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HIGHER DERIVATIONS AND TENSOR PRODUCTS
OF COMMUTATIVE RINGS

W. C. BROWN

1. Introduction. The genesis of this paper is the following well known result
in field theory: Let R denote a field of characteristic p # 0, and let k& denote
a subfield of R such that R* C k for some e sufficiently large. Then R is iso-
morphic to the tensor product (over k) of primitive extensions of & if and only
if there exists a finite set I' of k-higher derivations on R such that & is the field
of constants of T'. A proof of this theorem can be found in [6].

In this paper, we explore how much of this theorem remains true if R and k
are arbitrary commutative rings. In other words, we are interested in the
following conjecture: Let R/k be an extension of commutative rings. Suppose
the characteristic of k is either zero or a prime p. Then R == &) k[x;] (the
tensor product over k) if and only if there exists a finite set T' of k-higher
derivations on R such that % is the ring of constants of T

This conjecture is, of course, a bit too optimistic. In fact, both directions in
the conjecture are false. For instance, if & is a ring of prime characteristic, and
R = k[X,, ..., X,] is a polynomial ring in zn-indeterminates over &, then
R = k[X,]. But, k is never the ring of constants of any finite set T’ of
k-higher derivations on R. This fact follows from elementary considerations
concerning higher derivations. We shall discuss this point more carefully in
the next section of this paper. Conversely, we can easily construct examples
R/k and T such that k is the ring of constants of T', but R fails to be a tensor
product of primitive extensions of k. A specific case is Example 1 in this paper.

Thus, a more encouraging problem is the following: Let R/k be an extension
of commutative rings with the characteristic of k being zero or a prime p.
Let T = {D,, ..., D,} be a finite set of k-higher derivations of R, and let
Rr be the ring of constants of T'. What further conditions on T' will allow
us to conclude that there exist elements x;, ..., x, € R — Rp such that
R = Rrlx,]?

The theorems in this paper together with the examples will give a fairly
complete answer to this question.

2. Preliminaries. Throughout this entire paper, R and k will denote com-
mutative, associative rings with identity. We shall always assume that the
characteristic of k is either zero or a prime p. We say that R is an extension of k
if R Dk, and the identity of k is the same as the identity of R. If R is an
extension of &, then we shall indicate this fact by writing R/k.
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Let R/k be an extension. A k-higher derivation D on R/k is a finite sequence
D = {dy, dy, ..., dn} of k-endomorphisms of R such that dy = I, the identity
map on R, and

(1) dolwy) = X2 {dry(®)d;(0)[0 S5 < 7)
Here, of course, equation (1) is to hold for all x, y € R and for all » £ m. By
the rank (rk D) of D, we shall mean the largest integer | < m such that d, 0.
We shall refer to d;, . .., d, as the components of D. If T = {D,, ..., D,} is
any finite set of k-higher derivations, then we shall refer to the components of
D;asD;; (1 £j7 =1k D)).

We shall also need the notion of a k-higher derivation E of infinite rank on

R/k. E is just an infinite sequence E = {ey, €1, . . .} of k-endomorphisms of R
such that for every m, E™ = {ey, e, . .., en} is a k-higher derivation on R/k.
E®™ is called the mth section of E.

Now suppose I' = {D,, ..., D,} is any finite set of k-higher derivations on

R/k. By the ring of constants Rr of T', we shall mean the set of all x € R such
that D;;(x) =0forall 1 £4=<nand 1 £j = rk D, One can easily verify
that Rr is a subring of R containing k.

Let R/k be an extension and let S be a subring of R. If x, ..., x, are any
elements of R, then we have a natural mapping ¢ : & s.S[x;] — R given by

al L a _ L al a
ﬂa(z Sal...anxl ® o e ® Xn n) - Z Soq...aﬂxl ce e Xy n.

In particular, if T is a set of k-higher derivations on R, and xy, ..., x, € R —
Ry, then we have a natural mapping ¢: &z, Rr[x;] — R. Throughout this
paper, all tensor products will be over some ring of constants Rr. We shall
therefore drop the Ry symbol on the tensor product and merely write ® Rp[x;].
When we write R =2 & Rr[x,], we mean that the natural mapping ¢: & Rr[x,]
— R is an isomorphism (onto).

We complete our preliminary remarks with an important identity that
higher derivations satisfy if the characteristic of k is a prime p. Let R/k be
an extension of characteristic p, and let D = {dy, d,, . .., d,} be a k-higher
derivation on R. Then equation (1) implies that D induces a k-algebra homo-
morphism ¢p: R — R[T]/(T™*1), T"an indeterminate, given by

2) Yp)=x+di(@x)T 4+ ...+ du(x)T™

Since the characteristic of & is p ¢ 0, the map sending x to x?* is also a ring
homomorphism of R. Thus, ¢, (x?*) = {¢,(x)}*. Using the fact that R[T]/
(I™+1) is a free R-module with basis {1, 7', ..., 7™}, the identity ¢ (x**) =
{¥p(x)}? gives us the following relationships:

pey 3O ifp° 4 7
@ ey = {0,

forl =j = m.
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Now suppose R, denotes the ring of constants of D in the above discussion.
Then equation (3) implies that there exists an e sufficiently large such that
R** C Rp. Thus, if T = {D,, ..., D,} is any finite set of k-higher derivations
on R, then there exists an e sufficiently large such that R?* C Ry. This fact
explains the remark made in the example in the introduction. In that example,
k # Ry forany T because Rr D kX%, ..., X,”°] for some e sufficiently large.

If the characteristic of k is a prime p, we have seen that R?* C Ry for some ¢
sufficiently large. In particular, if x € R, then some power of x lies in Ry.
We define the integer pr(x) to be the smallest positive integer ¢ such that
x? € Rp. If R and k are both fields, then ur(x) is always a power of p. This
result continues to hold for arbitrary rings of characteristic p under suitable
conditions. We discuss this in the next section.

3. Main results. We return now to the main problem. Let R/k be an
extension, and suppose that T = {Dy, ..., D,} isa finite set of k-higher deriva-
tions on R/k. Suppose that there exist elements x4, . . ., x, € R such that

_Jo ifk=i1<j<rkD,
@) Dylw) = {1 ifk=1dandj= 1.

If such elements xi, ..., x, exist in R, we shall indicate this fact by saying
(Dy, ..., DyJxy, ..., x,) satisfy (4).
Our first goal is to prove the following theorem:

THEOREM 1. Suppose R/k is an extension of prime characteristic p, or R/k is
an extension of characteristic zero in which no nonzero inleger is a zero-divisor in R.

Let ' = {Dy, ..., D,} bea set of k-higher derivations on R/k, and suppose there
exist elements x1, ..., x, € R — Ry such that (D1, . .., D,|x1, ..., x,) satisfy
(4). Then Ry|x1, ..., x,] =& Rrlx;].

To prove Theorem 1, we divide it into two cases (characteristic p or zero)
and proceed by a series of lemmas which are of interest in their own right.

3A. The characteristic p case.

LEmMma 1. Suppose R/k is an exiension of prime characterisiic p. Let D =
{do, dv, ..., dn} be a k-higher derivalion on R. Set R, = {z ¢ R|d;(z) = 0,
7 = 1}. Suppose there exists an element x € R such that d,(x) = 1. Then

(a) ur,(x) = p’/ for somef = 1,

B) pt =rk D < p’, and

(v) if c x* = 0 for some ¢ € Ry and some i < pgp(x), then c = 0.

Proof. From the remarks in the preliminaries, we know that R?* C R for
some e sufficiently large. Thus, ug,(z) is a well defined function on R. Since
di(x) = 1, we see x ¢ Rp. Thus, ug,(x) > 1. Let us set ¢ = pg,(x). Then
x? € Rp. So 0 = di(x?) =q x=L. If p + ¢, then x*°! = 0. In particular,
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x1 € R, This contradicts the definition of ¢. Thus, p|g. Now write ¢ = np/,
for some f = 1 and = relatively prime to p.

Now if p/ > rk D, then equation (3) implies that d;(x”) = 0 for all j = 1,
...,m. Thus,x” € Ry Since p/ < n p’, we conclude thatn = 1.So, pg, (x) =
p7in this case.

If p7 < rk D, then d,s is well defined. Using (3), we have:

() 0= ) = 1)} = [nay.

Since 7 is a unit in R, we conclude from (5) that x®=9?" ¢ R,. Again since
(n — 1)p! < n p’, we must have (n — 1)p/ = 0, i.e. » = 1. Thus, the proof
of (@) is complete.

As for (8), we have already noted that rk D < p’. For if rk D = p/ then d,s
is defined and we would have 0 = d,s(x*) = {d,(x)}?” = 1. On the other hand,
if rk D < p/=1, then (3) implies x” ' € R, (a contradiction since p/~! < p/).
Thus, rk D = p/~!, and (B) is established.

For the proof of (v), we proceed via induction on ¢. Suppose cx = 0 for some
¢ € Ry. Applying d, to this equation gives ¢ = 0. Thus, (y) is established if
i = 1. So, assume ¢x' = 0 some 1 <[ < p/ = pg, (x). If (p, ) =1, then
applying d; to cx! = 0 gives c¢lx'! = 0. Since [ is a unit in R, we conclude
cx=! = 0. Thus, by induction, ¢ = 0. Therefore, we can assume p|l. Since
p =1 < p’, the p-adic expansion of / has the following form:

6) I=ap'+ ...+ a1p™L.

Herel ¢ =f—1,and 0 < a; < p. Now p* = p/~1 = rk D by (8). So, d,
is well defined. We need the following fact: For any v,z € R, we have

(7Y dyi(zy"Y) = yVd,i(z) whenever N > i.

Equation (7) follows easily from equations (1) and (3). If we now apply d,i to
the equation cz' = 0 and use (6) and (7), we get

(8) caft x@mDrHa it e/ ()

Since « " is a unit in & and the exponent in (8) is smaller than /, we conclude
by induction that ¢ = 0. This completes the proof of Lemma 1.

We can now give a proof of Theorem 1 if the characteristic of & is a prime p.

Proof of Theorem 1 (char k = p). Choose any 7 such that 1 = ¢ < n. Then
by equation (4), x; € M« Ky, (Rp, being, of course, the ring of constants of
D) Since Ry = Ry, M (N 1x: Rp,), we conclude that ur(x;) = Brp,(x:). Thus,
by Lemma 1, pr(x;) = p’* for some f; = 1. Further, p/! < rk D; < p’i, and
property (y) holds for any ¢ € Ryp,.

We now claim that Rp;[x;] is a free Rp,-module with basis S; = {x#]0 <
a < wpr(x;)}. Since x ' € Ry, we see that the elements of .S; generate the
Rp,-module Ry [x,]. So, it remains to argue that the elements of S; are linearly
independent over R ;. Suppose we have some non-trivial relation among the
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elements of S, say,
9) cxdt+ ... Fcxitco=0.

Here the ¢; are in Rp; (0 = j = t) and are not all zero. Further ¢t < p/v — 1.
Among all such non-trivial relations as in (9), we can pick one in which ¢ is
as small as possible. Say this relation is

(10) cux™+ ...+ c1x;+¢co = 0.

Here ¢; € Rp, for 0 £ j < m, ¢, #0, and 1 = m £ p/* — 1. If some ex-
ponent present in (10) is not divisible by p, say [, then applying D to (10)
gives

(11) mepx™*+ ...+ lext '+ ... 4 ¢ =0.

Since this is a relation among the elements of S; of smaller degree than m, we
conclude that every coefficient in (11) is zero. But then ¢, = 0. This is a
contradiction, since we are assuming ¢ x' is present in (10). Thus, we can
assume the exponents present in (10) are all divisible by p. Set f(T") = ¢, T™ +
...+t co € Rp,[T] (T an indeterminant). Then we can find an ¢ = 1 and
sufficiently large such that f(I") € Rp,[T?] — Rp,[T%*"]. Thus, f(x;) = 0 can
be written as

K
(12) Z cl,,ex,-“’e = 0.
1=0

Here Kp¢ = m. Now pr(x;) = p/i > m = p°. Thus, ¢ = f; — 1. Consequently,
D ;e is well defined. We now apply Dy, to (12). Using (3), we get

K

(13) X0 cpel”x, TV = 0.
1

Equation (13) is a relation among the elements of S; of degree less than m.
Consequently, the coefficients *°cy,c in (13) are zero. But this implies p|l for
all [ appearing in (12). So, f(T) € Rp,[T"*"]. This is a contradiction. Thus, we
have shown that Rp,[x,] is a free R ;,-module with basis S;.

Now the same proof shows that Rr[x;] is a free Rr-module with basis S.
Thus, ® Rr[x,] is a free Rp-module with basis {x;*'® ... &® %20 =< «; <
er(x;)}. Now let ¢: & Rrplx;] — Rr[xy, ..., x,] be the natural mapping, i.e.
¢ is given by

(14) QO( Z Cal...zxnxlal ® PR ® xnan) = Z Cal,,,anxlal PN xna”.

Clearly ¢ is onto. The fact that ¢ is one-to-one follows easily from the fact that
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Rp,lx;] is a free R p,-module with basis S;. For suppose D Ca;...an¥1!. .. %,%" = 0
for some Cay..an € Rr, and 0 = a; < pr(xs). Then we can rewrite
> CaqoragX1®t . .. 2,2 = 0 in the form:

(15) Z (E Cal...anx2a2 e xnan)xlal = O'

al

The terms in parentheses in (15) lie in Rj; and so are all zero. Induction now
gives Us every Ca;...«, = 0. Thus, ¢ is an isomorphism and the proof of Theorem
1 in the characteristic p case is complete.

Before proceeding with the proof of Theorem 1 in the characteristic zero
case, we give an example in characteristic p which shows that we cannot omit
the hypothesis that (Dy, ..., Dy|x1, . . ., x,) satisfy equation (4).

Example 1. Let k be a field of characteristic two and set S = k[X,, X.], a
polynomial ring in two variables X; and X, over k. We define two first order
k-derivations D; and D, on S by the formulas:

(16) D1<X1) = 0 = DQ(XQ), Dl(Xz) = XQ, Dz(X]) = Xl.

One can easily check that S,, = k[X;, X,?], and Sp, = k[X?, X.]. We further
note that I = (X,X>,), the principal ideal in .S generated by XX, is differen-
tial under both D; and D,. Thus, D, and D, induce first order k-derivations
(which we continue to denote by Dy and D;) on R = S/I.

If we set x; equal to the residue class of X; in R, then R = k[x;, x2]. One
easily checks that Ry, = k[x;, x2%], and Rp, = k[x:2%, x2]. Thus, if we set T' =
{D1, D}, then Ry = klx:%, x%]. We note that R is generated as an Rp-module
by {1, x1, x2}.

We now claim that for no elements f, g € R — Rris ¢: Ry[f]&® Rrlg] —
Ry[f, ¢] an isomorphism. Suppose the claim is false. Then there exist f, g €
R — Ry such that ¢ is an isomorphism. Now we can write f = a 4+ bx; + cxo
with «, b, ¢ € Ry. Since xxp = 0, we can further assume that b € k[x,?],
¢ € k[x,?]. Since f ¢ Ry, either b 5 0 or ¢ # 0. We can assume b # 0 without
any loss in generality. We also note that since f* ¢ Ry, Rp[f]is generated as an
Ry-module by {1, f}. Similar remarks can be made about g. That is, we can
write ¢ = o’ 4+ b'xy 4+ ¢’xy with b € k[x,?], and ¢’ € k[x,?]. Ryp[g] is an Rp-
module with generators {1, g}, and either ' # 0, or ¢ # 0.

Now an easy computation shows that f& (g + ¢') + 1 X (4 4 ag) ¢
ker ¢. Here A4 = aa’ + bb'x,* 4+ cc’x.®. Thus, since ¢ is an isomorphism, we
have

A7) R g+ d)+1X® (4 + ag) = 0.

Since {1, f} is a set of generators of Rr[f], we conclude from (17) and [1,
Lemma 10, p. 41] that there exist elements z,, ..., 2, € Rp[g] and elements
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apn € Rr(G=1,...,n, X =1,2)such that
D) apf+ap=0 forj=1,..

(18) (i) g+da = ; 2,01

(i) 4 +ag = 2 z,a5.
j=1

We now argue that the equations in (18) imply a contradiction. There are
two cases to consider:

Case 1. Suppose f = a + bx; + cx» with 0 # 0, ¢ # 0.
In this case, (18¢) implies that a; (bx; 4+ cx2) € Rr. Now write a1, b and ¢
as follows:

N
aj = ,Zo (@mie®) + By’
N_ N
= ,lz:O ’Yl(x12)ly c = Z) 6l(x22)l
= 1=(

with @11, B v, 0 € k. If we substitute the expressions from (19) into the
relation a1 (bx1 + cxs) € k[x12, x22], we casily see that a1, = 8;1, = 0 for all L.
Thus, ¢;; = Oforallj = 1,...,n Butthen (181ii) implies that g = ¢’ € R,
a contradiction.

Case 2. Suppose f = « + bx; with b # 0.

We begin as in Case 1. Equation (181i) implies that «,bx; € k[x:2, x2%].
Writing ¢;; and b as in (19) and substituting into the relation «;;bx, € k[x,2,
x,%] gives a1, = 0 for all . We conclude that each @ is a polynomial in x,?
without constant term. Thus, we can write

(19)

; ﬁ]ll(XQ (j = ly LR )n)

with B;1; € k. So equation (18 1ii) now takes the form

(20) g+ a' = Z (Z ﬁ]ll(xl )
ot
Now recall that 0" € k[x?], ¢’ € k[x.?] and that ¢ + ¢’ = 0'x; 4 ¢'xs. Since

=

X0 R C k[xs], cquation (20) implies b’ = 0. Thus, equation (20) has the form

n

(21) lZ i) ;vcz~ 2 zJ(Z Bi11(x2") )

for some y; € k. Now each z; = a; + B,¢ with «; and 8, in Rp. If we write
a; and B as in equation (19) and substitute into (21), we easily sece that (21)
is impossible. Thus, in either case, (18) is impossible. Therefore, ¢ is never an
isomorphism, and Example 1 is complete.

https://doi.org/10.4153/CJM-1978-035-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-035-9

408 W. C. BROWN

We note that Example 1 also gives an example of the remarks made in the
introduction of this paper. If R = k[x1, x5],and T' = {Dj, D»}, as in Example 1,
then R/Ry is an extension of characteristic two such that Rr is the ring of
constants of T'. But, R fails to be a tensor product over R of primitive exten-
sions of Ry.

In view of Example 1, the hypotheses appearing in Theorem 1 are reasonable.

3B. The characteristic zero case.

LeMMA 2. Let R/k be an extension of characterisiic zero such that no nonzero
integer is a sero-divisor in R. Let D = {dy, d,, . . ., d,,} be a k-higher derivation
on R, and let Ry, be the ring of constants of D. Suppose there exists an element x
in R such that dix = 1. Then x s transcendental over Rp.

Proof. By x being transcendental over R p, we, of course, mean that x satisfies
no algebraic equation of the form:

(22) x4+ Xt + ...+ =0

where the ¢,'s are in R, and are not all zero. The proof of Lemma 2 is by contra-
diction. Suppose x satisfies such an equation (22). Among all such equations
that x satisfies, we can pick one for which # is minimal. Say equation (22) is
one such equation. Then applying d, to (22) gives

23) nex™t4 ...+ =0.

By the minimality of n, the coefhicients of the expression in (23) are all zero.
Since no nonzero integer is a zero-divisor in R, we conclude that ¢, = ... =
c1 = 0. But, then every coefficient in (22) is zero. This is a contradiction, and
the proof of Lemma 2 is complete.

?
Before we give the proof of Theorem 1 in the characteristic zero case, we give
an easy example which shows that the hypothesis ‘“‘no nonzero integer is a
zero-divisor in R’ cannot be omitted from Lemma 2.

Ixample 2. Let Z denote the integers, and let X be an indeterminate. Set
k = Z[X]/(2X). Then k has characteristic zero, and 2 is a zero-divisor in k.
Let x denote the image of X in k. Then k = Z[x]. Now let ¥ be an indetermi-
nate over £ and set R = k[ V]/(xY?). Let y be the image of ¥V in K. Then R =
k[y] is an extension of k of characteristic zero, and 2 is a zero-divisor in K.

Now we can define a first order k-derivation D on k[ V] by letting D(Y) = 1.
Since D(xV?) = 2xV = 0, we see (xYV?) is a differential ideal under D. So, D
induces on R a first order k-derivation (which we shall also call D) such that
D(y) = 1.

Thus, R/k has a first order k-derivation D, and an element y € K such that
D(y) = 1. But y is algebraic over R, since x € R, and xy? = 0. Thus, the
conclusion of Lemma 2 can fail if we allow nonzero integers to be zero-divisors.
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We now prove Theorem 1 in the characteristic zero case.

Proof of Theorem 1 (char = 0). Since (D1, ..., D,lxy, . .., x,) satisfy equa-
tion (4), we have Rp; O Rrlxy, ..., &4 ..., x,). Thus, by Lemma 2, x, is
transcendental over Rr[x;, ..., £; ..., %,]. Now consider ¢: & Ry{x,] —
Re[xy, ..., %) Y oy 619X ... X x,2 € ker ¢, (Cay...an € Rr), then in

R, we have

e X2 (Z Carooans™ oo xn"")xl’“ =0.

aj
Since x; is transcendental over Rrp[xs, . . ., x,], we conclude that each expres-
sion in parentheses in (24) is zero. Thus, we conclude by induction that every
Cay...an 1S Z€TO.

The proof of Theorem 1 is now complete in all cases. We give two examples
concerning the hypotheses of Theorem 1 in the characteristic zero case. The
first example shows that the hypotheses (Dy, ..., D,jxi, ..., x,) satisfy (4)
cannot be omitted from Theorem 1. The second example shows that the
hypothesis ‘‘no nonzero integer is a zero-divisor in R’ cannot be omitted either.

Example 3. Let k be any field of characteristic zero and let X; and X, be
indeterminates over k. Set R = k[X;, X.]. We define two first order k-deriva-
tions D; and D, on R by the formulas:

(25) D1(X1) = X, DI(XZ) = Dz(Xz) =0, DZ(XI) = Xo.

Then one can easily check that R, = Rp, = k[X,]. Thus, Rr = k[X,] when
I' = {Dl, D2}

Now if f € R — Ry, then clearly f is transcendental over Ry. Thus, if f,
g € R — Ry, and ¢: Ry[f]® Rrlg] — Rrlf, ¢] is the natural map, then simple
dimension theoretic considerations imply that ¢ cannot be an isomorphism.

In Example 1, Rp, # Rp,. In Example 3, R, = Rp,. In either example,
Rr[f, ¢] fails to be isomorphic to Rr[f] & Rr[g]. Thus, the order relationships
between the rings K, are not enough to decide if any finitely generated Rr-
algebra contained in R is a tensor product.

Example 4. Again, let Z denote the integers. Let X denote an indeterminate
over Z and set k = Z[X]/(4X). We shall let x denote the image of X in k.
Therefore, £ = Z[x]. Now let V; and Y, be indeterminates over k, and set
S = k[V,, Vs]. We define two first order k-derivatives D; and D, on S by
D,(Y)) =1 = Dy(Yy),and D1 (Y,) = Do(Yy) = 0.So, (D1, Do| Yy, Vs) satisfy
equation (4). Now let A be the following homogeneous ideal in .S:

(26) A = (x Vi2Va2, 2¢ V1 Vo2, 2¢ Vi Vo, 2 V32, 2x Va?).

One can easily check that 9 is differential under D, or D,. Thus, D; and D,
induce first order k-derivations (which we shall continue to call D; and D)

https://doi.org/10.4153/CJM-1978-035-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-035-9

410 W. C. BROWN

on R = S/ If we let v, denote the image of V;in R, then R = k[yy, y.], R/k
is an extension of characteristic zero, 2 is a zero-divisor in R and (D, D2|y1, ¥2)
satisfy equation (4).

Now set I' = {Dy, D}, and let Ry denote the ring of constants of T'as usual.
Consider ¢: Ry[y1] ® Rrlys] — Rrlyi, y2). An easy computation shows that
x y:2and ¥,? are not elements of Rr, butx y:2 & ¥.* € ker ¢. We shall now show
thatx .2 & v,% # 0, and, consequently, ¢ is not an isomorphism.

The argument is similar to that in Example 1. We assume x y,> &) y2* =
Then by [1, Lemma 10, p. 40], there exist elements ¢, € Re(j =1, ..., n,
AN=0,1,...),and w; € Rr[y,] such that

(i) XZO (ljxyzx:O, ji=1...,n
(27)  (iD) x.’)’l? = 231 Wl j2
=

(i) 0= D wan, A#2
j=1

Here we note that the family {ap|\ = 0, 1, ...} has finite support, and, thus,
(27 1) is a finite sum. We wish to argue that the equations in (27) are impos-
sible. The computations are tedious but not difficult. We sketch the main ideas
and leave the details to the interested reader.

We first note that any element z ¢ Ry can be written in the following form:

(28) Z:a+g3+---+gm~

Here a € k, and g; is a homogeneous polynomial in y; and y, (coefficients in &)
of degree 7. Since only finitely many « ;, appear in (27 1), we can write each « ; as

(29) L\ = al? + g3j')\ + .ot gmj')\

for some m sufficiently large. IHere o’ and ¢g;/* are as in equation (28). If we
now substitute (29) into equation (27 i) and apply D,?, we conclude that a ;.
has the following form:

(30) @ =208 4 gl L+ g

Here 872 € k, and g7'* are homogeneous polynomials of degrec 7 in y, and y,.
We now substitute (30) into (27 ii) getting

n

Bl xy’ = > w2 + g+ ).
=1
Now each w; lies in Rp[y,]. Thus, each w; can be written as w; = 37—y ¢; V1"
Herec;, € Rr. If we write each ¢;, as in (28) and substitute into equation (31),
we easily see that equation (31) is impossible. Thus, x y,2&) v,2 # 0, and
¢ fails to be an isomorphism.

https://doi.org/10.4153/CJM-1978-035-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-035-9

COMMUTATIVE RINGS 411
Thus, even if (Dy, ..., D,|x1, ..., x,) satisfy equation (4), the conclusion
of Theorem 1 may fail if some nonzero integer is a zero-divisor in R.

One last comment about Theorem 1 seems appropriate here. We can state
a slightly more general version of Theorem 1 as follows:

THEOREM 1. Suppose R/k is an extension of prime characteristic p or an exten-
ston of characteristic zero in which no nonzero integer 1s a zero-divisor. Let T =

{D1, ..., D,} bea set of k-higher derivations on R, and suppose there exists ele-
ments xy, . .., %, € R — Ry such that the following system of equations is satisfied;

Di(a) =0 ifki 1 <j<rkD,
Dy(x:)isaunitinR,1 <1 < n.

Then Rr(xy, ..., x,) =& Rr[x,].

(32)

Proof. Set D ;;(x;) = €; a unit in R. Let the multiplicative inverse of ¢; be
a. If Dy =1{Dy, Da, ..., Dy}, then clearly D/ = {Dy, aDip, . . .,
a ™MD .} is another k-higher derivation on R such that rk D)/ =rk D..
Since a; is a unit, R, = Rp,.. Thus, Rr = M R,,-, and equation (32) implies
(DY, ..., D)/|x1, ..., x,) satisfy equation (4). Thus, the result follows from
Theorem 1.

To complete our study of the main problem in this paper, we now investigate
when R = Rrlxy, ..., x,]. In the first place, if the conditions of Theorem 1
are satisfied, we cannot conclude that R = Rr[xy, ..., x,]. A simple example
will illustrate this point.

Example 5. Let k be any field and let X, X», X; be indeterminates over k.
Set R = k[X 1, Xo, X;]. We define two first order k-derivations D, and D, on R
by the following formulas:

D, (X,) = D:(X,) =1
(33) DI(X2) = D2(X1) =0

D (X;3) = D:(X3) = X
Then (D,, Ds|X,, X.) satisfy equation (4). But if T = {D;, D}, then X; ¢
Rr[X1, X:]. To prove this fact, we merely have to note that given any f €

Rp[X1, X.], there exists an » sufficiently large such that Dy*(f) = 0. Since
D"(X;) = Xjforall n, we conclude that X3 ¢ Rp[X;, X.].

Thus, more conditions on I are needed in order to ensure that R is a tensor
product over Rr. We shall state exactly what is necessary when R is an
integral domain.

Let R/k be an integral domain, and let .S be a subring of R. We shall denote
by Q(S) the quotient field of S. If D is a k-higher derivation on S, then D has a
natural extension to Q(S). A proof of this fact can be found in [4, Theorem 15].
In particular, if T = {Dy, ..., D,} is a set of k-higher derivations on R/k,
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then T' can be viewed as a set of k-higher derivations on Q(R). It also follows
from [4, Theorem 15], that Q(Ry) is a subfield of the field of constants of T

on Q(R).

We need the following lemma.

LeEMMA 3. Let R/k be a domain of prime characteristic p. Let T = {Dy, ..., D,}

be « sel of k-higher derivations on R. Suppose there exist elements xy, . .., x, €
R — Ry such that (Dy, ..., Dyx1, ..., x,) satisfy equation (4). Then for cvery
polynomial

f = Z {Caln_a”xo{l P x:" ‘0 é A < ﬂ]‘(xi)},
with coefficients ca,...an © Q(Rr), there exists a composite £y 0 ... 0 I, of com-
ponents of Dy, ..., D, such that Eyo...o0 E,(f) = lc¢,,.. 4, Herelis « nonzero

integer (in Z/pZ), and cy, .., 1s one of the (nonzero) cocfficients appearing in f.

Proof. The proof of Lemma 3 is easy, and we shall only sketch the main
ideas. Since (D, ..., D,|xi, ..., x,) satisfly equation (4), Lemma 3 is easily
seen to be true if f has degree less than or equal to one. Thus, we can proceed
by induction on the degree of f. If f has degree bigger than one, we can assume
without loss of generality that x, is present in a term of highest possible degree
in f. Then we can write f in the following form:

(34) f = 4‘10 + A 1X1 + P + 11 mxl’".

Here 4; € Q(Rr)|xs, ..., x,] C Q(R)p,. Further, A,, # 0, and m deg A, =
deg f. We note that m < ur(x;). Thus, by techniques similar to those used in
Theorem 1, we can show that there exists a component D;; of D; such that
Dyi(f) # 0, Di(f) = By + Boxy + ...+ B,x" ' and each B, is just -,
multiplied by some element /; of Z/pZ. Since the degree of Dy;(f) is less than [,

there exists a composite of components /£, 0...0 E,of Dy, ..., D, such that
Eio...o0E.(D;;(f)) is a nonzero multiple of one of the nonzero coefficients of
Dyi(f). Thus, £y 0...0 E, o Dy,is the required composite for f.

We can now state the main result in characteristic p. Let Derg,'(R) denote
the R-module of first order R -derivations of K.

THEOREM 2. Let R/k be « domain of prime characteristic p. Let ' = | Dy, ...,
D,} be « sei of k-higher derivations on R. Suppose there exist elemenis xi, . . .,
X, ¢ R — Ry such that (Dy, ..., Dylx\, ..., x,) satisfy equation (4). Then
R =& Rylx;lif and only if { Dy, ..., Dy} span Derg 1 (R).

Proof. Suppose ¢: & Rr[x;] — R is an isomorphism. Since the image of ¢
is Rrlxy, ..., x,], we conclude that R = Ry|xy, ..., x,). Now if D is any first
order Rp-derivation of R, then D is uniquely determined by its values on the x;.
Thus, it is clear that D = > _1D(x;)D,. Therefore, Dy, ..., D, span
Derg 1(R).
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Suppose we now assume Dy, ..., D, span Derg '(R). We easily see that
Derz 1 (Q(R)) = Dergrp'(Q(R)) = Derg!(Q(R)) where K is the subfield of
Q(R) generated by Q(Rr) and Q(R)?. Since Derz ' (Q(R)) = Q(R) ®r
Dergp!(R), we conclude that {Dyy, ..., D,1} is a basis for the Q(R)-module
Derg!(Q(R)).

We next show that {x;, ..., x,} is a p-basis of Q(R)/K. Since (D,, ...,
Dylxy, . . ., x,) satisfy (4), we easily see that {xi, ..., x,} is a p-independent
subset of Q(R)/K. Thus, there exists a p-basis B of Q(R)/K such that {x,, ...,
x,} C B. Suppose there existsay € B — {x1, ..., x,}. Then by [3, Theorem
17, p. 181], there exists a first order K-derivation D on Q(R) such that D (x,) =
0,2 =1,...,n,and D(y) = 1.But, {D,,. .., D} isa basis for Derg!(Q(R)).
Consequently, there exist constants ay, . . . , @, € Q(R) such that

(35) D = CY1D11 + e + Olan.

If we now evaluate (35) at each x;, wegeta; = 0,72 = 1,...,n Thus, D = 0.
But this is impossible since D (y) = 1. We conclude that B — {x,,...,x,} = 0,
and, consequently, {x;, ..., x,} is a p-basis of Q(R)/K.

Since {xy, ..., x,} is a p-basis of Q(R)/K, we have Q(R) = K (x1, ..., X,).

In other words, Q(R) = Q(Rr)(Q(R)?) (xy, . .., x,). [terating this relationship
and using the fact that R”* C Ry for some e sufficiently large, we get Q(R) =
O(Ry)(x1, ..., %,).

Now let z € R. Since Q(R) = Q(Rr)(x1, ..., %) = Q(Rr)[x1, - .., x,],
there exist elements ¢,,...o, € Q(Rr) such that

36) z = Z c,,l,,,‘,nxf'1 coox

Here 0 £ a; < pr(x;). We conclude the proof of Theorem 2 by showing that
equation (36) implies every cq,...q, lies in Ry.

We proceed by induction on the number of monomials present on the right
hand side of (36). If only one monomial is present, then equation (36) has the

form

(B7) 2 = Cayoan® B .. x5

We now apply Lemma 3 to equation (37). Hence there exists a composite of
components E,o0...0FE, of Dy, ..., D, such that E;o...0 E,(3) =
[Cay...an. Here I is some nonzero element in Z/pZ. Since E10...0 E,(z) € R,

we conclude ¢o;..0n € Q(Rr) M R. But again by [4, Theorem 15], Q(Ry) N
R = Ry. Thus, ¢ay...an € Rr. So, the result is established if only one monomial
appears on the right in equation (36).

Now suppose more than one monomial appears on the right in (36). Use

Lemma 3 again. We can find a composite of components E; o ... o E, of
Dy, ..., D,such that E; 0...0 E,(3) = [ ¢,,.., Here ¢y,. 4, is one of the
coefficients appearing in (36). Thus, ¢y,..4, € Rr. Now (36) can be rewritten
as

(B8) 2 — Gyt ET = D G
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The sum on the right is now taken over all #-tuples (ay, . . . o) # (y1,. -+, ¥a)-
Since there are fewer monomials now appearing on the right in (38) than in
(36), we conclude by induction that every c,,...q, lies in Rry.

Thus, we have proven that Ry[xy, ..., x,] = R. By Theorem 1, ¢: & Ry[x]
— Ryplxy, . .., x,] is an isomorphism. Therefore, & Rr|x,] = R, and the proof
of Theorem 2 is complete.

We note that the two main hypotheses in Theorem 2 are independent of
each other. Example 5 provides an example in which (D;, D,|X,, X,) satisfy
equation (4), but the set { Dy, Dy} does not span Derz '(R). For example, if
the characteristic of k is two, then Rr = k[X 2, X%, X;?]. So, D; defined by
D;3(X,) = D3(Xs) = 0,and D3(X;) = 1isa well defined first order R -deriva-
tion on R. But, Dj is not an R-lincar combination of D, and D,.

On the other hand, ifaset T' = {D,, ..., D,} of k-higher derivations on R/k
is such that the set {Dyy, ..., D,1} spans Derg!(R), then it need not follow
that there exist elements x, ..., x, in R such that equation (4) is satisfied.
Consider the following example:

Example 6. Let k be any field of characteristic not equal to two or three.
Let X and Y be indeterminates over k, and set R = k[X, V]/(X? — V3).
Then R is an integral domain. Since R is a homomorphic image of k[ X, V],
Der,;!'(R) is a finitely generated K-module. Let x and y denote the images of X
and Vin R. Then R = k[x, y]. Set m = (x,y), the maximal ideal in R generated
by x and y.

Now if D € Der,'(R), then 2x D(x) = 3y*D(y). 1t now easily follows from
this equation that D(R) C m. Thus, no first order k-derivation on R can take
any element of R to a unit. In particular, if T = {D,, ..., D,}, where {D,, . . .,
D,} span Der;'(R), then T spans Derg ' (R). But, no elements x4, . . . , x, can
be found in R such that (D, ..., D,|x,, ..., x,) satisfy equation (4).

We now turn our attention to the analog of Theorem 2 when R/k is a domain
of characteristic zero. We first note that the two main hypotheses in Theorem 2
are not strong enough to imply the result in characteristic zero. Consider the
following example:

Lxample 7. Let k be a field of characteristic zero, and suppose X and X, are
indeterminates over k. Set R = k[X,, X,, Z, 1/Z] where Z? = X,;. We can
define two first order k-derivations D, and D, on k[ X, X,] by setting D,(X,) =
Dy(X,) = 1,D,(X.) = D:(X;) = 0. Since Z is separable over k[ X, X.], each
D has a unique extension to R. We casily check that R/kis a domain of charac-
teristic zero in which (D;, Dy X,, X.) satisfy equation (4). Further, ' =
{D1, D.} spans Der,'(R), and, thus, Derg 1 (R) also.

Consequently, R/k satisfies the two main hypotheses of Theorem 2, but
Rr|Xi, X4] # R. ForZ ¢ Rr[X,, X:]. To see this, we merely have to note that
some high power of D, kills any given element of Rr[X,, X,]. Since D*(Z) # 0
for any n, we conclude that Z ¢ Ry[X,, X,].
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When we study Example 7, we come to the conclusion that a necessary
condition for Rr[xy, ..., x,] = Rin the presence of equation (4) is that large
composites of Dy, . . ., D,; should kill any given element of R. If { Dy, ..., D,;}
span Derg.}(R), then this condition is sufficient also.

THEOREM 3. Let R/k be an integral domain such that k contains ihe rationals.

Let T = {Dy, ..., D,} be a set of k-higher derivations on R, and suppose there
exisl elements x;, . .., x, € R — Ry such that (D, ..., Dylxi, ..., x,) satisfy
equation (4). Then R = &) Rrlx;] if and only if the following two condilions are
satisfied:

(@) {D11, . .., Dy} span Derg ' (R).

(8) For every z € R, there exists « nonnegative integer N (3) such that if m >
N(z),then Eyo...0 E,(z) = 0. Here E; € {Dy1, ..., D,}.

Proof. f R >~ & Rr[x;],then R = Rry[xy,. .., x,). In this case, condition (8)

follows trivially from equation (4). The proof of (@) is the same as in Theorem 2.

So, let us assume conditions () and (8) are satisfied. By Theorem 1, ¢: &
Rrlx;] = Rr[xy, . .., x,] is an isomorphism. Thus, we need to show that condi-
tions (a) and (8) imply Rr[xi, ..., %, = R.

Let Rp;, denote the ring of constants of D1, (1 = ¢ < n). We first argue that
Rr = Nj=1 Rp,,. Clearly, Rr C N1 Rp;,. Letz € Mi—1 Rp;,. Itis well known
that each D; can be embedded as a section in some R p-higher derivation E; of
infinite rank on R. A proof of this fact can be found in [5, (¢) p. 33]. We can
regard E; as a Q(Rr)-derivation of infinite rank on Q(R). By [2, (5)], each
component of E; is just a sum of composites of first order Q (Rr)-derivations on
Q(R). Now condition («) implies that {D, ..., D} is a Q(R)-basis of
Der gz (Q(R)). Thus, any first order Q(Rr)-derivation on Q(R) vanishes on
z. Therefore, any component of E; vanishes on z. In particular, D;;(z) = 0 for
everyj =1,...,rk D, Thus, z € Rr.

It is now clear that the components of rank greater than one (if present) in
D, play no role in this theorem. Thus, without loss of generality, we can assume
that each D, is just a first order k-derivation on R.

We next claim that Q(R) is an algebraic extension of Q(Rr) (x1, . . ., x,). We
proceed by contradiction. Suppose Q(R) contains an element z such that z is
transcendental over Q(Rr) (x1, . . ., x,). Set K = Q(Rr) (x1, . .., %, 2). By the
proof of Theorem 1, {x;, ..., x,} is a transcendence set over Q(Rr). Since z is
transcendental over Q(Rr) (x1, . . ., X,), {x1, ..., %, 2} is also a transcendence
set over Q(Rr). Thus, we can define a Q(Rr)-derivation D on K by D(x;) = 0
(1 £17 = #n), and D(2) = 1. Since the characteristic of K is zero, D can be
extended to a Q(Rr)-derivation on Q(R). Since {Dy, ..., D,} is a basis for
Der gz (Q(R)), there exist elements ay, . . ., a, € Q(R) such that

(39) D=a1D1+...+aﬂD,,.

If we evaluate equation (39) at each x;, we geta; = O forallz =1,..., n.
Thus, D = 0. But, this is a contradiction since D (z) = 1. Therefore, Q(R) is an
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algebraic extension of Q(Ryr)(xy, ..., x,). In particular, each element z € R
satisfies some algebraic equation over Rr[xy, . . ., %,].

Now let z € R. Then there exists a nonnegative integer N (z) such that con-
dition (B) holds. We shall show thatz € Rplxy,. .., x,] by proceeding by induc-
tion on the integer N (z).

If N(z) = 0, then condition (8) implies that D;(z) = Oforevery:z=1,....n
Thus, z € Rr. In particular, 2 € Ryp[x,, ..., x,], and the proof is complete in
this case. Thus, we can assume thatif N(z) < M (M > 0), thenz € Ryplxy,. . .,
x,]. Let z € Rsuch that N(s) = M. We note then that N(D;(z)) < M for any
i=1,...,n Thus, Di(z) € Rrlxy,...x,] forall 1.

Now we know z satisfies some algebraic equation over Rr[xy, . . ., x,]. Thus,
we have
40) aps™ + s+ ...+ ay = 0.
Here the a;'s are all elements of Ry[x;y, . . ., x,] and not all zero. We can assume

that m in (40) is as small as possible among all such relations on z.

We now claim that our induction hypothesis implies thatm = 1. 1f m = 1in
equation (40), then there is nothing to prove. Suppose m = 2. We need at this
point the analog of Lemma 3. We claim that for any non-zero f € Rrlxy, . . .,
x,], there exists a composite D;’' 0. ..o D, such that D,""o... 0 D,"(f) is
a non-zero constant of Ry. A proof of this fact follows easily from equation (4)
and induction on the degree of f. Now, we apply this remark to the leading

coefficient a,, in (40). Thus, there exists a composite D' o . .. o D,'» such that

Di""o...0oD,""(ay,) = ¢, where ¢, is a non-zero element in Ry. If we apply

D, to equation (40), we get

(41) D, (ap)z™ + (manD,(z) + Dy(tpm_1))z™ 4+ ... = 0.

By our induction assumption, the coefficients of z*in (41) lie in Rrlxy, .. ., x,].

[t is now clear that D"t o ... o D, when applied to (40) gives an equation of

the form:

(42) 2™+ b2t 4+ ...+ biz+ by = 0.

Here ¢, is a non-zero -element in Ry, and b, 1, ..., by lie in Rplxy, ..., x,].
Now apply D; to equation (42). We get

(43)  (mc,Di(z) + Di(bp_y))z™ 14+ ... = 0.

Now the minimality of m implies that mc,D(z) + D;(bn_1) = 0 for every

i =1, ..., n Therefore, mc,z 4+ b,_1 € Rr. But this relation implies that z

satisfies an algebraic relationship of the type in equation (40) with m = 1. This
is a contradiction since we are assuming that the minimum m possible in (40) is
bigger than or equal to two. Thus, we conclude that m = 1 in equation (40).

We now claim that z € Q(Rr)[xy, ..., x,). Our induction hypothesis shows
that z satisfies an equation of type (42) with m = 1. Dividing by ¢, gives us
thatz € Q(Ry)[x1,...,x,]. Tosummarize, we have now shown that N(z) = A
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implies that there exist elements ¢4, ...+, € Q(Rr) such that

(44) 2= 2 Coyart . w0

We now proceed exactly as in the proof of Theorem 2. We can easily argue by
induction on the number of monomials present on the right side of equation
(44) that each ca, ..., lies in R. But then each ¢4, ... € Rr, and, hence, 2z €
Rr[x1, ..., x,]. This completes the induction step and consequently the proof
of Theorem 3.

We conclude this paper with a few remarks concerning the independence of
conditions () and (8) in Theorem 3. We have already noted in Example 7 that
() does not imply (8). We give a final example which shows that (8) does not
imply (a).

Example 8. Let k be any field of characteristic zero and suppose X1, Xo, X;
are indeterminates over k. Set R = k[X,, X., X3]. We define two k-higher
derivations D; and D, on R by the following equations:

D11(X1) =1, Dlz(Xl) = 0, Dz(Xx) =0
(45) Diu(Xs) =0, Din(Xse) =0, Do(Xy) =1
Dy (X5) = Xy, Din(Xs) = X5, Dao(X3) = Xo.

Il

Note that D, is a k-higher derivation of rank two, while D, is a k-higher deriva-
tion of rank one on R. Clearly, (D, Do/ X, X,) satisfy equation (4).

We first show that {Dii, D} satisfy condition (8) of Theorem 3. An easy
computation shows that Dy, D, = D.Dy; Thus, it suffices to show that for
each z € R there exist integers NV and M sufficiently large such that D,V (z) =
Dy (3) = 0. Since D1y and D, are symmetric, it suffices to prove this statement
for Di; only. We need the following lemma.

LeEmMMa 4. Di* (X" XY = ¢(X1, X3) + a X" X0,

Here g is a polynomial in X, and X 3 with coefficients in k such that the degree
of gisless than n 4+ [. a € k.
The proof of this lemma is an easy induction argument on s. We omit it.

Now suppose z € R. Since D1,V is a k-endomorphism of R, we can assume z
is a monomial. Suppose z = X "X "X ;'. We proceed by induction on L = n +
I.IfL =0, thenz = Xy™ and (45) implies D1;(z) = 0. In general, apply Dy, ' to
z first. By Lemma 4, we get

(46) Du'(z) = X" (g(X1, X3) + a X"H).

Here deg ¢ < n + [ = L. Thus, by our induction assumption, there exists an
N such that D,Y1(g) = 0. Let N > max {N1, n + [}. Then clearly D;¥*!(3)
= 0.

Thus, {D11, D,} satisfy condition (8) in Theorem 3. We next note that
{D11, D5} do not span Derg ! (R) where I' = {D4, D,}. To show this, we make
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use of Theorem 3 itself. If { D11, Ds} did span Dergp!(R), then by Theorem 3,
R = Rr[X,, X,]. But in this example, R # Rr[X,, X.]. We shall prove this
last inequality by showing X3 ¢ Rp[X;, X.].

Suppose X3 € Rr[X,, X2]. Then there exist elements ¢;, € Rr such that

(A7) X3= D, ¢, X:'X,.

Now Dj," is a linear transformation with respect to Ry. Thus, applying D;»"
to (47) and using equation (45), we get

(48) )(3 = Z Ci>;X2jD13N(X1i).
Now we can easily argue that for N sufficiently large, the right hand side of

(48) is zero. Thus, X3 = 0. This is a contradiction. Therefore, R # Rp[X,, X,]
and Example 8 is complete.

Theorems 2 and 3 together with the examples given in this paper give a
fairly complete answer to the final question in the introduction.
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