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Abstract We establish a general sharp inequality for warped products in real space form. As applica-
tions, we show that if the warping function f of a warped product N1 ×f N2 is a harmonic function,
then

(1) every isometric minimal immersion of N1×f N2 into a Euclidean space is locally a warped-product
immersion, and

(2) there are no isometric minimal immersions from N1 ×f N2 into hyperbolic spaces.

Moreover, we prove that if either N1 is compact or the warping function f is an eigenfunction of the Lapla-
cian with positive eigenvalue, then N1 ×f N2 admits no isometric minimal immersion into a Euclidean
space or a hyperbolic space for any codimension. We also provide examples to show that our results are
sharp.
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1. Introduction

Let B and F be two Riemannian manifolds of positive dimensions equipped with Rie-
mannian metrics gB and gF , respectively, and let f be a positive function on B. Consider
the product manifold B × F with its projection π : B × F → B and η : B × F → F .
The warped product M = B ×f F is the manifold B × F equipped with the Riemannian
structure such that

‖X‖2 = ‖π∗(X)‖2 + f2(π(x))‖η∗(X)‖2 (1.1)

for any tangent vector X ∈ TxM . Thus, we have g = gB + f2gF . The function f is
called the warping function of the warped product. It is well known that the notion
of warped products plays some important roles in differential geometry as well as in
physics. For instance, the best relativistic model of the Schwarzschild space-time that
describes the outer space around a massive star or a black hole is given as a warped
product (cf. [9, pp. 364–367]). (For a recent survey on warped products as Riemannian
submanifolds, see [4].)
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For a warped product N1 ×f N2, we denote by D1 and D2 the distributions given by
the vectors tangent to leaves and fibres, respectively. Thus, D1 is obtained from tangent
vectors of N1 via the horizontal lift and D2 is obtained by tangent vectors of N2 via the
vertical lift. Let φ : N1 ×f N2 → Rm(c) be an isometric immersion of a warped product
N1 ×f N2 into a Riemannian manifold with constant sectional curvature c. Denote by h

the second fundamental form of φ. The immersion φ is called mixed totally geodesic if
h(X, Z) = 0 for any X in D1 and Z in D2.

One of the most fundamental problems in the theory of submanifolds is the immersibil-
ity (or non-immersibility) of a Riemannian manifold in a Euclidean m-space Em (or,
more generally, in a space form Rm(c) of constant curvature c). According to a well-
known theorem of Nash, every Riemannian manifold can be isometrically immersed in
some Euclidean spaces with sufficiently high codimension. The Nash Theorem was aimed
for in the hope that if Riemannian manifolds could always be regarded as Riemannian
submanifolds, this would then yield the opportunity of using extrinsic help.

Based on Nash’s Theorem, one of my research programs is ‘to search for control of
extrinsic quantities in relation to intrinsic quantities of Riemannian manifolds via Nash’s
Theorem and to search for their applications’.

Since Nash’s Theorem implies that every warped product N1 ×f N2 can always be
regarded as a Riemannian submanifold in some Euclidean space, a special case of the
research program is thus to study the two following fundamental problems.

Problem 1.1.

∀N1 ×f N2
isometric−−−−−−→
immersion

Em or Rm(c) =⇒ ???

Problem 1.2. Let N1 ×f N2 be an arbitrary warped product isometrically immersed
in Em (or in Rm(c)) as a Riemannian submanifold. What are the relationships between
the warping function f and the extrinsic structures of N1 ×f N2?

In view of Nash’s Theorem, it is natural to impose a natural condition on the immer-
sibility problem. For example, if one imposes the minimality condition on the immersions,
it leads to the following problem.

Problem 1.3. Given a warped product N1 ×f N2, what are the necessary conditions
for the warped product to admit a minimal isometric immersion in a Euclidean m-space
Em (or in Rm(c))?

In this paper we prove the following results, which provide some solutions to these
fundamental problems.

Theorem 1.4. Let φ : N1 ×f N2 → Rm(c) be an isometric immersion of a warped
product into a Riemannian m-manifold of constant sectional curvature c. Then we have

∆f

f
� (n1 + n2)2

4n2
H2 + n1c, (1.2)

where ni = dimNi, i = 1, 2, H2 is the squared mean curvature of φ, and ∆ is the
Laplacian operator of N1.

https://doi.org/10.1017/S001309150100075X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150100075X


Minimal immersions from warped products into real space forms 581

The equality sign of (1.2) holds identically if and only if φ : N1 ×f N2 → Rm(c) is
a mixed totally geodesic immersion with trh1 = trh2, where trh1 and trh2 denote the
trace of h restricted to N1 and N2, respectively.

As applications of Theorem 1.4 we have the following theorems.

Theorem 1.5. Let N1 ×f N2 be a warped product whose warping function f is a
harmonic function. Then

(1) N1 ×f N2 admits no isometric minimal immersion into a hyperbolic space for any
codimension; and

(2) every isometric minimal immersion from N1 ×f N2 into a Euclidean space is a
warped-product immersion.

Theorem 1.6. If f is an eigenfunction of the Laplacian on N1 with eigenvalue λ > 0,
then N1 ×f N2 does not admit an isometric minimal immersion into a Euclidean space
or a hyperbolic space for any codimension.

Theorem 1.7. If N1 is a compact Riemannian manifold, then every warped product
N1 ×f N2 does not admit an isometric minimal immersion into a Euclidean space or a
hyperbolic space for any codimension.

In the last section, we provide some examples to show that these results are best
possible.

2. Preliminaries

Let N be an n-dimensional submanifold of a Riemannian m-manifold Rm(c) of constant
sectional curvature c. We choose a local field of orthonormal frame

e1, . . . , en, en+1, . . . , em in Rm(c)

such that, restricted to N , the vectors e1, . . . , en are tangent to N and en+1, . . . , em are
normal to N .

Let K(ei ∧ ej), 1 � i < j � n, denote the sectional curvature of the plane section
spanned by ei and ej . Then the scalar curvature of N is given by

τ =
∑
i<j

K(ei ∧ ej). (2.1)

For a submanifold N in Rm(c) we denote by ∇ and ∇̃ the Levi-Civita connections of
N and Rm(c), respectively. The Gauss and Weingarten formulae are given, respectively,
by

∇̃XY = ∇XY + h(X, Y ), (2.2)

∇̃Xξ = −AξX + DXξ, (2.3)
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for vector fields X, Y tangent to N and ξ normal to N , where h denotes the second
fundamental form, D the normal connection, and A the shape operator of the subman-
ifold. Let {hr

ij}, i, j = 1, . . . , n, r = n + 1, . . . , m, denote the coefficients of the second
fundamental form h with respect to e1, . . . , en, en+1, . . . , em.

The mean curvature vector H is defined by

H =
1
n

trh =
1
n

n∑
i=1

h(ei, ei), (2.4)

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle TN of N . The
squared mean curvature is given by H2 = 〈H,H〉, where 〈·, ·〉 denotes the inner product.
A submanifold N is called minimal in Rm(c) if the mean curvature vector of N in Rm(c)
vanishes identically.

Denote by R the Riemann curvature tensor of N . Then the equation of Gauss is given
by (see, for example, [1])

R(X, Y ; Z, W ) = c{〈X, W 〉〈Y, Z〉 − 〈X, Z〉〈Y, W 〉}
+ 〈h(X, W ), h(Y, Z)〉 − 〈h(X, Z), h(Y, W )〉, (2.5)

for vectors X, Y , Z, W tangent to N .
Let M be a Riemannian p-manifold and {e1, . . . , ep} be an orthonormal frame field on

M . For a differentiable function ϕ on M , the Laplacian of ϕ is defined by

∆ϕ =
p∑

j=1

{(∇ej ej)ϕ − ejejϕ}. (2.6)

Recall that if M is compact, every eigenvalue of ∆ is non-negative.
Let φ : N1 ×f N2 → Rm(c) denote an isometric immersion of a warped product

N1 ×f N2 into a Riemannian manifold with constant sectional curvature c. Denote by
trh1 and trh2 the trace of h restricted to N1 and N2, respectively, that is

trh1 =
n1∑

α=1

h(eα, eα), trh2 =
n1+n2∑
t=n1+1

h(et, et) (2.7)

for some orthonormal frame fields e1, . . . , en1 and en1+1, . . . , en1+n2 of D1 and D2, respec-
tively.

If M1 ×ρ M2 is a warped product of two Riemannian manifolds and φi : Ni → Mi,
i = 1, 2, are isometric immersions from Riemannian manifolds N1, N2 into Riemannian
manifolds M1, M2, respectively. Define a positive function σ on N1 by σ = ρ ◦ φ1. Then
the map

φ : N1 ×σ N2 → M1 ×ρ M2 (2.8)

given by φ(x1, x2) = (φ1(x1), φ2(x2)) is an isometric immersion, which is called a warped-
product immersion [8] (see also [5]).
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3. Proof of Theorem 1.4

Let φ : N = N1×f N2 → Rm(c) be an isometric immersion of a warped product N1×f N2

into a Riemannian manifold of constant sectional curvature c. Denote by n1, n2, n the
dimensions of N1, N2, N1 × N2, respectively.

Since N1 ×f N2 is a warped product, we have

∇XZ = ∇ZX = (X ln f)Z (3.1)

for unit vector fields X, Z tangent to N1, N2, respectively. Hence, we find

K(X ∧ Z) = 〈∇Z∇XX − ∇X∇ZX, Z〉
= (1/f){(∇XX)f − X2f}. (3.2)

If we chose a local orthonormal frame e1, . . . , en such that e1, . . . , en1 are tangent to
N1 and en1+1, . . . , en are tangent to N2, then we have

∆f

f
=

n1∑
j=1

K(ej ∧ es) (3.3)

for each s = n1 + 1, . . . , n.
From the equation of Gauss, it follows that the scalar curvature τ and the squared

mean curvature H2 of N satisfy

2τ = n2H2 − ‖h‖2 + n(n − 1)c, (3.4)

where ‖h‖2 is the squared norm of the second fundamental form h of N in Rm(c).
Let us put

δ = 2τ − n(n − 1)c − 1
2n2H2. (3.5)

Then (3.4) becomes

n2H2 = 2δ + 2‖h‖2. (3.6)

If we choose an orthonormal frame en+1, . . . , em of the normal bundle so that en+1 is
in the direction of the mean curvature vector, then (3.6) becomes

( n∑
i=1

hn+1
ii

)2

= 2
[
δ +

n∑
i=1

(hn+1
ii )2 +

∑
i �=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hr
ij)

2
]
. (3.7)

Equation (3.7) is equivalent to

(ā1 + ā2 + ā3)2 = 2
[
δ + ā2

1 + ā2
2 + ā2

3 + 2
∑

1�i<j�n

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hr
ij)

2

− 2
∑

2�j<k�n1

hn+1
jj hn+1

kk − 2
∑

n1+1�s<t�n

hn+1
ss hn+1

tt

]
, (3.8)

https://doi.org/10.1017/S001309150100075X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150100075X


584 B.-Y. Chen

where

ā1 = hn+1
11 , ā2 = hn+1

22 + · · · + hn+1
n1n1

, ā3 = hn+1
n1+1n1+1 + · · · + hn+1

nn . (3.9)

Applying Lemma 3.1 of [2] or of [3] to (3.8) yields

∑
1�j<k�n1

hn+1
jj hn+1

kk +
∑

n1+1�s<t�n

hn+1
ss hn+1

tt

� 1
2δ +

∑
1�α<β�n

(hn+1
αβ )2 + 1

2

m∑
r=n+2

n∑
α,β=1

(hr
αβ)2, (3.10)

with equality holding if and only if we have

hn+1
11 + · · · + hn+1

n1n1
= hn+1

n1+1n1+1 + · · · + hn+1
nn . (3.11)

From the equation of Gauss and (3.3), we have

n2∆f

f
= τ −

∑
1�j<k�n1

K(ej ∧ ek) −
∑

n1+1�s<t�n

K(es ∧ et)

= τ − 1
2 (n1(n1 − 1))c −

m∑
r=n+1

∑
1�j<k�n1

(hr
jjh

r
kk − (hr

jk)2)

− 1
2 (n2(n2 − 1))c −

m∑
r=n+1

∑
n1+1�s<t<n

(hr
ssh

r
tt − (hr

st)
2). (3.12)

Therefore, by (3.5), (3.10) and (3.12), we obtain

n2∆f

f
� τ − 1

2 (n(n − 1))c + n1n2c − 1
2δ −

∑
1�j�n1;

n1+1�t�n

(hn+1
jt )2

− 1
2

m∑
r=n+2

n∑
α,β=1

(hr
αβ)2 +

m∑
r=n+2

∑
1�j<k�n1

((hr
jk)2 − hr

jjh
r
kk)

+
m∑

r=n+2

∑
n1+1�s<t<n

((hr
st)

2 − hr
ssh

r
tt)

= τ − 1
2 (n(n − 1))c + n1n2c − 1

2δ −
m∑

r=n+1

∑
1�j�n1

∑
n1+1�t�n

(hr
jt)

2

− 1
2

m∑
r=n+2

( ∑
1�j�n1

hr
jj

)2

− 1
2

m∑
r=n+2

( ∑
n1+1�t�n

hr
tt

)2

� τ − 1
2 (n(n − 1))c + n1n2c − 1

2δ

= 1
4n2H2 + n1n2c, (3.13)
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which proves inequality (1.2). From (3.11) and (3.13) we know that the equality sign
of (1.2) holds if and only if

hr
jt = 0 for n + 1 � r � m, (3.14)

and

hr
11 + · · · + hr

n1n1
= hr

n1+1n1+1 + · · · + hr
nn = 0 (3.15)

for 1 � j � n1, n1 + 1 � t � n, n + 2 � r � m.
Condition (3.14) implies that the second fundamental form of N1 ×f N2 in Rm(c) satis-

fies h(D1,D2) = {0}. Thus, the immersion φ is mixed totally geodesic. Hence, by applying
a result of Nölker [8], we know that, locally, there exists a warped-product representa-
tion M1 ×ρ M2 of Rm(c) such that φ : N1 ×f N2 → M1 ×ρ M2 = Rm(c) is a warped-
product immersion of φ1 : N1 → M1 and φ2 : N2 → M2; so that we have φ(x1, x2) =
(φ1(x1), φ(x2)), for x1 ∈ N1, x2 ∈ N2. Moreover, from (3.11) and (3.15), we obtain

n1∑
j=1

h(ej , ej) =
n1+n2∑

s=n1+1

h(es, es). (3.16)

Hence, we have tr h1 = trh2.
Conversely, suppose that φ : N1 ×f N2 → M1 ×ρ M2 = Rm(c) is a mixed totally

geodesic immersion with tr h1 = trh2. Then all the inequalities in (3.10), (3.13) become
equalities. Hence, by (3.13) we obtain the equality sign of (1.2). �

4. Proofs of Theorems 1.5–1.7

Assume that φ : N1 ×f N2 → Rm(c) is an isometric minimal immersion of a warped
product N1 ×f N2 into a complete simply connected Riemannian manifold Rm(c) of
constant sectional curvature c.

If f is a harmonic function on N1, then inequality (1.2) of Theorem 1.4 implies c � 0.
In particular, this shows that the warped product N1×f N2 does not admit any isometric
minimal immersion into a hyperbolic space.

When c = 0. The minimality of N1 ×f N2 and the harmonicity of f imply that the
equality sign of (1.2) holds identically. Thus, the immersion is mixed totally geodesic
according to Theorem 1.4. Hence, by applying a result of [8], we know that φ is locally
a warped-product immersion. This proves Theorem 1.5.

When f is an eigenfunction of the Laplacian on N1 with eigenvalue λ > 0. Then
inequality (1.2) implies that n1c � λ > 0. Hence, the ambient space Rm(c) cannot be a
Euclidean space or a hyperbolic space. Therefore, we have Theorem 1.6.

Now, we assume that N1 is compact and φ : N1×f N2 → Rm(c) is an isometric minimal
immersion with c � 0. Then, inequality (1.2) implies that (∆f)/f � 0. Since the warping
function is a positive function, we have ∆f � 0. Hence, by applying Hopf’s Lemma and
the compactness of N1, we know that f is a positive constant. Therefore, the warped
product N1 ×f N2 is a Riemannian product of the Riemannian manifold (N1, g1) and the
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Riemannian manifold (N2, f
2g2), equipped with the metric f2g2 which is homothetic to

the original metric g2 on N2. Because f is constant and φ : N1 ×f N2 → Rm(c) is an
isometric minimal immersion, inequality (1.2) implies c = 0.

By using the constancy of f , minimality of the warped product, and c = 0, we obtain
the equality sign of (1.2). Hence, the immersion is mixed totally geodesic. Therefore, by
applying a result of Moore [7], we know that φ is a product immersion, say

φ = (φ1, φ2) : (N1, g1) × (N2, f
2g2) → Em1 × Em2 = Em.

Since φ is minimal in Em, the first factor φ1 : N1 → Em1 is also an isometric minimal
immersion, which is impossible due to compactness of N1. Hence, when N1 is compact,
N1 ×f N2 does not admit any isometric minimal immersions into Euclidean space and
hyperbolic space regardless of codimension. �

5. Some remarks

In view of Theorems 1.4–1.7, we provide the following remarks.

Remark 5.1. There exist many minimal submanifolds in Euclidean space which are
warped products with harmonic warping function. For example, if N2 is a minimal sub-
manifold of the unit (m − 1)-sphere Sm−1 ⊂ Em, the minimal cone C(N2) over N2 with
vertex at the origin of Em is the warped product R+×s N2 whose warping function f = s

is a harmonic function. Here s is the coordinate function of the positive real line R+.

Remark 5.2. In view of Theorem 1.6, it is interesting to point out that there exist iso-
metric minimal immersions from warped products N1 ×f N2 into a hyperbolic space such
that the warping function f is an eigenfunction with negative eigenvalue. For example,
R×ex En−1 admits an isometric minimal immersion into the hyperbolic space Hn+1(−1)
of constant sectional curvature −1.

Remark 5.3. In view of Theorem 1.7, it is interesting to point out that there do exist
many isometric minimal immersions from N1 ×f N2 into Euclidean space with compact
N2. For example, a hypercaternoid in En+1 is a minimal hypersurface which is isometric
to a warped product R ×f Sn−1. Also, for any compact minimal submanifold N2 of
Sm−1 ⊂ Em, the minimal cone C(N2) is a warped product R+ ×s N2, which is also such
an example.

Remark 5.4. In contrast to Euclidean and hyperbolic spaces, the standard m-sphere
Sm admits warped-product minimal submanifolds N1 ×f N2 such that N1, N2 are both
compact. The simplest of such examples are minimal Clifford tori Mk,n−k, k = 2, . . . , n−
1, in Sn+1 defined by

Mk,n−k = Sk

(√
k

n

)
× Sn−k

(√
(n − k)

n

)
.

Remark 5.5. Ejiri constructed in [6] many examples of warped-product minimal
immersions into complete simply connected Riemannian manifolds of constant sectional
curvature.
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The above remarks show that Theorems 1.4–1.7 are best possible.

Remark 5.6. Problem 1.2 has also been studied in [10] from a different aspect for
the class of warped products.

Remark 5.7. Inequality (1.2) also holds for warped products isometrically immersed
in complex hyperbolic m-space CHm(4c) of constant holomorphic sectional curvature
4c < 0 as well as for warped products isometrically immersed in complex projective
m-space CPm(4c) as totally real submanifolds.

Remark 5.8. The same proof as for Theorem 1.6 shows that for any positive function
f on N1 with (∆f)/f being positive at some points, the warped product N1 ×f N2 does
not admit an isometric minimal immersion into Euclidean space or hyperbolic space for
any codimension.
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