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HIGHER DERIVATIONS AND TENSOR PRODUCTS 
OF COMMUTATIVE RINGS 

W. C. BROWN 

1. I n t r o d u c t i o n . T h e genesis of this paper is the following well known result 
in field theory: Let R denote a field of characteristic p j* 0, and let k denote 
a subfield of R such tha t Rpe C k for some e sufficiently large. Then R is iso­
morphic to the tensor product (over k) of primitive extensions of k if and only 
if there exists a finite set T of ^-higher derivations on R such tha t k is the field 
of constants of I \ A proof of this theorem can be found in [6]. 

In this paper, we explore how much of this theorem remains true if R and k 
are arbi t rary commutat ive rings. In other words, we are interested in the 
following conjecture: Let R/k be an extension of commutat ive rings. Suppose 
the characteristic of k is either zero or a prime p. Then R = (g) k[Xi] (the 
tensor product over k) if and only if there exists a finite set T of ^-higher 
derivations on R such t ha t k is the ring of constants of T. 

This conjecture is, of course, a bit too optimistic. In fact, both directions in 
the conjecture are false. For instance, if k is a ring of prime characteristic, and 
R = k[Xi, . . . , Xn] is a polynomial ring in w-indeterminates over k, then 
R ~ (x) k[Xi]. But , k is never the ring of constants of any finite set T of 
^-higher derivations on R. This fact follows from elementary considerations 
concerning higher derivations. We shall discuss this point more carefully in 
the next section of this paper. Conversely, we can easily construct examples 
R/k and T such tha t k is the ring of constants of T, but R fails to be a tensor 
product of primitive extensions of k. A specific case is Example 1 in this paper. 

Thus , a more encouraging problem is the following: Let R/k be an extension 
of commuta t ive rings with the characteristic of k being zero or a prime p. 
Let r = {Di, . . . , Dn) be a finite set of fe-higher derivations of R, and let 
Rr be the ring of constants of r . W h a t further conditions on T will allow 
us to conclude tha t there exist elements Xi, . . . , xn £ R — Rr such t ha t 

The theorems in this paper together with the examples will give a fairly 
complete answer to this question. 

2. Pre l iminar ie s . Throughout this entire paper, R and k will denote com­
muta t ive , associative rings with identi ty. We shall always assume tha t the 
characteristic of k is either zero or a prime p. We say tha t R is an extension of k 
if R Z) k, and the identi ty of k is the same as the identi ty of R. If R is an 
extension of k, then we shall indicate this fact by writing R/k. 
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Let R/k be an extension. A k-higher derivation D on R/k is a finite sequence 
D = {do, di, . . . , dm) of &-endomorphisms of R such t ha t d0 = I, the ident i ty 

map on R, and 

(1) dr(xy) = £ { ^ ( * ) ^ ( y ) | 0 g j ^ r ) . 

Here, of course, equat ion (1) is to hold for all x, y £ R and for all r ^ m. By 
the rank (rk.D) of £>, we shall mean the largest integer / ^ m such t ha t dx 9^ 0. 
We shall refer to di, . . . , dx as the components of Z). If T = {£>i, . . . , Dn) is 
any finite set of ^-higher derivations, then we shall refer to the components of 
DicisDij (1 ûj Û rk Di). 

We shall also need the notion of a ^-higher derivation E of infinite rank on 
R/k. E is jus t an infinite sequence E — {e0, 0i, • • •} of &-endomorphisms of R 
such t ha t for every m, E(m) = {e0, e\, . . . , em) is a ^-higher derivat ion on R/k. 
E(m) is called the rath section of E. 

Now suppose r = {.Di, . . . , Dn} is any finite set of ^-higher derivat ions on 
R/k. By the ring of constants RT of T, we shall mean the set of all x G R such 
t ha t Dij(x) = 0 for all 1 ^ i ^ n and 1 ^ j ^ rk D<. One can easily verify 
t ha t Rr is a subring of i? containing &. 

Let jR/é be an extension and let 5 be a subring of R. If Xi, . . . , xn are any 
elements of R, then we have a natural mapping cp : (x) s S[xt] —> Z? given by 

tf>( S ^l...«n^ial ® • • • ® Xn" J = ] £ Sai..."»*!*1 . . . X^". 

In part icular, if T is a set of ^-higher derivations on R, and Xi, . . . , xn ^ R — 
Rr, then we have a natural mapping <p: (x) f l r Rr[Xi] —> R. Throughou t this 
paper, all tensor products will be over some ring of constants RT. We shall 
therefore drop the RT symbol on the tensor product and merely write (x) RT[xi\. 
When we write R ~ (x) i ? r [ x j , we mean t h a t the natura l mapping <p: (x) RT[x<] 
—» i? is an isomorphism (onto). 

We complete our preliminary remarks with an impor tan t ident i ty t h a t 
higher derivations satisfy if the characterist ic of k is a prime p. Let R/k be 
an extension of characterist ic p, and let D = {do, du . . . , dm) be a ^-higher 
derivation on R. Then equat ion (1) implies t ha t D induces a ^-algebra homo-
morphism \f/D: R —» R[T]/(Tm+1), T an indeterminate , given by 

(2) +D(x) = x + ^ ( x ) r + . . . + d m ( x ) r » . 

Since the characterist ic of k is £ 7̂  0, the map sending x to xpe is also a ring 
homomorphism of R. Thus , \pD{xve) = {\//D(x)}pe. Using the fact t ha t R[T]/ 
(Tm+l) is a free /^-module with basis {1, T, . . . , 7 ^ } , the ident i ty ^ D (x p e ) = 
{^D(%)}pe gives us the following relationships: 

{6) dA% ' ~ \{dT(x)}pe if j = rpe 

for 1 S j ^ m. 
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Now suppose RD denotes the ring of constants of D in the above discussion. 
Then equation (3) implies tha t there exists an e sufficiently large such tha t 
Rpe C RD- Thus , if r = {Du . . . , Dn) is any finite set of ^-higher derivations 
on R, then there exists an e sufficiently large such tha t Rpe C Rr> This fact 
explains the remark made in the example in the introduction. In tha t example, 
k ^ Rr for any V because Rr D k[Xx

p\ . . . , Xn
pe] for some e sufficiently large. 

If the characteristic of k is a prime p, we have seen tha t Rpe C Rr for some e 
sufficiently large. In particular, if x G R, then some power of x lies in Rv. 
We define the integer /x r(x) to be the smallest positive integer g such tha t 
xq G RT. If R and k are both fields, then jur(x) is always a power of p. This 
result continues to hold for arbi t rary rings of characteristic p under suitable 
conditions., We discuss this in the next section. 

3. M a i n re su l t s . We return now to the main problem. Let R/k be an 
extension, and suppose tha t T = {Du • • • , Dn] is a finite set of ^-higher deriva­
tions on R/k. Suppose tha t there exist elements Xi, . . . , xn G R such t ha t 

(4) D (x)-i° tf^U^j^rkZ?, 

If such elements Xi, . . . , xn exist in R, we shall indicate this fact by saying 
(Pu • • • , Dn\xu • • • , xn) satisfy (4). 

Our first goal is to prove the following theorem: 

T H E O R E M 1. Suppose R/k is an extension of prime characteristic p, or R/k is 
an extension of characteristic zero in which no nonzero integer is a zero-divisor in R. 
Let T = {Di, . . . , Dn] be a set of k-higher derivations on R/k, and suppose there 
exist elements G R — RY such that (Di} . . . , Dn\xi, . . . , xn) satisfy 

(4). Then RT[xu . . . , * „ ] = ® Rr[Xi]. 

To prove Theorem 1, we divide it into two cases (characteristic p or zero) 
and proceed by a series of lemmas which are of interest in their own right. 

3A. T h e character i s t i c p case . 

LEMMA 1. Suppose R/k is an extension of prime characteristic p. Let D = 
{d0, du • • • , dm) be a k-higher derivation on R. Set RD = {z G R\dj(z) = 0, 

j = l i - Suppose there exists an element x G R such that di(x) = 1. Then 
(a) HRD(X) = pf for some f ^ 1, 

(0) Pf~l S rk D < pf, and 
(7) if c xl = Ofor some c G RD and some i < HRD(X), then c = 0. 

Proof. From the remarks in the preliminaries, we know tha t Rpe C RD for 
some e sufficiently large. Thus , VRD(Z) is a well defined function on R. Since 
di(x) = 1, we see x G RD- Thus , HRD(X) > 1. Let us set q = IXRD(X). Then 

xq G RD. So 0 = dx{xq) = q xq~\ If p \ q, then xq~l = 0. In part icular, 
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xq~l £ RD. This contradicts the definition of q. Thus, p\q. Now write q = npf, 
for some / ^ 1 and n relatively prime to p. 

Now if pf > rk D, then equation (3) implies t ha t dj(xp/) = 0 for all j = 1, 
. . . , ra.Thus, xp / 6 i^z). Since p r ^ w p r , we conclude t h a t n = 1. So, HRD(X) = 

pf in this case. 
If £ 7 ^ rk D, then rfp/ is well defined. Using (3), we have: 

(5) 0 = dpf(x
npf) = {di(zn)}p / = {nxn-l}pf. 

Since n is a uni t in 7?, we conclude from (5) t ha t x{n~l)pf Ç RD. Again since 
(n — l)pf < npf, we must have (n — l)pf = 0, i.e. n = 1. Thus , the proof 
of (a) is complete. 

As for (jS), we have already noted t ha t rk Z) < £ r . For if rk D ^ £ 7 then dp/ 
is defined and we would have 0 = dp/(x

pf) = {d1(x)}pf = 1. On the other hand, 
if rk D < £>/_1, then (3) implies xp / _ 1 Ç i ^ (a contradict ion since pf~l < pf). 
Thus , rk D ^ ^ /~ 1 , and (0) is established. 

For the proof of (7), we proceed via induction on i. Suppose ex = 0 for some 
c Ç RD. Applying d\ to this equat ion gives c = 0. Thus , (7) is established if 
z = 1. So, assume cxl = 0 some 1 < I < pf = ^XRD(X). If (£, /) = 1, then 
applying rfi to cxl = 0 gives clxl~l = 0. Since / is a uni t in i^, we conclude 
cx ? _ 1 = 0. Thus , by induction, c = 0. Therefore, wre can assume £>|/. Since 
p tk I < pf, the p-adic expansion of / has the following form: 

(6) / = aj* + . . . + a , . ^ ' - 1 . 

Here 1 ^ i g / - 1, and 0 < at < p. Now pl ^ pf~l ^ rk D by (0). So, d„ 
is well defined. We need the following fact: For any y, z £ 7?, we have 

(7) dpi(zypN) = ypNdpi(z) whenever N > i. 

Equat ion (7) follows easily from equations (1) and (3). If we now apply dp% to 
the equation ezl = 0 and use (6) and (7), we get 

(8) c a pl x (a i~vpi+a i+ tfi+l+ • • -+af- IP / _ 1 = 0. 

Since a / ' is a unit in k and the exponent in (8) is smaller than /, we conclude 
by induction tha t c = 0. This completes the proof of Lemma 1. 

We can now give a proof of Theorem 1 if the characterist ic of k is a prime p. 

Proof of Theorem 1 (char k = p). Choose any i such tha t 1 ^ i ^ n. Then 
by equation (4), xt (E C\i^i RDI(RDI being, of course, the ring of constants of 
D j.) Since Rr = RD, ^ (Pl i^i RDI), we conclude tha t Mr(x7) = HRD(Xi). Thus , 
by Lemma 1, jur(xf) = pfi for some/* ^ 1. Fur ther , pfi~l ^ rk Dt < pfi, and 
property (7) holds for any c £ RDÎ-

We now claim tha t RDi[Xi] is a free RDi-modu\e with basis Si = {x/*|0 ^ 
a < idr(xi)}. Since x / 7 * £ i^,- , we see tha t the elements of St generate the 
/ ^ . - m o d u l e RD.[Xi]. So, it remains to argue tha t the elements of St are linearly 
independent over RDi. Suppose we have some non-trivial relation among the 
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elements of Sif say, 

(9) c&i1 + . . . + cixt + Co = 0. 

Here the Cj are in RDi (0 S j ^ 0 and are not all zero. Fur ther t ^ pfi — 1. 
Among all such non-trivial relations as in (9), we can pick one in which / is 
as small as possible. Say this relation is 

(10) CmXim + • • • + CiXt + C0 = 0. 

Here Cj £ RDi for 0 ^ j ^ m, cm F^ 0, and 1 ^ m S pfi — 1. If some ex­
ponent present in (10) is not divisible by p, say /, then applying Da to (10) 
gives 

(11) mcmx?-1 + . . . + Idx1-1 + . . . + d = 0. 

Since this is a relation among the elements of Si of smaller degree than ra, we 
conclude tha t every coefficient in (11) is zero. But then cx = 0. This is a 
contradiction, since we are assuming cxx

l is present in (10). Thus , we can 
assume the exponents present in (10) are all divisible by p. Set f(T) = cmTm + 
. . . + cQ G RDi\T] (T an indeterminant) . Then we can find an e ^ 1 and 
sufficiently large such t h a t / ( r ) G RDi[Tpe] - RDl[Tpe+l]. Thus , / ( * , ) = 0 can 
be wri t ten as 

(12) f ) clp.xt
lpt = 0. 

Here Kpe = m. Now Mr(#<) = Pfi > m ^ pe. Thus , e ^ f{ — 1. Consequently, 
Divt is well defined. We now apply Dipe to (12). Using (3), we get 

(i3) E ClvrXl
{i-l}f° = o. 

Equat ion (13) is a relation among the elements of St of degree less than m. 
Consequently, the coefficients lpeCipe in (13) are zero. But this implies p\l for 
all / appearing in (12). So, f(T) £ RDATpe+l]. This is a contradiction. Thus , we 
have shown tha t RDi[Xi] is a free 7?£>t-module with basis S^ 

Now the same proof shows tha t Rr[Xi] is a free i? r -module with basis S^. 
Thus , (X) RT[xi] is a free l^r-module with basis {xia i (x) . . . (x) xn

a*|0 ^ a< < 
/xr(^i)}- Now let <£>: (x) i^r[#d —> ^ r [ # i , . . . , tfw] be the natural mapping, i.e. 
<p is given by 

( 1 4 ) A X ) ^ l - . . « „ ^ r ® • • • ® ^ J = Z ) ^ai. . .«n^ia l • ' ' ^na". 

Clearly ip is onto. The fact tha t <p is one-to-one follows easily from the fact t ha t 
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RDi[%i] is a free i?Dt-module with basis St. For suppose Y,cai...anXial.. .xn
an = 0 

for some cai...an G ^ r , and 0 ^ a , < /xr(*<). Then we can rewrite 

£ Cai...a„#ial . . . xn
an = 0 in the form: 

as) E (Z ^...^a2...^>r = o. 
ai \ ' 

The terms in parentheses in (15) lie in RDi and so are all zero. Induct ion now 
gives us every cai...an = 0. Thus , cp is an isomorphism and the proof of Theorem 
1 in the characteristic p case is complete. 

Before proceeding with the proof of Theorem 1 in the characterist ic zero 
case, we give an example in characterist ic p which shows t ha t we cannot omit 
the hypothesis t h a t (Di, . . . , Dn\xi, . . . , xn) satisfy equat ion (4). 

Example 1. Let k be a field of characterist ic two and set S = k\Xi, X2], a 
polynomial ring in two variables Xi and X2 over k. We define two first order 
^-derivations Di and D2 on 5 by the formulas: 

(16) D^X,) = 0 = D2(X2), DM2) = X2t D2(XY) = XL 

One can easily check tha t SDl = k[Xu X2
2], and SDi = &[^i2 , X2]. We further 

note t ha t I = (XiX2), the principal ideal in S generated by XiX2, is differen­
tial under both Dx and D2. Thus , Dx and D2 induce first order ^-derivations 
(which we continue to denote by D\ and D2) on R = S/I. 

If wre set Xf equal to the residue class of Xi in R, then R = k\xi, x2]. One 
easily checks tha t RDl = k[xu x2

2] , and RD2 = k\xi2, x2]. Thus , if wre set T = 
{Di, D2), then Rr = k[xi2, x2

2]. We note t ha t R is generated as an i? r -module 
b y {1, xi, x2}. 

We now claim tha t for no elements / , g £ R — RT is p: Rr[f] (x) Rr[g] —» 
^r[ /> Û an isomorphism. Suppose the claim is false. Then there e x i s t / , g (I 
R — Rr such tha t <p is an isomorphism. Now we can w r i t e / = a + bx\ + cx2 

with a, b, c (j Rr. Since xxx2 = 0, we can further assume tha t b Ç &[xi2], 
c (z k[x2

2]. S i n c e / (f_ Rr, either b 9^ 0 or c ^ 0. We can assume b ^ 0 wi thout 
any loss in generality. We also note t ha t s ince / 2 £ Rr, Rr[f] is generated as an 
i^i-module by { 1 , / } . Similar remarks can be made abou t g. T h a t is, we can 
write g = a' + b'xi + c'x2 with b' Ç &[xi2], and c' £ k[x2

2]. Rr[g] is an Rr-
module writh generators {1, g), and either V ^ 0, or c' ^ 0. 

Nowr an easy computat ion shows tha t / (x) (g + a') + 1 (x) {A + ag) £ 
ker <̂ . Here .4 = nci' + bb'xi2 + cc'xo2. T h u s , since «̂  is an isomorphism, we 
have 

(17) f® (g + af) + \® {A +ag) = 0. 

Since {1, /} is a set of generators of Rr[f], we conclude from (17) and [1, 
Lemma 10, p. 41] t ha t there exist elements zi, . . . , zn £ Rr[g] and elements 
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dj\ € RT(J = 1, • • • , n, A = 1,2) such tha t 

(i) djif + aj2 = 0 for / = 1, . . . , n 

n 

(18) (ii) g + a9 = X) zJaJi 

n 

(iii) A + ag = X 2 ^ 2 . 
3=1 

We now argue tha t the equations in (18) imply a contradiction. There are 
two cases to consider: 

Case 1. S u p p o s e / = a + frxi + cx2 with & ̂  0, c ^ 0. 
In this case, (18i) implies tha t (iji(bxi + cx2) G i^r- Now write ciji, b and c 

as follows: 

(19) 

6 = £ 7 , ( * i V , * = E Ô , ^ 2 ) 1 

z=o z=o 

with djii, fiju, yi,dt(z k. If we subst i tute the expressions from (19) into the 
relation a,ji(bxi + cx2) Ç £[xr , x2

2], we easily see tha t a^u = Pm = 0 for all /. 
Thus , ciji = 0 for all j = 1, . . . , n. But then (18 ii) implies t ha t g = a' £ RT, 
a contradiction. 

Case 2. S u p p o s e / = a + bxi with b ^ Q. 
We begin as in Case 1. Equat ion (18 i) implies tha t cijibxi Ç £[xi2, x2

2]. 
Wri t ing a^i and & as in (19) and subst i tut ing into the relation a^bxi Ç &[xi2, 
x2

2] gives ajii = 0 for all /. WTe conclude tha t each cij\ is a polynomial in x2
2 

without constant term. Thus , we can write 

AT 

aji = X ) Pjii(x2
2)1 (j = 1 » ) 

with j3jii G &. So equation (18 ii) now takes the form 

(20) g + a ' = £ 2 , ( E / 3 ; U ( * 2
2 ) ' ) . 

Now recall tha t // G k[x{2], c' £ &[x2
2] and tha t g + ^' = &'xi + c'x2. Since 

x2
2 R C &[x2], equation (20) implies V = 0. Thus , equation (20) has the form 

(2i) { è T*(*22)*k2= t, *>(£ ^ii(^2y) 

for some yf (j &. Now each ^ = a, + $jg with a;- and (3j in 7^r. If we write 
ctj and jSj as in equation (19) and subst i tute into (21), we easily see tha t (21) 
is impossible. Thus , in either case, (18) is impossible. Therefore, <p is never an 
isomorphism, and Example 1 is complete. 
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We note that Example 1 also gives an example of the remarks made in the 
introduction of this paper. U R = k[xu x2], and Y = {Du D2\, as in Example 1, 

then R/RY is an extension of characteristic two such t ha t Rv is the ring of 

constants of Y. But , R fails to be a tensor product over RT of primit ive exten­

sions of RT. 
In view of Example 1, the hypotheses appearing in Theorem 1 are reasonable. 

3B. The characteristic zero case. 

LEMMA 2. Let R/k be an extension of characteristic zero such that no nonzero 
integer is a zero-divisor in R. Let D = {d0, du . . . , dm\ be a k-higher derivation 
on R, and let RD be the ring of constants of D. Suppose there exists an element x 
in R such that dxx = 1. Then x is transcendental over RD. 

Proof. By x being transcendental over RDl we, of course, mean t ha t x satisfies 

no algebraic equation of the form: 

(22) cnx
n + Cn-ix»-1 + . . . + cQ = 0 

where the c/s are in RD and are not all zero. The proof of Lemma 2 is by contra­
diction. Suppose x satisfies such an equation (22). Among all such equat ions 
tha t x satisfies, we can pick one for which n is minimal. Say equat ion (22) is 
one such equation. Then applying d\ to (22) gives 

(23) n cnx
n-1 + . . . + a = 0. 

By the minimali ty of n, the coefficients of the expression in (23) are all zero. 
Since no nonzero integer is a zero-divisor in R, we conclude tha t cn = . . . = 
C\ = 0. But , then every coefficient in (22) is zero. This is a contradict ion, and 
the proof of Lemma 2 is complete. 

* 
Before we give the proof of Theorem 1 in the characteristic zero case, we give 

an easy example which shows tha t the hypothesis "no nonzero integer is a 
zero-divisor in R" cannot be omit ted from Lemma 2. 

Example 2. Let Z denote the integers, and let X be an indeterminate . Set 
k = Z[X]/(2X). Then k has characterist ic zero, and 2 is a zero-divisor in k. 
Let x denote the image of X in k. Then k = Z[x]. Now let Y be an indetermi­
nate over k and set R = k[Y]/(xY2). Let y be the image of Y in R. Then R = 
k[y] is an extension of k of characteristic zero, and 2 is a zero-divisor in R. 

Now we can define a first order ^-derivation D on k[Y] by letting D(Y) = 1. 
Since D(xY2) = 2xY = 0, we see (xY2) is a differential ideal under D. So, D 
induces on R a first order ^-derivation (which we shall also call D) such tha t 
D(y) = 1. 

Thus , R/k has a first order ^-derivation D, and an element y G R such tha t 
D(y) = 1. But y is algebraic over RD since x £ RD and xy2 = 0. Thus , the 
conclusion of Lemma 2 can fail if we allow nonzero integers to be zero-divisors. 

https://doi.org/10.4153/CJM-1978-035-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-035-9


COMMUTATIVE RINGS 409 

We now prove Theorem 1 in the characteristic zero case. 

Proof of Theorem 1 (char = 0) . Since (Dh . . . , Dn\xi, . . . , xn) satisfy equa­
tion (4), we have RDi Z) Rr[xi, • • • » &u • • • > xn\- Thus , by Lemma 2, x* is 
transcendental over i?r[#i, . . . , x*, . . . , xn]. Now consider cp: (x) J?r[^J —> 

i?r |>i , • • • , *«]• If E cai...an xf1 (x) . . . (x) x / " Ç ker p, (cai... t tn c Rr), then in 
i?, we have 

(24) E ( E cai...a„xr-... xAxr = o. 
Since Xi is transcendental over Rr[x2, . . . , x j , we conclude tha t each expres­
sion in parentheses in (24) is zero. Thus , we conclude by induction tha t every 
c«i...a„ is zero. 

T h e proof of Theorem 1 is now complete in all cases. We give two examples 
concerning the hypotheses of Theorem 1 in the characteristic zero case. The 
first example shows tha t the hypotheses (J)\, . . . , Dn\xi, . . . , xn) satisfy (4) 
cannot be omit ted from Theorem 1. The second example shows tha t the 
hypothesis "no nonzero integer is a zero-divisor in R" cannot be omitted either. 

Example 3. Let k be any field of characteristic zero and let X\ and X2 be 
indeterminates over k. Set R = k[X\, X2]. We define two first order ^-deriva­
tions Di and D2 on R by the formulas: 

(25) D1(X1) = Xu D,(X2) = D2{X2) = 0, D2(X1) = X2. 

Then one can easily check tha t RDi = RD2 = k[X2]. Thus , Rr = k[X2] when 
r = {DUD2}. 

Now if / G R — Rr, then clearly / is transcendental over RT. Thus , if / , 
g G R — Rr, and cp: Rv[f] (x) Rr[g] —> ̂ rf/ , g] is the natural map, then simple 
dimension theoretic considerations imply tha t <p cannot be an isomorphism. 

In Example 1, RDl ^ RD2. In Example 3, RDl = RD«- In either example, 
Rr[f, g] fails to be isomorphic to Rr[f] ® Rr[g]- Thus , the order relationships 
between the rings RDi are not enough to decide if any finitely generated Rr-
algebra contained in R is a tensor product. 

Example 4. Again, let Z denote the integers. Let X denote an indeterminate 
over Z and set k = Z[X]/(4:X). We shall let x denote the image of X in k. 
Therefore, k = Z[x]. Now let Y\ and Y2 be indeterminates over k, and set 
5 = k[Y-[, F2] . We define two first order ^-derivatives Dx and Z)2 on 5 by 
D^YO = 1 = D2(Y2), and A ( F 2 ) = £>2(Fi) = 0. So, ( Z ^ Z ^ l F ^ F2) satisfy 
equation (4). Now let §1 be the following homogeneous ideal in 5 : 

(26) 21 = (x Y^Y2\ 2x YXY2\ 2x Y,2Y2, 2x Yx\ 2x F2
2) . 

One can easily check tha t 31 is differential under D\ or D2. Thus , D\ and D2 

induce first order ^-derivations (which we shall continue to call D\ and D2) 
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on R = 5/3t. If we let y{ denote the image of Y{ in R, then R = % b y2], i?/fe 
is an extension of characteristic zero, 2 is a zero-divisor in R and (Du D2\yi, y2) 
satisfy equation (4). 

Now set r = [Di, D2\, and let Rr denote the ring of constants of V as usual. 
Consider <p: Rr[y{\ ® RT[y2] —> Rv[yu ^2]. An easy computation shows that 
x yi2 and y2

2 are not elements of RT, but x yi2 ® ;y2
2 G ker <p. We shall now show 

thatx yi2 (x) j>2
2 ^ 0, and, consequently, <p is not an isomorphism. 

The argument is similar to that in Example 1. We assume x yr (x) y2
2 = 0. 

Then by [1, Lemma 10, p. 40], there exist elements ajX Ç RT(j = 1, • . • , n, 
X = 0, 1, . . .), and oij £ Rr[yi] such that 

00 

G) E «^2X = 0, j = 1, . . . , n 
X=0 

n 

(27) (ii) ryi2 - X) « ^ 

(hi) 0 = 2 œfijx, A 7̂  2. 

Here we note that the family {(ij\\\ = 0, 1, . . .} has finite support, and, thus, 
(27 i) is a finite sum. We wish to argue that the equations in (27) are impos­
sible. The computations are tedious but not difficult. We sketch the main ideas 
and leave the details to the interested reader. 

We first note that any element z d Rv can be written in the following form: 

(28) z = a + £3 + • • • + gm. 

Here a £ ky and gt is a homogeneous polynomial in y\ and y2 (coefficients in k) 
of degree i. Since only finitely many cij\ appear in (27 i), we can write each ajx as 

(29) ajX = aj* + g3''x + . . . + gJ'x 

for some m sufficiently large. Here a3'* and gt
3,x are as in equation (28). If we 

now substitute (29) into equation (27 i) and apply D2
2, we conclude that aj2 

has the following form: 

(30) aj2 = 2x(33>2 + g*3'2 + . . . + gj'2. 

Here (33'2 Ç k, and gij'2 are homogeneous polynomials of degree i in yi and y2. 
We now substitute (30) into (27 ii) getting 

(31) xyi
2 = £ w,(2*/3''2 + g^2 + . . . + gj'2). 

Now each o>;- lies in Rr[yi]- Thus, each coy can be written as w; = X/?=o c./O'i'. 
Here c;-r £ i^r. If we write each cjt as in (28) and substitute into equation (31), 
wre easily see that equation (31) is impossible. Thus, x y\2 (x) y2

2 j* 0, and 
<P fails to be an isomorphism. 
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Thus , even if (Di, . . . , Dn\x\, • • • , xn) satisfy equation (4), the conclusion 
of Theorem 1 may fail if some nonzero integer is a zero-divisor in R. 

One last comment about Theorem 1 seems appropriate here. We can s ta te 
a slightly more general version of Theorem 1 as follows: 

T H E O R E M V. Suppose R/k is an extension of prime characteristic p or an exten­
sion of characteristic zero in which no nonzero integer is a zero-divisor. Let Y = 
{Di, . . . , Dn} be a set of k-higher derivations on R, and suppose there exists ele­
ments X], . . . , xn £ R — RT such that the following system of equations is satisfied; 

( 3 2 ) Dtj(xk) = 0 ifk * i , 1 g j g rkDt 

Dn(Xi) is a unit in R, 1 ^ i g n. 

Then RT[xu . . . , xn] ^ ® Rr[Xi\. 

Proof. Set Du(xi) = e*, a unit in R. Let the multiplicative inverse of e{ be 
at. If D{ = {Di0, Da, . . . , Dim{i)], then clearly D/ = {Di0, afin, . . . , 
aiW(I)Z}jm(f)} is another ^-higher derivation on R such tha t rk D/ = rk Dt. 
Since at is a unit, 7 ? ^ = 7?D - . Thus , 7? r = Pi RDS, and equation (32) implies 
(Di, . . . , ZV|xi , . . . , xn) satisfy equation (4). Thus , the result follows from 
Theorem 1. 

To complete our s tudy of the main problem in this paper, we now investigate 
when R = Rv[xi, . . . , xn]. In the first place, if the conditions of Theorem 1 
are satisfied, we cannot conclude tha t R = Rr[xi, . . . , x„]. A simple example 
will i l lustrate this point. 

Example 5. Let k be any field and let Xi, X2j X 3 be indeterminates over k. 
Set R = k[Xi, X2, Xz], We define two first order ^-derivations D\ and D2 on R 
by the following formulas: 

Dl(X1) = D2(X2) = 1 

(33) D1(X2) = D2(X,) = 0 

D1(XZ) = D2(Xz) = X 3 . 

Then (Du D2\X1} X2) satisfy equation (4). But if Y = {Du D2}, then X, (? 
Rr[Xi, X2]. To prove this fact, we merely have to note tha t given a n y / £ 
Rr[Xi, X2], there exists an n sufficiently large such tha t Z V ( / ) = 0. Since 
Z V ( X 3 ) = X, for all n, we conclude tha t X?> <? RT[XUX2}. 

Thus , more conditions on Y are needed in order to ensure t ha t 7̂  is a tensor 
product over 7^r. We shall s tate exactly what is necessary when 7̂  is an 
integral domain. 

Let R/k be an integral domain, and let 5 be a subring of R. We shall denote 
hy Q(S) the quotient field of 5 . If D is a ^-higher derivation on «5, then D has a 
natural extension to Q(S). A proof of this fact can be found in [4, Theorem 15]. 
In particular, if Y = {Dx, . . . , Dn\ is a set of ^-higher derivations on R/k, 
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then r can be viewed as a set of ^-higher derivations on Q(R). It also follows 
from [4, Theorem 15], t ha t Q(Rr) is a subfield of the field of constants of F 

on QCR). 
We need the following lemma. 

LEMMA 3. Let R/k be a domain of prime characteristic p. Let Y = {Du • • • , Dn\ 
be a set of k-higher derivations on K. Suppose there exist elements xu . . . , xn (-
R — RT such that (D\, . . . , Dn\xi, . . . , xn) satisfy equation (4). Then for every 
polynomial 

/ = ]C {cai...anx
ai . . . / „" |0 ^ at < /xr (*<)}, 

with coefficients cai...an 6 Q(Rr), there exists a composite E\ o . . . o Er of com­
ponents of D\, . . . , Dn such that E\ o . . . o Er(f) = / cyi...7n. Here I is a nonzero 
integer (in Z/pZ), and c71...7n is one of the (nonzero) coefficients appearing in f. 

Proof. The proof of Lemma 3 is easy, and we shall only sketch the main 
ideas. Since (D\, . . . , Dn\x\, . . . , xn) satisfy equat ion (4), Lemma 3 is easily 
seen to be true if/ has degree less than or equal to one. Thus , we can proceed 
by induction on the degree of/. If/ has degree bigger than one, we can assume 
without loss of generality tha t Xi is present in a term of highest possible degree 
i n / . Then we can w r i t e / in the following form: 

(34) / = A, + AlXl + . . . +Amx1
m-

Itère A{ G Q(Rr)[x2, • . . , xn] C Q(R)D{- Fur ther , Am ^ 0, and m (leg Am = 
d e g / . We note tha t m < /xr(xi). Thus , by techniques similar to those used in 
Theorem 1, we can show tha t there exists a component Du of D\ such tha t 
Du(f) j£ 0, Du(f) = Bi + B2Xi + . . . + Bmx{n~l and each Bt is just A, 
multiplied by some element lt of Z/pZ. Since the degree of Du(f) is less t h a n / , 
there exists a composite of components E\ o . . . o Er of D\, . . . , Dn such tha t 
Ei o . . . o Er(Du(f)) is a nonzero multiple of one of the nonzero coefficients of 
Dn(f). Thus , Ei o . . . o Er o Du is the required composite for/ . 

WTe can now state the main result in characterist ic p. Let \)erRv
l(R) denote 

the /^-module of first order R\-derivations of 7 .̂ 

T H E O R E M 2. Let R/k be a domain of prime characteristic p. Let F = \D]} . . . , 
Dv) be a set of k-higher derivations on R. Suppose there exist elements xY, . . . , 
xn G 7<* — Rv such that (Du . . . , Dn\x\, . . . , xn) satisfy equation (4). Then 
R^® Rr[xt] if and only if {Dn, • • • , ^ d span DerRr

l(R). 

Proof. Suppose ç: (X) Rr[Xi] —-> R is an isomorphism. Since the image of ç 

is -7^r[vi, . . . , xn], we conclude tha t R = Rr[xi, . . . , xn]. Now if D is any first 
order 7̂  i-derivation of 7 ,̂ then D is uniquely determined by its values on the xt. 

Thus , it is clear tha t D = ^n
l==\D(Xi)Dn. Therefore, Du, . . . , DvX span 

DerVW-

https://doi.org/10.4153/CJM-1978-035-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-035-9


COMMUTATIVE RINGS 413 

Suppose we now assume Du, . . . , Dni span D e r ^ , , 1 ^ ) . We easily see tha t 
Dersp'CGCR)) = Der<, (Hr ) »((?(#)) = DerK

l(Q(R)) where K is the subfield of 
Q(R) generated by Q(RT) and Q(R)P. Since DerBJ(Q(R)) ^ Q(R) <g>„ 
Derji^iR), we conclude tha t (-Du, . . . , Dni\ is a basis for the Q(i?)-module 

Der*K<20R)). 
We next show tha t ! Xi, . . . , xn\ is a £-basis of Q{R)/K. Since (Du . . . , 

Dn]xi, . . . , xn) satisfy (4), we easily see tha t {xi, . . . , xn) is a ^- independent 
subset of Q(R)/K. Thus , there exists a ^-basis B of Q(R)/K such tha t {xi, . . . , 
xn] C B. Suppose there exists a y £ B — {xi, . . . , x n j . Then by [3, Theorem 
17, p. 181], there exists a first order ^ -der iva t ion D on Q(R) such tha t D(xt) = 
0,i = 1 , . . . ,«,andZ>(;y) - 1. But, {Dn, . • . , A»i} is a basis for Der*1 ((?(#))• 
Consequently, there exist constants «i, . . . , an £ <2(i0 such t h a t 

(35) D = a i d i + . . . + a B D w l . 

If we now evaluate (35) a t each xu we get <xt = 0, i = 1, . . . , n. Thus , D = 0. 
But this is impossible since D(y) = 1. We conclude tha t B — {xi,. . . ,xn} = 0, 
and, consequently, {xi, . . . , xn) is a ^-basis of Q(R)/K. 

Since {xi, . . . , xn\ is a £-basis of Q(R)/K, we have Q(R) = i£(xi, . . . , xn) . 
In other words, Q(R) = Q(RT) (Q(R)P) (*I , . . . , xn) . I terat ing this relationship 
and using the fact tha t i^pe C ^ r for some g sufficiently large, we get Q(R) = 
Q(RT)(xu . . • , *„). 

Now let z e R. Since Q ( ^ ) = Q(RT)(xu . . . , xn) = Q(Rr)[xu . . . , xn], 
there exist elements cai...an (z Q(Rr) such tha t 

(36) Z = X) ^«l...an^ial • • ' Xnn. 

Here 0 ^ a* < /zr(# *)• We conclude the proof of Theorem 2 by showing tha t 
equation (36) implies every cai...«„ lies in R r . 

We proceed by induction on the number of monomials present on the right 
hand side of (36). If only one monomial is present, then equation (36) has the 
form 

\0 I J Z 6 a i , , ,anXY • • • Xn 

We now apply Lemma 3 to equation (37). Hence there exists a composite of 
components Ex o . . . o Er of Dx, . . . , Dn such tha t Ei o . . . o Er(z) = 
lcai...an- Here / is some nonzero element in Z/pZ. Since E\ o . . . o Er(z) G R, 
we conclude cai...an 6 Q(Rr) H i ? . But again by [4, Theorem 15], Q(Rv) C\ 
R = Rr. Thus , cai...an ë ^ r - So, the result is established if only one monomial 
appears on the right in equation (36). 

Now suppose more than one monomial appears on the right in (36). Use 
Lemma 3 again. We can find a composite of components JEI O . . . o Er of 
Di, . . . , Dn such tha t Ei o . . . o Er(z) = I cyi...yn. Here cyi...yn is one of the 
coefficients appearing in (36). Thus , cyi...yn G Rr- Now (36) can be rewritten 
as 

\Oo) Z ^ T l - . - T n ^ l • • • X n = 2^1 Cai...anX 1 . . . Xn . 
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The sum on the right is now taken over all n-tuples («i,. . . an) ^ (71,. . . , yn). 
Since there are fewer monomials now appearing on the right in (38) than in 
(36), we conclude by induction tha t every cai...an lies in Rr. 

Thus , we have proven tha t Rr[xi, . . . , xn] = R. By Theorem 1, <p: (x) Rr[xt] 
—> Rr[xij . . . , xn] is an isomorphism. Therefore, (x) Rr[Xi] = R, and the proof 
of Theorem 2 is complete. 

We note tha t the two main hypotheses in Theorem 2 are independent of 
each other. Example 5 provides an example in which (Du 2^>2|^i, -^2) satisfy 
equation (4), but the set {Du D2) does not span DerRr

1(R). For example, if 
the characteristic of k is two, then RT = k[Xi2, X2

2, Xz2]. So, D3 defined by 
D3(Xi) = Dz(X2) = 0, and D^(XZ) = 1 is a well defined first order Rr-deriva-
tion on R. But , D^ is not an /^-linear combination of D\ and D2. 

On the other hand, if a set T = {Du . • . , Dn] of ^-higher derivations on R/k 
is such tha t the set \Dn, . . . , Dni\ spans D e r ^ p 1 ^ ) , then it need not follow 
tha t there exist elements Xi, . . . , xn in R such tha t equat ion (4) is satisfied. 
Consider the following example: 

Example 6. Let k be any field of characterist ic not equal to two or three. 
Let X and F be indeterminates over ky and set R = k[X, Y]/(X2 — F 3 ) . 
Then R is an integral domain. Since R is a homomorphic image of k[X, Y], 
Derk

1(R) is a finitely generated /^-module. Let x and y denote the images of X 
and F i n R. Then R = k[x, y]. Set m = (x, y), the maximal ideal in R generated 
by x and y. 

Now if Z> £ D e r ^ T ? ) , then 2x D(x) = 3y2D(y). I t now easily follows from 
this equation tha t D(R) C w. Thus , no first order ^-derivation on R can take 
any element of R to a unit . In part icular , if T = {Du . . . , Dn\, where {Z^i, . . . , 
Dn) span Derk

l(R), then T spans DerRr
l(R). But , no elements xif . . . , xn can 

be found in R such tha t (D\, . . . , D„|xi, . . . , xn) satisfy equation (4). 

We now turn our a t tent ion to the analog of Theorem 2 when R/k is a domain 
of characteristic zero. We first note tha t the two main hypotheses in Theorem 2 
are not strong enough to imply the result in characteristic zero. Consider the 
following example: 

Example 7. Let k be a field of characterist ic zero, and suppose X\ and X2 are 
indeterminates over k. Set R = k[X\, X2, Z, 1/Z] where Z2 = X\. W e can 
define two first order ^-derivations D\ and D2 on k[X\, X2] by sett ing Dx (X\) = 
D2(X2) = l.D^Xi) = D2(X1) = 0. Since Z is separable over k[XuX2], each 
Di has a unique extension to R. We easily check tha t R/k is a domain of charac­
teristic zero in which (Du D2\Xu X2) satisfy equat ion (4). Fur ther , Y = 
{Di, D2] spans D e r * 1 ^ ) , and, thus , D e r ^ p 1 ^ ) also. 

Consequently, R/k satisfies the two main hypotheses of Theorem 2, but 
Rr[Xi, X2] 9^ R. For Z d Rr[Xi, X2]. T o see this, wre merely have to note tha t 
some high power of D\ kills any given element of R \\_X\, X2]. Since D\n (Z) 7^ 0 
for any w, we conclude tha t Z (f_ Rr[X\} X2]. 
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When we s tudy Example 7, we come to the conclusion tha t a necessary 
condition for Rr[xi, . . . , xJ = R in the presence of equation (4) is tha t large 
composites of D u , . . . , Dnl should kill any given element of 7^. If {Dn, . . . , Dn\) 

span Der /Bp 1 ^) , then this condition is sufficient also. 

T H E O R E M 3. Let R/k be an integral domain such that k contains the rationals. 

Let r = {Di, . . . , Dn\ be a set of k-higher derivations on R, and suppose there 

exist elements £ R - RT such that (Du • • • , Dn\ ) satisfy 

equation (4). Then R = (x) Rr[Xi] if and only if the following two conditions are 

satisfied : 
(a) {Dllf . . . ,Dnl\ spanDerBT

l(R). 
(/3) For every z £ R, there exists a nonnegative integer N(z) such that if m > 

N{z)JhenElo . . . o Em(z) = O.HereEt £ {D1U . . . , Dnl]. 

Proof. If R — (X) i ? r [ x j , then R = Rr[xly . . . , xn]. In this case, condition ((3) 

follows trivially from equation (4). The proof of (a) is the same as in Theorem 2. 
So, let us assume conditions (a) and (/3) are satisfied. By Theorem 1, ç: (x) 

^ r [ # i ] —* i^r[^i, • • • , xn] is an isomorphism. Thus , we need to show tha t condi­
tions (a) and (/3) imply Rr[xi, . . . , xn] = i£. 

Let i?z>ti denote the ring of constants of Dn, (1 ^ i ^ n). We first argue tha t 
Rr = fYUi-^zjii- Clearly, J^r C Pu=i ^z^i - Let z Ç Pu=i ^z^i - I t is well knowm 
tha t each Dt can be embedded as a section in some i? r-higher derivation E{ of 
infinite rank on R. A proof of this fact can be found in [5, (q) p. 33]. We can 
regard E ^ a s a Q(RT)-derivation of infinite rank on Q(R). By [2, (5)], each 
component of E{is jus t a sum of composites of first order Q(Rr)-derivations on 
Q(R). Now condition (a) implies t ha t {Dn, . . . , D„i} is a Q(i?)-basis of 
DerQUjV ((?(-/?)). Thus , any first order Q(RT)-derivation on Q(R) vanishes on 
z. Therefore, any component of E{ vanishes on z. In particular, D ij(z) = 0 for 
every j = 1, . . . , rk Dt. Thus , z £ Rr. 

I t is now clear tha t the components of rank greater than one (if present) in 
Di play no role in this theorem. Thus , wi thout loss of generality, wre can assume 
tha t each D t is just a first order ^-derivation on R. 

We next claim tha t Q(R) is an algebraic extension of Q(Rr) (xu . . . , xn). We 
proceed by contradiction. Suppose Q(R) contains an element z such t ha t z is 
t ranscendental over Q(RT)(xu . . . , xn). Set K = Q(RT)(xi, . . . , xn, z). By the 
proof of Theorem 1, {xi, . . . , xn) is a transcendence set over Q(Rr). Since z is 
t ranscendental over Q(RT) (XI, . . . , xn), jxi, . . . , xn, z) is also a transcendence 
set over Q(RT). Thus , we can define a Q(Rr)-derivation D on K by D(xt) = 0 
(1 ^ i ^ n), and 22 (z) = 1. Since the characteristic of K is zero, D can be 
extended to a Q(Rr)-derivation on Q(R). Since {£>], . . . , Dn) is a basis for 

Der 
Q(«r)1(0(^))f there exist elements a i , . . . , ara Ç (?(^0 such tha t 

(39) Z> = ttlZ?i + ...+anDn. 

If we evaluate equation (39) a t each xi} we get at = 0 for all i = 1, . . . , n. 

Thus , D — 0. But , this is a contradiction since Z>(z) = 1. Therefore, Q{R) is an 
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algebraic extension of Q(RY){xh . . . , xn). In particular, each element z (i R 
satisfies some algebraic equation over i?r[#i, . . . , xn] . 

Now let s Ç 7v. Then there exists a nonnegative integer N(z) such tha t con­
dition (/3) holds. We shall show tha t z Ç i^rfxi, • • • > xn] by proceeding by induc­
tion on the integer A^Os). 

If 7V(z) = 0, then condition (/3) implies t ha t Dt(z) = 0 for every i = 1, . . . .w 
Thus , z £ RT. In particular, s G i?r[#i, • • • , xn], and the proof is complete in 
this case. Thus , we can assume tha t if N(z) < M ( M > 0) , then z G Rv\xx, • • . , 
xn]. Let z Ç 7£ such tha t iV(z) = M. We note then t ha t N(Dt(z)) < M for any 
i = 1, . . . , n. Thus , D{(z) Ç 7£r[#i, . . . x j for all i. 

Now we know z satisfies some algebraic equation over Rr[x\, . . . , xn]. Thus , 
we have 

(40) amzm + am-lZ
n-1 + . . . + a0 = 0. 

Here the a / s are all elements of Rr[xi, . . . , xn] and not all zero. We can assume 
tha t m in (40) is as small as possible among all such relations on z. 

We now claim tha t our induction hypothesis implies t ha t m = l . I f m = 1 in 
equation (40), then there is nothing to prove. Suppose m ^ 2. We need a t this 
point the analog of Lemma 3. We claim tha t for any n o n - z e r o / G Rr[xi, • . . , 
xn], there exists a composite ^ V 1 o . . . o Dn

ln such tha t T V 1 o . . . o Dn
ln{j) is 

a non-zero constant of 7^ r. A proof of this fact follows easily from equat ion (4) 
and induction on the degree of / . Now, we apply this remark to the leading 
coefficient am in (40). Thus , there exists a composite D\lx o . . . o Dn

ln such t ha t 
DiJl o . . . o Dn

1n(am) = cm where cm is a non-zero element in 7^ r. If we apply 
Dn to equation (40), we get 

(41) Dn(am)zm + (mamDn(z) + Dn{am^))zm-' + . . . = 0. 

By our induction assumption, the coefficients of zl in (41) lie in 7^r[xi, . . . , xn]. 
I t is now clear t ha t T V 1 o . . . o Dn

ln when applied to (40) gives an equation of 
the form: 

(42) cnz
n + bm-izm-1 + • . • + blZ + 6o = 0. 

Mere cm is a non-zero element in 7^r, and bm-\, . . . , b{) lie in 7£ r[xi, • • • , xn]. 
Now apply Dt to equation (42). We get 

(43) (mCnDtiz) + D^b^))^'1 + . . . = 0. 

Now the minimali ty of m implies t ha t mcmD{{z) + Di(bm-\) = 0 for every 
i = 1, . . . , n. Therefore, mcmz + bm-\ £ Rr- But this relation implies tha t z 
satisfies an algebraic relationship of the type in equation (40) with m = 1. This 
is a contradiction since we are assuming tha t the minimum m possible in (40) is 
bigger than or equal to two. Thus , we conclude tha t m = 1 in equation (40). 

We now claim tha t z £ Q(Rv)[xi, . . . , xn]. Our induction hypothesis shows 
tha t z satisfies an equation of type (42) with m = 1. Dividing by C\, gives us 
t ha t z £ Q{RY)[X\, • • • , xn]. T o summarize, we have now shown tha t N(z) = M 
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implies t ha t there exist elements cai...an G Q(RT) such tha t 

(44) 2 = Z cni...anXl
ai ...xn

a". 

We now proceed exactly as in the proof of Theorem 2. We can easily argue by 
induction on the number of monomials present on the right side of equation 

(44) t ha t each cai...an lies in R. But then each cai...an Ç Rr, and, hence, z G 
Rr[xu . . . , x j . This completes the induction step and consequently the proof 
of Theorem 3. 

We conclude this paper with a few remarks concerning the independence of 
conditions (a) and (0) in Theorem 3. We have already noted in Example 7 tha t 
(a) does not imply (/3). We give a final example which shows tha t (/3) does not 
imply (a). 

Example 8. Let k be any field of characteristic zero and suppose Xu X2, X-d 

are indeterminates over k. Set R = k[Xi, X2, Xz\. We define two ^-higher 
derivations D\ and D2 on R by the following equations: 

Z>n(*i) = 1, D12(X1) = 0, D^X,) = 0 

(45) Dn{X2) = 0, D12(X2) = 0, D2(X2) = 1 

Dn(X,) = Xu D12(XZ) = X 3 , D2{XZ) = X2. 

Note tha t D\ is a ^-higher derivation of rank two, while D2 is a ^-higher deriva­
tion of rank one on R. Clearly, (Di, D2\Xi} X2) satisfy equation (4). 

We first show tha t {Dn, D2] satisfy condition (0) of Theorem 3. An easy 
computat ion shows tha t DUD2 = D2Dn Thus , it suffices to show tha t for 
each z G R there exist integers N and M sufficiently large such tha t DnAr(z) = 
D2

M(z) = 0. Since Dn and D2 are symmetric, it suffices to prove this s ta tement 
for Du only. We need the following lemma. 

L E M M A 4 . D 1 1 W Î X 3 < ) = g(XuXz) +aX1
n+sX,I~s. 

Here g is a polynomial in X\ and X 3 with coefficients in k such tha t the degree 
of g is less than n + /. a Ç &. 

The proof of this lemma is an easy induction argument on 5. We omit it. 

Now suppose z £ R. Since DU
N is a &-endomorphism of R, we can assume z 

is a monomial. Suppose z = XilX2
mXzl. We proceed by induction on L = n + 

l.UL = 0, t h e n z = X2
W, and (45) implies Dn(z) = 0. In general, apply Du

 l to 
z first. By Lemma 4, we get 

(46) Dn\z) = X2
m(g(Xu X,) + a X^). 

Here deg g < n + / = L. Thus , by our induction assumption, there exists an 
N1 such tha t Dn

N'(g) = 0. Let N > max {Nun + I}. Then clearly Dn
N+l(z) 

= 0. 
Thus , {Dn, D2) satisfy condition (fi) in Theorem 3. We next note tha t 

(Du , D2) do not span D e r ^ p 1 ^ ) where T = {D\, D2}. T o show this, we make 
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use of Theorem 3 itself. If \Dih D2} did span DerRr
l(R), then by Theorem 3, 

R = RT[XU X2]. But in this example, R ^ Rr[Xu X2}. We shall prove this 
last inequality by showing X3 $ RY[XI, X2]. 

Suppose X3 Ç iv r[Xi, -X^]. Then there exist elements ci} Ç iv r such that 

(47) X3 = £ ^ M 2 \ 

Now Di2A is a linear transformation with respect to lv r. Thus, applying D^ 
to (47) and using equation (45), we get 

(48) X3 = E cijX2
iD12

N(X^). 

Now we can easily argue that for N sufficiently large, the right hand side of 
(48) is zero. Thus, X3 = 0. This is a contradiction. Therefore, R ^ Rr[Xu X2] 
and Example 8 is complete. 

Theorems 2 and 3 together with the examples given in this paper give a 
fairly complete answer to the final question in the introduction. 
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