); that is, the edge {i, j} is contained
in CL′(W(�,γ )) with probability

pij
(
W(�,γ )(n′),w(n)

)= min

{
W(�,γ )

i W(�,γ )
j

W[n](w)
, 1

}
.
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The next theorem quantifies the number of finally infected vertices when the weight sequence
is a discretization of a given regular (w(n))n≥1. It is general enough to be used in the proof of
Theorem 2 as well.

Theorem 3. Let (w(n))n≥1 be regular and let F be its limiting distribution function. Let((
W(�,γ )(n′)

)
n≥1

)
�∈N,γ∈(0,1) be a family of (�, γ )-discretizations of (w(n))n≥1 which is F-

convergent. Moreover, assume that f ′
r (ŷ;W∗

F, p)< 0 (cf. Theorem 1).
Let r ≥ 2. Assume that initially all vertices of CL′(W(�,γ )) that belong to C′

γ (n) are infected,
whereas each vertex in Ci(n) is infected independently with probability p ∈ [0, 1), for each i =
1, . . . , p�. Let A(�,γ )

f denote the set of vertices in [n′] \ C′
γ (n) that eventually become infected

during a bootstrap percolation process with activation threshold r. There exists c> 0 for which
the following holds: for γ ∈ (0, c) and for any δ ∈ (0, 1), there is a subsequence S := {�k}k∈N
such that for any � ∈ S , with probability at least 1 − o(1),

n−1
∣∣A(�,γ )

f

∣∣= (1 ± δ)
(
(1 − p)E

[
ψr(WFŷ)

]+ p
)

.

3.1. Proof of Theorem 1

Given a regular (w(n))n≥1, Theorem 1 follows from Theorem 3 by constructing an F-
convergent family ((W(�,γ )(n′))n≥1)�∈N,γ∈(0,1) for a certain function n′ : N→N. We first
describe our construction and prove some properties of it, and then proceed with the proofs
of our main results.

3.1.1. The construction of approximating weight sequences Let (w(n))n≥1 be regular and con-
sider the limiting distribution function F. For γ ∈ (0, 1), recall that F(Cγ ) ≥ 1 − γ . Recall also
that from Definition 1 there is a positive real number x0 such that F(x) = 0 for x< x0.

We define a set of intervals P� whose union is a superset of [x0,Cγ ) as follows. Let ε� = 1/�.
First, for i ≥ 0, we set

xi+1 = sup{x ∈ (xi,Cγ ) : F(x) − F(xi)< ε�}.
Set t� = min{i : xi = Cγ } and x−1 = 0. For each i = 0, . . . , t�, let y2i, y2i+1 be such that

(1) max
{ 1

2 (xi−1 + xi), xi − ε�
}
< y2i < xi;

(2) xi < y2i+1 <min
{ 1

2 (xi + xi+1), xi + ε�
}

or y2i+1 = Cγ , if i = t�;

(3) y2i, y2i+1 are points of continuity of F.

Now, we set P� := {[y0, y1), . . . , [y2t� ,Cγ )}. With p� = 2t� + 1, for i = 1, . . . , p�, we set
Ii = [yi−1, yi).

Given this partition and the weight sequence w(n), for each n ≥ 1 we define two finitary
weight sequences W(�,γ )+(n′) and W(�,γ )−(n′′) on the sets [n′] and [n′′], respectively, as fol-
lows. The partition P� gives rise to a partition of [n] \ Cγ , where for each i = 1, . . . , p� we
have Ci = {j : wj(n) ∈ Ii}. We denote this partition by Pn,�,γ , and we let this be the associated
partition of W(�,γ )+(n) and W(�,γ )−(n).

In particular, consider the random subset of Cγ in which every element of Cγ is included
independently with probability p. An application of the Chernoff bounds implies that w.h.p. this
has size at least �p|Cγ | − n2/3� =: k−. Consider a set of vertices C−

γ = {v1, . . . , vk−} which is
disjoint from [n]. We identify with [n′′] the set

(∪p�
i=1Ci

)⋃
C−
γ , through a bijective mapping

ϕ− :
(∪p�

i=1Ci
)⋃

C−
γ → [n′′]. It follows that n′′ = (1 − hF(γ ) + phF(γ ))n(1 + o(1)).
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For any vertex j ∈ Cγ such that wj(n) ≥ 2Cγ , we consider cj := 2
⌊wj(n)

Cγ

⌋
copies of this

vertex each having weight 2Cγ , which we label as vj1, . . . , vjcj . For each such j we let

εj(n) = wj(n)

Cγ
−
⌊wj(n)

Cγ

⌋
,

and we set
R =

⌈
2

∑
j : wj(n)≥2Cγ

εj(n)
⌉

.

If j ∈ Cγ is such that Cγ ≤ wj(n)< 2Cγ , then we introduce a single copy vj1 having weight
equal to wj (in other words cj = 1).

We let C+
γ be the set that is the union of these copies together with a set of R vertices which

we denote by R (disjoint from the aforementioned sets) each having weight 2Cγ :

C+
γ := R∪

⋃
j∈Cγ

{
vj1, . . . , vjcj

}
.

Let n′ =
∣∣∣(∪p�

i=1Ci
)⋃

C+
γ

∣∣∣, and identify the set [n′] with the vertices in
(∪p�

i=1Ci
)⋃

C+
γ ,

through a bijection ϕ+ :
(∪p�

i=1Ci
)⋃

C+
γ → [n′]. We will use the symbol C+

γ to denote the
set [n′] \ ϕ+ ((∪p�

i=1Ci
))

. In other words, the set C+
γ consists of the replicas of the vertices in

Cγ , as these were defined above, together with the set of vertices corresponding to R. This
completes the definition of W(�,γ )+(n).

For each i = 1, . . . , p�, we set W−
i = y2(i−1) and W+

i = y2i−1; for each j ∈ Ci, we set

W(�,γ )−
ϕ−(j) (n) := W−

i and W(�,γ )+
ϕ+(j) (n) := W+

i .

For any j ∈ [n′′] \ ϕ− (∪p�
i=1Ci

)
we set W(�,γ )−

j (n) := Cγ . Note that

lim
n→∞

|C−
γ |

n
= phF(γ ),

and if WC−
γ

(
W(�,γ )−) denotes the total weight of these vertices, then this satisfies

lim
n→∞

WC−
γ

(
W(�,γ )−)
n

= phF(γ )Cγ =: W−
γ <Wγ < 4Wγ .

Furthermore,

|C+
γ | =

∑
j : Cγ≤wj<2Cγ

1 +
∑

j : wj≥2Cγ

2� wj

Cγ
� + R

=
∑

j : Cγ≤wj<2Cγ

1 + 2
∑

j : wj≥2Cγ

wj

Cγ
+ e(n),

with 0 ≤ e(n)< 1. By the weak convergence of Fn to F and since E [Wn] →E [WF]<∞, it
follows that

lim
n→∞

|C+
γ |

n
= P

[
Cγ ≤ WF ≤ 2Cγ

]+ 2
E
[
1{WF≥2Cγ }WF

]
Cγ

=: γ+, (6)
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where γ+ ↓ 0 as γ ↓ 0. So n′/n → 1 − hF(γ ) + γ+ as n → ∞. Moreover,

lim
γ↓0

γ+Cγ = lim
γ↓0

(
CγP

[
Cγ ≤ WF ≤ 2Cγ

]+ 2E
[
1{WF≥2Cγ }WF

] ) 5= 0. (7)

Also, the total weight of the vertices in C+
γ can be bounded as follows:

WC+
γ

(
W(�,γ )+)=

∑
j : Cγ≤wj<2Cγ

wj +
∑

j : wj≥2Cγ

2
⌊ wj

Cγ

⌋
(2Cγ )

≤
∑

j : Cγ≤wj<2Cγ

wj + 4
∑

j : wj≥2Cγ

wj.

Hence, as n → ∞,

WC+
γ

(
W(�,γ )+)
n

→E

[
1{

Cγ≤WF<2Cγ
}WF

]
+ 4E

[
1{WF≥2Cγ }WF

] =: W+
γ ≤4Wγ . (8)

We denote by U(�,γ )+
n and U(�,γ )−

n the weight in W(�,γ )+(n′) and W(�,γ )−(n′′) of a uniformly
chosen vertex from [n′] and [n′′], respectively. Also, we let F(�,γ )−

n , F(�,γ )+
n denote their dis-

tribution functions. Note that both F(�,γ )−
n and F(�,γ )+

n converge pointwise, as n → ∞, to the
functions F(�,γ )− and F(�,γ )+, respectively, where

• for each i = 0, . . . , p� and for each x ∈ Ii we set

F(�,γ )−(x) := F(W+
i )

1 − hF(γ ) + phF(γ )
and F(�,γ )+(x) = F(W−

i )

1 − hF(γ ) + γ+ ;

• for any x ≥ Cγ we have F(�,γ )−(x) = 1, and for any x< y0 we have F(�,γ )−(x) = 0,
F(�,γ )+(x) = 0;

• for any Cγ ≤ x< 2Cγ we have

F(�,γ )+(x) = F(x)

1 − hF(γ ) + γ+ , (9)

whereas for x ≥ 2Cγ we have F(�,γ )+(x) = 1.

We will now prove that both families{
W(�,γ )+(n′)

}
γ∈(0,1),�∈N and

{
W(�,γ )−(n′′)

}
γ∈(0,1),�∈N

are F-convergent. Thus, we will verify that they satisfy both parts of Definition 4.

Part 1 of Definition 4. It will be convenient to define a probability distribution function which
will be the pointwise limit of F(�,γ )+ and F(�,γ )− as �→ ∞. For any x ∈ [0,Cγ ) we set

F(γ )+(x) = F(x)

1 − hF(γ ) + γ+

and

F(γ )−(x) = F(x)

1 − hF(γ ) + phF(γ )
,
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whereas F(γ )+(x) = F(γ )−(x) = 0 for x< 0, and F(γ )+(x) = F(γ )−(x) = 1 for x ≥ Cγ . Note first
that for any point x<Cγ that is a point of continuity of F (and therefore of F(γ )+ and F(γ )− as
well), we have

lim
�→∞ F(�,γ )+(x) = F(γ )+(x)

and
lim
�→∞ F(�,γ )−(x) = F(γ )−(x).

Moreover, note that for any x> 0 we have

lim
γ↓0

F(γ )+(x), F(γ )−(x) = F(x).

We will now turn to the size-biased versions of these distributions. Let U(γ )+ and U(γ )− denote
two random variables with probability distribution functions F(γ )+ and F(γ )−, respectively.
Thus, as �→ ∞,

U(�,γ )+ d→ U(γ )+ and U(�,γ )− d→ U(γ )−, (10)

whereas as γ ↓ 0 we have

U(γ )+,U(γ )− d→ WF . (11)

Claim 4. Let (Xn)n∈N be a sequence of non-negative random variables. Suppose that W is a

random variable such that Xn
d→ W as n → ∞. For every x> 0 which is a point of continuity

of the cumulative distribution function of W, we have

lim
n→∞ E(Xn1Xn≤x) =E(W1W≤x).

Proof. First note that Xn1Xn≤x
d→ W1W≤x as n → ∞. By the Skorokhod representation the-

orem, there is a coupling of these random variables such that Xn1Xn≤x → W1W≤x almost surely
as n → ∞. The claim now follows from the bounded convergence theorem. �

This claim implies that for any γ ∈ (0, 1), as �→ ∞,

F∗(�,γ )+(x) = E
(
U(�,γ )+1U(�,γ )+≤x

)
E

(
U(�,γ )+) → E

(
U(γ )+1U(γ )+≤x

)
E
(
U(γ )+) (12)

and

F∗(�,γ )−(x) = E
(
U(�,γ )−1U(�,γ )−≤x

)
E
(
U(�,γ )−) → E

(
U(γ )−1U(γ )−≤x

)
E
(
U(γ )−) . (13)

Furthermore, we will show the following.

Lemma 2. We have limγ↓0 E
(
U(γ )+)= limγ↓0 E(U(γ )−) =E(WF).

Proof. The proof is identical for both U(γ )+ and U(γ )−, so we will denote these by U(γ )±.
For δ > 0, let C̄δ be a continuity point of F such that

E

(
WF1WF>C̄δ

)
< δ/3. (14)

By Claim 4 we deduce that for any γ sufficiently small,

|E
(

U(γ )±1U(γ )±≤C̄δ

)
−E

(
WF1WF≤C̄δ

)
|< δ/3. (15)
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Let us bound E(U(γ )±1U(γ )±>C̄δ
). Note that if γ is small enough, then

E
(
U(γ )±1U(γ )±>C̄δ

)=E
(
U(γ )±1Cγ≥U(γ )±>C̄δ

)
.

So it suffices to bound the latter term.

Claim 5. For any δ > 0, if γ is sufficiently small, then∣∣∣E (
U(γ )±1Cγ≥U(γ )±>C̄δ

)
−E

(
WF1Cγ≥WF>C̄δ

)∣∣∣< δ/3.

Proof. For C̄δ < x<Cγ , we have F(γ )±(x) = λ±(γ ) · F(x), where λ±(γ ) → 1 as γ ↓ 0.
Furthermore, F(γ )± (Cγ ) − F(Cγ ) = 1 − (1 − hF(γ )) = hF(γ ). For some integer T > 0, con-
sider a partition of [0,Cγ ] given by p0 = 0< p1 < · · ·< pT = Cγ , which are points of
continuity of F. Taking f (x) = x1C̄δ<x≤Cγ , we write

T∑
i=1

f (pi)
(

F(γ )± (pi) − F(γ )± (pi−1)
)

=

f (pT )
(

F(γ )± (pT ) − F(γ )± (pT−1)
)

+
∑

1≤i<T

f (pi)
(

F(γ )± (pi) − F(γ )± (pi−1)
)

.

The second term on the right-hand side is

∑
1≤i<T

f (pi)
(

F(γ )± (pi) − F(γ )± (pi−1)
)

= λ±(γ ) ·
∑

1≤i<T

f (pi)(F(pi) − F(pi−1)).

The first term can be written as

f (pT )
(

F(γ )± (pT ) − F(γ )± (pT−1)
)

= f (pT )
(

F(γ )± (pT ) + F(pT ) − F(pT ) − F(pT−1) + F(pT−1) − F(γ )± (pT−1)
)

= f (pT )(F(pT ) − F(pT−1))

+ f (pT )
((

F(γ )± (pT ) − F(pT )
)

−
(

F(γ )± (pT−1) − F(pT−1)
))

pT=Cγ= f (pT )(F(pT ) − F(pT−1))

+ f (pT )
(

(F(γ )± (Cγ ) − F(Cγ )) − F(pT−1)(λ±(γ ) − 1)
)

F(γ )± (Cγ )=1,hF(γ )=1−F(Cγ )= f (pT )(F(pT ) − F(pT−1))

+ f (pT )
(

hF(γ ) − F(pT−1)
(
λ±(γ ) − 1

))
= λ±(γ )f (pT )(F(pT ) − F(pT−1)) + (1 − λ±(γ ))f (Cγ )(F(pT ) − F(pT−1))

+ f (Cγ )hF(γ ) − f (Cγ )F(pT−1)
(
λ±(γ ) − 1

)
.
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These two calculations imply that

T∑
i=1

f (pi)
(

F(γ )± (pi) − F(γ )± (pi−1)
)

=

λ±(γ ) ·
T∑

i=1

f (pi)(F(pi) − F(pi−1)) + (1 − λ±(γ ))f (Cγ )(F(pT ) − F(pT−1))

+f (Cγ )hF(γ ) − f (Cγ )F(pT−1)
(
λ±(γ ) − 1

)
.

Taking the limit of a sequence of partitions whose mesh tends to 0, we have pT−1 ↑ pT = Cγ .
Since Cγ is a point of continuity for F, we obtain

E

(
U(γ )±1Cγ≥U(γ )±>C̄δ

)
=

λ±(γ )E
(

WF1Cγ≥WF>C̄δ

)
+ Cγ

(
hF(γ ) − F(Cγ )

(
λ±(γ ) − 1

))
.

By (5) we have that Cγ hF(γ ) ↓ 0 as γ ↓ 0. Since |λ±(γ ) − 1| = O(γ+ + hF(Cγ )), by (7) we
also have Cγ |λ±(γ ) − 1| ↓ 0 as γ ↓ 0. �

Combining Claim 5 with (14) and (15), we finally deduce that given δ > 0, for any γ that is
sufficiently small, we have the following bound:∣∣E(U(γ )±)−E(WF)

∣∣≤∣∣E(U(γ )±1U(γ )±≤C̄δ

)−E
(
WF1WF≤C̄δ

)∣∣
+
∣∣∣E(U(γ )±1C̄δ<U(γ )±≤Cγ

)
−E

(
WF1C̄δ<WF≤Cγ

)∣∣∣
+E

(
WF1WF>Cγ

)
< δ. �

Claim 4 also implies that for every x> 0 which is a point of continuity of F, we have as
γ ↓ 0

|E(U(γ )±1U(γ )±≤x

)−E
(
WF1WF≤x

)| ↓ 0. (16)

So from Lemma 2, (16), and (12)–(13) we deduce that for any continuity point x ∈R and any
δ > 0 there exists γ0 = γ0(δ, x) with the property that for any 0< γ < γ0 there exists �0 such
that for any � > �0 we have ∣∣F∗(�,γ )(x) − F∗(x)

∣∣< δ. (17)

The above can now be translated into the next lemma.

Lemma 3. For any bounded and continuous function f : R→R the following holds: there
exists a function γf : R+ →R+ such that γf (x) ↓ 0 as x ↓ 0, and moreover, for any δ > 0 and
any 0< γ < γf (δ) there exists �0 with the property that for any � > �0

|E(f (U∗±(�,γ )))−E
(
f
(
W∗

F

))|< δ.
Although this is a straightforward restatement of weak convergence, we give it more explicitly
as U∗±(�,γ ) depends on two parameters � and γ . It is for the sake of clarity that we state
explicitly how these depend upon each other when taking the double limit.
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This completes the first part of Definition 4. We now turn to the second part.

Part 2 of Definition 4. Since F(�,γ )+ and F(�,γ )− are both constant (and equal to 1), for x ≥ 2Cγ
we have

E
(
U(�,γ )±)=E

(
U(�,γ )±1U(�,γ )±≤2Cγ

)
.

Furthermore,

E [WF] =E
(
WF1WF≤2Cγ

)+E
(
WF1WF>2Cγ

)
.

Therefore, ∣∣∣E (
U(�,γ )±)−E (WF)

∣∣∣= ∣∣∣E (
U(�,γ )±1U(�,γ )±≤2Cγ

)
−E (WF)

∣∣∣
≤
∣∣∣E (

U(�,γ )±1U(�,γ )±≤2Cγ

)
−E

(
WF1WF≤2Cγ

)∣∣∣+E
(
WF1WF>2Cγ

)
. (18)

The last term converges to 0 as γ ↓ 0 since E (WF) <∞.
We will now bound the first term on the right-hand side in (18). We write F(�,γ )± for either of

F(�,γ )+ and F(�,γ )−. Using the integration-by-parts formula for the Lebesgue–Stieltjes integral,
we can write

E

(
U(�,γ )±1U(�,γ )±≤2Cγ

)
= 2CγF(�,γ )±(2Cγ + ) −

∫ 2Cγ

0
F(�,γ )±(x)dx

= 2Cγ −
∫ 2Cγ

0
F(�,γ )±(x)dx.

(19)

Using integration by parts, we also get

E
(
WF1WF≤2Cγ

)= 2Cγ · F(2Cγ + ) − 0 · F(0 − ) −
∫ 2Cγ

0
F(x)dx

= 2Cγ · (1 − P
[
WF > 2Cγ

]
) −

∫ 2Cγ

0
F(x)dx.

(20)

Therefore,∣∣∣E (
U(�,γ )±1U(�,γ )±≤2Cγ

)
−E

(
WF1WF≤2Cγ

)∣∣∣≤
2CγP

[
WF > 2Cγ

]+
∫ Cγ

0
|F(�,γ )±(x) − F(x)|dx +

∫ 2Cγ

Cγ
|F(�,γ )±(x) − F(x)|dx.

(21)

We will bound
∫ Cγ

0 |F(�,γ )+(x) − F(x)|dx. First, we write

∫ Cγ

0
|F(�,γ )+(x) − F(x)|dx =

p�−1∑
i=0

∫ yi+1

yi

|F(�,γ )+(x) − F(x)|dx

=
t�∑

i=0

∫ y2i+1

y2i

|F(�,γ )+(x) − F(x)|dx +
t�−1∑
i=0

∫ y2(i+1)

y2i+1

|F(�,γ )+(x) − F(x)|dx.
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For the first sum of integrals, note that for any x ∈ [y2i, y2i+1) we have |F(W−
2i ) − F(x)| ≤

F(W+
2i ) − F(W−

2i ). Therefore, each integrand is bounded as follows:

|F(�,γ )+(x) − F(x)| =
∣∣∣∣∣ F(W−

2i )

1 − hF(γ ) + γ+ − F(x)

∣∣∣∣∣=
∣∣∣∣∣F(W−

2i ) − F(x)(1 − hF(γ ) + γ+)

1 − hF(γ ) + γ+

∣∣∣∣∣
≤ |F(W−

2i ) − F(x)|
1 − hF(γ ) + γ+ + F(x)

|hF(γ ) − γ+|
1 − hF(γ ) + γ+

≤F(W+
2i ) − F(W−

2i )

1 − hF(γ ) + γ+ + |hF(γ ) − γ+|
1 − hF(γ ) + γ+ . (22)

Using this bound, we get

(1 − hF(γ ) + γ+) ·
t�∑

i=0

∫ y2i+1

y2i

|F(�,γ )+(x) − F(x)|dx ≤
t�∑

i=0

(
(F(W+

i ) − F(W−
i )) ·

∫ y2i+1

y2i

dx

)
+ |hF(γ ) − γ+|

t�∑
i=0

·
∫ y2i+1

y2i

dx.

But
∫ y2i+1

y2i
dx = y2i+1 − y2i ≤ 2ε�. So

t�∑
i=0

(
(F(W+

i ) − F(W−
i )) ·

∫ y2i+1

y2i

dx

)
≤ 2ε� ·

t�∑
i=0

(
(F(W+

i ) − F(W−
i ))

)≤ 2ε�.

Furthermore,

|hF(γ ) − γ+
∣∣∣ t�∑

i=0

∫ y2i+1

y2i

dx ≤ Cγ · |hF(γ ) − γ+
∣∣∣≤ Cγ · |hF(γ ) − γ+|.

We thus deduce that
t�∑

i=0

∫ y2i+1

y2i

|F(�,γ )+(x) − F(x)|dx ≤ 2ε� + Cγ |hF(γ ) − γ+|
1 − hF(γ ) + γ+ .

For the second integral, note that for x ∈ [y2i+1, y2(i+1)) we have∣∣F(W−
2i+1

)− F(x)
∣∣≤ ε�.

Arguing as in (22), we deduce that∣∣F(�,γ )+(x) − F(x)
∣∣≤ ε� + |hF(γ ) − γ+|

1 − hF(γ ) + γ+ .

Therefore,
t�−1∑
i=0

∫ y2(i+1)

y2i+1

|F(�,γ )+(x) − F(x)|dx ≤ Cγ (ε� + |hF(γ ) − γ+|)
1 − hF(γ ) + γ+ .

We thus conclude that∫ Cγ

0
|F(�,γ )+(x) − F(x)|dx ≤ ε�(Cγ + 2) + 2Cγ |hF(γ ) − γ+|

1 − hF(γ ) + γ+ =: ρ̂+(�, γ ). (23)
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One can similarly show that

∫ Cγ

0
|F(�,γ )−(x) − F(x)|dx≤ε�(Cγ + 2) + 2Cγ hF(γ )

1 − hF(γ ) + phF(γ )
=: ρ̂−(�, γ ). (24)

Note that limγ↓0 lim�→∞ ρ̂±(�, γ ) = 0.

Finally, we will consider
∫ 2Cγ

Cγ
|F(�,γ )+(x) − F(x)|dx. For any x ∈ [Cγ , 2Cγ ] that is a point

of continuity we have

|F(�,γ )+(x) − F(x)|=
∣∣∣∣ F(x)

1 − hF(γ ) + γ+ − F(x)

∣∣∣∣= ∣∣∣∣F(x) − F(x)(1 − hF(γ ) + γ+)

1 − hF(γ ) + γ+

∣∣∣∣
≤F(x)

|hF(γ ) − γ+|
1 − hF(γ ) + γ+ ≤ |hF(γ ) − γ+|

1 − hF(γ ) + γ+ .

Therefore, ∣∣∣∣∣
∫ 2Cγ

Cγ
(F(�,γ )+(x) − F(x))dx

∣∣∣∣∣≤
∫ 2Cγ

Cγ
|F(�,γ )+(x) − F(x)|dx ≤

≤ |hF(γ ) − γ+|
1 − hF(γ ) + γ+ · (2Cγ − Cγ ) = Cγ · |hF(γ ) − γ+|

1 − hF(γ ) + γ+ ≤ ρ̂+(�, γ ).

(25)

Also,

∫ 2Cγ

Cγ

∣∣∣F(�,γ )−(x) − F(x)
∣∣∣ dx =

∫ 2Cγ

Cγ
|1 − F(x)| dx =

∫ 2Cγ

Cγ
P [WF > x] dx

≤
∫ ∞

Cγ
P [WF ≥ x] dx =E

(
WF1WF≥Cγ

)
. (26)

The latter ↓ 0 as γ ↓ 0.
Now, substituting the bounds of (23), (24), (25), and (26) into (21), we get∣∣∣E (

U(�,γ )±1U(�,γ )±≤2Cγ

)
−E

(
WF1WF≤2Cγ

)∣∣∣≤
2CγP

[
WF > 2Cγ

]+ 2ρ̂±(�, γ ) +E
(
WF1WF≥Cγ

)
.

(27)

Using the upper bound of (27) in (18), and using the fact that E
(
WF1WF>2Cγ

)≤
E
(
WF1WF≥Cγ

)
, we finally get

∣∣∣E (
U(�,γ )±)−E (WF)

∣∣∣≤2CγP
[
WF > 2Cγ

]+ 2ρ̂±(�, γ ) + 2E
(
WF1WF≥Cγ

)
≤2ρ̂±(�, γ ) + 3E

(
WF1WF≥Cγ

)
. (28)
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Another useful bound which can be deduced from (19) and (20), replacing 2Cγ with Cγ , is∣∣∣E (
U(�,γ )±1U(�,γ )±≤Cγ

)
−E (WF)

∣∣∣
≤
∣∣∣E (

U(�,γ )±1U(�,γ )±≤Cγ

)
−E

(
WF1WF≤Cγ

)∣∣∣+E
(
WF1WF>Cγ

)
≤Cγ

∣∣∣P [U(�,γ )± ≤ Cγ
]
− P

[
WF ≤ Cγ

]∣∣∣
+
∫ Cγ

0
|F(�,γ )±(x) − F(x)|dx +E

(
WF1WF>Cγ

)
.

But note that P
[
U(�,γ )− ≤ Cγ

]= 1, whereas

P

[
U(�,γ )+ ≤ Cγ

]
= F(Cγ )

1 − hF(γ ) + γ+ .

So ∣∣∣P [U(�,γ )+ ≤ Cγ
]
− P

[
WF ≤ Cγ

]∣∣∣= F(Cγ )|hF(γ ) − γ+|
1 − hF(γ ) + γ+

and ∣∣∣P [U(�,γ )− ≤ Cγ
]
− P

[
WF ≤ Cγ

]∣∣∣= P
[
WF >Cγ

]
.

Thus,

∣∣∣E (
U(�,γ )±1U(�,γ )±≤Cγ

)
−E (WF)

∣∣∣
≤ Cγ

F(Cγ )|hF(γ ) − γ+|
1 − hF(γ ) + γ+ +

∫ Cγ

0
|F(�,γ )±(x) − F(x)|dx +E

(
WF1WF>Cγ

)
(23),(24)≤ Cγ

|hF(γ ) − γ+|
1 − hF(γ ) + γ+ + ρ̂±(�, γ ) +E

(
WF1WF>Cγ

)
, (29)

whereas ∣∣∣E (
U(�,γ )+1U(�,γ )±≤Cγ

)
−E (WF)

∣∣∣≤CγP
[
WF >Cγ

]+ ρ̂±(�, γ )

+E
(
WF1WF>Cγ

)
. (30)

We conclude that (28), together with (5), (29), and (30), completes Part 2 of Definition 4.

3.1.2. Bounds on |Af | For a subset S ⊆ [n], let Af (S) denote the final set of infected vertices
in CL(w) assuming that A0 = S. With this notation, we have of course that Af =Af (A0). We
also set A−

f (S) to be the set of infected vertices in CL′(W(�,γ )−), assuming that the initial set

is ϕ−(S ∩ ∪p�
i=1Ci). Finally, for a subset S ⊆ [n′], let A+

f (S) be the final set of infected vertices

on CL′(W(�,γ )+). We will show the following.

Claim 6. Let p ∈ (0, 1). Assume that A0 is a random subset of [n] where each vertex is included
with probability p independently of any other vertex. Then there is a coupling space on which,
w.h.p., ∣∣A−

f

(A0 ∪ C−
γ

)∣∣≤ |Af | ≤
∣∣A+

f

(A0 ∪ C+
γ

)∣∣. (31)

https://doi.org/10.1017/apr.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.21


Bootstrap percolation in inhomogeneous random graphs 175

In the proof of Claim 6 and elsewhere, we write that the probability that two vertices k and
j, with wj(n) ≤ Cγ , are adjacent is equal to wk(n)wj(n)/W[n]; in other words, when we apply
(1) we tacitly assume that n is sufficiently large so that this ratio is less than 1.

Proof of Claim 6. As A0 is formed by including every vertex in [n] independently with
probability p, it follows that w.h.p. at least k− elements of Cγ become initially infected.
We identify exactly k− of them with the set C−

γ . Recall that for each k ∈ ∪p�
i=1Ci we

have W(�,γ )−
ϕ−(k) (n) ≤ wk(n). This implies that for each pair k, k′ ∈ [n] \ Cγ of distinct vertices,

the probability that ϕ−(k) and ϕ−(k′) are adjacent in CL′(W(�,γ )−) is smaller than the
corresponding probability for k and k′ in CL(w). Hence, there is a coupling space on which

CL′(W(�,γ )−)⊆ CL(w),

and the first inequality in (31) follows. The second inequality follows from a slightly more
involved argument. Let j ∈ Cγ be such that wj(n) ≥ 2Cγ , and let k ∈ ∪p�

i=1Ci. The probability
that k is adjacent to j in CL(w) is equal to wkwj/W[n]. Also, the probability that k is adjacent to
at least one of the copies of j in [n′] in the random graph CL′(W(�,γ )+) is

1 −
⎛⎝1 −

2W(�,γ )+
ϕ+(k) Cγ

W[n]

⎞⎠2�wj/Cγ �
.

Assume we have shown that for n sufficiently large we have that for any k ∈ ∪p�
i=1Ci and any

j ∈ Cγ ,

wkwj

W[n]
≤ 1 −

⎛⎝1 −
2W(�,γ )+

ϕ+(k) Cγ

W[n]

⎞⎠2�wj/Cγ �
. (32)

Moreover, assume that every vertex in C′
γ is among those vertices that are initially infected.

Now, observe that there is a coupling space in which we have

CL(w)
[∪p�

i=1 Ci
]⊆ CL′(W(�,γ )+)[∪p�

i=1 Ci
]
. (33)

This is the case because for any k ∈ ∪p�
i=1Ci we have wk ≤ W(�,γ )+

ϕ+(k) . Consider a vertex k ∈
∪p�

i=1Ci and now let j ∈ Cγ . Then the inequality (32) implies that the probability that k is adja-
cent to j in CL(w) is at most the probability that ϕ+(k) is adjacent to at least one of the copies
of j in [n′] within CL′(W(�,γ )+). Therefore, it follows that the number of neighbors of k in Cγ
in the random graph CL(w) is stochastically dominated by the size of the neighborhood of k in
C′
γ in the random graph CL′(W(�,γ )+). This observation, together with (33), implies that∣∣Af

(A0 ∪ Cγ
)∣∣≤st

∣∣A+
f

(A0 ∪ C+
γ

)∣∣.
But also,

|Af | ≤st |Af (A0 ∪ Cγ )|.
The second stochastic inequality of the claim follows from the above two inequalities. It
remains to show (32). Let us abbreviate W(�,γ )+

ϕ+(k) =: Wk. Using the Bonferroni inequalities
we have

1 −
(

1 − 2WkCγ
W[n]

)2�wj/Cγ �
≥ 2

⌊ wj

Cγ

⌋2WkCγ
W[n]

− 2
(
wj/Cγ

)2 4W2
k C2

γ

W2
[n]

. (34)
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But

2
⌊ wj

Cγ

⌋2WkCγ
W[n]

≥ 2

(
wj

Cγ
− 1

)
2WkCγ

W[n]
= 2

wj

Cγ

(
1 − Cγ

wj

)
2WkCγ

W[n]

wj/Cγ≥2≥ 2Wkwj

W[n]
.

Substituting this lower bound into (34), we obtain

1 −
(

1 − 2WkCγ
W[n]

)2� wj
Cγ

�
≥2Wkwj

W[n]
− 8W2

k w2
j

W2
[n]

= 2Wkwj

W[n]

(
1 − 4Wkwj

W[n]

)
>

Wkwj

W[n]
≥ wkwj

W[n]
,

for n sufficiently large, as wk <Cγ and wj = wj(n) = o(n) (uniformly for all j) but
W[n] =�(n). �

We will now apply Theorem 3 to the random variables that bound |Af | in Claim 6.
Theorem 3 implies that there exists γ2 > 0 satisfying the following: for any γ < γ2 and any
δ ∈ (0, 1) there exists an infinite set of natural numbers S1 such that for every � ∈ S1, with
probability 1 − o(1),

n−1
∣∣A+

f

(A0 ∪ C+
γ

)∣∣≤ (1 + δ)((1 − p)E
[
ψr(WFŷ)

]+ p), (35)

and there exists an infinite set of natural numbers S2 such that for every � ∈ S2, with probability
1 − o(1),

n−1
∣∣A−

f

(A0 ∪ C−
γ

)∣∣≥ (1 − δ)((1 − p)E
[
ψr(WFŷ)

]+ p). (36)

Hence, Claim 6 together with (35) and (36) imply the following w.h.p. bounds on the size of
Af :

n−1|Af | = (1 ± δ)((1 − p)E
[
ψr(WFŷ)

]+ p),

from which Theorem 1 follows.

3.2. Proof of Theorem 2

Let us assume that A0 is randomly selected, including each vertex independently with prob-
ability a(n)/n, where a(n) � ac(n) but a(n) = o(n) (cf. Theorem 2. for the definition of the
function ac(n)). For ε ∈ (0, 1) let A(ε)

0 denote a random subset of [n] where each vertex is
included independently with probability ε. If n is large enough, then A0 can be coupled with
A(ε)

0 , that is, there is a coupling space in which A0 ⊆A(ε)
0 . The following stochastic upper

bound can be deduced as in Claim 6.

Claim 7. For any ε ∈ (0, 1) and any γ > 0, if n is large enough, then

|Af | ≤st
∣∣Af

(A(ε)
0 ∪ Cγ

)∣∣≤st
∣∣A+

f

(A(ε)
0 ∪ C+

γ

)∣∣.
We will now deduce a stochastic lower bound on |Af |. For C> 0, let KC denote the set of

vertices having weight at least C in w. In [6] the first two authors prove that if ε ∈ (0, 1) is
sufficiently small and A0 is selected as above, then at least a (1 − ε)-fraction of the vertices of
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KC become infected if we consider a bootstrap percolation process on CL(w) with activation
threshold r where the vertices in [n] \KC are assumed to be ‘frozen’; that is, they never get
infected.

Lemma 4. ([6, Proposition 3.7].) There exists an ε0 = ε0(β, c1, c2)> 0 such that for any
positive ε < ε0 there exists C = C(c1, c2, β, ε, r)> 0 for which the following holds. Assume
that A0 is as above, and consider a bootstrap percolation process on CL(w) with activa-
tion threshold r ≥ 2 and the set A0 as the initial set, with the restriction that the vertices
in [n] \ {KC ∪A0} never become infected. Then at least (1 − ε)|KC| vertices of KC become
infected with probability 1 − o(1).

Lemma 4 implies that for any ε > 0 that is sufficiently small, there exists C =
C(c1, c2, β, ε, r)> 0 such that with probability 1 − o(1) at least (1 − ε)|KC| vertices of KC

will be infected in CL(w), assuming that the vertices in [n] \ {KC ∪A0} never become infected.
Let EC,ε,n denote this event; if it is realized, we let KC,ε denote a subset of �(1 − ε)|KC|� =: k
vertices in KC that become infected, chosen in some particular way (for example, the k
lexicographically smallest vertices). Then the following holds.

Claim 8. For any C> 0 and any ε ∈ (0, 1), there is a coupling such that if EC,ε,n is realized,
then we have

Af (KC,ε) ⊆Af .

Let γ ∈ F([0,∞)) be such that Cγ = C, where C = C(ε) is as in Lemma 4. (Under the
assumptions of Theorem 2, F is continuous (cf. Definition 2), and therefore hF(γ ) = γ .)

Consider a set of vertices {v1, . . . , vk} which is disjoint from [n]. We define a sequence

W̃
(�,γ )−

on
(∪p�

i=1Ci
)⋃{v1, . . . , vk} as follows. For every j ∈ Ci, with i = 1, . . . , p�, we have

W̃(�,γ )−
j = W(�,γ )−

j , whereas for every j = 1, . . . , k we let W̃(�,γ )−
vj = Cγ . We let n− be the

number of vertices of the sequence W̃
(�,γ )−

, that is, the size of
(∪p�

i=1Ci
)⋃{v1, . . . , vk}. Since

k = (1 − ε)γ n(1 + o(1)), this satisfies n− = ((1 − γ ) + γ (1 − ε))n(1 + o(1)) = (1 − γ ε)n(1 +
o(1)). Hence, for large n we have n− < n. We identify the vertices in {v1, . . . , vk} with the
k lexicographically first vertices in Cγ , and we denote both subsets by Cγ,k. Setting W̃−

γ :=
(1 − ε)γCγ , the weight of these vertices is nW̃−

γ (1 + o(1)), since each of them has weight
equal to Cγ .

The weight sequence W̃
(�,γ )−

gives rise to a probability distribution which is the limiting
probability distribution of the weight of a uniformly chosen vertex from [n−]. We let Ũ(�,γ )−
be a random variable which follows this distribution and let W̃(�,γ )−

F denote a random variable

which follows the Ũ(�,γ )− size-biased distribution. The definition of W̃
(�,γ )−

yields

P

[
Ũ(�,γ )− = W(�,γ )−

i

]
= γi

1 − γ ε
, and P

[
Ũ(�,γ )− = Cγ

]
= (1 − ε)γ

1 − γ ε
.

As we did in Section 3.1.1 for the sequence {W(�,γ )−(n−)}γ∈(0,1),�∈N, one can show that

W̃
(�,γ )−

is an F-convergent weight sequence. We omit the proof.
Let Âf (Cγ,k) be the final set of infected vertices in CL(w) assuming that the initial set is

Cγ,k and moreover no vertices in Cγ \ Cγ,k ever become infected. Hence, on the event ECγ ,ε,n

we have ∣∣Âf
(
Cγ,k

)∣∣≤st |Af (KCγ ,ε)|.
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(The symbol ≤st denotes stochastic domination.) But the assumption that no vertices in Cγ \
Cγ,k ever become active amounts to a bootstrap percolation process on CL′(W̃(�,γ )−)

with

activation threshold equal to r. Let Ãf (S) denote the final set under the assumption that the

initial set is S ⊆ [n′]. Since CL′(W̃(�,γ )−)⊆ CL(w) on a certain coupling space we have∣∣Ãf
(
Cγ,k

)∣∣≤st
∣∣Âf

(
Cγ,k

)∣∣.
Therefore ∣∣Ãf

(
Cγ,k

)∣∣≤st
∣∣Af

(KCγ ,ε
)∣∣.

This together with Claim 8 implies the following stochastic lower bound on |Af |.
Claim 9. For any γ, ε ∈ (0, 1), if ECγ ,ε,n is realized, then∣∣Ãf

(
Cγ,k

)∣∣≤st |Af |.

We will now apply Theorem 3 to the random variables that bound |Af | in Claims 7 and 9.
Let ŷ+

ε , ŷ be the smallest positive solutions of

y = (1 − ε) E
[
ψr

(
W∗

Fy
)]+ ε

and

y =E
[
ψr

(
W∗

Fy
)]
,

respectively.
For ε < ε0 let C be as in Lemma 4 and let γ < γ2 (cf. Theorem 3) be such that C = Cγ .

Theorem 3 implies that for any δ ∈ (0, 1) there exists an infinite set of natural numbers S1 such
that for every � ∈ S1, with probability 1 − o(1),∣∣A+

f

(A(ε)
0 ∪ C+

γ

)∣∣
n

≤ (1 + δ)
(
(1 − ε)E

[
ψr
(
WFŷ+

ε

)]+ ε
)
, (37)

and an infinite set of natural numbers S2 such that for every � ∈ S2, with probability 1 − o(1),∣∣Ãf
(
Cγ,k

)∣∣
n

≥ (1 − δ)E
[
ψr(WFŷ)

]
. (38)

Hence, Claims 7 and 9 together with (37) and (38) imply that w.h.p.

|Af |
n

≤ (1 + δ)((1 − ε)E
[
ψr
(
WFŷ+

ε

)]+ ε)

and
|Af |

n
≥ (1 − δ)E

[
ψr(WFŷ)

]
.

But y+
ε → ŷ as ε→ 0, and Theorem 2 follows.
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4. Proof of Theorem 3

In this section we will give the proof of Theorem 3. At the moment our analysis does not
depend on the parameters �, γ , so, to simplify notation, we will drop the superscript (�, γ ).
For j = 0, . . . , r − 1, we denote by Ci,j the subset of Ci which consists of those vertices of Ci

which have j infected neighbors. We also denote by Ci,r the subset of Ci containing all those
vertices that are infected; that is, they have at least r infected neighbors or are initially infected.

We will determine the size of the final set of infected vertices by exposing sequentially the
neighbors of each infected vertex and keeping track of the number of infected neighbors that an
uninfected vertex has. In other words, we will be keeping track of the size of the sets Ci,j. This
method of exposure has also been applied in the analysis in [26]. However, the inhomogeneity
in the present context introduces additional difficulties, as the evolutions of the sets Ci,j are
interdependent.

The sequential exposure proceeds as follows. For i = 1, . . . , p� and j = 0, . . . , r − 1, let
Ci,j(t) denote the set of vertices which have j infected neighbors after the execution of the tth
step. We also denote by Ci,r(t) the set of all those vertices that have at least r infected neighbors
after the tth step.

Here Ci,j(0) denotes the set Ci,j before the beginning of the execution. Furthermore, let
U(t) denote the set of infected unexposed vertices after the execution of the tth step, with U(0)
denoting the set of infected vertices before the beginning of the process.

At step t ≥ 1, if U(t − 1) is non-empty,

(i) choose a vertex v uniformly at random from U(t − 1);

(ii) expose the neighbors v in the set
⋃p�

i=1 ∪r−1
j=0 Ci,j(t − 1);

(iii) set U(t) := U(t − 1) \ {v}.
The above set of steps is repeated for as long as the set U is non-empty. The exposure of the

neighbors of v can alternatively be thought of as a random assignment of a mark to each vertex
of

⋃p�
i=1 ∪r−1

j=0 Ci,j(t − 1) independently of every other vertex; if a vertex in Ci,j(t − 1) receives
such a mark, then it is moved to Ci,j+1(t). Hence, during the execution of the tth step, each
vertex in Ci,j(t − 1) either remains a member of Ci,j(t) or is moved to Ci,j+1(t).

4.1. Conditional expected evolution

Let ci,j denote the size of the set Ci,j for all i = 1, . . . , p� and j = 0, . . . , r − 1. Our equa-
tions will also incorporate the size of U at time t − 1, which we denote by u(t − 1), as well as
the total weight of vertices in U(t − 1), which we denote by wU(t − 1). For these values of i and
j we let c(t) = (

u(t),wU(t), (ci,j(t))i,j
)
. This vector determines the state of the process after step

t. We will now give the expected change of ci,j during the execution of step t, conditional on
c(t − 1). If step t is to be executed, it is necessary to have u(t − 1)> 0, which we will assume
to be the case. We begin with ci,0, for i = 1, . . . , p�, having

E
[
ci,0(t) − ci,0(t − 1) | c(t − 1)

]= −ci,0(t − 1)
∑

v∈U(t−1)

Wiwv

W[n]

1

u(t − 1)

= −ci,0(t − 1)
Wi

W[n]

wU(t − 1)

u(t − 1)
.

(39)

The evolution of ci,j for 0< j< r involves a term that accounts for the ‘losses’ from the set ci,j

as well as a term which describes the expected ‘gain’ from the set ci,j−1.
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For i = 1, . . . , p� and 0< j< r we have

E
[
ci,j(t) − ci,j(t − 1) | c(t − 1)

]
=ci,j−1(t − 1)

∑
v∈U(t−1)

Wiwv

W[n]

1

u(t − 1)
− ci,j(t − 1)

∑
v∈U(t−1)

Wiwv

W[n]

1

u(t − 1)

=(ci,j−1(t − 1) − ci,j(t − 1))
Wi

W[n]

wU(t − 1)

u(t − 1)
.

(40)

Finally, we will need to describe the expected change in the size of U during step t. In this
case, one vertex is removed from U(t − 1), but additional vertices may arrive from the sets
Ci,r−1(t − 1). More specifically, we write

E [u(t) − u(t − 1) | c(t − 1)] = −1 +
p�∑

i=1

ci,r−1(t − 1)
∑

v∈U(t−1)

Wiwv

W[n]

1

u(t − 1)

= −1 + wU(t − 1)

u(t − 1)

p�∑
i=1

Wi

W[n]
ci,r−1(t − 1).

(41)

Similarly, the expected change in the weight of U during step t is as follows:

E [wU(t) − wU(t − 1) | c(t − 1)]

= − wU(t − 1)

u(t − 1)
+

p�∑
i=1

Wici,r−1(t − 1)
∑

v∈U(t−1)

Wiwv

W[n]

1

u(t − 1)

= − wU(t − 1)

u(t − 1)
+ wU(t − 1)

u(t − 1)

p�∑
i=1

W2
i

W[n]
ci,r−1(t − 1).

(42)

4.2. Continuous approximation

The above quantities will be approximated by the solution of a system of ordinary dif-
ferential equations. We will consider a collection of continuous differentiable functions
γi,j : [0,∞) →R, for all i = 1, . . . , p� and j = 0, . . . , r − 1, through which we will approxi-
mate the quantities ci,j. To be more precise, γi,j will be shown to be close to ci,j/n. Moreover, u
and wU will be approximated through the continuous differentiable functions ν, μU : [0,∞) →
R in a similar way. We will also use another continuous function, G : [0,∞) →R, which will
approximate the ratio wU/u; note that this is the average weight of the set of infected unexposed
vertices.

The system of differential equations that determines the functions γi,j is as follows:

dγi,0

dτ
= −γi,0(τ )

Wi

d
G(τ ),

dγi,j

dτ
= (
γi,j−1(τ ) − γi,j(τ )

) Wi

d
G(τ ), 1 ≤ j ≤ r − 1.

(43)

The continuous counterparts of (41) and (42) are

dν

dτ
= −1 + G(τ )

p�∑
i=1

Wi

d
γi,r−1(τ ) (44)
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and
dμU

dτ
= −G(τ ) + G(τ )

p�∑
i=1

W2
i

d
γi,r−1(τ ). (45)

The initial conditions are

ν(0) = p(1 − hF(γ )) + γ ′, for p ∈ [0, 1) (recall that p is the initial infection rate),

μU(0) = W ′
γ + p

p�∑
i=1

Wiγi,

γi,0(0) = (1 − p)γi,

γi,j(0) = 0, for j = 1, . . . , r − 1.

(46)

In the following proposition, we will express the formal solution of the above system in terms
of γi,0(τ ).

Proposition 1. With I(τ ) = ∫ τ
0 G(s)ds, we have

γi,0(τ ) = γi,0(0) exp (−WiI(τ )/d) .

Moreover, for 1 ≤ j ≤ r − 1,

γi,j(τ ) = γi,0(τ )

j! logj
(
γi,0(0)

γi,0(τ )

)
.

Proof. The expression for γi,0(τ ) can be obtained through separation of variables—we omit
the details. The remaining expressions will be obtained by induction. Let us consider the
differential equation for γi,j, where 0< j< r, assuming that we have derived the expression
for γi,j−1. This differential equation is a first-order ordinary differential equation of the form
y′(τ ) = a(τ )y(τ ) + b(τ ) with initial condition y(0) = 0. Its general solution is equal to

y(τ ) = exp

(∫ τ

0
a(s)ds

)
·
∫ τ

0
b(s) exp

(
−
∫ s

0
a(ρ)dρ

)
ds.

Here, we have

a(τ ) = −Wi

d
G(τ ), b(τ ) = γi,j−1(τ )

Wi

d
G(τ ) = Wi

d

γi,0(τ )

(j − 1)! logj−1
(
γi,0(0)

γi,0(τ )

)
G(τ ),

by the induction hypothesis. Therefore, and using the expression for γi,0, we obtain

exp

(∫ s

0
a(ρ)dρ

)
= γi,0(s)

γi,0(0)
. (47)

Hence ∫ τ

0
b(s) exp

(
−
∫ s

0
a(ρ)dρ

)
ds =

Wi

d(j − 1)!
∫ τ

0
γi,0(s) logj−1

(
γi,0(0)

γi,0(s)

)
G(s)

γi,0(0)

γi,0(s)
ds

= γi,0(0)
Wi

d(j − 1)!
∫ τ

0
γi,0(s) logj−1

(
γi,0(0)

γi,0(s)

)
G(s)

γi,0(s)
ds
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= − γi,0(0)

(j − 1)!
∫ τ

0

1

γi,0(s)
logj−1

(
γi,0(0)

γi,0(s)

)(
−γi,0(s)

Wi

d
G(s)

)
ds

(43)= − 1

(j − 1)!
∫ τ

0

γi,0(0)

γi,0(s)
logj−1

(
γi,0(0)

γi,0(s)

)(
dγi,0

ds

)
ds (48)

= − γi,0(0)

(j − 1)!
∫ τ

0

γi,0(0)

γi,0(s)
logj−1

(
γi,0(0)

γi,0(s)

)
d

(
γi,0

γi,0(0)

)
(x=γi,0/γi,0(0))= − γi,0(0)

(j − 1)!
∫ γi,0(τ )/γi,0(0)

1

1

x
logj−1

(
1

x

)
dx

= ( − 1)j−1 γi,0(0)

(j − 1)!
∫ 1

γi,0(τ )/γi,0(0)

logj−1 (x)

x
dx.

For j = 1, the last integral equals log (γi,0(0)/γi,0(τ )). For j ≥ 2, it can be calculated using
integration by parts:∫

logj−1 (x)

x
dx =

∫
(log (x))′ logj−1 (x)dx = logj (x) − (j − 1)

∫
logj−1 (x)

x
dx,

which yields ∫
logj−1 (x)

x
dx = logj (x)

j
.

Therefore, the last integral in (48) is∫ 1

γi,0(τ )/γi,0(0)

logj−1 (x)

x
dx = −1

j
logj

(
γi,0(τ )

γi,0(0)

)
= ( − 1)j+1

j
logj

(
γi,0(0)

γi,0(τ )

)
.

Substituting this into (48), we obtain∫ τ

0
b(s) exp

(
−
∫ s

0
a(ρ)dρ

)
ds = γi,0(0)

j! logj
(
γi,0(0)

γi,0(τ )

)
. (49)

Combining (47) and (49), we have

γi,j(τ ) = γi,0(τ )

j! logj
(
γi,0(0)

γi,0(τ )

)
.

�
In the sequel we will use the expressions for γi,r−1, where 1 ≤ i ≤ p�, and integrate (44) in

order to deduce the expressions for ν and μU.

Proposition 2. We have

ν(τ ) = p (1 − hF(γ )) + γ ′ − τ + (1 − p)
p�∑

i=1

γiP

[
Po

(
Wi

d
I(τ )

)
≥ r

]
and

μU(τ ) = W ′
γ + p

p�∑
i=1

Wiγi − I(τ ) + (1 − p)
p�∑

i=1

WiγiP

[
Po

(
Wi

d
I(τ )

)
≥ r

]
.

https://doi.org/10.1017/apr.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.21


Bootstrap percolation in inhomogeneous random graphs 183

Proof. Applying Proposition 1 to (44) yields

dν

dτ
= −1 + G(τ )

p�∑
i=1

Wi

d

γi,0(τ )

(r − 1)! logr−1
(
γi,0(0)

γi,0(τ )

)
.

By integrating this expression we obtain

ν(τ ) = ν(0) − τ + 1

(r − 1)!
p�∑

i=1

∫ τ

0

Wi

d
γi,0(s)G(s) logr−1

(
γi,0(0)

γi,0(s)

)
ds

(43)= ν(0) − τ − 1

(r − 1)!
p�∑

i=1

∫ τ

0

(
dγi,0

ds

)
logr−1

(
γi,0(0)

γi,0(s)

)
ds

= ν(0) − τ − 1

(r − 1)!
p�∑

i=1

γi,0(0)
∫ γi,0(τ )/γi,0(0)

1
logr−1

(
1

x

)
dx.

(50)

We calculate the last integral substituting y for 1/x and using integration by parts. We have∫
logr−1

(
1

x

)
dx = −

∫
logr−1 (y)

y2
dy =

∫ (
1

y

)′
logr−1 (y)dy

= logr−1 (y)

y
− (r − 1)

∫
logr−2 (y)

y2
dy.

As
∫ 1

y2 dy = − 1
y , dividing and multiplying by (r − 1)!, we obtain

∫
logr−1

(
1

x

)
dx = (r − 1)!

y

r−1∑
i=0

logi (y)

i! ,

where y = 1/x. Therefore, for all i = 1, . . . , p� we have∫ γi,0(τ )/γi,0(0)

1
logr−1

(
1

x

)
dx = (r − 1)!

(
γi,0(τ )

γi,0(0)

r−1∑
i=0

1

i! logi
(
γi,0(0)

γi,0(τ )

)
− 1

)
.

Substituting the above into (50), we obtain

ν(τ ) = ν(0) − τ +
p�∑

i=1

γi,0(0)

⎛⎝1 − γi,0(τ )

γi,0(0)

r−1∑
j=0

1

j! logj
(
γi,0(0)

γi,0(τ )

)⎞⎠ .

Observe now that the expression in brackets is equal to the probability that a Poisson-
distributed random variable with parameter log

(
γi,0(0)/γi,0(τ )

)
is at least r. But by

Proposition 1, we have

log

(
γi,0(0)

γi,0(τ )

)
= Wi

d
I(τ ).

Also recall that by (46), γi,0(0) = (1 − p)γi, for each i = 1, . . . , p�, and ν(0) = p (1 − γ ) + γ ′.
Hence

ν(τ ) = p (1 − γ ) + γ ′ − τ + (1 − p)
�∑

i=1

γiP

[
Po

(
Wi

d
I(τ )

)
≥ r

]
.

The expression for μU is obtained along the same lines, and we omit its proof. �
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4.3. Wormald’s theorem

We summarize here the method introduced by Wormald in [38, 39] for the analysis of a
discrete random process using differential equations. Recall that a function f (u1, . . . , ub+1)
satisfies a Lipschitz condition in a domain D ⊆R

b+1 if there is a constant L> 0 such that

|f (u1, . . . , ub+1) − f (v1, . . . , vb+1)| ≤ L max
1≤i≤b+1

|ui − vi|

for all (u1, . . . , ub+1), (v1, . . . , vb+1) ∈ D. For variables Y1, . . . , Yb, the stopping time
TD(Y1, . . . , Yb) is defined to be the minimum t such that

(t/n; Y1(t)/n, . . . , Yb(t)/n) /∈ D.

This is written as TD when Y1, . . . , Yb are understood from the context.

Theorem 10. ([38].) Let b, n ∈N. For 1 ≤ j ≤ b, suppose that Y (n)
j (t) is a sequence of real-

valued random variables such that 0 ≤ Y (n)
j ≤ Cn for some constant C> 0. Let Ht be the history

up to time t, i.e., the sequence {Y (n)
j (k), 0 ≤ j ≤ b, 0 ≤ k ≤ t}. Suppose also that for some

bounded connected open set D ⊆R
b+1 containing the intersection of {(t, z1, . . . , zb) : t ≥ 0}

with some neighborhood of{
(0, z1, . . . , zb) : P

[
Y (n)

j (0) = zjn, 1 ≤ j ≤ b
]
�= 0 for some n

}
,

the following three conditions are satisfied:

1. (Boundedness.) For some function ω=ω(n) and λ= λ(n) with λ4 log n<ω< n2/3/λ

and λ→ ∞ as n → ∞, for all l ≤ b and uniformly for all t< TD,

P

(
|Y (n)

l (t + 1) − Y (n)
l (t)|>

√
ω

λ2
√

log n
| Ht

)
= o(n−3).

2. (Trend.) For all l ≤ b and uniformly over all t< TD,

E[Y (n)
l (t + 1) − Y (n)

l (t)|Ht] = fl(t/n, Y (n)
1 (t)/n, . . . , Y (n)

b (t)/n) + o(1).

3. (Lipschitz.) For each l, the function fl is continuous and satisfies a Lipschitz condition
on D, with all Lipschitz constants uniformly bounded.

Then the following hold:

(a) For (0, ẑ1, . . . , ẑb) ∈ D, the system of differential equations

dzl

ds
= fl(s, z1, . . . , zl), l = 1, . . . , b,

has a unique solution in D, zl : R→R for l = 1, . . . , b, which passes through zl(0) = ẑl,

l = 1, . . . , b, and which extends to points arbitrarily close to the boundary of D.

(b) We have
Y (n)

l (t) = nzl(t/n) + op(n)

uniformly for 0 ≤ t ≤ min{σn, TD} and for each l. Here zl(t) is the solution in (a) with
ẑl = Y (n)

l (0)/n, and σ = σD(n) is the supremum of those s to which the solution can be
extended.
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4.4. Proof of Theorem 3

We will apply Theorem 10 to show that the trajectory of

{u(t),wU(t), (ci,j(t))1≤i≤p�,0≤j≤r−1}
throughout the algorithm is w.h.p. close to the solution of the deterministic equations suggested
by these equations, i.e., {ν, μU, (γi,j)i=1,...,p�,j=0,...,r−1}.

We set b = rp� + 2. For ε > 0, we define

Dε =
{

(τ, ν, μU, (γi,j)i,j) ∈R
b+1 | − ε < τ < 1, 0<

μU

ν
< 2Cγ , −ε < γi,j < γi + ε,

ε < μU <W ′
γ +

p�∑
i=1

Wiγi

}
.

We now apply the last part (b) of Theorem 10. Note that the boundedness and trend hypothe-
ses are verified for t< TDε . More specifically, the boundedness hypothesis follows since the
changes in the quantities u(t),wU(t), ci,j(t) are bounded by a constant multiple of the max-
imum degree of the random graph. But since the maximum weight is bounded, we may
choose, for example, λ= n1/8 and ω= n25/48, and show that the maximum degree is bounded
by

√
ω/(λ2 log n) = n1/96/ log n with probability 1 − o(n−3). The trend hypothesis is verified

by (39)–(42). By the assumption that 0< μU
ν
< 2Cγ , the Lipschitz condition is also verified.

Hence, for 0 ≤ t ≤ min{σDn, TDε }, we have

u(t) = nν(t/n) + op(n),

wU(t) = nμU(t/n) + op(n), (51)

ci,j(t) = nγi,j(t/n) + op(n), for all i = 1, . . . , p�, j = 0, . . . , r − 1.

This gives us the convergence up to the point where the solution leaves Dε . Observe that the
definition of the domain Dε , together with the fact that the maximum weight is bounded by
2Cγ , implies that at round TDε we have wU(TDε )/n ≤ ε, but wU(TDε − 1)/n> ε.

First, we will bound |Af (TDε )|. Observe that TDε = |Af (TDε )|, as exactly one vertex is
removed at each step. Also, as we noted above, wU(TDε )/n< ε, but wU(TDε − 1)/n ≥ ε. Since
the maximum degree is op(n) and the weights are bounded, w.h.p. we have

ε ≤ wU(TDε − 1)/n ≤ 1.5ε.

Hence, by (51), w.h.p.

μU

(
TDε − 1

n

)
< 2ε. (52)

Also, as the minimum weight is bounded from below by W0, the bound on wU implies that

u
(
TDε − 1

)
/n ≤ 1.5ε

W0
. (53)

Therefore, (51) again implies that w.h.p.

ν

(
TDε − 1

n

)
≤ 2ε

W0
.
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Let

α(y) := p (1 − hF(γ )) + γ ′ + (1 − p)
p�∑

i=1

γiψr (Wiy) .

The first part of Proposition 2 implies that∣∣∣∣TDε − 1

n
− α

(
1

d
I

(
TDε − 1

n

))∣∣∣∣≤ 2ε

W0
. (54)

Let τ̂ (�,γ ) denote the minimum τ > 0 such that μU(τ ) = 0. By Lemma 5 below, there exists
c1 > 0 with the property that for any γ < c1 and any δ ∈ (0, 1), there exists an infinite set of
positive integers S such that when � ∈ S , it holds that∣∣α(ŷ�,γ ) − (

p + (1 − p)E(ψr(WFŷ))
)∣∣< δ, (55)

where ŷ�,γ is the smallest positive root of

y = W ′
γ

d
+ p

1

d

p�∑
i=1

Wiγi + (1 − p)
p�∑

i=1

Wiγi

d
ψr(Wiy).

Its existence is implied by the continuity of I(τ ) and α(y). By (52), from the continuity of the
function μU, we deduce that there exists δ1 = δ1(ε)> 0 such that, for n large enough,∣∣∣∣TDε − 1

n
− τ̂ (�,γ )

∣∣∣∣< δ1. (56)

Now, let I
(
τ̂ (�,γ )

)= limτ↑τ̂ (�,γ ) I(τ ). The continuity of I and α implies that there exists an
increasing function f : (0, 1) → (0, 1) (depending on � and γ ) such that f (x) ↓ 0 as x ↓ 0 and∣∣∣∣α (1

d
I
(
τ̂ (�,γ )

))
− α

(
1

d
I

(
TDε − 1

n

))∣∣∣∣< f (δ1). (57)

Let us set x = x(τ ) = I(τ )/d. Since μU
(
τ̂ (�,γ )

)= 0, this implies that

I
(
τ̂ (�,γ )

)
d

= W ′
γ

d
+ p

1

d

p�∑
i=1

Wiγi + (1 − p)
p�∑

i=1

Wiγi

d
P

[
Po

(
Wi

d
I
(
τ̂ (�,γ )))≥ r

]

= W ′
γ

d
+ p

1

d

p�∑
i=1

Wiγi + (1 − p)
p�∑

i=1

Wiγi

d
ψr

(
Wi

d
I
(
τ̂ (�,γ ))) ,

whereby ŷ�,γ = limτ↑τ̂ (�,γ ) x(τ ). Thus the triangle inequality together with (54), (55), and (57)
implies that for any γ < c1, any δ ∈ (0, 1), and any � ∈ S , w.h.p.∣∣∣n−1|Af (TDε )| − α

(
ŷ�,γ

)∣∣∣< ε

Cγ
+ δ + f (δ1).

Recall that f (δ1) can become arbitrarily small if we make ε small enough. Therefore, the right-
hand side of the above can become as small as we please. The proof of Theorem 3 will be
complete if we show that the process will finish soon after TDε .
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4.4.1. The end of the process. We will show that w.h.p. only a small fraction of vertices are
added after TDε . From now on, we start exposing the edges incident to all vertices of U simul-
taneously. Hence, we change the time scaling. Informally, each round will be approximated
by a generation of a multi-type branching process which is subcritical. The subcriticality is
encompassed by the following: there exists κ0 < 1 such that with probability 1 − o(1),

p�∑
i=1

W2
i

W[n]
ci,r−1

(
TDε − 1

n

)
< κ0 < 1. (58)

We start this section by proving this. First, let us observe that using the expression for μU from
Proposition 2 and the chain rule, for any τ < TDε we can write

μ′
U(τ ) = G(τ )f (�,γ )′

r (I(τ )/d),

where

f (�,γ )
r (x) = W ′

γ

d
+ p

1

d

p�∑
i=1

Wiγi − x + (1 − p)
1

d

p�∑
i=1

WiγiP
[
Po (Wix)≥ r

]
.

But also by (45) we can write

μ′
U(τ ) = G(τ )

(
−1 +

p�∑
i=1

W2
i

d
γi,r−1 (τ )

)
.

So in particular, for τ = (TDε − 1)/n, we have G((TDε − 1)/n)> 0 and therefore (with x(τ ) =
I(τ )/d)

f (�,γ )′
r

(
x

(
TDε − 1

n

))
= −1 +

p�∑
i=1

W2
i

d
γi,r−1

(
TDε − 1

n

)
.

But by Lemma 5 and Proposition 4 below, for any δ ∈ (0, 1) there exists c1 > 0 with the prop-
erty that for any γ < c1 there exists an infinite set of positive integers S such that when � ∈ S ,
it holds that

f (�,γ )′
r

(
ŷ�,γ

)
< f ′

r (ŷ; W∗
F, p) + δ,

and, moreover, ŷ�,γ < 1. (Note that ŷ< 1 by its definition.) By Claim 15 below, the fam-

ily
{
f (�,γ )′
r (x)

}
�≥�′1 restricted to [0,1] for �′1 = �′1(γ ) is equicontinuous provided that γ < c′

4.

Hence, for any γ < c1 ∧ c′
4 and any � sufficiently large in S , using (56), we conclude that if ε

is sufficiently small we have

f (�,γ )′
r

(
x

(
TDε − 1

n

))
< f ′

r (ŷ; W∗
F, p) + 2δ.

We select δ small enough so that the right-hand side of the above is negative. This and (51)
imply that there exists κ0 < 1 such that (58) holds with probability 1 − o(1).

From step TDε onward, we will provide a stochastic upper bound on U by a set Û, whose
size is an essentially subcritical multi-type branching process. In particular, the expression in
(58) will dominate the principal eigenvalue of the expected progeny matrix of this branching
process. In this process, rather than exposing the vertices of Û one at a time, we will expose all
of their neighbors simultaneously in each round. We let Û(s) be the set Û after s rounds.
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Hence, Û(s) will be the sth generation of this process, which resembles a multi-type branch-
ing process. We will keep track of the size of Û through a functional which is well known in
the theory of multi-type branching processes to give rise to a supermartingale. Let us proceed
with the details of this argument.

We set t0 := TDε − 1. Let Û(0) = U(t0), Ĉi,r−1(0) = Ci,r−1(t0), and Ĉi,<r−1(0) =
∪r

k=2Ci,r−k(t0), for all i = 1, . . . , p�. Let Ûi(s) denote the subset of Û(s) which consists of those
vertices that have weight Wi, and let ui(s) := |Ûi(s)|—we say that these vertices are of type i.
We set ĉi,<r−1(s) = |Ĉi,<r−1(s)| and ĉi,r−1(s) = |Ĉi,r−1(s)|. Let us = [u1(s), . . . , up� (s)]T be the
vector whose coordinates are the sizes of the sets Ûi(s). A vertex v ∈ Ûj(s) (for j ∈ {1, . . . , p�})
can ‘give birth’ to vertices of type i (i.e., of weight Wi). These may be vertices from the set
Ĉi,r−1(s) or from the set Ĉi,<r−1(s). If v becomes adjacent to a vertex in Ĉi,r−1(s), then a child
of v is produced. Similarly, we say that a vertex in Ĉi,<r−1(s) produces a child of v if it is
adjacent to v and to some other vertex in Û(s). In that sense, a vertex in Ĉi,r−1 ∪ Ĉi,<r−1 may
be responsible for the birth of a child of more than one vertex in Û(s).

Furthermore, if a vertex in Ĉi,<r−1(s) is adjacent to exactly one vertex in Û(s), then a vertex
is moved into Ĉi,r−1. In this process the set Ĉi,r−1 can only gain, not lose, vertices. Clearly,
|Û(s)| is a stochastic upper bound on U.

If a vertex is a child of more than one vertex, we assume that it is born only once (it could
be a child of any adjacent vertex in Û(s)); hence it is included in Û(s + 1) only once. In fact,
the former case is much more likely than the latter. The expected number of those children
that are born out of Ci,r−1(s) is bounded by WjWi

W[n]
ci,r−1(s). The expected number of vertices of

type i that originate from Ĉi,<r−1 is bounded by ĉi,<r−1(s) WjWi
W[n]

(|Û(s)|(2Cγ )2/W[n]
)
. This is

the case because the factor |Û(s)|(2Cγ )2/W[n] bounds from above the probability that a given
vertex in Ĉi,<r−1(s) is adjacent to some other vertex in Û(s).

Now, if we let As be the p� × p� matrix whose ij entry is the expected number of children
of type i that a vertex of type j has, then E

(
uT

s+1|Hs
)≤ uT

s As (the inequality is meant to be
pointwise), where Hs is the sub-σ -algebra generated by the history of the process up to round s.
One can view the matrix As as the expected progeny matrix of a multi-type branching process,
where the expected number of children of type j that a vertex of type i gives birth to is at most

As[i, j] := WiWj

W[n]
aj(s), where aj(s) := ĉj,r−1(s) + û(s)

4C2
γ

W[n]
ĉj,<r−1(s).

Throughout this section, we will be working with this upper bound, which comes from a
stochastic upper bound on the process. It is not hard to see that the vector [W1, . . . ,Wp�]

T

is a right eigenvector of As, with

p�∑
i=1

W2
i

W[n]
ai(s) =: ρs

being the corresponding eigenvalue. In fact, this is the unique positive eigenvalue of As. Since

ĉj,r−1(s) does not decrease, we have ĉj,r−1(s) ≥ ĉj,r−1(0) = ci,r−1

(
TDε−1

n

)
. Thus for s> 0 we

have

ρs ≥
p�∑

i=1

W2
i

W[n]
ci,r−1

(
TDε − 1

n

)
> κ ′

0 > 0,

for some constant κ ′
0 and for any n sufficiently large.

https://doi.org/10.1017/apr.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.21


Bootstrap percolation in inhomogeneous random graphs 189

Note also that since ĉj,r−1(s), û(s), ĉj,<r−1(s) ≤ n, and W[n] =�(n), we have the bound ρs ≤
D for some D> 0, which depends on γ , and for all s ≥ 0.

For s = 0, it is not hard to see that ρ0 is less than and bounded away from 1, if we choose ε
small enough. Indeed, by (53),

û(0)
4C2

γ

W[n]
ĉj,<r−1(0) ≤ û(0)

4C2
γ

W[n]
n< û(0)

5C2
γ

dn
n

(53)≤ ε
15C2

γ

2d
n.

Hence, combining this with (58), we deduce that if ε is small enough, then ρ0 is smaller than
1 and in fact is bounded away from 1.

Let λi := Wi/
∑

j Wj and set ξ := [λ1, . . . , λp�]
T . Clearly, this is also a right eigenvector

of At. Consider now the random variable Zs = (ξ, us), where (·, ·) is the usual dot product.
Therefore,

E (Zs+1|Hs)≤ ρsZs.

Claim 11. Conditional on Hs, with probability at least 1 − 1/n2, we have Zs = 0 or

Zs+1 ≤ ρsZs + Z1/2
s log3/2 n. (59)

Proof. In the following we condition on Hs, which is suppressed from the notation. Assume
that Zs > 0. Note that Zs+1 is a weighted sum of Bernoulli-distributed random variables, where
the weights are bounded. More specifically,

Zs+1 =
p�∑

j=1

λj

⎛⎜⎝ ∑
v∈Ĉj,r−1(s)

1dÛ(s)(v)≥1 +
∑

v∈Ĉj,<r−1(s)

1dÛ(s)(v)≥2

⎞⎟⎠ .

This expansion also shows that Zs > 0 implies that Zs > c, for some c> 0 which does not
depend on s (or n).

We will appeal to Talagrand’s inequality (see for example Theorem 2.29 in [25]).

Theorem 12. Let Z1, . . . , ZN be independent random variables taking values in some sets
�1, . . . , �N, respectively. Suppose that X = f (Z1, . . . , ZN), where f :�1 × · · · ×�N →R is
a function which satisfies the following conditions:

(i) There are constants ck, for k = 1, . . . ,N, such that if z, z′ ∈�1 × · · · ×�N differ only
in their kth coordinates, zk and z′

k respectively, then |f (z) − f (z′)| ≤ ck.

(ii) There exists a function ψ : R→R such that if z ∈�1 × · · · ×�N satisfies f (z) ≥ r, then
there is a witness set J ⊆ {1, . . . ,N} with

∑
k∈J c2

k ≤ψ(r) such that any y ∈�1 × · · · ×
�N with yk = zk, for k ∈ J, also has f (y) ≥ r.

If m is a median of X, then for every t ≥ 0,

P(X ≤ m − t) ≤ 2e−t2/4ψ(m)

and
P(X ≥ m + t) ≤ 2e−t2/4ψ(m+t).

We will apply Theorem 12 to the random variable Zs+1. First, note that Zs+1 is a function
of independent Bernoulli random variables, which correspond to the (potential) edges that
are incident to Û(s). Let us write the random variable Zs+1 more explicitly as a function on
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the sample space which consists of all subsets of ∪p�
j=1

(
Ĉj,r−1(s) ∪ Ĉj,<r−1(s)

)
× Û(s). More

specifically, for any subset

E ⊆ ∪p�
j=1

(
Ĉj,r−1(s) ∪ Ĉj,<r−1(s)

)
× Û(s)

we can write

Zs+1(E) =
p�∑

j=1

λj

⎛⎜⎝ ∑
v∈Ĉj,r−1(s)

1dÛ(s)(v)≥1(E) +
∑

v∈Ĉj,<r−1(s)

1dÛ(s)(v)≥2(E)

⎞⎟⎠ ,
where the 1E (E) denotes the indicator function of the event {E : E ∈ E}. For v ∈ Ĉj,r−1(s) ∪
Ĉj,<r−1(s), if we change any pair of vertices between v and Û(s) (add it if it is not an edge, or
remove it if it is), then Zs+1 may change by at most λj.

Now, for any subset of edges E ⊆ ∪p�
j=1

(
Ĉj,r−1(s) ∪ Ĉj,<r−1(s)

)
× Û(s) and a subset J ⊆

∪p�
j=1

(
Ĉj,r−1(s) ∪ Ĉj,<r−1(s)

)
, let

ZJ
s+1(E) =

p�∑
j=1

λj

⎛⎜⎝ ∑
v∈Ĉj,r−1(s)∩J

1dÛ(s)(v)≥1(E) +
∑

v∈Ĉj,<r−1(s)∩J

1dÛ(s)(v)≥2(E)

⎞⎟⎠ .

Suppose that Zs+1(E) ≥ x. Let J∗ = J∗(E) ⊆ ∪p�
j=1

(
Ĉj,r−1(s) ∪ Ĉj,<r−1(s)

)
be a minimal subset

which is also a minimizer of ZJ
s+1(E) subject to ZJ

s+1(E) ≥ x. (Note that a minimizer may not
be minimal, as it may include a vertex v such that 1dÛ(s)(v)≥1(E), 1dÛ(s)(v)≥2(E) = 0.) Observe

that the minimality of J∗ implies that ZJ∗
s+1(E)< x + λmax, where λmax = max{λj}j=1,...,p� .

We select a set of edges EJ∗ ⊆ E as follows: for any v ∈ Ĉj,r−1(s) ∩ J∗, we add to EJ∗ one of
the edges in E that are incident to v, if there are any such; for any v ∈ Ĉj,<r−1(s) ∩ J∗, we add
to EJ∗ two of the edges in E that are incident to v, if there are at least two such edges. Hence,

any subset of edges E′ ⊆ ∪p�
j=1

(
Ĉj,r−1(s) ∪ Ĉj,<r−1(s)

)
× Û(s) such that EJ∗ ⊆ E′ also satisfies

Zs+1(E′) ≥ x.

For any e ∈
(
Ĉj,r−1(s) ∪ Ĉj,<r−1(s)

)
× Û(s), we set λe = λj. Consider now

∑
e∈EJ∗ λ

2
e .

Since λe ≤ 1, we have the bound

∑
e∈EJ∗

λ2
e≤

p�∑
j=1

⎛⎜⎜⎝ ∑
e∈
(
Ĉj,r−1(s)×Û(s)

)
∩EJ∗

λe +
∑

e∈
(
Ĉj,<r−1(s)×Û(s)

)
∩EJ∗

λe

⎞⎟⎟⎠

=
p�∑

j=1

⎛⎜⎜⎝ ∑
e∈
(
Ĉj,r−1(s)×Û(s)

)
∩EJ∗

λj +
∑

e∈
(
Ĉj,<r−1(s)×Û(s)

)
∩EJ∗

λj

⎞⎟⎟⎠
=

p�∑
j=1

⎛⎜⎝ ∑
v∈Ĉj,r−1(s)∩J∗

λj + 2
∑

v∈Ĉj,<r−1(s)∩J∗
λj

⎞⎟⎠
≤2ZJ∗

s+1 ≤ 2(x + λmax).
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Hence, we can apply Theorem 12, taking ψ(x) = 2(x + λmax) (conditional on Hs which we
suppress). With m(Zs+1) being a median of Zs+1, Talagrand’s inequality yields

P

[
Zs+1 ≥ m(Zs+1) + 1

2
Z1/2

s log3/2 n

]
≤ 2e

− Zs log3 n

32
(

m(Zs+1)+ 1
2 Z

1/2
s log3/2 n+λmax

)
. (60)

Since ψ(x) is increasing with respect to x and Zs+1 takes only non-negative values, using an
argument similar to that of [25, pp. 41–42] we have

|E (Zs+1)− m(Zs+1)| ≤E (|Zs+1 − m(Zs+1)|)=
∫ ∞

0
P
[|Zs+1 − m(Zs+1)|> t

]
dt

≤
∫ m(Zs+1)

0
4e

− t2
4ψ(2m(Zs+1)) dt +

∫ ∞

m(Zs+1)
2e

− t2
4ψ(m(Zs+1)+t) dt

≤
∫ m(Zs+1)

0
4e

− t2
16m(Zs+1)+8λmax dt +

∫ ∞

m(Zs+1)
2e− t2

16t+8λmax dt

≤ 8
√
π (m(Zs+1) + λmax) + 32,

and using that m(Zs+1) ≤ 2m(Zs+1)P
[
Zs+1 ≥ m(Zs+1)

]≤ 2E (Zs+1), we obtain

|E (Zs+1)− m(Zs+1)| = O(E (Zs+1)
1/2 ).

Hence, for n large enough, using that E (Zs+1)≤ ρsZs, we have

P

[
Zs+1 ≥E (Zs+1)+ Z1/2

s log3/2 n
]

≤ P

[
Zs+1 ≥ m(Zs+1) − O(E (Zs+1)

1/2 ) + Z1/2
s log3/2 n

]
≤ P

[
Zs+1 ≥ m(Zs+1) + 1

2
Z1/2

s log3/2 n

]
.

So by (60) we conclude (using that m(Zs+1) ≤ 2E (Zs+1)≤ 2ρsZs) that

P

[
Zs+1 ≥E (Zs+1)+ Z1/2

s log3/2 n
]

≤ 2e
− Zs log3 n

32(m(Zs+1)+ 1
2 Z

1/2
s log3/2 n+λmax) ≤ 2e

− Zs log3 n

32(2ρsZs+ 1
2 Z

1/2
s log3/2 n+λmax) = e−�( log3/2 n),

since ρs and λmax are bounded uniformly over all s and Zs is bounded away from 0, if
Zs > 0. �

We denote the above event (Zs = 0 or (59) holds) by Es. If Zs > log6 n and Es is realized, we
have

Zs+1 ≤ ρsZs

(
1 + Z1/2

s log3/2 n

ρsZs

)
ρs≥κ ′

0≤ ρsZs

(
1 + log3/2 n

κ ′
0Z1/2

s

)
Zs>log6 n≤ ρsZs

(
1 + log3/2 n

κ ′
0 log3 n

)
= ρsZs

(
1 + 1

κ ′
0 log3/2 n

)
.

(61)
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In a multi-type branching process, the variable Zs/ρ
s, where ρ is the largest positive eigenvalue

of the progeny matrix, is a martingale (see for example Theorem 4 in Chapter V.6 of [8]). Here
we use this fact only approximately, since the progeny matrix changes as the process evolves.
Nevertheless, it does not change immensely, and we are able to control the increase of the
eigenvalue ρs. Let us now make this precise.

By (58), the largest positive eigenvalue of A0 is bounded by a constant ρ0 < 1, with
probability 1 − o(1). We set λmin = min{λi}i=1,...,p� . For any s ≥ 0, let

Ds :=
⎧⎨⎩

p�∑
j=1

∑
v∈Û(s)

dĈj,<r−1(s)(v)<max

{
10C2

γ

λmind
Zs, log6 n

}⎫⎬⎭ .

Claim 13. For any s ≥ 0 we have P [Ds] = 1 − o(1/n2).

Proof of Claim 13. The random variable

p�∑
j=1

∑
v∈Û(s)

dĈj,<r−1(s)(v)

is stochastically bounded from above by
∑

v∈Û(s) Xv, where the Xv are independent and iden-

tically distributed random variables that are distributed as Bin(n, (2Cγ )2/W[n]). The expected

value of this sum is bounded by
5C2

γ

d u(t) for large n. Also, u(s) ≤ Zs/λmin, as Zs = (ξ, us) =∑
i λiui(s) ≥ λmin

∑
i ui(s). So the expectation is at most

5C2
γ

λmind Zs. The claim follows from
a standard Chernoff bound on the binomial distribution (as the sum of binomial is itself
binomially distributed). �

Let Bs := max

{
10C2

γ

λmind Zs, log6 n

}
.

On the event Ds, the total degree of the vertices in Û(s) into the set Ĉi,<r−1(s) bounds the
number of vertices that enter into the set Ĉi,r−1. Hence, on the event Ds, we have

ĉi,r−1(s + 1) ≤ ĉi,r−1(s) + Bs.

Furthermore, for large n,

u(s + 1)
4C2

γ

W[n]
ĉi,<r−1(s + 1) ≤ u(s + 1)

4C2
γ

W[n]
n ≤ u(s + 1)

5C2
γ

dn
n = u(s + 1)

5C2
γ

d
≤ Zs+1

5C2
γ

λmind
.

Also, on Es we have Zs+1 ≤ β1Zs, for some constant β1 > 0, if

10C2
γ

λmind
Zs ≥ log6 n;
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otherwise, since ρs is uniformly bounded by some constant over all s> 0, we have Zs+1 ≤
β2 log6 n for some constant β2 > 0. Therefore, on Ds ∩ Es we have

p�∑
i=1

W2
i

W[n]
ai(s + 1)≤

p�∑
i=1

W2
i

W[n]

(
ĉi,r−1(s) + Bs + Zs+1

5C2
γ

λmind

)

≤
p�∑

i=1

W2
i

W[n]
ĉi,r−1(s) + β

Bs

n
+ β ′ Zs+1

n

≤ρs + β
Bs

n
+ β ′ Zs+1

n
,

for some constants β, β ′ > 0 and any n. Furthermore, for some other constant β ′′ > 0,

Bs ≤ β ′′(Zs + log6 n).

Therefore, for some γ > 0, we finally obtain

ρs+1 ≤ ρs + 1

n

(
γ (Zs + Zs+1) + β ′′ log6 n

)
. (62)

Let λn = 1 + 1
κ ′

0 log2 n
and T0 = 2�log1/τ n�. We use induction to show that for every δ > 0 there

exists ε > 0 such that if Z0/n< ε, then for all s ≤ T0

ρs ≤ ρ0 + γ
Z0

n

(
2

s−1∑
k=0

(ρ0 + δ)kλk
n + (ρ0 + δ)sλs

n

)
+ (4γ γ ′ + β ′′) log6 n

n

s−1∑
k=1

k + 2γ γ ′ log6 n

n
s.

(63)
Now, observe that for n sufficiently large (ρ0 + δ)λn <ρ

′
0 < 1. From this inequality, we deduce

that for every s ≤ T0, we have

ρs ≤ ρ0 + 2γZ0

n

∞∑
k=0

ρ′k
0 + O

(
log8 n

n

)
= ρ0 + 2γZ0

n

1

1 − ρ′
0

+ O

(
log8 n

n

)
Z0/n<ε≤ ρ0 + 2γ ε

1

1 − ρ′
0

+ O

(
log8 n

n

)
<ρ0 + δ < 1, (64)

provided that ε > 0 is small enough.
By (61), on the event ∩T0

s′=1{Es′ ∩Ds′ }, for any s< T0 we have

Zs ≤ ρsZs−1λn + γ ′ log6 n

for some constant γ ′ > 0. Repeating this, we get

Zs≤ρs−1ρs−2Zs−2λ
2
n + γ ′(λn + 1) log6 n

...

≤Z0λ
s
n

s−1∏
i=1

ρs−i + γ ′ log6 n
s−1∑
i=0

λi
n

≤Z0λ
s
n

s−1∏
i=0

ρs−i + 2sγ ′ log6 n,
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where in the last inequality we used λi
n ≤ 2 for n sufficiently large, uniformly over i ≤ T0. By

the inductive hypothesis, ρs−i ≤ ρ0 + δ for all i ≤ s. We thus deduce that

Zs ≤ Z0(ρ0 + δ)sλs
n + 2sγ ′ log6 n. (65)

Substituting (63) into (62) and using (65), we obtain

ρs+1≤ρ0 + γZ0

n

(
2

s−1∑
k=0

(ρ0 + δ)kλk
n + (ρ0 + δ)sλs

n

)
+ (4γ γ ′ + β ′′) log6 n

n

s−1∑
k=1

k

+2γ γ ′ log6 n

n
s + β ′′ log6 n

n

+1

n
γ
(

Z0(ρ0 + δ)sλs
n + 2sγ ′ log6 n + Z0(ρ0 + δ)s+1λs+1

n + 2(s + 1)γ ′ log6 n
)

≤ρ0 + γZ0

n

(
2

s∑
k=0

(ρ0 + δ)kλk
n + (ρ0 + δ)s+1λs+1

n

)
+ (4γ γ ′ + β ′′) log6 n

n

s∑
k=1

k

+2γ γ ′ log6 n

n
(s + 1),

where in the last inequality we used that

β ′′ log6 n

n
≤ β ′′ log6 n

n
s.

Set τ = ρ0 + δ and recall that T0 = 2�log1/τ n�. Claims 11 and 13 imply that

P
[∩s≤T0{Es ∩Ds}

]= 1 − O( log n/n2). (66)

For any S ∈N, we let SS = ∩s≤S{Es ∩Ds} and note that if S< S′, then SS′ ⊂ SS.
Using the tower property of the conditional expectation, we write

E
(
ZT0

)=E
(
E
(
ZT0 |HT0−1

))=E

(
E
(
ZT0 |HT0−1

) (
1ST0−1 + 1Sc

T0−1

))
.

But ZT0 = O(n), whereby

E

(
E
(
ZT0 |HT0−1

)
1Sc

T0−1

)
= O(n)E

(
1Sc

T0−1

)
= O( log n/n).

Therefore,

E
(
ZT0

) ≤ E

(
E
(
ZT0 |HT0−1

)
1ST0−1

)
+ O( log n/n)

(64)≤ E
(
(ρ0 + δ)ZT0−1

)+ O( log n/n).

Repeating this, we get

E
(
ZT0

)≤ (ρ0 + δ)T0E (Z0)+ O(T0 log n/n)
E(Z0)=O(n)≤ O(1/n + T0/n) = o(1). (67)

Therefore, P
[
Û(T0) �=∅

]= o(1).
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4.5. Auxiliary lemmas

Recall that τ̂ (�,γ ) denotes the minimum τ > 0 such that μU(τ ) = 0. Recall also that ŷ is the
smallest positive solution of fr(y; W∗

F, p) = 0 and that we have assumed that f ′
r (ŷ; W∗

F, p)< 0.
Recall that for γ ∈ (0, 1) and � ∈N we set

f (�,γ )
r (x) = W ′

γ

d
+ p

1

d

p�∑
i=1

Wiγi − x + (1 − p)
1

d

p�∑
i=1

WiγiP
[
Po (Wix)≥ r

]
.

Also, recall that

α(y) := p (1 − hF(γ )) + γ ′ + (1 − p)
p�∑

i=1

γiψr (Wiy) .

The following lemma shows that if γ is taken small enough and � is a large positive integer,
then α

(
ŷ�,γ

)
and f (�,γ )

r
(
ŷ�,γ

)
can be approximated by the corresponding functions of ŷ.

Lemma 5. For any δ > 0, there exists c1 such that for any γ < c1, there exists a subsequence
{�k}k∈N with the property that for every � ∈ {�k}k∈N,

(1) f (�,γ )′
r

(
ŷ�,γ

)
< f ′

r (ŷ; W∗
F, p) + δ, and

(2)
∣∣α(ŷ�,γ ) − (

p + (1 − p)E(ψr(WFŷ))
)∣∣< δ.

Proof. Using Definition 3, we can express the γi in terms of the γ ′
i : γi = (1 − hF(γ ) + γ ′)γ ′

i .

The expression for f (�,γ )
r yields the following:

f (�,γ )
r (x) = W ′

γ

d
+ p

1

d

p�∑
i=1

Wiγi − x + (1 − p)
1

d

p�∑
i=1

WiγiP
[
Po (Wix)≥ r

]
= W ′

γ

d
+ (1 − hF(γ ) + γ ′)

(
p

d̂(�,γ )

d
+ (1 − p)

d(�,γ )

d

p�∑
i=1

Wiγ
′
i

d(�,γ )
P
[
Po (Wix)≥ r

])− x,

(68)

where d(�,γ ) = ∫∞
0 xdF(�,γ )(x) and d̂(�,γ ) = ∫ Cγ

0 xdF(�,γ )(x) =∑p�
i=1 Wiγ

′
i . Hence, the second

sum in the above expression can be rewritten as

p�∑
i=1

Wiγ
′
i

d(�,γ )
P
[
Po (Wix)≥ r

]=
∫ Cγ

0
ψr (yx) dF∗(�,γ )(y),

where F∗(�,γ ) is the distribution function of the U(�,γ ) size-biased distribution.
We set c(γ ) = 1 − hF(γ ) + γ ′ and write p(�,γ ) = W ′

γ

dc(γ ) + p d̂(�,γ )

d . The expression in (68)
becomes

f (�,γ )
r (x) = c(γ )

(
p(�,γ ) + (1 − p)

d(�,γ )

d

∫ Cγ

0
ψr (yx) dF∗(�,γ )(y)

)
− x.
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Hence, the derivative of f (�,γ )
r (x) with respect to x is

f (�,γ )′
r (x) = −1 + c(γ )(1 − p)

d(�,γ )

d

∫ Cγ

0
ye−yx (yx)r−1

(r − 1)!dF∗(�,γ )(y)

= −1 + c(γ )(1 − p)
d(�,γ )

d

r

x

∫ Cγ

0
e−yx (yx)r

r! dF∗(�,γ )(y).

(69)

Similarly, we can write

α(x) = p(1 − hF(γ )) + γ ′ + c(γ )(1 − p)
∫ Cγ

0
ψr (yx) dF(�,γ )(y). (70)

For real numbers y and δ > 0, let B(y; δ) denote the open ball of radius δ around y. We show
the following result.

Proposition 3. Let f : [0,∞) → [0,∞) be a bounded function which is everywhere differ-
entiable. Also, let y1 ∈R. For any δ > 0 there exists c2 = c2(δ) with the property that for
any γ < c2, there exist �0 = �0(δ, γ )> 0 and δ′ = δ′(δ, γ ) such that for any � > �0 and any
y2 ∈ B(y1; δ′), ∣∣∣∣∣

∫ Cγ

0
f (yy2)dF∗(�,γ )(y) −E

(
f (W∗

Fy1)
)∣∣∣∣∣< δ

and ∣∣∣∣∣
∫ Cγ

0
f (yy2)dF(�,γ )(y) −E (f (WFy1))

∣∣∣∣∣< δ.
We will further show that ŷ�,γ is close to ŷ over a subsequence {�k}k∈N.

Proposition 4. There exists a c3 > 0 such that for all γ < c3 and any δ′ > 0, there exists a
subsequence {�k}k∈N such that ŷ�k,γ ∈ B(ŷ; δ′).

The above two propositions yield the following.

Corollary 1. Let f : [0,∞) → [0,∞) be a bounded function which is everywhere differen-
tiable. For any δ > 0 and any γ < c2 ∧ c3, there exists a subsequence {�k}k∈N such that∣∣∣∣∣

∫ Cγ

0
f (yŷ�k,γ )dF∗(�k,γ )(y) −E

(
f (W∗

Fŷ)
)∣∣∣∣∣< δ

and ∣∣∣∣∣
∫ Cγ

0
f (yŷ�k,γ )dF(�k,γ )(y) −E

(
f (WFŷ)

)∣∣∣∣∣< δ.
The two statements of the lemma can be deduced from (69) and (70), if we let f (x) be

ψr(x) in the former case, and e−x xr

r! in the latter. Note that the choice of the subsequence is
determined through Proposition 4 and can be the same for both choices of f (x). Observe that
both functions are bounded (by 1), they are differentiable everywhere in R, and they have
bounded derivatives.

By the second part of Definition 4 and the fact that c(γ ) → 1 as γ ↓ 0, we have

c(γ )

∣∣∣∣d(�,γ )

d
− 1

∣∣∣∣< δ (71)
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for any γ that is small enough and any � that is large enough. We will show now that p(�,γ ) is
close to p. We will need the following claim, which is a direct consequence of the second part
of Definition 4.

Claim 14. There is a function r : (0, 1) → (0, 1) such that r(γ ) → 0 as γ ↓ 0, with the following
property: for any γ ∈ (0, 1), there exists �1(γ ) such that for any � > �1(γ ),∣∣d̂(�,γ ) − d

∣∣< r(γ ).

The above claim together with the fact that W ′
γ → 0 as γ → 0 implies that if γ is small enough

and � is large enough, we have∣∣∣p(�,γ ) − p
∣∣∣< δ and

∣∣p(1 − hF(γ )) + γ ′ − p
∣∣< δ. (72)

Both parts of the lemma now follow from Corollary 1 together with (71) and (72). We now
proceed with the proofs of Propositions 3 and 4.

Proof of Proposition 3. The proof of this proposition will proceed in two steps. First we
will show that for any γ < 1 there exist δ′ = δ′(δ, γ ) and �′0 = �′0(δ, γ ) such that for any y2 ∈
B(y1; δ′) and � > �′0 we have∣∣∣∣∣

∫ Cγ

0
f (yy2)dF∗(�,γ )(y) −

∫ Cγ

0
f (yy1)dF∗(y)

∣∣∣∣∣< δ/2. (73)

The proposition will follow if we show that there exists c′
2 = c′

2(δ) such that for any γ < c′
2 it

holds that ∣∣∣∣∣
∫ ∞

Cγ
f (yy1)dF∗(y)

∣∣∣∣∣< δ/2. (74)

Having proved these inequalities, we deduce that∣∣∣∣∣
∫ Cγ

0
f (yy2)dF∗(�,γ )(y) −E

[
f (W∗

Fy1)
]∣∣∣∣∣

≤
∣∣∣∣∣
∫ Cγ

0
f (yy2)dF∗(�,γ )(y) −

∫ Cγ

0
f (yy1)dF∗(y)

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

Cγ
f (yy1)dF∗(y)

∣∣∣∣∣ (73),(74)
< δ.

The proof for the case of F(�,γ ) proceeds along the same lines. We can show that for any γ < 1
there exist δ′ = δ′(δ, γ ) and �′′0 = �′′0(δ, γ ) such that for any y2 ∈ B(y1; δ′) and � > �′′0 we have∣∣∣∣∣

∫ Cγ

0
f (yy2)dF(�,γ )(y) −

∫ Cγ

0
f (yy1)dF(y)

∣∣∣∣∣< δ/2. (75)

Then we show that there exists c′′
2 = c′′

2(δ) such that for any γ < c′′
2 it holds that∣∣∣∣∣

∫ ∞

Cγ
f (yy1)dF(y)

∣∣∣∣∣< δ/2. (76)
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As before, from (75) and (76) we deduce∣∣∣∣∣
∫ Cγ

0
f (yy2)dF(�,γ )(y) −E

[
f (WFy1)

]∣∣∣∣∣
≤
∣∣∣∣∣
∫ Cγ

0
f (yy2)dF(�,γ )(y) −

∫ Cγ

0
f (yy1)dF(y)

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

Cγ
f (yy1)dF(y)

∣∣∣∣∣ (75),(76)
< δ.

We proceed with the proofs of (73) and (74)—the proofs of (75) and (76) are very similar (in
fact, simpler) and are omitted. The lemma will follow if we take c2 = c′

2 ∧ c′′
2 and �0 = �′0 ∨ �′′0.

Proof of (73). We begin with the specification of δ′. We let δ′ be such that whenever |y1 −
y2|< δ′, we have

|f (xy1) − f (xy2)|< δ/4 (77)

for any x ∈ [0,Cγ ]. This choice of δ′ is possible since f is continuous and therefore uniformly
continuous in any closed interval. Consider y2 ∈ B(y1; δ′). We then have∣∣∣∣∣

∫ Cγ

0
f (xy2)dF∗(�,γ )(x) −

∫ Cγ

0
f (xy1)dF∗(x)

∣∣∣∣∣
≤
∫ Cγ

0
|f (xy2) − f (xy1)|dF∗(�,γ )(x)

+
∣∣∣∣∣
∫ Cγ

0
f (xy1)dF∗(�,γ )(x) −

∫ Cγ

0
f (xy1)dF∗(x)

∣∣∣∣∣
(77)≤ δ/4 +

∣∣∣∣∣
∫ Cγ

0
f (xy1)dF∗(�,γ )(x) −

∫ Cγ

0
f (xy1)dF∗(x)

∣∣∣∣∣ .

(78)

We will argue that the second expression is also bounded from above by δ/4 when γ is small
enough and � is large enough. This follows from (17), as the latter implies that F∗(�,γ ) con-
verges weakly to F∗ as γ ↓ 0 and �→ ∞. Since f has been assumed to be bounded and
continuous, by Lemma 3 there exists c1 such that for any 0< γ < c1 and any � > �1(γ ) we
have ∣∣∣∣∫ ∞

0
f (xy1)dF∗(�,γ )(x) −E(f (W∗

Fy1))

∣∣∣∣< δ/8.

Furthermore, by (74), if γ is sufficiently small we have∣∣∣E(f (W∗
Fy1)1W∗

F≥Cγ )
∣∣∣< δ/8.

Also, by Lemma 1, for any γ sufficiently small and any � sufficiently large,∣∣∣∣∣
∫ ∞

Cγ
f (xy1)dF∗(�,γ )(x)

∣∣∣∣∣< δ/8.

Therefore, for any such γ and any � sufficiently large we get∣∣∣∣∣
∫ Cγ

0
f (xy1)dF∗(�,γ )(x) −E(f (W∗

Fy1)1W∗
F<Cγ )

∣∣∣∣∣< δ/4.

Substituting this bound into (78), we can deduce (73). �
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We now proceed with the proof of (74)

Proof of (74). Assume that |f (x)|< b for any x ∈R. Hence we have∣∣∣∣∣
∫ ∞

Cγ
f (yy1)dF∗(y)

∣∣∣∣∣< bE
[
1W∗

F≥Cγ

]
. (79)

Now, observe that

E

[
1W∗

F≥Cγ

]
= E

[
WF1WF≥Cγ

]
E [WF]

.

Since E [WF]<∞, the latter is at most δ/(2b), if γ > 0 is small enough.
Therefore,

E

[
1W∗

F≥Cγ

]
≤ δ

2b
,

and (74) follows from (79). �

Proof of Proposition 4. We consider the functions f (�,γ )
r (x) restricted to the unit interval

[0,1].

Claim 15. There exists c4 > 0 such that for any γ < c4, the family{
f (�,γ )
r (x)

}
�>�1

,

for some �1 = �1(γ ), is equicontinuous. The analogous statement also holds for{
f (�,γ )′
r (x)

}
�>�′1

,

for some �′1 = �′1(γ ) and some other constant c′
4 > 0 (this is used in Section 4.4.1).

Proof of Claim 15. Let ε ∈ (0, 1), and let c4 be such that for any γ < c4 we have 1/Cγ < ε/2.
Recall that {W(�,γ )}γ∈(0,1),�∈N is F-convergent (cf. Definition 4). So there exists a function
ρ : (0, 1) → (0, 1) satisfying ρ(γ ) ↓ 0 as γ ↓ 0, such that for any γ and for any � sufficiently
large (cf. Definition 4, Part 2), ∣∣∣∣d(�,γ )

d
− 1

∣∣∣∣<ρ(γ )/d. (80)

The function ψr(y) is uniformly continuous on the closed interval [0,Cγ ]. Hence there
exists δ ∈ (0, 1) such that for any x1, x2 ∈ [0, 1] with |x1 − x2|< δ/Cγ we have |ψr(wx1) −
ψr(wx2)|< dε/(2ρ). Thus,∣∣∣∣∣

∫ Cγ

0
ψr (yx1) dF∗(�,γ )(y) −

∫ Cγ

0
ψr (yx2) dF∗(�,γ )(y)

∣∣∣∣∣< dε

2ρ
. (81)
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Therefore, for any γ < c4 and � sufficiently large, if x1, x2 ∈ [0, 1] are such that |x1 − x2|<
δ/Cγ , then

|f (�,γ )
r (x1) − f (�,γ )

r (x2)|

≤ |x1 − x2| + d(�,γ )

d

∣∣∣∣∣
∫ Cγ

0
ψr (yx1) dF∗(�,γ )(y) −

∫ Cγ

0
ψr (yx2) dF∗(�,γ )(y)

∣∣∣∣∣
(80),(81)≤ δ

Cγ
+ dε

2ρ

ρ

d
≤ ε

2
+ ε

2
≤ ε.

The proof for the family
{

f (�,γ )′
r (x)

}
is similar, and we omit it. �

By the Arzelà–Ascoli theorem, there exists a subsequence {�k}k∈N such that{
f (�k,γ )
r (x)

}
k∈N

is convergent in the L∞-norm on the space of all continuous real-valued functions on [0,1].
Now, recall that ŷ is the smallest positive root of fr(y; W∗

F, p) = 0 and, moreover,
f ′
r (ŷ; W∗

F, p)< 0. Also, ŷ< 1, since, by its definition, ŷ = (1 − p)E[ψr(W∗
Fŷ)] + p< 1. Hence,

there exists δ0 > 0 such that ŷ + δ0 < 1 and, furthermore,

fr(ŷ + δ0; W∗
F, p)< 0 and

fr(ŷ − δ0; W∗
F, p)> 0.

By the L∞-convergence of the family {
f (�k,γ )
r (x)

}
k∈N

restricted to [0,1], we deduce that there exists �1 = �1(δ0, γ ) with the property that for any k
such that �k > �1 we have

f (�k,γ )
r (ŷ + δ0)< 0 and

f (�k,γ )
r (ŷ − δ0)> 0.

In turn, this implies that for any such k there exists a root of f (�k,γ )
r (x) in B(ŷ; δ0).

To conclude the proof of the proposition, we need to show that for all but finitely many
values of k, there is no positive root of f (�k,γ )

r in the interval [0, ŷ − δ0]. Assume, for the sake
of contradiction, that there exists a sub-subsequence {�ki}i∈N such that ŷ�ki ,γ

∈ [0, ŷ − δ0]. By
the sequential compactness of this interval, we deduce that there is a further sub-subsequence
{�kj}j∈N over which

ŷ�kj ,γ
→ ŷγ ,

as j → ∞, for some ŷγ ∈ [0, ŷ − δ0].
Let δ ∈ (0, 1) and let c2 = c2(δ) be as in Proposition 3. Consider γ < c2. Then there exists

j0 such that for j> j0 we have∣∣∣∣∣
∫ Cγ

0
ψr(yŷ�kj ,γ

)dF∗(�kj ,γ )(y) −E
(
ψr(W∗

Fŷγ )
)∣∣∣∣∣< δ/3. (82)
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Assume that γ is small enough so that

|c(γ ) − 1|, ρ(γ )/d, r(γ )/d< δ/9.

Moreover, assume that j0 is large enough so that for j> j0 we have∣∣∣∣∣d
(�kj ,γ )

d
− 1

∣∣∣∣∣<ρ(γ )/d and

∣∣∣∣∣ d̂
(�kj ,γ )

d
− 1

∣∣∣∣∣< r(γ )/d,

by Part 2 of Definition 4 and by Claim 14. Hence∣∣∣∣∣c(γ )
d̂(�kj ,γ )

d
− 1

∣∣∣∣∣≤ |c(γ ) − 1| d(�kj ,γ )

d
+
∣∣∣∣∣ d̂

(�kj ,γ )

d
− 1

∣∣∣∣∣
≤ |c(γ ) − 1| + |c(γ ) − 1|

∣∣∣∣∣d
(�kj ,γ )

d
− 1

∣∣∣∣∣+
∣∣∣∣∣ d̂

(�kj ,γ )

d
− 1

∣∣∣∣∣≤ 3δ/9 = δ/3.

(83)

Similarly, we can show that for γ small enough and j large enough,∣∣∣∣∣c(γ )
d(�kj ,γ )

d
− 1

∣∣∣∣∣≤ δ

3
. (84)

Now, consider the function f̂r(x) := fr(x; W∗
F, p) + W ′

γ /d. Since f
(�kj ,γ )
r (ŷ�kj ,γ

) = 0, we can
write

f̂r(ŷγ ) = f̂r(ŷγ ) − f
(�kj ,γ )
r (ŷ�kj ,γ

)

≤ p

∣∣∣∣∣c(γ )
d̂(�kj ,γ )

d
− 1

∣∣∣∣∣
+ (1 − p)

∣∣∣∣∣c(γ )
d(�kj ,γ )

d

∫ Cγ

0
ψr(yŷ�kj ,γ

)dF∗(�kj ,γ )(y) −E
(
ψr(W∗

Fŷγ )
)∣∣∣∣∣

≤ p

∣∣∣∣∣c(γ )
d̂(�kj ,γ )

d
− 1

∣∣∣∣∣+ (1 − p)

∣∣∣∣∣
(

c(γ )
d(�kj ,γ )

d
− 1

) ∫ Cγ

0
ψr(yŷ�kj ,γ

)dF∗(�kj ,γ )(y)

∣∣∣∣∣
+ (1 − p)

∣∣∣∣∣
∫ Cγ

0
ψr(yŷ�kj ,γ

)dF∗(�kj ,γ )(y) −E
(
ψr(W∗

Fŷγ )
)∣∣∣∣∣

(83),(84),(82)≤ δ

3
+ δ

3
+ δ

3
= δ.

Since δ is arbitrary, it follows that

f̂r(ŷγ ) := fr(ŷγ ; W∗
F, p) + W ′

γ = 0,

whereby fr(ŷγ ; W∗
F, p)< 0. Recall also that fr(ŷ − δ0; W∗

F, p)> 0. The continuity of fr implies
that there is a root in (0, ŷ − δ0). But this leads to a contradiction, as ŷ is the smallest positive
root of fr(x; W∗

F, p) = 0. �
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The following lemma shows that if the weight sequence has a power-law distribution with
exponent between 2 and 3, then the condition on the derivative of fr(x; W∗

F, p) that appears in
the statement of Theorem 1 is always satisfied.

Lemma 6. Assume that (w(n))n≥1 follows a power law with exponent β ∈ (2, 3). Then
f ′
r (ŷ; W∗

F, p)< 0.

Proof. From the definition of f we obtain that

f ′
r (x; W∗

F, p) = −1 + (1 − p)
r

x
E

[
e−W∗

Fx

(
W∗

Fx
)r

r!

]
.

To prove the claim it is thus sufficient to argue that

(1 − p)rE

[
e−W∗

Fŷ

(
W∗

Fŷ
)r

r!

]
< ŷ = p + (1 − p)E

[
ψr(W∗

Fŷ)
]

.

In turn, it suffices to prove that

rE

[
e−W∗

Fŷ

(
W∗

Fŷ
)r

r!

]
<E

[
ψr(W∗

Fŷ)
]

. (85)

We set pr(x) = e−xxr/r!. Furthermore, we set g(x) := E
[
pr(W∗

Fx)
]

and f (x) := E
[
ψr

(
W∗

Fx
)]

.
Then we claim that

f (x)> rg(x) for any x ∈ (0, 1],

which is equivalent to (85). To see the claim, we will consider the difference f (x) − rg(x) and
show that it is increasing with respect to x; the statement then follows from f (0) − rg(0) = 0.
The derivative with respect to x is

(f (x) − rg(x))′ =E
[
W∗

Fpr−1
(
W∗

Fx
)]+ r

(
E
[
W∗

Fpr
(
W∗

Fx
)]−E

[
W∗

Fpr−1
(
W∗

Fx
)])

= − r(r − 1)

x
E
[
pr
(
W∗

Fx
)]+ r(r + 1)

x
E
[
pr+1

(
W∗

Fx
)]

= r

x

(−(r − 1) E
[
pr
(
W∗

Fx
)]+ (r + 1) E

[
pr+1

(
W∗

Fx
)])

.

Hence, it suffices to show that

(r + 1) E
[
pr+1

(
W∗

Fx
)]
> (r − 1) E

[
pr
(
W∗

Fx
)]
,

for x ∈ (0, 1]. Note that the probability density function of W∗
F is (β − 1)cw−β+1 for w> x0;

otherwise it is equal to 0. So we obtain, for j ∈ {r, r + 1},

E
[
pj
(
W∗

Fx
)]= (β − 1)c

∫ ∞

x0

e−wx (wx)j

j! w−β+1dw

(z=wx)= (β − 1)
xβ−2

j! c
∫ ∞

x0

e−zzj−β+1dz.

Therefore, it suffices to show that∫ ∞

x0

e−zzr−β+2dz> (r − 1)
∫ ∞

x0

e−zzr−β+1dz.
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Applying integration by parts to the integral of the left-hand side, we obtain∫ ∞

x0

e−zzr−β+2dz = e−x0 xr−β+2
0 + (r − β + 2)

∫ ∞

x0

e−zzr−β+1dz

>(r − β + 2)
∫ ∞

x0

e−zzr−β+1dz
(β<3)
> (r − 1)

∫ ∞

x0

e−zzr−β+1dz.

�

Acknowledgements

We wish to thank the anonymous referees for their valuable comments and suggestions to
improve the presentation of the paper.

Funding information

N. Fountoulakis was partially supported by the EPSRC grant EP/K019740/1.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] ADLER, J. AND LEV, U. (2003). Bootstrap percolation: visualizations and applications. Brazilian J. Phys. 33,
641–644.

[2] ALBERT, R. AND BARABÁSI, A. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74,
47–97.

[3] AMINI, H. (2010). Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron.
J. Combinatorics 17, article no. R25.

[4] AMINI, H. (2010). Bootstrap percolation in living neural networks. J. Statist. Phys. 141, 459–475.
[5] AMINI, H., CONT, R. AND MINCA, A. (2016). Resilience to contagion in financial networks. Math. Finance

26, 329–365.
[6] AMINI, H. AND FOUNTOULAKIS, N. (2014). Bootstrap percolation in power-law random graphs. J. Statist.

Phys. 155, 72–92.
[7] AMINI, H. AND MINCA, A. (2016). Inhomogeneous financial networks and contagious links. Operat. Res. 64,

1109–1120.
[8] ATHREYA, K. AND NEY, P. (1972). Branching Processes. Springer, Berlin, Heidelberg.
[9] BALOGH, J. AND BOLLOBÁS, B. (2006). Bootstrap percolation on the hypercube. Prob. Theory Relat. Fields

134, 624–648.
[10] BALOGH, J., BOLLOBÁS, B., DUMINIL-COPIN, H. AND MORRIS, R. (2012). The sharp threshold for

bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 36, 2667–2701.
[11] BALOGH, J., BOLLOBÁS, B. AND MORRIS, R. (2009). Bootstrap percolation in three dimensions. Ann. Prob.

37, 1329–1380.
[12] BALOGH, J., PERES, Y. AND PETE, G. (2006). Bootstrap percolation on infinite trees and non-amenable

groups. Combinatorics Prob. Comput. 15, 715–730.
[13] BALOGH, J. AND PITTEL, B. G. (2007). Bootstrap percolation on the random regular graph. Random

Structures Algorithms 30, 257–286.
[14] BOLLOBÁS, B., JANSON, S. AND RIORDAN, O. (2007). The phase transition in inhomogeneous random

graphs. Random Structures Algorithms 31, 3–122.
[15] CERF, R. AND MANZO, F. (2002). The threshold regime of finite volume bootstrap percolation. Stoch. Process.

Appl. 101, 69–82.
[16] CHALUPA, J., LEATH, P. L. AND REICH, G. R. (1979). Bootstrap percolation on a Bethe lattice. J. Phys. C

12, L31–L35.
[17] CHUNG, F. AND LU, L. (2002). Connected components in random graphs with given expected degree

sequences. Ann. Combinatorics 6, 125–145.

https://doi.org/10.1017/apr.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.21


204 H. AMINI ET AL.

[18] CHUNG, F. AND LU, L. (2003). The average distance in a random graph with given expected degrees. Internet
Math. 1, 91–113.

[19] CHUNG, F., LU, L. AND VU, V. (2004). The spectra of random graphs with given expected degrees. Internet
Math. 1, 257–275.

[20] DETERING, N., MEYER-BRANDIS, T. AND PANAGIOTOU, K. (2019). Bootstrap percolation in directed
inhomogeneous random graphs. Electron. J. Combinatorics 26, article no. P3.12.

[21] DETERING, N., MEYER-BRANDIS, T., PANAGIOTOU, K. AND RITTER, D. (2019). Managing default
contagion in inhomogeneous financial networks. SIAM J. Financial Math. 10, 578–614.

[22] FONTES, L. AND SCHONMANN, R. (2008). Bootstrap percolation on homogeneous trees has 2 phase
transitions. J. Statist. Phys. 132, 839–861.

[23] FONTES, L. R., SCHONMANN, R. H. AND SIDORAVICIUS, V. (2002). Stretched exponential fixation in
stochastic Ising models at zero temperature. Commun. Math. Phys. 228, 495–518.

[24] HOLROYD, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Prob.
Theory Relat. Fields 125, 195–224.
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