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Nontrivial invariant subspaces of linear
operator pencils
Jaewoong Kim and Jasang Yoon

Abstract. In this paper, we introduce the spherical polar decomposition of the linear pencil of an
ordered pair T = (T1 , T2) and investigate nontrivial invariant subspaces between the generalized
spherical Aluthge transform of the linear pencil of T and the linear pencil of the original pair T of
bounded operators with dense ranges.

1 Introduction

Let H and K be Hilbert spaces, and let B(H,K) be the algebra of bounded linear
operators from H to K. If H =K, we write B(H) ∶= B(H,H). For an operator S ∈
B(H,K), the kernel of S is denoted by ker(S) and the range of S is denoted by ran(S).
The linear pencil of an ordered pair T = (T1 , T2) of operators T1 and T2 in B(H) is
defined by {T1 − λT2 ∶ λ ∈ C}, and the linear pencil of T = (T1 , T2) at λ ∈ C is defined
by Tλ ∶= T1 − λT2. (For a detailed discussion of the linear pencil of T, the reader may
refer to [3, 7].) A subspace M ⊆H is called a nontrivial invariant subspace (NIS) of
the pencil of T if M ≠ {0} ,H and TλM ⊆M for any λ ∈ C .

In this paper, we introduce the spherical polar decomposition of the linear pencil
of an ordered pair T = (T1 , T2) and investigate nontrivial invariant subspaces between
the generalized spherical Aluthge transform of the linear pencil of T and the linear
pencil of the original pair T of bounded operators with dense ranges. We briefly state
our main results. In Theorem 1.5, we show that for a pair T of operators with dense
range and for 0 ≤ t ≤ 1, if the linear pencil of T has an NIS, then the generalized
spherical Aluthge transform of the linear pencil of T has also an NIS. In Theorem 1.7,

we show that the converse of the result in Theorem 1.5 is true when T = ( T1
T2
) is

bounded below. Next, in Theorem 1.8, we show that for 0 ≤ t ≤ 1, {T1 − λT2 ∶ λ ∈ C}
has an NIS if and only if the generalized spherical Aluthge transform {T̂ t

1 − λT̂ t
2 ∶ λ ∈

C} has an NIS, when T = (T1 , T2) is a commuting pair of operators with dense ranges.
Next, in Theorem 1.9, we can show that for 0 ≤ t ≤ 1, T̂t is a commuting pair and T̂t has
a nontrivial joint invariant subspace (NJIS) if and only if T does, when T = (T1 , T2) is a
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commuting pair of operators with dense ranges. In Theorem 1.9, we first employ a tool
and technique which connects a relation between an NJIS and NIS in multivariable
and single operator theories to obtain a new proof of the known results in [8, 12, 13].
Finally, in Example 1.11, we give a partial answer to Conjecture 1.10 in [13, Conjecture
2.29].

We now introduce some definitions and terminology for our paper. The polar
decomposition of a bounded linear operator S inB(H,K) is a canonical factorization
S = U ∣S∣, where ∣S∣ =

√
S∗S is a positive operator, U is a partial isometry with (kerS)⊥

as its initial space and ranS, the closure of ranS, as its final space, and kerS = kerU =
ker ∣S∣. It is known that if S =WP, where P is positive and W is a partial isometry
with kerW = kerP, then P = ∣S∣ and U =W . The polar decomposition for the linear
pencil of an ordered pair T = (T1 , T2) needs to be defined uniformly for all operators
in {T1 − λT2 ∶ λ ∈ C}. For this, we observe the polar decomposition for the operator
T such that

T = ( T1
T2
) = V P ∶H →H ⊕H,

where T = V P is the polar decomposition of T, V = ( V1
V2
) is a partial isometry from

H to H ⊕H, and P = ∣T ∣ = (T∗T)
1
2 = (T∗1 T1 + T∗2 T2)

1
2 is the positive operator on H

(see [5, 6, 12, 13]). Now we define the polar decomposition of the linear pencil of an
ordered pair T = (T1 , T2) by using the polar decomposition of T in B(H,H ⊕H).

Definition 1.1 The polar decomposition of the linear pencil of an ordered pair
T=(T1 , T2) is the linear pencil of the ordered pair (V1P, V2P), i.e.,

{V1P − λV2P = (V1 − λV2)P ∶ λ ∈ C}.

Recall the Aluthge transform S̃ ∶= ∣S∣ 12 U ∣S∣ 12 , the generalized Aluthge transform
S̃ t ∶= ∣S∣tU ∣S∣1−t (0 ≤ t ≤ 1), and the Duggal transform S̃D ∶= ∣S∣U of S = U ∣S∣ ∈ B(H).
These transformations have received considerable attention in recent years. For more
details, the reader is referred to [1, 2, 4, 10, 11, 13].

Let T = (T1 , T2) ≡ (V1P, V2P) be a pair of operators, where P, V1, and V2 are given
above. Naturally, we can get the spherical polar decomposition of a pair of operators
T = (T1 , T2) as follows [12, 13]:

T = (T1 , T2) ≡ (V1P, V2P).

Then, for 0 ≤ t ≤ 1, the generalized spherical Aluthge transform T̂t is defined by

T̂t = (T̂ t
1 , T̂ t

2) = (P tV1P1−t , P tV2P1−t).

In particular, when t = 1
2 (resp. t = 1), we call the spherical Aluthge (resp. Duggal)

transform T̂ (resp. T̂D) of T, that is,

T̂ ∶= (T̂1 , T̂2) ≡ (P
1
2 V1P

1
2 , P

1
2 V2P

1
2 ) (resp. T̂D ∶= (T̂ D

1 , T̂ D
2 ) ≡ (PV1 , PV2)).
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Now we define the generalized spherical Aluthge transform of the linear pencil of
T = (T1 , T2).

Definition 1.2 For 0 ≤ t ≤ 1, the generalized spherical Aluthge transform of the
linear pencil of T = (T1 , T2) is defined as the linear pencil of T̂t = (T̂ t

1 , T̂ t
2), that is,

{T̂ t
1 − λT̂ t

2 ∶ λ ∈ C} = {P t(V1 − λV2)P1−t ∶ λ ∈ C}.

Also, the generalized spherical Aluthge transform T̂
t
λ at λ ∈ C of the linear pencil of

T = (T1 , T2) is defined by

T̂
t
λ = T̂ t

1 − λT̂ t
2 = P t(V1 − λV2)P1−t .

When t = 1
2 (resp. t = 1), we will denote T̂λ ≡ T̂

1
2
λ (resp. T̂D

λ ≡ T̂1
λ) and call the

spherical Aluthge transform (resp. the spherical Duggal transform) of the linear pencil
of T = (T1 , T2) at λ, i.e.,

T̂λ = P
1
2 (V1 − λV2)P

1
2 (resp. T̂D

λ = P(V1 − λV2)).

It is known that the Aluthge transform has a natural connection with the invariant
subspace problem, because every normal operator has nontrivial invariant subspaces
and Aluthge transform is to convert an operator into another operator which shares
with the first one many spectral properties, but which is closer to being a normal
operator. However, for an infinite-dimensional Hilbert spaceH, one needs to remem-
ber the classical example of Exner in [9], who proved that, even for weighted shifts,
subnormality is not preserved by the Aluthge transform; in this case, the transformed
shift is farther from normal than the original one. In recent years, Jung, Ko, and Pearcy
proved in [11] that an operator S ∈ B(H) with dense range has a nontrivial invariant
subspace if and only if S̃ does. In [8, 12, 13], the authors extended the above result to
the generalized Aluthge transform and the generalized spherical Aluthge transform
for commuting pairs of operators. We now consider a relation between the invariant
subspaces for the linear pencil of T = (T1 , T2) and those for the linear pencil of its
generalized Aluthge transform.

We let Lat(S) be the set of common invariant subspaces for S. First, we have the
following.

Proposition 1.3 Let T = (T1 , T2) be a pair of operators. Then Lat{T1 − λT2 ∶ λ ∈ C} =
LatT1 ∩ LatT2.

Proof (⊆) ∶ Let M ∈ Lat{T1 − λT2 ∶ λ ∈ C}. Then (T1 − 0 ⋅ T2) (M) ⊆M, i.e.,
T1M ⊆M. Let x ∈M. Then (T1 − λT2) x ∈M for all λ ∈ C, which implies that
( 1

λ T1 − T2) x ∈M for all λ ≠ 0. Since M is closed, letting λ →∞, −T2x ∈M, i.e.,
T2x ∈M. Thus, T2M ⊆M. Therefore, we have that M ∈ LatT1 ∩ LatT2.
(⊇) ∶ Let N ∈ LatT1 ∩ LatT2. Then T1N ⊆ N and T2N ⊆ N. Let x ∈ N. Then T1x , T2x ∈
N. So (T1 − λT2) x ∈ N, i.e., (T1 − λT2) (N) ⊆ N for all λ ∈ C. Therefore, N ∈
Lat{T1 − λT2 ∶ λ ∈ C}. ∎
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Proposition 1.4 For a pair of operators T = (T1 , T2) = (V1P, V2P) and 0 ≤ t ≤ 1, we
have:
(i) P t

Tλ = T̂t
λ P t for λ ∈ C.

(ii) (V1 − λV2)P1−t
T̂

t
λ = Tλ(V1 − λV2)P1−t for λ ∈ C.

Proof (i) and (ii) are clear from direct calculations. ∎

Next, we study nontrivial invariant subspaces between the linear pencil of T and
the linear pencil of its generalized Aluthge transform.

Theorem 1.5 Let T = (T1 , T2) be a pair of operators with dense range. For 0 ≤ t < 1,
we have that if the linear pencil of T has an NIS, then the generalized spherical Aluthge
transform of the linear pencil of T has an NIS.

Proof For t = 0, the desired one is clear.
For 0 < t < 1, suppose that kerP ≠ {0}. Then kerP ≠H, because T1 ≠ 0 and

T2 ≠ 0. Since kerP = kerT1 ∩ kerT2 = ⋂λ∈Cker(T1 − λT2), kerP ∈ LatT1 ∩ LatT2, and
by Proposition 1.3, kerP ∈ Lat{T1 − λT2 ∶ λ ∈ C}, i.e., the linear pencil of T has a
nontrivial invariant subspace. On the other hand, since kerP1−t = kerP ≠ {0} ,H
and kerP1−t ∈ Lat{T̂ t

1 − λT̂ t
2 ∶ λ ∈ C}, the generalized spherical Aluthge transform

of the linear pencil of T has a nontrivial invariant subspace. So, we may assume
that kerP = {0}. Let M ∈ Lat{T1 − λT2 ∶ λ ∈ C} be nontrivial. Consider N = P tM,
where P tM means the smallest closed set containing P tM. Since kerP = {0}, we
have N ≠ {0}. Suppose that N =H, i.e., P tM =H. Since Ti (i = 1, 2) has dense range,
Vi (i = 1, 2) also has dense range. Since kerP1−t = kerP = {0}, P1−t has dense range,
and so Vi P1−t has dense range. Thus, we have that

H = Vi P1−tN = Vi P1−t (P tM) = Vi PM = TiM ⊂M ≠H,(1.1)

which is a contradiction. Hence, N ≠H, which means that N is nontrivial. Now, by
Proposition 1.4(i), note that, for λ ∈ C,

T̂
t
λ P tM = P t

TλM ⊂ P tM�⇒ T̂
t
λN ⊂ N.

Therefore, N ∈ Lat{T̂ t
1 − λT̂ t

2 ∶ λ ∈ C} and we have the desired one.
For t = 1, by the proof of the case for 0 < t < 1, we can assume that kerP = {0}.

Next, for a nontrivial M in Lat{T1 − λT2 ∶ λ ∈ C}, we consider L = PM. Then L ≠
{0}. Suppose that L =H, i.e., PM =H. Since Vi (i = 1, 2) also has dense range, by
(1.1) when t = 1, we have that

H = ViL = Vi (PM) = TiM ⊂M ≠H,

which is also a contradiction. Hence, L is nontrivial. Now, by Proposition 1.4(i), note
that, for λ ∈ C,

T̂
D
λ PM = PTλM ⊂ PM�⇒ T̂

D
λ N ⊂ N.

Therefore, N ∈ Lat{T̂ t
1 − λT̂ t

2 ∶ λ ∈ C} and our proof is now completed. ∎
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The converse of the result in Theorem 1.5 is true when T = ( T1
T2
) = V P =

( V1
V2
)Pis bounded below, i.e., if T is bounded below, then we have that the linear

pencil of T has an NIS if and only if the generalized spherical Aluthge transform of
the linear pencil of T has an NIS. For this, we first consider the following.

Proposition 1.6 If T is bounded below, then P is invertible.

Proof Since T is bounded below, there exists c > 0 such that ∥Tx∥ = ∥V Px∥ ≥ c ∥x∥
for all x ∈H. Thus, for all x ∈H,

∥V Px∥ ≥ c ∥x∥ �⇒ ∥V∥ ∥Px∥ ≥ c ∥x∥
V is a partial isometry

�⇒ ∥Px∥ ≥ c ∥x∥.
Therefore, P is bounded below. Since P is positive, P is invertible, as desired. ∎

Now we have the following.

Theorem 1.7 Let T be bounded below. Then, for 0 ≤ t ≤ 1, we have that the linear pencil
{T1 − λT2 ∶ λ ∈ C} has an NIS if and only if the generalized spherical Aluthge transform

{T̂ t
1 − λT̂ t

2 ∶ λ ∈ C}
has an NIS.

Proof (�⇒) It is clear from Theorem 1.5.
(⇐�) For t = 0, the desired one is clear.

For 0 < t ≤ 1, let N ∈ Lat{T̂ t
1 − λT̂ t

2 ∶ λ ∈ C} be nontrivial. Since T is bounded
below, by Proposition 1.6, P is invertible. So, R = P−tN is nontrivial and closed.
Since T̂

t
λN ⊂ N, we have that P t(V1 − λV2)P1−tN ⊂ N. Since P t is invertible, (V1 −

λV2)P1−tN ⊂ P−tN, and so (V1 − λV2)P (P−tN) ⊂ P−tN, i.e., TλR ⊂ R. Therefore,
the linear pencil {T1 − λT2 ∶ λ ∈ C} has an NIS, as desired. ∎

Theorem 1.8 Let T = (T1 , T2) be a commuting pair of operators with dense ranges.
Then, for 0 ≤ t ≤ 1, the linear pencil {T1 − λT2 ∶ λ ∈ C} has an NIS if and only if the
generalized spherical Aluthge transform {T̂ t

1 − λT̂ t
2 ∶ λ ∈ C} has an NIS.

Proof (�⇒) It is clear from Theorem 1.5.
(⇐�) Suppose that kerT1 ≠ {0}. Since T = (T1 , T2) is a commuting pair of
operators, for all x ∈ kerT1, T1 (T2x) = T2 (T1x) = 0. So T2 (kerT1) ⊆ kerT1. Hence,
(T1 − λT2) (kerT1) ⊆ kerT1 for all λ ∈ C and kerT1 ∈ Lat{T1 − λT2 ∶ λ ∈ C}. Similarly,
if kerT2 ≠ {0}, then kerT2 ∈ Lat{T1 − λT2 ∶ λ ∈ C}. Thus, we may assume that T1 and
T2 are both quasiaffinities.

For t = 0, the desired one is clear.
For 0 < t ≤ 1, let M be an NIS for the linear pencil of the generalized spherical

Aluthge transform {T̂ t
1 − λT̂ t

2 ∶ λ ∈ C}. Let L = V1PV2P1−tM. Then L ≠H. Indeed, if
so, then P tL is dense in H, since
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kerP t = kerP = kerT1 ∩ kerT2 = {0} .(1.2)

Let x ∈ V1PV2P1−tM with x ≠ 0. Then there is z ∈M such that x = V1PV2P1−tz. Since
z ∈M, (T̂ t

1 − λT̂ t
2)z ∈M, which means that ( 1

λ T̂ t
1 − T̂ t

2)z ∈M for λ ≠ 0. Letting λ →
∞, we have that T̂ t

2 z ∈M. Of course, T̂ t
1 z ∈M when λ = 0. Since T̂ t

2 z ∈M, (T̂ t
1 −

λT̂ t
2)(T̂ t

2 z) ∈M for all λ ∈ C. Thus, we have that

T̂ t
1 T̂ t

2 z ∈M, by letting λ = 0.(1.3)

Consider P t x. Then, by (1.3), we have

P t x = P t (V1PV2P1−tz) = P tV1P1−t P tV2P1−tz = T̂ t
1 T̂ t

2 z ∈M.(1.4)

So, by (1.4), we have P tL ⊆M ≠H, which contradicts to the fact that P tL =H.
Also, L ≠ {0}. Indeed, if so, V1PV2P1−tz = 0 for a nonzero vector z ∈M. Since

V1PV2P1−tz = T1 (V2P1−tz) = 0, we have V2P1−tz = 0 because of the quasiaffinity
of T1. Thus, we have that P1−tz ∈ kerV2. On the other hand, since T1 and T2 are
commuting, V1PV2 = V2PV1. Hence, V1PV2P1−tz = V2PV1P1−tz = T2 (V1P1−tz) = 0,
so V1P1−tz = 0, i.e., P1−tz ∈ kerV1. Therefore, P1−tz ∈ kerV1 ∩ kerV2 = {0}. Since
kerP1−t = {0}, z = 0, which is a contradiction to z ≠ 0.

Let x ∈ V1PV2P1−tM ⊂ Lwith x ≠ 0. Then there exists a nonzero vector z ∈M such
that x = V1PV2P1−tz. Note that

(T1 − λT2) x = T1x − λT2x
= V1P (V1PV2P1−tz) − λV2P (V1PV2P1−tz)
V1 PV2=V2 PV1= V1P (V2PV1P1−tz) − λV1PV2PV2P1−tz
= V1PV2P1−t(T̂ t

1 z) − λV1PV2P1−t(T̂ t
2 z)

∈ V1PV2P1−tM − λV1PV2P1−tM

⊂ V1PV2P1−tM = L.

Thus, (T1 − λT2)L ⊂ L for all λ ∈ C and we have the desired one. Therefore, our proof
is now completed. ∎

As a corollary of Proposition 1.3 and Theorem 1.8, we obtain new proofs of the
following results in [8, Theorem 2.6] and [13, Theorem 2.24].

Theorem 1.9 ([8, Theorem 2.6], [13, Theorem 2.24]) Let T = (T1 , T2) be a commuting
pair of operators with dense ranges. Then, for 0 ≤ t ≤ 1, T̂t has an NJIS if and only if T
does.

Proof (�⇒) For t = 0, the desired one is clear.
For 0 < t ≤ 1, we assume that T̂t has an NJIS. Let M ∈ LatT̂ t

1 ∩ LatT̂ t
2 with M ≠

{0} ,H. Then, by Proposition 1.3, we have that M ∈ Lat{T̂ t
1 − λT̂ t

2 ∶ λ ∈ C}. Thus,
by the proof of Theorem 1.8, we have that L ∈ Lat{T1 − λT2 ∶ λ ∈ C}, where L =
V1PV2P1−tM. By Proposition 1.3 again, we have that L ∈ LatT1 ∩ LatT2. Therefore, T
has an NIS, as desired.
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(⇐�) It is clear from Proposition 1.3, Theorem 1.8, and the same argument given
above. ∎

Next, we recall the following open problem.

Conjecture 1.10 [13, Conjecture 2.29] For a commuting n-tuple T, we have that
Lat (T) and Lat(T̂t) (t = 1) are isomorphic.

The following result gives a partial answer to Conjecture 1.10 and more.

Example 1.11 Let R and Q be positive operators in B(H) such that [R, Q] =
RQ − QR ≠ 0 and R + Q is invertible. Consider the linear pencil {T1 − λT2 ∶ λ ∈ C},
where (T1 , T2) = (

√
R,
√

Q). Then we have that for 0 ≤ t ≤ 1, Lat(T̂t) = Lat (T). For
this, note that T∗1 T1 + T∗2 T2 = R + Q and P =

√
R + Q is invertible. Thus, the polar

decomposition of the pencil is

{T1 − λT2 ∶ λ ∈ C} = {(T1P−1 − λT1P−1)P ∶ λ ∈ C} ,

because for i = 1, 2, Vi = Ti P−1. So, the generalized Aluthge transform is

{P t T1P−t − λP t T2P−t ∶ λ ∈ C}.
Hence, by Proposition 1.3, we have that for 0 ≤ t ≤ 1,

Lat(T̂t) = LatT̂ t
1 ∩ LatT̂ t

2 = Lat{T̂ t
1 − λT̂ t

2 ∶ λ ∈ C}
= Lat{P t T1P−t − λP t T2P−t ∶ λ ∈ C}
= Lat(P t T1P−t) ∩ Lat(P t T2P−t)
= LatT1 ∩ LatT2 = Lat (T).
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