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A left brace is a set A with two binary operations + and · satisfying the following
conditions: A is an abelian group by addition, A is a group by multiplication, and
a(b+ c) = ab+ ac− a for every a, b, c ∈ A.
In order to help study involutive set-theoretic solutions of the Yang–Baxter equation,

Rump [5, 6] introduced braces as a generalization of Jacobson radical rings. The main rea-
son for introducing this algebraic object is it allowing another possible strategy to attack
the problem of classifying such solutions. Subsequent papers [7–10] found connections
of braces with other algebraic structures. Currently, the theory of braces is developing
very intensely. An important part of this theory is the study of the internal structure of
braces. One of the immediately arising questions here is the study of braces generated
by one element (i.e. one-generator braces). In general, this task is very difficult, so the
study of a one-generator brace should be started under some additional conditions:
Let A be a left brace. A subset S of A is called subbrace (more precisely left subbrace)

if S is closed by the addition and multiplication and is the left braces by its restriction
on S (i.e., S by the restriction of addition is a subgroup of an additive group of A and
by the restriction of multiplication, is a subgroup of a multiplicative group of A).
Let A be a left brace. For every element a ∈ A, we define the function λa : A −→ A

by the rule λa(x) = ax− a for all elements x ∈ A.
Let A be a left brace. Put a ∗ b = ab − a − b. We can see that a ∗ b = λa(b) − b. This

new operation plays a very important role in left braces.
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A left brace A is called trivial or abelian if a ∗ b = 0 or a + b = ab for all elements
a, b ∈ A.
The subbrace L of a brace A is called an ideal if a ∗ z, z ∗ a ∈ L for all elements a ∈ A

and z ∈ L.
If K,L are subbraces of A, then denote by K ∗ L the subgroup of the additive group

of A generated by the elements x ∗ y, where x ∈ K, y ∈ L.
Let A be the left brace. Put A(1) = A and, recursively, A(α+1) = A(α) ∗ A for all of

ordinal α and A(λ) = ∩µ<λA
(µ) for limit ordinal λ. We note that A(α) is an ideal of A

for every ordinal α.
A subbrace L of a left brace A is called a left ideal of A if a∗ b ∈ L for every element

a ∈ A and every element b ∈ L.
Put A1 = A and, recursively, Aα+1 = A ∗ A(α) for all of ordinal α and Aλ = ∩µ<λA

µ

for limit ordinals λ. We note that Aα is a left ideal of A for every ordinal α.
Let A be a left brace and let S be a family of subbraces of A. Then, the intersection S

of all subbraces of the family S is a subbrace of A. If M is the subset of A, then let M
be the family of all subbraces of A including M. Then the intersection of all subbraces of
family M is the least subbrace of A including M. This subbrace is called the subbrace
of A generated by a subset M and will be denoted by br(M).
A subbrace S of a brace A is called finitely generated if there exists a finite subset

M such that A = br(M). If M = {a}, then A is called a one-generator brace .
If M = {a}, one-generator subbrace of A.
One of the first basic steps pertaining to the study of left braces is the study of the

one-generator braces. In general, it is a complicated problem. Every case of such study
is important. In this paper, we will study one-generator braces A such that A3 = 〈0〉.
Like in other algebraic structures, there is the concept of nilpotency in braces. In the

theory of braces, there are different approaches to this concept (see, for example, papers
[1–4], [11]). In the case of a one generator brace such that A3 = 〈0〉, we come to the
following notion of nilpotency:
We say that A is a series that is called nilpotent in the sense of Smoktunowicz

if there are positive integers n, k such that A(n) = 〈0〉 = Ak. These braces have been
introduced in a paper of A. Smoktunowicz [11]. Denote by NS(n, k) the class of left braces
satisfying A(n) = 〈0〉 = Ak where n, k are the least integers that contain this property.
The main results of the current paper are the following:

Theorem A. Let A be a left brace such that A3 = 〈0〉. Suppose that A is generated
by the element a, and put a1 = a, a2 = a ∗ a = a1 ∗ a, a3 = a2 ∗ a. Then every element
of A has a form k1a1 + k2a2 + k3a3, where k1, k2, k3 are integers. Moreover, if x =
k1a1+k2a2+k3a3, y = t1a1+ t2a2+ t3a3 are elements of A, k1, k2, k3, t1, t2, t3 ∈ Z, then

x ∗ y = t1k1a2 + (2k2 + k1 − k21)t1a3 and

xy = (k1 + t1)a1 +
1
2 (k2 + t2 + t1k1)a2 + (k3 + t3 +

1
2 (2k2 + k1 − k21)t1)a3.

In particular, if a3 = 0, then every element of A has a form k1a1+k2a2, k1, k2 are integers.
Moreover, if x = k1a1 + k2a2, y = t1a1 + t2a2 are elements of A, k1, k2, t1, t2 ∈ Z, then

x ∗ y = t1k1a2 and xy = (k1 + t1)a1 + (k2 + t2 + t1k1)a2.
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Furthermore, A is nilpotent in the sense of Smoktunowicz. More precisely, A ∈ NS(3, 3)
whenever a3 = 0, and A ∈ NS(4, 3) whenever a3 6= 0.

Theorem B1. There exists a one-generator left brace D = Z× Z where the addition
and multiplication are defined by the rules:

(k1, k2) + (t1, t2) = (k1 + t1, k2 + t2),

(k1, k2)(t1, t2) = (k1 + t1, k1t1 + k2 + t2).

If A is an arbitrary one-generator left brace such that A ∈ NS(3, 3), then there exists
an epimorphism f : D −→ A.

Theorem B2. There exists a one-generator left brace D = Z × Z × Z where the
addition and multiplication are defined by the rules:

(k1, k2, k3) + (t1, t2, t3) = (k1 + t1, k2 + t2, k3 + t3),

(k1, k2, k3)(t1, t2, t3) = (k1 + t1, k1t1 + k2 + t2, k3 + t3 +
1
2 (2k2 + k1 − k21)t1).

If A is an arbitrary one-generator left brace such that A ∈ NS(4, 3), then there exists an
epimorphism f : D −→ A.
Thus, we can see that the left brace, constructed in Theorem B1 (respectively, in

Theorem B2), is a free one-generator left brace such that A3 = 〈0〉 = A(3) (respectively,
A3 = 〈0〉 = A(4)).

1. Some preliminary results

We will also need the following properties of operation * and the mapping λa. One can
find the proofs of these results in papers [1, 4], for example.

Lemma 1.1. Let A be a left brace. Then

a ∗ (b+ c) = a ∗ b+ a ∗ c, (ab) ∗ c = a ∗ (b ∗ c) + b ∗ c+ a ∗ c,
(a+ b) ∗ c = a ∗ (λa−1(b) ∗ c) + (λa−1(b) ∗ c) + a ∗ c.

λy(b ∗ a) = yby−1 ∗ λy(a), yby
−1 = λy(λb(y

−1)− y−1 + b) = λy(b ∗ y−1 + b),

for all elements a, b, c, y ∈ A.

The following result, the proof of which is possible to find in paper [1], will also be
used by us.

Proposition 1.2. Let A be a left brace and L be a left ideal of A. Then L ∗ A and
A ∗ L are left ideals of A. Moreover, if L is an ideal of A, then L ∗A is an ideal of A.

Using Proposition 1.2, we obtain:

Proposition 1.3. Let A be a left brace. Then Aα is a left ideal for each ordinal α,
and A(α) is an ideal for each ordinal α.
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Proposition 1.4. Let A be a left brace and suppose that A3 = 〈0〉. Then

A2 is abelian. Moreover, x ∗ y = 0(or xy = x+ y) for every element x ∈ A, y ∈ A2,

(xz) ∗ y = x ∗ y + z ∗ y for every element x, y, z ∈ A,

gn ∗ z = n(g ∗ z) for every integer n and every element g, z ∈ A.

Proof. The equality A3 = 〈0〉 implies that x ∗ y = 0 for every element x ∈ A, y ∈ A2.
It follows that xy = x+ y. In particular, it follows that A2 = A(2) is abelian.
By Lemma 1.1, for every element x, y, z of A, we have:

(xz) ∗ y = x ∗ (z ∗ y) + x ∗ y + z ∗ y = x ∗ y + z ∗ y.

Furthermore,

0 = 0 ∗ z = 1 ∗ z = (g−1g) ∗ z = g ∗ z + g−1 ∗ z.

Hence, g ∗ z + g−1 ∗ z = 0. It follows that g−1 ∗ z = −g ∗ z. Furthermore,

g2 ∗ z = (gg) ∗ z = g ∗ z + g ∗ z = 2(g ∗ z).

Using ordinary induction, we obtain that gn ∗ z = n(g ∗ z) for every positive integer n.
Now, let n be a negative integer. Then, n = −k, k > 0. We have gn = (g−1)k. By what

is proven above,

gn ∗ z = ((g−1)k ∗ z) = k((g−1) ∗ z) = −k(g ∗ z) = n(g ∗ z).

Proposition 1.5. Let A be a left brace and suppose that A3 = 〈0〉. Then

am = ma+
1

2
(m2 −m)(a ∗ a),

for every element a of A and every integer m.

Proof. Put b = a ∗ a. From a ∗ a = a2 − a− a = a2 − 2a, we obtain that a2 = 2a+ b.
Further,

a3 = aa2 = a(a+ a+ b) = a2 + a2 + ab− 2a = 2a+ b+ 2a+ b+ ab− 2a =

= 2a+ 2b+ ab.

By what is noted above, ab = a+ b, so that a3 = 2a+ 2b+ a+ b = 3a+ 3b. Again, we
have:

a4 = aa3 = a(a+ a+ a+ b+ b+ b) = 3a2 + 3ab− 5a =

= 3(2a+ b) + 3a+ 3b− 5a = 4a+ 6b,

a5 = aa4 = a(4a+ 6b) = 4a2 + 6ab− 9a = 4(2a+ b) + 6a+ 6b− 9a =

= 5a+ 10b,

a6 = aa5 = a(5a+ 10b) = 5a2 + 10ab− 14a = 5(2a+ b) + 10a+ 10b− 14a =

6a+ 15b.
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Applying ordinary induction, we obtain that am = ma+ 1
2 (m

2−m)b for every arbitrary
positive integer m.
Now, suppose that m < 0. Let y = a−1. Then am = yt, where t = −m > 0. By what

is proven above, we have am = yt = ty + 1
2 (t

2 − t)z1, where z1 = y ∗ y = (a−1) ∗ (a−1).
Using what is stated above, we obtain (a−1) ∗ (a−1) = −(a) ∗ (a−1). Now, we have:

a ∗ (a−1) = aa−1 − a− a−1 = 1− a− a−1 = 0− a− a−1 = −a− a−1,

(a−1) ∗ a = a−1a− a− a−1 = −a− a−1,

so that a ∗ (a−1) = (a−1) ∗ a = −a ∗ a = −b. Hence, (a−1) ∗ (a−1) = a ∗ a = b and

am = yt = ty +
1

2
(t2 − t)b = t(a−1) +

1

2
(t2 − t)b.

As we have seen above, (a−1)∗a = −a−a−1. On the other hand, (a−1)∗a = −(a∗a) =
−b, so that −a− a−1 = −b and a−1 = b− a. Thus, t(a−1) = t(b− a) and:

am = yt = t(a−1) + 1
2 (t

2 − t)b = t(b− a) + 1
2 (t

2 − t)b = t(−a) + 1
2 (t

2 + t)b =

(−t)a+ 1
2 (t

2 + t)b = ma + 1
2 (m

2 −m)b.

Proposition 1.6. Let A be a left brace and suppose that A3 = 〈0〉. Then

(na) ∗ (ka) = kn(a ∗ a) + 1

2
(n− n2)k((a ∗ a) ∗ a),

for every element a of A and every integer n, k.

Proof. Put b = a ∗ a, c = b ∗ a = (a ∗ a) ∗ a. We have:

an + a−n = na+
1

2
(n2 − n)b+ (−n)a+

1

2
(n2 + n)b = n2b.

It follows that an + a−n − n2b = 0, and therefore −an = a−n − n2b.
Now, we will find the element (na) ∗ (ka). Using Lemma 1.1, we obtain that: (na) ∗

(ka) = k((na) ∗ a). Equality an = na+ 1
2 (n

2 − n)b implies that:

na = an − 1

2
(n2 − n)b = an +

1

2
(n− n2)b.

Using Proposition 1.5, we obtain that:

an +
1

2
(n− n2)b = an(

1

2
(n− n2)b).

An application of Lemma 1.1 and Proposition 1.5 gives:

(na) ∗ a = (an( 12 (n− n2)b)) ∗ a = an ∗ a+ ( 12 (n− n2)b) ∗ a =

= n(a ∗ a) + 1
2 (n− n2)(b ∗ a).
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Thus,

(na) ∗ (ka) = knb+
1

2
(n− n2)kc.

2. The structure of a one-generator brace A such that A3 = 〈0〉

Proposition 2.1. Let A be a left brace such that A3 = 〈0〉. Let a be an element of A
and put a1 = a, a2 = a ∗ a = a1 ∗ a, a3 = a2 ∗ a, aj+1 = aj ∗ a, j ∈ N. Then the subbrace
of A generated by element a is the subset of the elements having the following form:
Σj∈Nkjaj , kj ∈ Z and kj 6= 0 only for finitely many indices j ∈ N.

Proof. We note that the additive subgroup of A generated by the subset {aj | j ∈ N}
consists of the elements Σj∈Nkjaj where kj 6= 0 only for finitely many indices j. �

Let x = Σj∈Nkjaj , y = Σj∈Ntjaj . Using Lemma 1.1 and Proposition 1.4, we obtain

x ∗ y = x ∗ (Σj∈Ntjaj) = Σj∈N(x ∗ (tjaj)) = Σj∈Ntj((x ∗ aj) = t1(x ∗ a1).

Proposition 1.4 implies that Σj∈Nkjaj = (k1aj)(Σj>1kjaj), and the fact that A2 is
abelian implies that:

kjaj = a
kj
j for j > 1,Σj>1kjaj = Πj>1kjaj = Πj>1a

kj
j ,

and we obtain,

x ∗ a1 = (Σj∈Nkjaj) ∗ a1 = (k1a1)(Σj>1kjaj) ∗ a1 = (k1a1) ∗ a1 + (Σj>1kjaj) ∗ a1 =

(k1a1) ∗ a1 + (Πj>1a
kj
j ) ∗ a1 = (k1a1) ∗ a1 +Σj>1(a

kj
j ∗ a1) =

(k1a1) ∗ a1 +Σj>1kj(aj ∗ a1) = (k1a1) ∗ a1 +Σj>1kjaj+1.

By Proposition 1.6, (k1a1) ∗ a1 = k1a2 +
1
2 (k1 − k21)a3, so that:

x ∗ a1 = k1a2 +
1
2 (k1 − k21)a3 + k2a3 + k3a4 +Σj>3kjaj+1 =

k1a2 +
1
2 (2k2 + k1 − k21)a3 + k3a4 +Σj>3kjaj+1.

And, we have:

x ∗ y = t1(x ∗ a1) = t1k1a2 +
1

2
(2k2 + k1 − k21)t1a3 + k3t1a4 +Σj>3kjt1aj+1.

Since x ∗ y = xy − x− y, we obtain:

xy = (Σj∈Nkjaj)(Σj∈Ntjaj) =

t1k1a2 +
1
2 (2k2 + k1 − k21)t1a3 + k3t1a4 +Σj>3kjt1aj+1+

+Σj∈Nkjaj +Σj∈Ntjaj =

(k1 + t1)a1 + (k2 + t2 + t1k1)a2 + (k3 + t3 +
1
2 (2k2 + k1 − k21)t1)a3+

+Σj≥4(kj + tj + t1kj−1)aj .
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It is possible to check that:

x−1 = −k1a1 + (k21 − k2)a2 + ( 12 (2k2 + k1 − k12)k1 − k3)a3 + t3+

+1
2 (2k2 + k1 − k21)t1)a3 +Σj≥4(k1kj−1 − kj)aj .

Thus, we can see that the set of elements having a form Σj∈Nkjaj , kj ∈ Z for all indices
j ∈ N is a subbrace. On the other hand, every subbrace containing an element a contains
the elements Σj∈Nkjaj , kj ∈ Z for all indices j ∈ N. Hence, we obtain that the subbrace
generated by element a coincides with the set of elements having the form Σj∈Nkjaj , kj ∈
Z for all indices j ∈ N.

Proof of Theorem A. By Proposition 2.1, every element x of A has a form x =
Σj∈Nkjaj , kj ∈ Z for all indexes j ∈ N. From the proof of Proposition 2.1, we also
obtain that:

(Σj∈Nkjaj)(Σj∈Ntjaj) =

t1k1a2 +
1
2 (2k2 + k1 − k21)t1a3 + k3t1a4 +Σj>3kjt1aj+1+

+Σj∈Nkjaj +Σj∈Ntjaj =

(k1 + t1)a1 + (k2 + t2 + t1k1)a2 + (k3 + t3 +
1
2 (2k2 + k1 − k21)t1)a3+

+Σj>4(kj + tj + t1kj−1)aj .

Multiplication in A must be associative. Let

x = Σj∈Nkjaj , y = Σj∈Ntjaj , z = Σj∈Nsjaj , xy = Σj∈Nrjaj ,

(xy)z = Σj∈Nmjaj , yz = Σj∈Nujaj , x(yz) = Σj∈Nvjaj .

We have

m1 = r1 + s1 = k1 + t1 + s1,

v1 = k1 + u1 = k1 + t1 + s1,

m2 = r2 + s2 + s1r1 = k2 + t2 + t1k1 + s2 + s1(k1 + t1) =

= k2 + t2 + t1k1 + s2 + s1k1 + s1t1,

v2 = k2 + u2 + u1k1 = k2 + t2 + s2 + s1t1 + (t1 + s1)k1 =

= k2 + t2 + s2 + s1t1 + t1k1 + s1k1,

m3 = r3 + s3 +
1

2
(2r2 + r1 − r21)s1 = r3 + s3 + r2s1 +

1

2
r1s1 −

1

2
r21s1 =

k3 + t3 +
1

2
(2k2 + k1 − k21)t1 + s3 + (k2 + t2 + t1k1)s1

+
1

2
(k1 + t1)s1−

− 1

2
(k21 + t12 + 2k1t1)s1 = k3 + t3 + k2t1 +

1

2
k1t1 −

1

2
k21t1

+ s3 + k2s1+

+ t2s1 + t1k1s1 +
1

2
k1s1 +

1

2
t1s1 −

1

2
k21s1 −

1

2
t21s1 − k1t1s1 =
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= k3 + t3 + k2t1 +
1

2
k1t1 −

1

2
k21t1 + s3+

+ k2s1 + t2s1 +
1

2
k1s1 +

1

2
t1s1 −

1

2
k21s1 −

1

2
t21s1,

v3 = k3 + u3 +
1

2
(2k2 + k1 − k21)u1 = k3 + u3 + k2u1 +

1

2
k1u1

− 1

2
k21u1 =

k3 + t3 + s3 +
1

2
(2t2 + t1 − t12)s1 + k2t1 + k2s1 +

1

2
k1t1 +

1

2
k1s1−

− 1

2
k21t1 −

1

2
k21s1 = k3 + t3 + s3 + t2s1 +

1

2
t1s1 −

1

2
t21s1 + k2t1 + k2s1+

+
1

2
k1t1 +

1

2
k1s1 −

1

2
k21t1 −

1

2
k21s1,

m4 = r4 + s4 + s1r3 = k4 + t4 + t1k3 + s4 + s1(k3 + t3 +
1

2
(2k2 + k1 − k21)t1)) =

k4 + t4 + t1k3 + s4 + s1k3 + s1t3 + k2s1t1 +
1

2
k1s1t1 −

1

2
k21s1t1,

v4 = k4 + u4 + u1k3 = k4 + t4 + s4 + s1t3 + (t1 + s1)k3 =

=k4 + t4 + s4 + s1t3 + t1k3 + s1k3.

And in general,

mj+1 = rj+1 + sj+1 + s1rj = kj+1 + tj+1 + sj+1 + t1kj + s1(kj + tj + t1kj−1) =

kj+1 + tj+1 + sj+1 + t1kj + s1kj + s1tj + s1t1kj−1,

vj+1 = kj+1 + uj+1 + u1kj = kj+1 + tj+1 + sj+1 + s1tj + (t1 + s1)kj =

= kj+1 + tj+1 + sj+1 + s1tj + t1kj + s1kj .

Note that if aj = 0, then aj+1 = aj ∗ a = 0, and hence aj+k = 0 for all positive integer k.
Suppose that 2a1 6= 0. Then we have:

a2a1 = 3a1 + 2a2 − a3, ((2a1)a1)a1 = (3a1 + 2a2 − a3)a1 = 4a1 + 5a2 − 2a3 − a4,

a1a1 = 2a1 + a2, (2a1)(a1a1) = (2a1)(2a1 + a2) = 4a1 + 5a2 − 2a3.

Thus, (2a1)(a1a1) − (2a1)(a1a1) = a4. Hence, if a4 6= 0, then the multiplication is not
associative. It follows that, in this case, a4 = 0. Then, also, a5 = a4 ∗ a = 0, and,
furthermore, aj = 0 for all j > 5. We can see that, in this case, A is nilpotent in the sense
of Smoktunowicz, and, more precisely, A ∈ NS(4, 3).
If we suppose that ma1 = 0 for some positive integer v, then

ma2 = m(a1 ∗ a1) = a1 ∗ a(ma1) = 0,ma3 = m(a2 ∗ a1) = a2 ∗ a(ma1) = 0,

and mak = 0 for all of positive integer k.
Now, consider the case when 2a1 = 0. Then 2a2 = 0 and 2ak = 0 for all of positive

integer k. Thus, in this case, the additive group of A is an elementary abelian 2–group.
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We have:

a2a1 = a1 + a2 + a3, (a2a1)a1 = (a1 + a2 + a3)a1 = 2a1 + 2a2 + a3 + a4 = a3 + a4,

a1a1 = 2a1 + a2 = a2, (a2)(a1a1) = a2a2 = 2a2 = 0.

Equality (a2a1)a1 = (a2)(a1a1) implies that a3 + a4 = 0 or a3 = a4. Then
a3 = a4 = a3 ∗ a1 = a3a1 − a3 − a1 = a3.
It follows that
a3a1 = a3 + a1 + a3 = 2a3 + a1 = a1.
The fact that by multiplication A is a group implies that a3 = 1 = 0. Then, also,
aj = 0 for all j > 3. By Proposition 2.1, every element of A has a form k1a1 + k2a2,
where k1, k2 are integers. Moreover, if x = k1a1 + k2a2, y = t1a1 + t2a2 are elements of
A, k1, k2, t1, t2 ∈ Z, then

x ∗ y = t1k1a2 and xy = (k1 + t1)a1 + (k2 + t2 + t1k1)a2.

Furthermore, A is nilpotent in the sense of Smoktunowicz. More precisely,
A ∈ NS(3, 3). �

Proof of Theorem B2. Clearly, by addition, D is an abelian group. Furthermore,
let

x = (k1, k2, k3), y = (t1, t2, t3), z = (s1, s2, s3), xy = (r1, r2, r3),

(xy)z = (m1,m2,m3), yz = (u1, u2, u3), x(yz) = (v1, v2, v3).

We have:

m1 = r1 + s1 = k1 + t1 + s1,

v1 = k1 + u1 = k1 + t1 + s1,

m2 = r2 + s2 + s1r1 = k2 + t2 + t1k1 + s2 + s1(k1 + t1) =

= k2 + t2 + t1k1 + s2 + s1k1 + s1t1,

v2 = k2 + u2 + u1k1 = k2 + t2 + s2 + s1t1 + (t1 + s1)k1 =

= k2 + t2 + s2 + s1t1 + t1k1 + s1k1,

m3 = r3 + s3 +
1
2 (2r2 + r1 − r21)s1 = r3 + s3 + r2s1 +

1
2r1s1 −

1
2r

2
1s1 =

k3 + t3 +
1
2 (2k2 + k1 − k21)t1 + s3 + (k2 + t2 + t1k1)s1 +

1
2 (k1 + t1)s1−

−1
2 (k

2
1 + t21 + 2k1t1)s1 =

k3 + t3 + k2t1 +
1
2k1t1 −

1
2k

2
1t1 + s3 + k2s1 + t2s1 + t1k1s1 +

1
2k1s1+

+1
2 t1s1 −

1
2k

2
1s1 − 1

2 t
2
1s1 − k1t1s1 = k3 + t3 + k2t1 +

1
2k1t1 −

1
2k

2
1t1 + s3+

+k2s1 + t2s1 +
1
2k1s1 +

1
2 t1s1 −

1
2k

2
1s1 − 1

2 t
2
1s1,

v3 = k3 + u3 +
1
2 (2k2 + k1 − k21)u1 = k3 + u3 + k2u1 +

1
2k1u1 − 1

2k
2
1u1 =

k3 + t3 + s3 +
1
2 (2t2 + t1 − t21)s1 + k2t1 + k2s1 +

1
2k1t1+

+1
2k1s1 −

1
2k

2
1t1 − 1

2k
2
1s1 =

k3 + t3 + s3 + t2s1 +
1
2 t1s1 −

1
2 t12s1 + k2t1 + k2s1 +

1
2k1t1 +

1
2k1s1−

−1
2k

2
1t1 − 1

2k
2
1s1.
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Thus, we obtain m1 = v1,m2 = v2,m3 = v3, which proves the equality (xy)z = x(yz).
Thus, we can see that the multiplication is associative.
The identity element is (0, 0, 0). Indeed,
(0, 0, 0)(k1, k2, k3) = (0 + k1, 0 + 0 + k2, 0 + k3 +

1
2 (0 + 0− 0)k1) = (k1, k2, k3),

(k1, k2, k3)(0, 0, 0) = (k1 + 0, 0 + k2 + 0, k3 + 0 + 0) = (k1, k2, k3).
If x = (k1, k2a, k3), then x−1 = (−k1, k12 − k2, k1k2 +

1
2 (k12 − k13)− k3).

Finally,

x(y + z) = (k1, k2, k3)((t1, t2, t3) + (s1, s2, s3)) =

x(y + z) = (k1, k2, k3)(t1 + s1, t2 + s2, t3 + s3) =

(k1 + t1 + s1, k1(t1 + s1) + k2 + t2 + s2, k3 + t3 + s3+

+1
2 (2k2 + k1 − k21)(t1 + s1)) =

(k1 + t1 + s1, k1t1 + k1s1 + k2 + t2 + s2, k3 + t3 + s3 +
1
2 (2k2 + k1 − k21)t1+

+1
2 (2k2 + k1 − k21)s1),

xy + xz − x = (k1, k2, k3)(t1, t2, t3) + (k1, k2, k3)(s1, s2, s3)−
−(k1, k2, k3) = (k1 + t1, k1t1 + k2 + t2, k3 + t3 +

1
2 (2k2 + k1 − k21)t1)+

(k1 + s1, k1s1 + k2 + s2, k3 + s3 +
1
2 (2k2 + k1 − k21)s1)− (k1, k2, k3) =

(k1 + t1, k1t1 + k2 + t2, k3 + t3 +
1
2 (2k2 + k1 − k21)t1)+

(s1, k1s1 + s2, s3 +
1
2 (2k2 + k1 − k21)s1)− (k1, k2, k3) =

(k1 + t1 + s1, k1t1 + k1s1 + k2 + t2 + s2, k3 + t3 + s3+

+1
2 (2k2 + k1 − k21)t1 +

1
2 (2k2 + k1 − k21)s1),

so that x(y + z) = xy + xz − x.
This shows that D is a left brace.
Let A be an arbitrary left brace such that A3 = 〈0〉 = A(4). Put a1 = a, a2 = a ∗ a =

a1 ∗ a, a3 = a2 ∗ a. Since A(3) 6= 〈0〉, then a3 6= 0. By Theorem A, every element of A
has a form k1a1 + k2a2 + k3a3, where k1, k2, k3 are integers.
Define the mapping f : D −→ A by the rule f(k1, k2, k3) = k1a1 + k2a2 + k3a3. Using

Theorem A again, we can show that f is an epimorphism.
The proof of Theorem B1 is similar. �
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