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Bubble–particle collisions in turbulence are central to a variety of processes such as froth
flotation. Despite their importance, details of the collision process have not received
much attention yet. This is compounded by the sometimes counter-intuitive behaviour
of bubbles and particles in turbulence, as exemplified by the fact that they segregate in
space. Although bubble–particle relative behaviour is fundamentally different from that
of identical particles, the existing theoretical models are nearly all extensions of theories
for particle–particle collisions in turbulence. The adequacy of these theories has yet to
be assessed as appropriate data remain scarce to date. In this investigation, we study
the geometric collision rate by means of direct numerical simulations of bubble–particle
collisions in homogeneous isotropic turbulence using the point-particle approach over
a range of the relevant parameters, including the Stokes and Reynolds numbers. We
analyse the spatial distribution of bubble and particles, and quantify to what extent their
segregation reduces the collision rate. This effect is countered by increased approach
velocities for bubble–particle compared to monodisperse pairs, which we relate to the
difference in how bubbles and particles respond to fluid accelerations. We found that
in the investigated parameter range, these collision statistics are not altered significantly
by the inclusion of a lift force or different drag parametrisations, or when assuming
infinite particle density. Furthermore, we critically examine existing models and discuss
inconsistencies therein that contribute to the discrepancy.
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1. Introduction

Collisions between bubbles and particles in a turbulent flow are of significant technological
relevance. In particular, such collisions are essential to the flotation process, which is a
widely used separation technique especially in the mining industry (Nguyen & Schulze
2004). In this process, after grinding, small ore fragments are fed into a big water-filled
cell that is agitated via a rotor and into which air bubbles are injected. Collisions between
the ore particles and the bubbles then form the base for the decisive test: valuable mineral
particles attach to the bubbles due to their hydrophobic surface and consequently rise to
the top where they can be skimmed off as a froth, whereas the hydrophilic waste rock
particles remain in suspension and are eventually discharged as tailings. This technology
is already applied at staggering scales (Nguyen & Schulze (2004) estimated that a total of
2 billion tons of ore are treated annually). Given especially the relevance in the mining of
copper, and in view of the strong push for electrification in response the the climate crisis,
these numbers are likely to continue to rise in the future (Rogich & Matos 2008; World
Bank Group 2017). The interest to understand the collision process better is driven by the
demand for more reliable process modelling (Kostoglou, Karapantsios & Evgenidis 2020a)
but also by the need for performance improvement. The latter is especially a concern for
small particles with diameters smaller than 20 μm, where recovery is poor owing to their
low collision rates (Nguyen, George & Jameson 2006; Miettinen, Ralston & Fornasiero
2010).

For modelling purposes, the collision process is generally separated into two
components (Pumir & Wilkinson 2016): the ‘geometric collision rate’, which considers
the collisions neglecting any interaction between the collision partners, and the ‘collision
efficiency’, which quantifies how many of these collisions actually happen when
taking the local modification of the flow field into account. The focus here is on the
(ensemble-averaged) geometric collision rate between two species, ‘1’ and ‘2’, which
when expressed per unit volume can be written as

Z12 = Γ12n1n2, (1.1)

where Γ12 is the collision kernel, and n1 and n2 denote the respective number densities
of the two species. The collision kernel measures the rate at which the separation
vector between particle centres crosses the collision distance. For spherical particles
with a collision distance rc = r1 + r2 (where r1, r2 denote the particle radii), Γ12 can be
expressed as (Sundaram & Collins 1997)

Γ12 = 4πr2
c g(rc) S−(rc), (1.2)

where besides the surface area 4πr2
c of the collision sphere, the other factors are the radial

distribution function (RDF) at collision distance g(rc), which describes variations in the
local particle concentration, and the effective radial approach velocity at contact,

S−(rc) = −
∫ 0

−∞
�vrp.d.f.(�vr|rc) d(�vr). (1.3)

Here, �vr is the radial component of the relative velocity, which is positive when the pair
separates, and p.d.f.(�vr|rc) is the probability density function of �vr conditioned on a
pair with separation rc.

The bidisperse collision kernel Γ12 depends on a multitude of parameters characterising
properties of the suspended particles and of the carrier flow. The discussion here is
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restricted to homogeneous isotropic turbulence for which the most relevant dependencies
may be summarised in non-dimensional form as

Γ12

r3
c/τη

= f
(

St1, St2,
ρ1

ρf
,
ρ2

ρf
,Reλ,

r1

η
,

r2

η
,Fr, . . .

)
. (1.4)

Here, the Stokes number

Sti = τi

τη
= r2

i (2ρi/ρf + 1)
9ντη

, (1.5)

(i = 1, 2) characterises how well particles follow the flow by relating the particle response
time τi = r2

i (2ρi/ρf + 1)/(9ν) to the Kolmogorov time scale of the turbulence τη =
(ν/ε)1/2, with ν and ε denoting the kinematic viscosity and the average rate of turbulent
dissipation, respectively. Further, the ratios of particle (ρi) and fluid (ρf ) densities are
relevant as they characterise to what extent the particle motion is influenced by fluid
(‘added mass’) inertia and buoyancy. The particle radii ri determine the collision radius
rc, and their size relative to the Kolmogorov length scale η = (ν3/ε)1/4 determines the
range of turbulent scales relevant for their motion. In addition to turbulent driving, particle
motion may also be affected by gravitational effects, and the relative importance of these
two factors is captured by the Froude number Fr = aη/g, where aη = η/τ 2

η and g are
the turbulence and gravitational accelerations, respectively. Finally, the intensity of the
turbulence is measured by the Taylor Reynolds number Reλ = √

15/(νε) u′2, where u′
is the single-component root-mean-square (r.m.s.) fluid velocity. Obviously, the entire
parameter space spanned by (1.4) is vast and cannot be studied comprehensively here.
We therefore limit the present investigation to cases with St1 = St2 = St, and to the
zero-gravity regime, i.e. Fr → ∞. The benefit of these choices lies in the fact that they
keep the problem simple enough to disentangle the relevant mechanisms. Similarly, these
configurations are the most amenable to modelling approaches and therefore allow for
their evaluation at the most basic level.

Our investigation is based on direct numerical simulations of bubbles and particles
in statistically stationary homogeneous isotropic turbulence using the point-particle
approach. Details of this approach will be described in § 3 after first reviewing relevant
modelling approaches for the collision kernel in § 2. The results are shown in § 4, followed
in § 5 by practical considerations in light of our results, and conclusions.

2. Theoretical background and existing models

2.1. The tracer limit St → 0: shear mechanism
In the tracer limit of St → 0, the suspended species follow the flow faithfully and distribute
uniformly. This means that collisions occur only if particles of finite size are moved
relative to each other due to shearing motions in the flow. Considering the dominant
shear contribution of the smallest (Kolmogorov) scales of turbulence, and assuming local
isotropy as well as Gaussian distribution of the flow velocity gradient, Saffman & Turner
(1956) derived the classical result

Γ
(ST)

12 =
√

8π

15
r3

c

τη
, (2.1)

predicting the rate of shear-driven collisions in a turbulent flow. Note that here we use the
spherical formulation for the collision kernel, which was shown to be the appropriate form
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by Wang, Ayala & Xue (2005). Employing the concept of a collision cylinder, instead,
results in a slightly different value of the prefactor (

√
8π/3 ≈ 1.67 instead of

√
8π/15 ≈

1.29).

2.2. Intermediate St: preferential sampling and velocity decorrelation
For non-zero St, the suspended species no longer completely follow the flow. Such inertial
effects influence the collision rate via two different pathways. First, even if the drift is
small, its accumulated effect leads to preferential concentration, inducing clustering in
the particle field. Additionally, the increasing decorrelation between the local particle and
fluid velocities affects the collision velocities.

Preferential concentration of inertial particles is widely observed experimentally
(Aliseda et al. 2002; Monchaux, Bourgoin & Cartellier 2010; Obligado et al. 2014;
Petersen, Baker & Coletti 2019; Li et al. 2021) and numerically (Bec et al. 2007; Goto
& Vassilicos 2006; Calzavarini et al. 2008b; Voßkuhle et al. 2014; Ireland, Bragg &
Collins 2016). It is rather straightforward to extend (2.1) to account for this effect by simply
multiplying it with the RDF g12(rc) (Voßkuhle et al. 2014), yielding

Γ
(STc)

12 =
√

8π

15
r3

c

τη
g12(rc). (2.2)

Various approaches have been proposed to explain the phenomenon of preferential
concentration (Maxey 1987; Bec et al. 2005, 2007; Chen, Goto & Vassilicos 2006; Goto &
Vassilicos 2006; Coleman & Vassilicos 2009; Zaichik & Alipchenkov 2009; Fouxon 2012).
Among these, the most intuitive one is the ‘centrifuge picture’ (Maxey 1987), according to
which heavy particles are ejected out of eddies due to their inertia and hence accumulate in
regions of low vorticity and high strain. For collisions between heavy particles (e.g. cloud
droplets), it is therefore found that g12(rc) ≥ 1 generally (Zhou, Wexler & Wang 2001), i.e.
clustering enhances the collision rate in some cases even by multiple orders of magnitude
(Voßkuhle et al. 2014; Ireland et al. 2016; Pumir & Wilkinson 2016).

For the collision velocity, inertial effects can be split into a local mechanism and a
non-local mechanism. The local mechanism results from the fact that particles react
differently to the same fluid forcing provided that they have different properties. Hence
this effect contributes an additional relative velocity for bidispersed collisions only, and
plays no role in monodispersed cases. For this to occur, the particle trajectories should
not deviate significantly from the pathlines (i.e. St not too large). An extension of the
Saffman–Turner approach accounting for this effect has been reported by Yuu (1984).

In contrast, the non-local mechanism refers to the situation in which particles arrive
at the same location with different particle velocities. Illustratively, one can think of
these particles as being ‘slung out’ of neighbouring eddies, and the effect is therefore
also known as the ‘sling effect’ (Falkovich, Fouxon & Stepanov 2002). Unlike the local
mechanism, the sling effect is also active for monodisperse suspensions, and so far has
been studied almost exclusively in this context (e.g. Falkovich et al. 2002; Wilkinson,
Mehlig & Bezuglyy 2006; Falkovich & Pumir 2007; Ijzermans, Meneguz & Reeks 2010;
Bewley, Saw & Bodenschatz 2013; Voßkuhle et al. 2014). From these studies, it has
become clear (see e.g. Pumir & Wilkinson 2016, for an overview) that the sling effect
can significantly enhance monodisperse collision rates by increasing S−. A widely used
parametrisation is S− ∼ uη F(St,Reλ), where uη = η/τη is the Kolmogorov velocity, such
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that the sling-induced collision rate is given by

Γ
(slg)

11 = 4πr2
c uη F(St,Reλ). (2.3)

It has then been proposed (Wilkinson et al. 2006; Voßkuhle et al. 2014) to obtain the
overall collision rate from the sum

Γ
(tot)

11 = Γ
(STc)

11 + Γ
(slg)

11 . (2.4)

The underlying idea for this decomposition is that particles that are clustered close to
each other collide with low velocities, whereas those with high relative velocities can
be assumed to be uniformly distributed. Note that both (2.3) and (2.4) are given for the
monodisperse case only, since related results for the bidisperse case have not been reported
yet.

2.3. Large St limit: kinetic gas behaviour
At very large (but finite) St, the velocities of the suspended particles arriving at the
same point are increasingly uncorrelated. Assuming entirely random and isotropic particle
velocities in the spirit of the kinetic gas theory, Abrahamson (1975) derived the collision
kernel

Γ
(A)

12 =
√

8π r2
c

√
v′2

1 + v′2
2 , (2.5)

where the mean-square single-component particle velocity v′2
i is related to flow properties

via

v′2
i = Aiu′2 =

TfL

τi
+ γ 2

i

TfL

τi
+ 1

u′2, (2.6)

with TfL denoting the fluid Lagrangian integral time scale, and γi = 3ρf /(2ρi + ρf ). It has
been pointed out (Voßkuhle et al. 2014) that (2.5) is not strictly valid for turbulence as it
fails to account for the multiscale structure of the flow. Alternative derivations (Völk et al.
1980; Mehlig, Uski & Wilkinson 2007) based on the Kolmogorov (1941) phenomenology
arrived at F(St,∞) ∼ K

√
St, with K being a universal dimensionless constant, at the limit

of intense turbulence in the context of (2.3).

2.4. Modelling approaches for bubble–particle collisions in turbulence
Next, we outline briefly the different approaches to modelling bubble–particle collisions
reported in particular in the mining literature so far. For additional details, we refer the
reader to the reviews on the topic (e.g. Nguyen et al. 2016; Hassanzadeh et al. 2018;
Kostoglou, Karapantsios & Oikonomidou 2020b). Note that here and in the following we
use subscripts i = b, p to denote bubbles and heavy particles, respectively.

The most commonly adopted approach is to assume the high-St limit and to base the
collision models on (2.5). The differences from the theory of Abrahamson (1975) are
related to the expressions used to model the r.m.s. velocities. Instead of (2.6), Schubert
(1999) and later Bloom & Heindel (2002) used the relation given by Liepe & Möckel
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(1976), which reads

w′(LM)
i = 0.57

ε4/9r7/9
i

ν1/3

(
ρf − ρi

ρf

)2/3

. (2.7)

This result is based on an analogy to gravitational settling with the fluid acceleration in
the inertial range replacing gravity. The resulting apparent weight is balanced by Allen’s
drag, which scales with the particle slip velocity wi = vi − u as |wi|3/2 (with boldface
denoting vectors). Here, vi is the bubble/particle velocity, and u is the flow velocity. Later
work by Nguyen & Schulze (2004) used (2.7) with a different constant, 0.83, for bubbles.
For particles, they replaced the inertial subrange acceleration with that in the dissipation
range, and Allen’s drag with Stokes drag, in order to account for the small size of typical
particles. This resulted in

w′(NS)
p = 2r3

pε

135ν2

(
ρp − ρf

ρf

)
. (2.8)

Importantly, both (2.7) and (2.8) are expressions for the relative velocity between
bubbles/particles and the surrounding fluid. Their use with Abrahamson’s theory is
therefore inconsistent since (2.5) contains velocities in a fixed frame of reference. This
was already pointed out in Kostoglou et al. (2020a). We further note that the quasi-static
assumption underlying (2.7) and (2.8) is equivalent to a low-St approximation and therefore
not valid for the high-St limit in which (2.5) applies. In fact, (2.8) is consistent with the
rigorously derived small-St limit (Fouxon 2012)

wi = βiτiaf , (2.9)

with

βi = 2(ρf − ρi)

ρf + 2ρi
, (2.10)

if the fluid acceleration is approximated by the dissipative scaling |af | ≈ εri/(15ν). Note,
however, that it appears more appropriate to use |af | ≈ aη for small particles (ri/η � 1)
because |af | → 0 otherwise. In the general case, the fact that the fluid acceleration
experienced by the particle may vary considerably over the particle response time
precludes a simple relation between wi and af .

In a different approach, Ngo-Cong, Nguyen & Tran-Cong (2018) extended the model by
Yuu (1984) to the bubble–particle case. The resulting expression takes the form

Γ
(NC)

bp = (rb + rp)
2

√
8π

3

{
3(Ab + Ap − 2B)u′2 + (Abr2

b + Apr2
p + 2Brprb)

ε

3ν

}
, (2.11)

where the term proportional to u′2 represents the ‘local’ inertial effect on the relative
velocity that adds to the shear-driven collisions that are accounted for by the ε term. Aside
from bubble/particle properties, the coefficients Ai and B depend also on TfL, similar
to (2.6). The bubble–particle velocity correlation is determined by B. Ngo-Cong et al.
(2018) additionally incorporated (2.7) and (2.8) into this model. However, doing so suffers
from the same inconsistencies outlined above. As a consequence, this expression featured
a negative radicand when evaluated for the parameters in this study, and is therefore
not included further. It is worth mentioning that the term proportional to u′2 in (2.11)
does not approach (2.5) even at large St, since Ai = B for identical particles. We have
therefore extended the model along the lines of the theory of Kruis & Kusters (1997),
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which attempted to reconcile this issue by marrying the concept of Yuu (1984) for the
small St case and that of Williams & Crane (1983) (which does not consider shear-driven
collisions) for the large St case, to bubble–particle collisions (see Appendix A). The
original formulation of Kruis & Kusters (1997) accounted for collisions of particles of
equal density only. We further note the work of Fayed & Ragab (2013), who employed
the model of Zaichik, Simonin & Alipchenkov (2010), which was developed originally
for collisions between particles with arbitrary but equal density assuming a joint-normal
fluid–particle velocity distribution, to the bubble–particle case. Recently, Kostoglou et al.
(2020a) proposed another model that is specific to the case of very fine particles that
essentially follow the flow, such that the relative velocity is dominated by the bubble slip
velocity.

A common feature of almost all these models is that they are direct adaptations of
concepts developed for collisions between heavy particles. They therefore fail to account
for fundamental differences in how bubbles and heavy particles react to a turbulent flow.
Most strikingly, for example, the response to fluid accelerations given in (2.9) is in opposite
directions as β switches sign from negative to positive from ρi > ρf to ρi < ρf . Similarly,
applying the centrifuge picture to light particles such as bubbles, one expects them to
concentrate in regions of high vorticity as they travel to the centre of the eddies. This
implies that heavy and light particles segregate in a turbulent flow, as has indeed been
observed (Calzavarini et al. 2008a; Fayed & Ragab 2013). As a consequence, it is expected
that gbp(rc) < 1 in these cases, such that preferential concentration is expected to lead to a
decrease in Γ (STc)

bp for collisions between heavy and light particles. Such aspects cannot be
quantified easily from laboratory-scale flotation set-ups (e.g. Darabi et al. 2019) since it is
difficult to disentangle the many factors influencing the overall flotation rate. Numerically,
Wan et al. (2020) observed no reduction of the RDF, but increased relative velocities
for bubble–particle pairs based on a point-particle simulation while taking gravitational
effects into account. For cases without gravity, Fayed & Ragab (2013) reported gbp(rc) < 1
and relative velocities matching those predicted by the theory of Zaichik et al. (2010) for
simulations of the extreme case ρb/ρf = 0 and ρp/ρf → ∞ across a range of τi. It is the
goal of the present study to add to this a systematic investigation of how bubble–particle
relative behaviour affects their collision statistics in the low- to moderate-St regime, and
to assess how this affects modelling outcomes.

3. Methods

3.1. Fluid phase
To obtain the background turbulence, we solve the Navier–Stokes equation and the
continuity equation for incompressible flow:

Du
Dt

= − 1
ρf

∇P + ν ∇2u + f Ψ , (3.1a)

∇ · u = 0, (3.1b)

where D/Dt is the material derivative following a fluid element, t is the time, and P is
the pressure. The forcing f Ψ , which is non-zero only for the wavenumbers |κ |/|κ0| < 2.3
(i.e. the largest scales), with |κ0| being the smallest wavenumber along each direction, is
added to counter dissipation and maintain statistical stationarity. We employ the widely
used Eswaran & Pope (1988) forcing scheme (Chouippe & Uhlmann 2015; Spandan et al.
2020). In brief, a complex vector is generated in Fourier space for the forced wavenumbers
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Reλ N ε̄ η kmaxη uη u′/uη u′
x/u

′
y TL/τη Nb,p

72 2563 58.0 0.0041 3.3 0.62 4.3 0.98 19 10 000
175 5123 349 0.0013 2.1 0.77 6.6 0.97 43 77 700–140 000

Table 1. Statistics of the homogeneous isotropic turbulence: the grid size (N ), pseudo-dissipation (ε̄),
Kolmogorov length scale (η), maximum wavenumber (kmax), Kolmogorov velocity (uη) scale, r.m.s. velocity
fluctuations (u′), large-scale isotropy (u′

x/u
′
y), and large eddy turnover time (TL) relative to the Kolmogorov

time scale (τη). Here, Nb,Np are the numbers of bubbles and particles, respectively.

by multiple Uhlenbeck–Ornstein processes. This vector is then projected onto the plane
normal to the wavevector, thereby ensuring that f Ψ is divergence-free. To simulate the
fluid motion, a second-order finite-difference solver is implemented on a staggered grid
(Verzicco & Orlandi 1996; van der Poel et al. 2015). All spatial derivatives, including
the nonlinear terms, are discretised by a second-order central finite-difference method.
The simulation domain is a cubic box with length Lbox = 1 and triply periodic boundary
conditions to eliminate boundary effects. Time marching is performed using a fractional
step third-order low-storage Runge–Kutta scheme and the implicit Crank–Nicolson
scheme for all viscous terms at a maximum Courant–Friedrichs–Lewy (CFL) number 1.2.
The CFL number is max(|u1| + |u2| + |u3|)�t/�x over all cells, where the grid spacing
�x is identical in all the three dimensions. Here, u1, u2, u3 are the x-, y-, z-components of
u, and �t is the time step. The simulation is parallelised via slab decomposition along the
z-direction.

Turbulence with Reλ = 72 and 175 is generated from an initially quiescent fluid
following the tuning method proposed by Chouippe & Uhlmann (2015). The simulations
are allowed to run until the pseudo-dissipation ε̄ and Reλ are statistically stationary over
at least 30TL. These statistically stationary flow fields are then used as the starting fields
for the point-particle simulations. The flow statistics are listed in table 1. For validation,
the longitudinal and transverse energy spectra are plotted in figure 1. Excellent agreement
with the literature is shown.

3.2. Suspended phases
Bubbles and particles in the system are modelled using the point-particle approximation,
where forces act on point masses. The bubble and particle dynamics are governed by
(Maxey & Riley 1983; Tchen 1947)

4
3

πr3
i ρi

dvi

dt
= 6πμri fi(u − vi)+ 4

3
πr3

i ρf
Du
Dt

+ 2
3

πr3
i ρf

(
Du
Dt

− dvi

dt

)
, (3.2)

where μ = νρf is the absolute viscosity, ri is determined from Sti, and u is evaluated
at particle position in this equation. The three terms on the right-hand side of (3.2) are
the drag force, the pressure gradient force and the added mass force, respectively. Note
that history forces, lift and reverse coupling are not considered to render it easier to
disentangle the relative behaviour of bubble and particles. Nevertheless, as the lift force
can be expected to play a role for bubbles, its effect will be discussed in § 4.3. Furthermore,
a one-way coupled system is a consistent choice to study the geometric collision rate
where hydrodynamic interactions are neglected. It entails the assumption of the dilute
limit in which turbulence modifications by the suspended species are negligible (Brandt
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Figure 1. The (a) longitudinal and (b) transverse energy spectra in single-phase statistically stationary
homogeneous isotropic turbulence. Dashed lines show the data from Jiménez et al. (1993); triangles represent
the −5/3 power law. The agreement with the literature is excellent, so the dashed lines can be obscured,
especially in (b).

& Coletti 2022). The correction factor fi = 1 + 0.169 Re2/3
i accounts for finite bubble or

particle Reynolds number Rei = 2ri |wi|/ν, and implies the assumption of rigid spheres
that obey the no-slip boundary condition for both species (Nguyen & Schulze 2004).
This is realistic since liquids in flotation cells typically contain significant amounts of
surfactants, so that the bubble surfaces would likely be contaminated (Nguyen & Schulze
2004; Huang, Legendre & Guiraud 2012). Although other commonly used expressions for
fi are available, the difference is minimal, as shown in Appendix C.

Equation (3.2) is solved for each bubble and particle using a finite-difference scheme.
To determine the flow velocities and the velocity gradients at bubble and particle
positions, these quantities are interpolated from the Eulerian grid of the fluid solver to
the particle positions using tri-cubic Hermite spline interpolation with a stencil of four
points per direction. This choice is made as Hermite splines are comparable in accuracy
(van Hinsberg, Clercx & Toschi 2017) and computationally cheaper to implement than
B-splines (Ostilla-Monico et al. 2015). Time marching of vi is performed with the explicit
forward Euler method, and that of the positions of the suspended phases is done using
the second-order Adams–Bashforth scheme. For stability, the time step is restricted such
that neither the fluid nor the particle CFL number (max(vi1, vi2, vi3)�t/�x) exceeds the
value 1.2. This limit is enforced in both the suspended- and fluid-phase solvers, which run
with the same simulation time step. We have compared particle statistics to data from the
literature in order to verify our code, and those results are included in Appendix B.

Collisions between particles and bubbles are treated as ‘ghost collisions’. Under this
approach, a ‘collision’ occurs once the centres of the members of an approaching pair
reach the collision distance and the colliding pair pass each other without interaction.
The collision radii are determined through the virtual radii ri as computed from Sti. This
scheme is often employed by simulations of particles in turbulence (Bec et al. 2005, 2007;
Goto & Vassilicos 2008; Voßkuhle et al. 2014; Ireland et al. 2016) and has been shown to
be consistent with the formulation of Γ (ST)

pp (Wang, Wexler & Zhou 1998). To suppress the
effect of different length scales when comparing collision pairs, we take rc = rb + rp for
every type of collision. This is unlike studies examining solely particle–particle collisions,
which define rc = 2rp (e.g. Voßkuhle et al. 2014; Ireland et al. 2016). Numerically, these
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collisions are detected with the ‘proactive’ detection scheme in Sundaram & Collins
(1996).

The details of the simulation of the suspended phases are as follows. Particles
(ρp/ρf = 5) and bubbles (ρb/ρf = 1/1000) with Sti = 0.1–3 were seeded randomly and
homogeneously (10 000–140 000 each) into the turbulent flow after it had reached a
statistically stationary state as described in § 3.1. The density ratios correspond to sulphide
minerals colliding with air bubbles in water, while the simulated St range falls within
0.1 � St � 100, which corresponds to particle sizes yielding the highest mineral recovery
rate in conventional flotation cells (10 μm � rp � 100 μm when ν = 10−6 m2 s−1 and
ε = 5 m2 s−3, following Ngo-Cong et al. 2018). For each case, bubbles and particles have
identical Sti to focus on the effect of different densities and to keep the parameter space
manageable. The upper limit Sti ≤ 3 is mandated by the fact that the increasingly large
(virtual) bubble radius for larger St violates the point-particle approximation. For Stb = 3
and at Reλ = 175, we have rb/η ≈ 5, which is already marginal (Homann & Bec 2010).
We monitor the p.d.f.s of bubble and particle positions for statistical stationarity. Once
this has been reached, collision statistics are collected over at least 7.7TL. Two kinds
of statistics are evaluated: in a fixed reference frame considering all particles/bubbles
(Eulerian statistics), and along individual trajectories of the pairs that collide (Lagrangian
statistics). The former are computed at least every ∼ 0.06TL, while the latter are calculated
every time step (with only 25 % of all bubbles for the bubble–bubble case as the number
of colliding bubbles is high). All the statistics presented are time- and ensemble-averaged
unless indicated otherwise.

4. Results

4.1. Eulerian statistics

4.1.1. Collision kernel
Figure 2(a) shows simulation results for the dimensionless bubble–particle (bp),
bubble–bubble (bb) and particle–particle (pp) collision kernels Γ . In addition to
determining Γ based on counting the number of collisions per time step (solid triangles),
the collision kernels for Reλ = 175 are determined indirectly via the RDF and the effective
radial collision velocity according to (1.2) (shown as dots). Both results match closely,
verifying our analysis procedure. With the normalisation by τη/r3

c suggested by the
Saffman–Turner framework, the results are insensitive to the change in Reλ for the pp
and bp cases, but not for bb collisions. From the data, it is further evident that the relative
behaviour of bubbles and particles is distinct from that of identical particles. For collisions
between identical species, Γ τη/r3

c is maximum when St ∼ 1, while Γbpτη/r3
c exhibits a

minimum for this value of St. This trend is not captured by any of the models for the
bp case discussed in § 2.4, for which the predictions are included as lines in figure 2(a).
Generally, the model predictions are also significantly higher than the actual collision rates
obtained from the simulations, the exception being the Saffman & Turner (1956) model,
which best captures the magnitude yet fails to predict the proper St-trend, as is illustrated
more clearly in figure 2(b).

The fact that the Abrahamson (1975) and large-St Kruis & Kusters (1997) predictions
do not match the data is to be expected as the present St range does not match the
assumptions made in these frameworks. Naturally, this also transfers to all approaches
based on Γ (A)bp , and the somewhat better agreement with our data for models employing
(2.7) and (2.8) instead of (2.6) is rather an artefact of the inconsistencies discussed earlier.
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Figure 2. (a) The dimensionless bubble–particle (bp), bubble–bubble (bb) and particle–particle (pp) collision
kernels at collision distance. The triangle symbols denote Γ determined directly from the collision rate, while
Γ4π (shown only for the Reλ = 175 cases) is calculated according to (1.2). Unless specified otherwise, the
colour conventions for all figures follow this figure. (b) Zoomed-in version of (a) plotted on linear scale.

This is emphasised by figure 3(a), where the large difference between the modelled slip
velocities and the mean-square bubble/particle velocities v′2

i is obvious. Notably from the
same figure, v′2

p is well predicted by the models of Abrahamson (1975), Kruis & Kusters
(1997) (small St) and Zaichik et al. (2010). On the other hand, model estimates for v′2

b
are generally too high. It is insightful to note the stark overprediction by (2.6) as the
underlying framework by Abrahamson (1975) is also employed in the models by Ngo-Cong
et al. (2018). The resulting overprediction of v′2

b might therefore explain in part why the
estimate of Γ (NC)

bp is too large even though their concept (which is based on Yuu (1984)) is
in principle more suitable for the moderate values of St here. Unlike Abrahamson (1975),
Kruis & Kusters (1997) (small St) include dissipation range scaling in their modelling,
which is seen to improve the prediction at St � 1 but still overestimates v′2

b for larger
St. Finally, there is another factor, which affects all models. Bubbles especially do not
sample the flow randomly, such that the mean-square fluid velocity at bubble locations
〈u′2〉b is almost 10 % lower than u′2, as shown in figure 3(b). This implies that bubbles
sample flow regions with weaker fluid velocity fluctuations such that using u′2 as model
input may overestimate v′2

b . Figure 3(b) also shows that this effect is less pronounced for
heavy particles. The underlying cause for these observations is preferential sampling of
flow regions, which we will discuss in § 4.1.2.

4.1.2. Bubble/particle spatial distribution
In order to elucidate in particular the St trends for Γbp, we first investigate the distribution
of bubbles and particles in the flow. While all the models assume homogeneous
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Figure 3. (a) The mean-square velocity of bubbles and particles at various St. Models are shown for
Reλ = 175 only. (b) The mean-square fluid velocity conditioned at bubble/particle positions for Reλ = 175.

distributions, this does not hold at intermediate St, as figure 4 confirms, where
instantaneous snapshots of the bubble and particle fields at different St and Reλ = 175
are shown. For St = 1 and 3, bubbles and particles are seen to cluster but do so in
different regions of the flow. This behaviour has been observed previously in the literature
(Calzavarini et al. 2008a; Fayed & Ragab 2013; Wan et al. 2020) and is additionally shown
by the different mean-square fluid velocity at bubble/particle positions in figure 3(b). To
investigate this preferential concentration, we plot the norm of the rotation 〈R2〉r and strain
〈S2〉r rates of the flow at the particle/bubble positions in figure 5, with 〈·〉r denoting
an ensemble average over particles in pairs with separations smaller than r. For tracers
(St = 0), we obtain τ 2

η 〈R2〉r = τ 2
η 〈S2〉r = 0.5 with r → ∞, consistent with the analytical

result in statistically stationary homogeneous isotropic turbulence. For the other cases,
〈R2〉r and 〈S2〉r are conditioned on pairs with r ≤ 2rc. Figure 5(a) shows that bubbles
(particles) cluster in regions of high (low) rotation rate, which is consistent with the
centrifuge picture. Due to the clustering, conditioning has little effect for monodisperse
collisions, and the results are therefore very close to single particle statistics. This is
different for bp pairs, where R2 is consistently lower (higher) for bubbles (particles) close
to a particle (bubble). These observations imply that bp collisions occur for a subset of
bubbles/particles that is located outside of their respective ‘preferred’ location within
the flow. We note that correlations between particle/bubble locations and the strain rate
(figure 5b) are much weaker and do not display the same qualitative trends observed
for R2. This is consistent with observations by e.g. Ireland et al. (2016) and Wang et al.
(2020), who also found only a weak correlation between the positions of heavy particles
and regions of the flow with low strain rate.

A consequence of the preferential concentration in different flow regions is that bubbles
and particles become segregated. This effect is quantified by the RDF g(r). Essentially,
g(r) relates the actual number of pairs with separation r to that expected for uniformly
distributed particles. Therefore, g(r) = 1 when particles are uniformly distributed,
g(r) > 1 implies clustering, and g(r) < 1 implies segregation (Saw 2008). Figure 6(a)
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(b)(a) (c)

Figure 4. Instantaneous snapshots of bubbles and particles in a slice with width × height × depth = Lbox ×
Lbox × 20η in the non-transient state for Reλ = 175 at (a) St = 0.1, (b) St = 1, and (c) St = 3. The size of the
St = 0.1 bubbles and particles is tripled for visibility.
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Figure 5. Average value of the norm of (a) the rotation rate R2, and (b) the strain rate S2, of the flow at
bubble/particle/tracer positions. The bubble and particle data are conditioned on pairs with separation r ≤ 2rc.
Here, bp,b (bp,p) refer to bubbles (particles) in bubble–particle pairs.

shows results for the RDF at collision distance from our simulations. Bubble–particle pairs
indeed segregate, and the segregation is strongest when St = 1, as reflected by the local
minimum of g(rc). This is compatible with the corresponding behaviour of bubbles and
particles, which always cluster for the tested parameters, with maximum clustering when
St ∼ 1. Increasing Reλ increases segregation slightly, but the effect is weak.

Figure 6(b) displays the bubble–particle RDF as a function of r at Reλ = 175, which
helps us to understand the effect of different length scales. The shape of the g(r) curves
is distinctly different from the power-law behaviour reported for the monodisperse case
(Ireland et al. 2016). For all St, there is an essentially flat region for g(r) at small scales,
followed by a transition region with the steepest gradient at intermediate scale ∼10η
before approaching 1 for large separations. This behaviour suggests that the relevant
length scale for the segregation, i.e. a typical distance between bubble and particle
clusters, is at intermediate scales. To quantify this more precisely, we define the separation
corresponding to the point of inflexion in gbp(r) as the segregation length scale rseg.
The values of rseg are marked by crosses in figure 6(b), and plotted against St in the
inset. The figure shows that rseg/η increases approximately linearly with St and increases
slightly with Reλ. These findings are consistent with those by Calzavarini et al. (2008a),
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Figure 6. (a) RDF at collision distance. (b) The bubble–particle RDF as a function of r and the segregation
length scale rseg at Reλ = 175. The number above each line is the corresponding St, and the dotted segments
denote the RDF below the collision distance. Inset shows rseg at various St.

who studied segregation based on a concept inspired by Kolmogorov’s distance measure
(Kolmogorov 1963). In particular, these authors also report segregation scales ∼10η with
an increasing trend for higher Reλ.

The trends observed for g(rc) in figure 6(a) remarkably resemble those discussed for
the St dependence of Γ earlier, in the context of figure 2. It is therefore suggestive to
think that the effects of segregation may explain in particular the discrepancy between
the data and Γ (ST). We can check this by plotting Γ (STc) as defined in (2.2), which is
shown as hollow symbols in figure 7(a). From this plot, it can be seen that correcting
Γ (ST) with the RDF leads to an almost perfect match with the pp collision kernel. This
differs from, but is only seemingly at odds with, the results in Voßkuhle et al. (2014)
due to the larger collision distance considered here as a consequence of keeping rc =
rb + rp constant for all collision types. This therefore implies that while pp collisions
at moderate St are governed by the sling mechanism at small separations, they remain
shear-dominated at larger ones. In contrast, Γ (STc) overcorrects the bp collision kernel and
undercorrects that of bb collisions. In figure 7(b), we replot the same data in the form
of the ratio Γ (STc)/Γ , which can be interpreted as the relative contribution of the shear
mechanism (compensated for segregation/clustering) to the overall collision rate. For pp
collisions, this ratio is very close to 1 throughout. The situation is different for the bb
case, where Γ (STc)/Γ approaches 1 only for the lowest St considered, and the value drops
significantly for the higher St. Consistently the lowest values for Γ (STc)/Γ are observed for
bp collisions where the value quickly drops to around 0.5, which implies that a significant
part of the relative velocities cannot be explained by the shear mechanism in this case. It
is important to stress here that keeping rc constant for all collision types for a given St
removes this as a factor, such that the observed trends across species can only be rooted in
differences in the relative approach velocities, which will be studied next.

4.1.3. Relative velocities
We show results for the non-dimensional effective radial approach velocity S−/uη at
collision distance in figure 8(a). The non-dimensional approach velocity increases with
St and also slightly with Reλ for collisions involving bubbles, whereas it has only a very
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Figure 7. (a) The dimensionless collision kernel (solid symbols) and the Saffman–Turner prediction after
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Figure 8. (a) The effective radial collision velocity. (b) The effective bubble–particle radial approach velocity
against pair separation r at Reλ = 175. (c) The effective radial approach velocity of each type of collisions
across St = 0.1 to St = 3 at Reλ = 175. The dashed lines show the prediction by Zaichik et al. (2010).

weak Reλ dependence for pp collisions, as also reported in Ireland et al. (2016). Consistent
with figure 7, the approach velocities are highest for bp collisions and lowest in the pp
case.

To understand these trends, it is instructive to consider S− as a function of r, which is
presented in figure 8(b) for bp collisions for different St, and in the plots of figure 8(c)
for different collision types at constant St. Also shown in these figures is the effective
approach velocity for tracer particles, for which S− is proportional to r in the dissipation
range, as expected. In particular, for low St, where S−(r) remains close to the tracer
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Figure 9. The ratio of the effective radial approach velocity to the standard deviation of the radial component
of the relative velocity �vr at Reλ = 175.

curve, this in part explains the St dependence of S−(rc) as rc increases with increasing
St. However, the curves also ‘peel off’ the linear scaling at increasingly larger distances
and to a larger extent as St increases. For the pp case, this is a well-known manifestation
of the ‘sling effect’, where due to path history effects, particles arrive at the same location
with different velocities such that their relative velocities exceed those of the fluid. Note
that while the bb case has a larger S− than the tracer case, the linear scaling remains
mostly unchanged there, such that the difference presumably is rather due to preferential
concentration effects and the fact that the slip velocity at the same St is higher for this
case (see (2.9)). The deviations from the tracer behaviour are strongest for the bp case
throughout, and already for St ≥ 2 S− are essentially independent of r for r � 10η. The
decorrelation between bubble and particle velocities implicit in these observations is the
reason why S− is largest for all St in figure 8(a). The model of Zaichik et al. (2010) fails
to reproduce this feature. Instead, S− from the model is highest for bb collisions, such that
the trend falls in line with that of v′2

i (see figure 3). Plotting the model prediction against
the separation distance in figure 8(c) confirms that this trend persists over all r. Approach
velocities are also generally overpredicted by the model, which is in part also related to
the differences observed for v′2

b in figure 3 and to the significant peel off the linear scaling
especially for the bb case. Consistent with the results in figure 7, Spp

− at both Reλ is matched
very well by the Saffman–Turner model S(ST)

− = 0.5rc
√

2ε/15νπ, where the prefactor 0.5
accounts for the fact that only separating pairs are considered here.

In modelling approaches (e.g. Abrahamson 1975; Yuu 1984; Kruis & Kusters 1997;
Zaichik et al. 2010; Ngo-Cong et al. 2018), it is common to deduce S− based on a Gaussian
distribution of the relative radial velocity �vr. In this case, the ratio S−/

√
S2‖ can be

determined to be 1/
√

2π ≈ 0.4, where the variance is defined as

S2‖(r) =
∫ ∞

−∞
(�vr)

2p.d.f.(�vr|r) d(�vr). (4.1)

It was already reported in Ireland et al. (2016) that S−/
√

S2‖ can drop significantly below
the Gaussian value for pp collisions at St ∼ 1 and for small rc. This is confirmed by our
results in figure 9, where also the bb case is seen to follow similar trends. For bp collisions,
the ratio remains much closer to the Gaussian value, almost indifferent to St and close
to the tracer result. Relative velocities are therefore better approximated by the Gaussian
assumption for the bp case, while the overprediction of S− resulting from doing so is larger
for the monodisperse collisions.

For a more quantitative investigation of variation of S− across collision types, we plot
the excess bubble–particle effective radial collision velocity �S− = Sbp

− − (Sbb− + Spp
− )/2

in figure 10(a). At small St, such an additional approach velocity arises for the bp case from
the fact that, due to the change in sign of βi in (2.9), bubbles and particles react differently
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Figure 10. (a) The excess bubble–particle effective radial collision velocity�S− = Sbp
− − (Sbb− + Spp

− )/2 from
simulations over a range of St. The factor 1/2 for the dashed line accounts for the fact that S− is obtained by
averaging only over the negative portion of p.d.f.(�vr|rc) as defined in (1.3). (b) The radial component of the
relative velocity conditioned on pairs with r ∈ [rc − η/2, rc + η/2] binned by the local radial fluid acceleration
at Reλ = 175. (c) Schematic illustrations of the local and non-local turnstile mechanisms.

when subjected to the same fluid acceleration. Indeed, figure 10(b) shows that �vbp
r

conditioned on pairs with r ∈ [rc − η/2, rc + η/2] at small St closely follows the resulting
expression for the relative velocity �vr/uη = St (βb − βp)afr/aη, where afr is the average
radial fluid acceleration at bubble and particle positions. We therefore conceptualise the
resulting excess bp collision velocity as the local ‘turnstile mechanism’, since bubbles and
particles respectively move in opposite directions, as illustrated in figure 10(c). An estimate
for this effect can be obtained using af ∼ aη in (2.9) and assuming a random orientation
between the particle separation vector and the fluid acceleration, resulting in an average
angle φrdm = 1 rad ≈ 57◦. This is shown by the dashed line in figure 10(a). While not
strictly a prediction for �S−, this estimate is largely consistent with the data for St < 1,
suggesting that the enhanced approach velocity in this range is indeed due to the local
turnstile effect. This is further consistent with the fact that for St ≥ 1, the correlation of
�v

bp
r with the local fluid acceleration is seen to vanish almost completely in figure 10(b).

A positive �S− is also predicted by the model of Zaichik et al. (2010), but underestimates
the value in the low-St regime. Beyond St = 1,�S− flattens off at high values. Along with
the observations made in figure 8(c), this suggests that the ‘path history’ effect active at
these St values is enhanced for the bp case. We can rationalise this in terms of a non-local
‘turnstile mechanism’ (see figure 10c), where differences in the particle velocities arise
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Figure 11. Norm of (a) the rotation rates and (b) the strain rates of the flow at bubble and particle positions
against pair separation conditioned on colliding pairs at Reλ = 175 for r ≥ rc. Only the St = 1 case is shown
for bubble–bubble and particle–particle pairs. Also plotted at r → +∞ is the unconditioned R2 and S2 at the
respective St.

as bubbles and particles interact differently with larger and more energetic eddies in
the flow. As a consequence, their local velocities differ more than for monodisperse cases
at equal St. Both the local and non-local inertial effects discussed here enhance the relative
approach velocity and therefore explain why Γ (STc)

bp < Γbp as observed before.

4.2. Lagrangian statistics
To better examine the collision process, we adopt the Lagrangian point of view, where
colliding pairs are tracked individually for separations r ≤ 100η up to collision. The
corresponding statistics averaging over all pairs with the same r are denoted by the
suffix L.

In figure 11, we show how R2|L and S2|L vary as functions of r for the colliding
pairs. Consistent with the results in figure 5, variations are significantly stronger for
R2|L (figure 11a) compared to S2|L (figure 11b). In contrast to the monodisperse case,
bubbles and particles need to leave their preferred flow regions in order to collide. While
at r/η ∼ 100 the unconditioned preferential concentration (indicated by the symbols in
figure 11) is mostly recovered, a pronounced drift generally sets in for r/η � 50. This
might suggest that interaction with eddies at this intermediate range plays a role in bringing
bubbles and particles together from their segregated locations. At St = 0.1, bubbles and
particles appear to occupy similar flow regions for r/η � 10 before colliding, i.e. in
particular, the R2|L curve flattens at these scales, whereas the same is not the case at St = 1
and St = 3, where the collision distance is larger. These observations are consistent with
the considerations regarding the local and non-local turnstile mechanisms made above. It is
noteworthy that R2|L at St ≤ 1 varies mostly for bubbles as they approach particles, while
at St = 3, R2|L is almost constant for the bubbles but varies more for the particles. The
latter case also stands out in the S2|L plot as the slight decrease in strain values towards
collision is not observed there.

In figure 12, we present velocity statistics conditioned on the colliding pairs. In
particular, we consider the approach velocity S−|L (figure 12a) as well as the r.m.s. relative
speed (�v)′|L (figure 12b). The approach velocities differ slightly in magnitude from the
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Figure 12. (a) The effective approach velocity, and (b) the r.m.s. relative speed, conditioned on colliding
pairs at Reλ = 175.

unconditioned results in figure 8, but the trends remain consistent. In particular, Sbp
− |L is

again largest for separations close to the respective collision distances for all St shown.
This is remarkable in view of the fact that (�v)′|L is actually largest for the bb case. This
implies that �v and r tend to be more anti-aligned for the bp case to yield the higher
relative approach velocity.

To measure this, the angle between the separation vector and the relative velocity
vector �φ (see the inset of figure 13a) is used. For a head-on approach, �φ = 0◦, while
�φ = 90◦ means that the other particle is circling around in the rest frame of the collision
partner. Note that as colliding particles must be approaching each other, 0◦ ≤ �φ < 90◦.
As demonstrated in figure 13(a), the bubble–particle pairs are indeed the most anti-aligned,
i.e. �φ|L is lowest, relative to the other types of collisions near rc. Figure 13(b) shows the
ratio of the cosines of �φ|L(rc) as a measure for how much differences in alignment lead
to a relative enhancement of S−(rc). The ratio is up to 10 for bp relative to bb collisions,
and up to ∼1.5 compared to particle–particle collisions, and values for both cases are
slightly higher at the higher Reλ. When interpreting the smaller difference between pp and
bp collisions here, it should be kept in mind that based on the discussion around figure 7,
the collision mechanism differs between these two cases: whereas pp collisions appear
predominantly shear-driven, where a good alignment may be expected, inertial effects, for
which this is not necessarily the case, play a much more significant role for bp collisions.

4.3. Effect of lift, finite particle density and nonlinear drag
Our simulations are performed without the lift force using a finite particle density
ρp/ρf = 5 and a nonlinear drag law with fi = 1 + 0.169 Re2/3

i . To test how sensitive
our results are to these parameters, we ran addition simulations for Reλ = 175 changing
one parameter at a time: adding the lift force FL = −2/3ρf πr3

i (vi − u)× (∇ × u) to the
right-hand side of (3.2), setting ρp/ρf = ∞, or using Stokes drag (fi = 1) for both phases.
For all of these simulations, rc is chosen to be identical to the case when ρp/ρf = 5.
We compare the results for Γ in figure 14, and those for g(rc) and S−(rc) in figure 15.
The plots show that the collision statistics are not sensitive to the lift force. Also more
generally, the effect of the lift force is limited, with the most noticeable change occurring
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Figure 13. (a) The angle between the separation and relative velocity vectors �φ for r ≥ rc at Reλ = 175.
Bubble–particle/bubble–bubble/particle–particle pairs are represented by green/blue/red lines as in figure 12.
The inset shows the definition of �φ in the rest frame of the particle on the right. (b) The extra angular
contribution to the radial component of the bubble–particle collision velocity relative to the bubble–bubble
and particle–particle cases.
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Figure 14. The dimensionless collision kernel for different particle densities simulated, with the lift force
included and for the case when the drag correction factor is fi = 1.

for the preferential sampling where we observed a slight decrease in τη〈R2〉r at bubble
clusters, consistent with Mazzitelli, Lohse & Toschi (2003). It is also evident that the
particle density affects these quantities only marginally. Similarly, the results remain
largely unchanged for the fi = 1 case, with the exception of a slight increase in Γbp due
to a higher S− at the larger St. We furthermore note that other expressions for fi have
been proposed in the literature (Schiller & Naumann 1933; Clift, Grace & Weber 2005;
Wan et al. 2020). These are compared in Appendix C, which shows that they do not differ
significantly when Rei � 100. Hence we conclude that our results would not be sensitive
to whichever one of these parametrisations is chosen. Based on the findings in this section,
it therefore appears appropriate to neglect lift, and to use the simplifications of linear drag
and ρp/ρf → ∞ for simulations and modelling approaches in the present parameter range.
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Figure 15. (a) The RDF at collision distance, and (b) the effective radial collision velocity for different particle
densities, with the lift force included and for the case when the drag correction factor is fi = 1. The symbols
follow figure 14.

5. Discussion and conclusion

We studied bubble–particle collisions in turbulence using a point-particle approach.
Besides a critical appraisal of current models for the problem, our results highlight that the
difference in the density ratios between bubbles and particles critically affects the collision
statistics. An overview of the physical picture that emerges is presented in figure 16.
For St → 0, the shear mechanism is applicable, meaning that the collision velocity is
well-described by the local fluid velocity gradient. Once St reaches finite values, bubbles
and particles concentrate preferentially in different regions of the flow, which leads to their
segregation. This effect reduces the bubble–particle collision kernel Γbp and is maximal
for St ∼ 1. The correction remains O(1), which is comparable to the enhancement of
the collision kernel due to clustering for particle–particle cases, but much less than that
for the bubble–bubble cases, respectively. For particle–particle collisions (evaluated at
rc = rb + rp), the relative approach velocities are found to be entirely consistent with the
shear mechanism for the full range of St explored here, such that the collision kernel in
these cases is very well approximated by extending the shear-induced collision kernel
to account for non-uniform particle concentration Γ (STc). The same does not hold for
bubble–particle and bubble–bubble collisions, where inertial effects additionally play a
role and enhance the effective relative approach velocities beyond the shear scaling. This
enhancement is strongest for the bubble–particle case, and we conceptualise this effect in
terms of a ‘turnstile’ mechanism, which is related to the fact that fluid accelerations lead
to opposing drift velocities relative to the fluid for bubbles and particles. This happens
locally, i.e. on the same fluid element, if St is sufficiently small for bubbles/particles to
follow pathlines (St ≤ 0.5 based on the results in figure 10), but also appears to play a
role at higher St, where the path history becomes more relevant. For St � 2, the ratio
Γ (STc)/Γ and the values of the effective radial approach velocity at contact S−(rc) are
comparable for bubble–particle and bubble–bubble collisions, which indicates that the
‘non-local’ turnstile is less prevalent there, in line with the fact that local particle/bubble
velocities become increasingly random at larger St.

Our method does not allow us to assess the high St (kinetic-gas-like) regime since
bubble sizes violate the point-particle assumption. Applying the Abrahamson (1975)
model pertinent to this regime to the present data vastly overpredicts the collision kernel,
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Figure 16. A sketch of the bubble–particle collision mechanisms with their approximate St dependence.

and the apparent improvement by adaptations of this framework is merely an artefact
of using inconsistent velocity expressions. Our data for bubble–particle collisions are
better approximated by the models of Saffman & Turner (1956) and Zaichik et al. (2010)
when taking an additional correction for the inhomogeneous distribution into account. The
predictions based on the theory of Zaichik et al. (2010) generally overestimate S− and fail
to reproduce the finding that Sbp

− is largest in the present parameter range when comparing
across species. These observations are not affected when using a linear drag relation, i.e.
fi = 1 in (3.2), or in the limit ρp/ρf → ∞ as shown in § 4.3. We therefore could not
reproduce the good agreement with the Zaichik et al. (2010) theory for Sbp

− reported in
Fayed & Ragab (2013). Potentially, this is due to different choices for Stb, which we set to
equal to Stp, whereas this parameter is kept constant in Fayed & Ragab (2013).

In our simulations, we employ the non-dimensional control parameters St and Reλ.
In practice, the fluid and particle properties are controlled separately so using rb, rp
and ε is more common. However, by definition, changing ε affects both St and Reλ. To
assess the overall effect, consider the region between St = 0.1 and St = 0.5, where the
non-dimensional collision kernel Γbpτη/r3

c decreases most sharply and drops by a factor
of approximately 1.3. As the particle parameters are constant, τi = const., this is associated
with a 5-fold decrease in τη. According to the shear scaling, which appears to be applicable
to our data, this increase in turbulence intensity implies also a 5-fold increase in Γbp.
Hence there remains a net benefit from increasing the turbulence intensity even in this
range, although the effect is reduced somewhat due to segregation.

Our results show that considering finite particle density, nonlinear drag and the lift force
have limited effect on the bubble–particle collision rate. However, other relevant factors

959 A6-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.119


Bubble–particle collisions in turbulence

are yet to be explored. Most importantly, this concerns the buoyancy force and finite size
effects in particular for the bubble motion and non-identical St for bubbles and particles,
as well as modelling the collision behaviour of bubbles and particles. More complex
simulations as well as experiments are certainly needed to make precise predictions of the
bubble–particle collision rate in realistic settings. However, as far as modelling approaches
and a physical understanding are concerned, we believe that the most promising approach
to disentangle the effect of additional factors (such as buoyancy) is to treat them as
modifications to a simpler base case like the one studied here.
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Appendix A. Extension of the Kruis & Kusters (1997) model to particles with
different densities

The original model by Kruis & Kusters (1997) is applicable to collisions of particles with
arbitrary but equal density only. Here, we extend their framework to collisions of particles
with different densities. In their model, Kruis & Kusters (1997) considered two limits:
small and large St. We follow their approach to derive the corresponding expressions for
particles with different densities. For convenience, we first rewrite (3.2) as

dvi

dt
= γi

Du
Dt

+ u − vi

τi
, (A1)

where γi = 3ρf /(2ρi + ρf ) and i = 1, 2 as in § 1.

A.1. Small St limit
For small St, Kruis & Kusters (1997) based their model on Yuu (1984), which considers a
‘local’ inertial effect due to the different response to fluid fluctuations of particles having
different St (originally termed the ‘accelerative mechanism’ in Kruis & Kusters (1997))
and the shear mechanism. The main contribution by Kruis & Kusters (1997) is employing
a more accurate expression of the fluid Eulerian energy spectrum that also captures the
dissipation range behaviour

Ef (ω) = 4u′2ξ
2π(ξ − 1)

(
TfL

1 + T2
fLω

2
− TfL

ξ2 + T2
fLω

2

)
, (A2)
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where ω is the angular frequency,

ξ = 2
(

TfL

τL

)2

, (A3)

TfL = 0.4Lf /u′ is the fluid Lagrangian integral time scale, Lf is the Eulerian longitudinal
integral length scale, and τ 2

L = 2u′2/〈(Du/Dt)2〉 = 2u′2/(1.16ε3/2ν−1/2) is the square of
the Lagrangian time scale.

For the local inertial effect, the ensemble average of the square of the collision velocity
is

〈[(�v)(loc)
12 ]2〉 = v′2

1 + v′2
2 − 2〈v1v2〉, (A4)

where 〈·〉 denotes ensemble averaging, and

v2
i = u′2 ξ

ξ − 1

[
1 + γ 2

i τi/TfL

1 + τi/TfL
− 1 + γ 2

i ξτi/TfL

ξ(1 + ξτi/TfL)

]
(A5)

as derived in Kruis & Kusters (1997). The integral giving the particle velocity correlation
term follows Yuu (1984), whose model has been extended to particles with unequal
densities in Ngo-Cong et al. (2018). The integral in Ngo-Cong et al. (2018) reads

〈v1v2〉 =
∫ +∞

0

(τ−2
1 + γ1ω

2)(τ−2
2 + γ2ω

2)+ τ−1
1 τ−1

2 (γ1 − 1)(γ2 − 1)ω2

(τ−2
1 + ω2)(τ−2

2 + ω2)
Ef (ω) dω.

(A6)

Note that although Kruis & Kusters (1997) found a misprint in the integral given by Yuu
(1984), this error has not propagated to Ngo-Cong et al. (2018). Performing the integration
yields

〈v1v2〉
u′2 = 1 + ξ

(ξ − 1)(τ−1
1 + τ−1

2 )

[
(γ1 − 1)(τ−1

2 + τ−1
1 γ2)

1 + τ−1
1 TfL

+ (τ−1
1 + τ−1

2 γ1)(γ2 − 1)

1 + τ−1
2 TfL

− (γ1 − 1)(τ−1
2 + τ−1

1 γ2)

τ−1
1 TfL + ξ

− (τ−1
1 + τ−1

2 γ1)(γ2 − 1)

τ−1
2 TfL + ξ

]
, (A7)

which is different from the corresponding expression in Ngo-Cong et al. (2018) solely
because of the usage of another form of Ef (ω) as given by (A2) in (A6).

For the collision velocity due to the shear mechanism, Kruis & Kusters (1997) used the
result in Yuu (1984):

〈[(�v)(shr)
12 ]2〉 = ε

5ν

(
v′2

1
u′2 r2

1 + v′2
2

u′2 r2
2 + 2

〈v1v2〉
u′2 r1r2

)
. (A8)

Using (1.5) and allowing γ1 /= γ2 gives

〈[(�v)(shr)
12 ]2〉 = 3ε

5

(
v′2

1
u′2

τ1

γ1
+ v′2

2
u′2

τ2

γ2
+ 2

〈v1v2〉
u′2

√
τ1τ2

γ1γ2

)
. (A9)

The overall collision kernel is then given by

Γ12 =
√

8π r2
c

√
〈[(�v)(loc)

12 ]2〉 + 〈[(�v)(shr)
12 ]2〉. (A10)

Note that in contrast to the expression in Kruis & Kusters (1997), (A10) does not carry a
factor 1/

√
3 as u′ is defined as the single-component r.m.s. fluid velocity.

959 A6-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.119


Bubble–particle collisions in turbulence

A.2. Large St limit
The Kruis & Kusters (1997) expression of Γ for large St is essentially based on Williams
& Crane (1983) except that the added mass term is retained. As in § A.1, the densities of
the different species γi are assumed to be distinct. In this limit, the shear mechanism is not
considered, so

〈(�v)212〉 = v′2
1 + v′2

2 − 2〈v1v2〉 (A11)

and

Γ12 =
√

8π r2
c

√
〈(�v)212〉. (A12)

Furthermore, a simpler version of Ef (ω), namely

Ef (ω) = 4u′2

2π

(
TfL

1 + T2
fLω

2

)
(A13)

is used, which corresponds to an exponentially decaying fluid velocity autocorrelation
function ‘moving with the mean flow’ R∗

E(t) = exp(−|t|/TfL) that does not account for the
dissipation range. Kruis & Kusters (1997) showed that

v′2
i = u′2 1 + γ 2

i τi/TfL

1 + τi/TfL
, (A14)

which leaves only the particle velocity correlation to be determined.
To determine 〈v1v2〉, we integrate (A1) for t ∈ (−∞, 0] and exercise the freedom that

t = 0 can be chosen at any instant, to obtain

vij(xi, t) = γi uij(xi, t)+ 1 − γi

τi

∫ +∞

0
uij(xi, t − φ) exp

(
−φ
τi

)
dφ, (A15)

where j = x, y, z are the individual components of the corresponding vector, and xi is the
position vector. Then using the approximation (Williams & Crane 1983)

〈u(x1, t′) u(x2, t′′)〉 ≈ R∗
E(t

′ − t′′)
∫ +∞

0
Ef (ω) cos

[
ω �̂v

(
t − t′ + t′′

2

)]
dω, (A16)

where �̂v is a non-dimensional particle relative velocity, we have

〈v1v2〉 = γ1γ2u′2 + (1 − γ1)(1 − γ2)

τ1τ2

∫ ∞

0

∫ ∞

0

∫ ∞

0
exp

(
−|ψ − φ|

TfL

)
2
π

u′2 TfL

1 + ω2T2
fL

× cos
[
ω �̂v

(
ψ + φ

2

)]
exp

(
−ψ
τ1

− φ

τ2

)
dω dψ dφ

+ (1 − γ1)γ2

τ1

∫ ∞

0

∫ ∞

0
exp

(
−|ψ |

TfL

)
2
π

u′2 TfL

1 + ω2T2
fL

cos
(
ω �̂v

ψ

2

)
exp

(
−ψ
τ1

)
dω dψ

+ γ1(1 − γ2)

τ2

∫ ∞

0

∫ ∞

0
exp

(
−|φ|

TfL

)
2
π

u′2 TfL

1 + ω2T2
fL

cos
(
ω �̂v

φ

2

)
exp

(
− φ

τ2

)
dω dφ.

(A17)

As τ1, τ2 � 1, exp(−ψ/τ1 − φ/τ2) ≈ 0 except when ψ = φ. Hence we retain this case
only in the arguments of cosine and exp(−ψ/τ1 − φ/τ2). Furthermore, we replace �̂v by
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Figure 17. Particle–particle collision statistics of infinitely heavy particles: (a) the RDF gpp(r) at St = 1;
(b) the variance of the radial component of the relative velocity Spp

2‖(r) at St = 1; and (c) the collision kernel
Γpp when taking ρp/ρf = 250 and rc = 2rp.

�̂vX =
√
(v′2

1 + v′2
2 )/u

′2 as the particle velocity correlation should be weak at large St.
Thus

〈v1v2〉
u′2 = γ1γ2 + (1 − γ1)(1 − γ2)

τ1τ2

∫ ∞

0

∫ ∞

0

∫ ∞

0
exp

(
−|ψ − φ|

TfL

)
dψ

2TfL

π(1 + ω2T2
fL)

× cos (ω �̂vX φ) exp
[
−φ

(
1
τ1

+ 1
τ2

)]
dω dφ

+ (1 − γ1)γ2

τ1

∫ ∞

0

∫ ∞

0
exp

(
−|ψ |

TfL

)
2TfL

π(1 + ω2T2
fL)

cos
(
ω �̂vX

ψ

2

)
exp

(
−ψ
τ1

)
dω dψ

+ γ1(1 − γ2)

τ2

∫ ∞

0

∫ ∞

0
exp

(
−|φ|

TfL

)
2TfL

π(1 + ω2T2
fL)

cos
(
ω �̂vX

φ

2

)
exp

(
− φ

τ2

)
dω dφ.

(A18)

Integrating first over ω and then the remaining variables finally results in

〈v1v2〉
u′2 = TfL

(1 − γ1)(1 − γ2)

τ1τ2

[
2

τ−1
1 + τ−1

2 + �̂vX T−1
fL

−
(

1
τ1

+ 1
τ2

+ �̂vX + 1
TfL

)−1]

+ (1 − γ1)γ2

τ1

(
1

TfL
+ 1
τ1

+ �̂vX

2TfL

)−1

+ γ1(1 − γ2)

τ2

(
1

TfL
+ 1
τ2

+ �̂vX

2TfL

)−1

+ γ1γ2. (A19)

Appendix B. Verification of point-particle code

To verify our code for the suspended phase, we compared the results of the infinitely
heavy particle cases to the literature. As demonstrated by figure 17, the RDF g(r), the
variance of the radial component of the relative velocity Spp

2‖(r) as defined by (4.1), and
the collision kernel Γ agree very well with data from Ireland et al. (2016) and Voßkuhle
et al. (2014), especially considering the difference in Reλ compared to the literature data
in figures 17(a,b).
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Figure 18. Various drag correction factors fi from the literature compared to the one by Nguyen & Schulze
(2004) used in this study (solid green line).

Appendix C. Comparison of different drag parametrisations

Various expressions of the drag correction factor fi have been proposed in the literature.
Figure 18 shows that they are mostly similar for Rei � 100.
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