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CHARACTERISTICALLY NILPOTENT ALGEBRAS 

T. S. RAVISANKAR 

Introduction. Our aim in this paper is to extend (Theorem 1.7) to general 
algebras a classical result of Lie algebras due to Léger and Togo [6]. This 
extension requires, in turn, extension to general algebras of the concept of 
characteristically nilpotent algebras introduced by Dixmier and Lister [3] for 
Lie algebras. Based on this extended concept, we introduce in § 2 a new con
cept of radical (and semisimplicity) for general algebras and Lie triple systems. 
We study in some detail the consequences of the newly introduced concepts, 
furnishing necessary examples. With a stronger notion of characteristically 
nilpotent Mal'cev algebra arising out of these concepts, we obtain 
(Proposition 3.6) for such an algebra the parallel to the Leger-Tôgô result 
mentioned at the outset. In § 4, we deal with a further generalization of the 
concept of characteristic nilpotency leading to extension of very recent results 
of Chao [1] and Togo [12]. 

In what follows, all vector spaces considered are assumed to be finite-
dimensional over the ground field. 

1. In this section we introduce the notions of characteristically nilpotent 
algebras, characteristically solvable algebras (see [3; 10]), and obtain some 
results relating to these concepts. 

Let A be a non-associative algebra over an arbitrary field F and D {A ) the 
Lie algebra of all derivations of A. Let 

AW = (ZxiDtlxi € A,Dt e D(A)} 

and define inductively A[k+l] = {E ypj\ Jj £ A™, Dj £ D(A)}. 

Definition 1.1. An algebra A is said to be characteristically nilpotent 
(C-nilpotent) if there exists an integer n such that A[n] = 0. 

Remark 1. If A is a C-nilpotent algebra, then every derivation D of A is a 
nilpotent linear transformation on A. Conversely, if every derivation of an 
algebra A is a nilpotent transformation, then the associative subalgebra of 
linear transformations on A generated by the Lie algebra D(A) is nilpotent 
[4, Theorem 2.1]; this means precisely that A is C-nilpotent. Thus, A is 
C-nilpotent if and only if every derivation of A is a nilpotent linear trans
formation. 

Remark 2. Suppose that L is a C-nilpotent Lie algebra with multiplication 
[x, y\. Since the mapping ad x: y —» [x, y] is a derivation for every x in L 
(by Engel's Theorem [4, p. 31]), L will then be a nilpotent Lie algebra. 
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We recall t h a t the annihilator ideal I of an algebra A is precisely the set of all 
absolute divisors of zero in A, and note the following necessary condition for 
C-nilpotency for an algebra. 

LEMMA 1.2. The annihilator ideal I of a C-nilpotent algebra A is contained in 
AA. 

Proof. Suppose the contrary. Let x be a non-zero element of / such t h a t 
x $ AA. Then A can be writ ten as the direct sum of the subspaces: 

A = T © {<XX}a£F, 

where T contains A A ; T is an ideal of A. The mapping 6 of A into itself defined 
to be zero on T and to be the identi ty on {ax}a^F is a non-nilpotent derivation 
of A, contradicting the assumption. This contradiction proves the lemma. 

Let now K be an extension field of the base field F. Le t AK be the algebra 
obtained by extending F to K. Then we assert t h a t D(AK) = (D(A))K, the 
extension over K of the derivation algebra of A over F. An immediate con
sequence of this assertion would be the impor tan t fact t h a t the algebra A is 
C-nilpotent if and only if AK is C-nilpotent. A proof of this assertion can be 
modelled on [5, proof of Theorem 5]. However, we indicate here a proof kindly 
suggested by Professor K. McCrimmon. We need only prove t ha t 

D{AK) ç (D(A))K. 

For this, let \ki] i u be a basis for K over F, so t ha t AK = 0/&*<4. If D is a 
derivation of AK} let aD = ^2 k iaD t for a and aD t in A. Then the maps a —> aD t 

are easily verified to be derivations of A. If {au a2, . . . , an) is a basis for A 
over F, then it is also a basis for AK over K, and, for any ah only finitely many 
ajDi are non-zero. If Di, . . . , Dm are the only non-zero terms appearing in 
aiD, a 2D, . . . , anD, then they are the only non-zero terms appearing in any 
aD for a — Ylfiaufi £ F, in A, so t h a t D = Y,?=i kiDt is a finite sum, i.e., D 
is a linear combination over K of elements of D(A), when restricted to A, 
i.e., D Ç ( D ^ ) ) ^ , proving the desired inclusion. 

P R O P O S I T I O N 1.3 (cf. [6, Theorem 6]). Let A be an algebra which is a direct 
sum of ideals A * (i = 1, 2, . . . , r). Then A is C-nilpotent if and only if the A t 

are C-nilpotent algebras. 

Proof. Let A be C-nilpotent. Any derivation Dt of Ai can be trivially 
extended to a derivation D of A (D coinciding with Dt on At and with 0 on 
A j (J ^ i)). This observation immediately shows tha t A t should be C-nilpotent. 

For the converse par t , it suffices to observe t h a t the proof of the result 
referred to against the proposition itself works for the general case, the role 
of centre (cent) therein being played by the annihilator ideal, in view of the 
availability of Lemma 1.2 (used in t ha t proof). T h e details are omitted. 
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Remark 3. We incidentally note that \i A is a nilpotent algebra such that 
AD (A) C AA, then A is also C-nilpotent. (We recall that an algebra A is 
nilpotent if the series of subspaces 

41 = A, A2 = .4,4, . . . ,A* = J ^ * - 1 ^ , ^ * - 1 } , . . . 

coincides with the zero space after a finite stage.) Further, in Proposition 1.3, 
if A is such a C-nilpotent algebra, then so are the A u and conversely 
(cf. [6, end of §4]). 

Definition 1.4. An algebra A is said to be characteristically solvable 
(see [10, p. 201]) if D(A) is solvable as a Lie algebra. 

A C-nilpotent algebra is easily seen to be characteristically solvable. We 
have the following result. 

PROPOSITION 1.5 (cf. ([10, Lemma 3]). If A is a solvable associative algebra such 
that the centre of A is contained in AA, and if D(A) is the direct sum of the radical 
and a semisimple ideal, then A is characteristically solvable. 

Proof. Let D(A) = R 0 S, for the radical R of D{A) and a semisimple ideal 
S oi D(A). Now, A being solvable is also nilpotent. Consequently, the associa
tive multiplication algebra (see [8]) of A is nilpotent. Let Lx (Rx) denote the 
left (right) multiplication by x in A. It is known that ad x = Rx — Lx is a 
derivation of A. The set {ad x}xÇ.A is easily seen to be an ideal (a nilpotent ideal 
in fact) of D(A), i.e., {ad x}xeA C R. For a non-zero derivation D of A belong
ing to 5, [R, D] = 0; in particular, [Rx — Lx, D] = RxD — LxD = 0 for all x in 
A, i.e., xD e cent AQAA. Then AD C A\ AD2 C A2D C AD • A + 
A -AD C {A2A1AA2} = A8, etc., . . . ; by the nilpotency of A, we have 
ADn = 0, where An+1 = {0j. In other words, every element of 5 is a nilpotent 
derivation, so that 5 will be a nilpotent ideal of D(A), a contradiction; 5 = 0. 
Thus D(A) = R, and the proposition is proved. 

Remark 4. Proposition 1.5 holds for a solvable Lie algebra [10, Lemma 3] in 
the place of a solvable associative algebra. In the case of a nilpotent Lie 
algebra A, when D(A) is the direct sum of the nil radical and a semisimple 
ideal, we can conclude that A is C-nilpotent. We require the use of 
[6, Theorem 1] to arrive at this assertion. In fact, this auxiliary result finds its 
generalization in Theorem 1.7 below. 

We recall now that a non-associative algebra A is said to be nilpotent, if 
there exists a fixed integer n such that all products of n elements of A are zero, 
irrespective of how they are associated [8]. For such algebras we can prove as in 
[6, Lemma 2], the following result. 

LEMMA 1.6. / / a nilpotent algebra A is a direct sum of two non-zero ideals one of 
which annihilates the algebra, then D(A) is not nilpotent. 
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Now, let A be a nilpotent algebra which is also C-nilpotent. (The assumption 
of nilpotency of A is superfluous in the case of a Lie algebra A.) Let L be the Lie 
multiplication algebra of A, i.e. the Lie algebra of linear transformations on A 
generated by the left (right) multiplication Lx (Rx) in A. Since A is nilpotent, 
each element of L is a nilpotent linear transformation [8, Chapter II, 
Theorem 2.4]. We denote by L* the Lie algebra generated by {Lx, Rz}xeA and 
the derivations of A. Then L* = L + D(A) (sum as vector spaces and not 
necessarily a direct sum); [L, D(A)] C L. The associative subalgebra of linear 
transformations on A generated by L (D(A)) is nilpotent, and there exists an 
integer m (n) such that all (associative) products of m (n) elements in L (D(A)) 
are zero. The inclusion [L, D(A)] C L enables us to see that all products of 
mn elements of L* are zero, so that L* is a nilpotent Lie algebra. This con
clusion is part of the following main theorem of the paper (see also Remark 5 
below). 

THEOREM 1.7. A nilpotent algebra A is C-nilpotent if and only if L* is a nil-
potent Lie algebra, and A is not one-dimensional. 

To complete the proof of Theorem 1.7 we need a known lemma. This lemma 
(which is stated without proof, in its original source) is given below, with a 
proof for the sake of completeness. 

LEMMA 1.8 (cf. [6, Theorem 2]). Let A be an algebra over a field F such that 
L* is nilpotent. Then A is a direct sum of two characteristic ideals B and C such 
that all derivations of A are nilpotent on B, dim C ^ 1, and CC = 0, i.e., C 
annihilates the algebra A. 

Proof. D{A), being a subalgebra of L*, is a nilpotent Lie algebra of linear 
transformations on A. Let A = A0 © Ai be the Fitting decomposition of A 
relative to D {A ) [4, Theorem 2.4]. A 0 and A i being L*-invariant subspaces of A 
(by [4, Lemma 2.1]) are characteristic ideals of A. Each derivation of A is 
nilpotent on AQ = B. Further, 

C = Ai= X) Aw, 
D£D(A) 

where AiD is the Fitting 1-component of A relative to the derivation D 
[4, p. 37]. If (L*)*+1 = 0, then for any x in A and for r ^ k, 

[. . . [[Lx, D], D],...,D(r times)] = 0, 

i.e. LxDr — 0. Similarly, RxDr = 0. But any element of A1D is of the form xDl 

for some x in A, where / can be chosen to be greater than k without loss of 
generality. Thus Ly = 0 = Ry for all y in C. To complete the proof of the 
lemma, we have only to show that dim C ^ 1. Suppose, on the contrary, 
that dim C > 1 and that x and y are two linearly independent elements in C. 
Let U be a complementary subspace of x in C containing y. Then the mappings 

D: A0D = 0, xD = x, UD = 0, 
D': AoD' = 0, xD' = y, UD' = 0, 
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are two (distinct) derivations of A such that [D, Dr] = Df. This means that 
D(A) is not nilpotent, contradicting the hypothesis. Thus dim C ^ 1. The 
proof of the lemma is complete. 

The original proof of Lemma 1.8 needed the assumption of algebraic closure 
of the base field. The use of the "Fitting" decomposition as in the present proof 
to dispense with this superfluous assumption was kindly suggested by Professor 
G. B. Seligman. However, a proof of this lemma can be alternatively modelled 
on [6, Theorem 1] in view of the fact that the base field can be assumed without 
loss of generality to be algebraically closed. For, LAR* = (LA*)K, where K is an 
extension of the base field F (see, in this connection, the remarks following the 
proof of Lemma 1.2). 

Now we complete the proof of Theorem 1.7. We suppose that L* is nilpotent 
and that A is not one-dimensional. By Lemma 1.8, A = B © C, for ideals 
B, C such that every derivation of A is nilpotent on B and CA = AC = 0; 
dim C ^ 1. Since dim A > 1, B is a non-zero ideal. If C is also a non-zero ideal, 
an appeal to Lemma 1.6 leads to the contradiction that D(A) is not nilpotent. 
Hence C = 0, so that A is C-nilpotent (by Remark 1). The theorem is now 
proved. 

Remark 5. When A is a one-dimensional nilpotent algebra over a field F with 
the base element x, x2 = 0, and L* = {aI\a(zFl where / is the identity trans
formation. L* is nilpotent as a Lie algebra. However, A is not C-nilpotent in 
this case, / being a non-nilpotent derivation of A. (In fact, any derivation of A 
is a scalar multiple of / . ) 

The following immediate corollary to Theorem 1.7 is a result of Léger and 
Togo [6, Theorem 1]. To obtain the corollary one need only observe the 
following: 

(i) A C-nilpotent Lie algebra is nilpotent, 
(ii) L* = D{L) for a Lie algebra L, and 

(iii) The nilpotency of D(L) implies the nilpotency of L. 

COROLLARY 1.9. A Lie algebra L is C-nilpotent if and only if D(L) is a 
nilpotent Lie algebra and L is not one-dimensional. 

2. In this section we introduce a new concept of radical and the related 
notion of semisimplicity. Besides giving certain basic results relating to these 
concepts, we also give some examples. 

Let B be a characteristic ideal of an algebra A. Let D(A) be the Lie algebra 
of all derivations of A. Define BW = 5 , 5 ™ = { £ xtDt\ xt 6 5 , Dx>£ D(A)\, 
and inductively B[k+1] = {B[k]D(A)}. Since B is a characteristic ideal of A, 
we have B 2 B[2]. B[lc] is a characteristic subspace of A (by induction) and 
B 3 5 [2] 2 513] Z) . . . . We define B to be C-nilpotent if B™ = 0 for some k. 
We note that for a Lie algebra A, B[k] are characteristic ideals of A, and that a 
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C-nilpotent characteristic ideal is a nilpotent ideal. A characteristic ideal B of 
A is a C-nilpotent ideal if and only if every derivation of A restricted to B 
is nilpotent. We then have the following result. 

PROPOSITION 2.1. If A is a direct sum of characteristic ideals Au then A is 
C-nilpotent if and only if the A t are C-nilpotent ideals of A. 

Let B and C be two characteristic ideals of A. Then it can be easily seen that 
(B -f- C) is a characteristic ideal of A satisfying the inclusion 

(B + C)[k] Ç J3M + CW 

for any integer k. This observation immediately yields the following result. 

LEMMA 2.2. The sum of two C-nilpotent characteristic ideals of an algebra A 
is again a C-nilpotent characteristic ideal. 

Lemma 2.2 enables us to define the new concept of radical mentioned in the 
Introduction. 

Definition 2.3. The maximal C-nilpotent characteristic ideal R of an algebra 
A (which exists, by Lemma 2.2) is called the Ci-radical of A. 

Remark 6. Recalling (see [9]) that the C-radical (C-nil radical) of a Lie 
algebra L is its maximal solvable (nilpotent) characteristic ideal, we note 
immediately that R C C-nil radical of L C nil radical N of L C radical R' 
of L. Further, R ÇZ C-radical of L. Of course, when the base field is of char
acteristic zero, the C-radical (C-nil radical) coincides with the radical (nil 
radical). The question as to when the nil radical N of a Lie algebra L coincides 
with R has been settled by Togo [10, Corollary 2 to Theorem 2] in a different 
form. It can be restated as follows: For a Lie algebra L over a field of char
acteristic zero, the Ci-radical R of L = nil radical N of L if and only if N is 
itself characteristically nilpotent as an algebra. In this case, R = N = 
C-nil radical of L = radical of L = C-radical of L; further, L = N 0 5 for a 
semisimple ideal 5 of L (see [3]). 

Definition 2.4. An element x in an algebra A is said to be D-nilpotent if there 
exists an integer n (depending on x) such that xDiD2 . . . Dn = 0 for any n 
derivations Dt. 

PROPOSITION 2.5 (cf. [8, Theorem 3.7]). The Ci-radical R of an associative 
algebra A is precisely the set of D-nilpotent elements x in A such that xy is 
D-nilpotent for all y in A (i.e., x is D-properly nilpotent in A). 

Proof. Evidently, the Ci-radical R of A is contained in the set N' of D-prop
erly nilpotent elements of A. To prove that Nf Ç R, it suffices to show that 
N' is a C-nilpotent characteristic ideal of A. N' is a subspace of A. It is easily 
seen that for x in N', y in A, xy G N'; further, for a derivation D of A, xD is 
evidently D-nilpotent; (xD)y = (xy)D — x(yD) is D-nilpotent for all y in A. 
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Hence, xD is D-properly nilpotent. Consequently, N' is a characteristic right 
ideal, and hence is a characteristic ideal of A (y —> xy — yx is a derivation in 
A). By finite dimensionality of A, N' is a C-nilpotent characteristic ideal of A 
and N' C R. The proposition is proved. 

Remark 7. For a Lie algebra L, the Ci-radical i£, 

R = N' s= {x 6 L| x£>i£>2 . . . I>„ = 0 

for any n derivations Z)* of L, w being an integer depending on x). 

This assertion follows directly from the fact that N' is a characteristic subspace 
(hence an ideal) of L. 

Definition 2.6. An algebra A is said to be Ci-semisimple if its Ci-radical is 
the zero ideal. 

For a Lie algebra, the following implications are evident: 

simplicity =» semisimplicity <=> nil semisimplicity 

i i . _ _ it 
C-simplicity => C-semisimplicity «=> C-nil semisimplicity 

Ci-semisimplicity. 

Remark 8. The concept of Ci-semisimplicity does not coincide with the 
classical semisimplicity even for a Lie algebra over a field of characteristic zero, 
unlike Seligman's concepts, as will be shown by our example later. 

The following analogue of [9, Theorem 1] can be easily proved. 

PROPOSITION 2.7. If R is the Ci-radical of an algebra A, then A/R is Ci-semi-
simple. 

The following result is immediate from Proposition 2.5. 

PROPOSITION 2.8. A characteristic ideal of a Ci-semisimple associative algebra 
is itself Ci-semisimple as an algebra. 

Remark 9. The analogue of Proposition 2.8 holds for Lie algebras as well, 
in view of Remark 7. This observation has a direct proof, using the fact that a 
characteristic ideal C of a characteristic ideal B in a Lie algebra L, is again a 
characteristic ideal of L. 

Remark 10. If A is a flexible algebra over a field of characteristic 9^ 2, 
i.e., an algebra satisfying the identity (xy)x = x(yx), then x —-> xy — yx is a 
derivation of the algebra A+ associated with A (see [8, p. 146]), so that any 
characteristic ideal of A+ is a characteristic ideal of A. Further, since any 
derivation of A is a derivation of A+, it follows that the Ci-radical of A+ is 
contained in the Ci-radical of A. Thus, if A is a Ci-semisimple flexible algebra, 
then so is A+. 

https://doi.org/10.4153/CJM-1971-022-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-022-2


N I L P O T E N T ALGEBRAS 229 

We note the following interesting facts about the new concept of Ci-radical. 
A zero algebra happens to be trivially Ci-semisimple. If xy = 0 for every 
x, y in an algebra A, every linear mapping of A into itself is a derivation; the 
only characteristic ideals are 0 and A. Evidently, A cannot be C-nilpotent and 
the Ci-radical coincides with 0. The same example shows t ha t a ni lpotent 
algebra need not be C-nilpotent. Further , a characteristic ideal of a C-nilpotent 
algebra need not be C-nilpotent as an algebra: Let L be a C-nilpotent Lie 
algebra (e.g., see [3]). L being nilpotent, if Lk = 0, Lk~l ^ 0, then Lk~x is a 
characteristic abelian ideal of L which is not C-nilpotent as an algebra. A 
non-trivial example of a Ci-semisimple Lie algebra which is not C-semisimple 
is given by the Lie algebra with basis xx, x2, x3 over a field F and multiplication 
defined by (see [11]) 

[xi, x2] = x2; [xi, x3] = x3; [x2, x3] = 0. 

As an example of a Ci-semisimple associative algebra we can cite the algebra A 
with basis e, x and multiplication defined by ex = 0 = x2; e2 = e\ xe = x. 

For an example of a C-nilpotent non-associative (non-Lie) algebra, the 
reader is referred to [12]. 

An example of a Ci-semisimple associative algebra is the algebra F [ l , a] = A 
over a field F of characteristic p ^ 0, with ap = 0. A is C-simple, i.e. it does 
not have any characteristic ideals other than A and 0; A A ^ 0. However, 
A is not a C-nilpotent ideal, since the mapping a —> a is a non-nilpotent 
derivation of A (see [4, p . 75]). 

3 . In this section we consider the concepts corresponding to those dealt with 
in earlier sections, for a Lie triple system, obtaining (Proposition 3.5) a sort 
of analogue for Mal 'cev algebras of a theorem of Léger and Togo [6, Theorem 1]. 

Let T be a Lie triple system over a field F with composition [x, y, z] (see [7] 
for the details regarding Lie triple systems) . Let D(T) be the Lie algebra of 
all derivations of T. Then, as for an algebra, T can be defined to be C-nilpotent 
if the series of subspaces 

T[i) = Ti Tm = [TD(T)}, . . . , r ^ + n = {TikW(T)}, . . . 

terminates with zero after a finite stage. The notions of C-nilpotent character
istic ideal, Ci-radical (which is well-defined here too) are clear. If R is the 
Ci-radical of T, T/R is Ci-semisimple (i.e., the Ci-radical of T/R is the zero 
ideal). Propositions 1.3 and 2.1 remain t rue for Lie triple systems. 

Remark 11. If B were a characteristic ideal of T such t ha t 

J3(i) = B, B<2> = [ r , 5 , 5 ] , . . . , B<"+« = [7\ 5<n>, B(»)]f . . . 

is the derived series of B, then it is easily seen tha t B{r) C B[r] for any integer r. 
Thus , when B is C-nilpotent, B is solvable. Hence, the Ci-radical of T is 
contained in the C-radical of T (maximal solvable characteristic ideal of T) 
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which is contained in the radical of T. In particular, a C-semisimple Lie triple 
system is Ci-semisimple. 

Let us now consider a Mal'cev algebra A over a field of characteristic ^ 2 
(this assumption on the characteristic is assumed without mention throughout 
the remainder of this section), i.e. an anticommutative algebra satisfying the 
identity (xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y (see [7]); let TA be the 
Lie triple system (see [7]) associated with A, with the composition 

[x,y,z] = 2(xy)z — (yz)x — (zx)y. 

Any derivation of A is a derivation of TA, and any characteristic ideal of TA 

is a characteristic ideal of A [7, Lemma 2], Therefore 

(Vradical of TA C Ci-radical of A. 

Thus we have the following result. 

PROPOSITION 3.1. / / A is a Ci-semisimple MaVcev algebra, then TA is a 
Ci-semisimple Lie triple system. 

We now introduce a stronger notion of C-nilpotency of a Mal'cev algebra 
based on its Lie triple system. 

Definition 3.2. A Mal'cev algebra A is said to be strongly C-nilpotent 
(SC-nilpotent), if the associated Lie triple system TA is C-nilpotent. The 
Ci-radical of TA is called the SCi-radical of A. 

Remark 12. Evidently, the SCi-radical of A is also a characteristic ideal of A 
contained in the Ci-radical of A, as was observed earlier. The notions of 
SCi-semisimplicity of A and Ci-semisimplicity of TA are equivalent. In view 
of the fact that the left multiplication Lx of A is a derivation of TA [7, Satz 1], 
it follows that an SC-nilpotent Mal'cev algebra is a nilpotent algebra (i.e. there 
exists an integer n such that all products of n elements of A is zero, irrespective 
of associations). Thus we also see that SCi-radical of A is contained in the 
C-radical of A (maximal solvable characteristic ideal). In particular, a 
C-semisimple Mal'cev algebra is SCi-semisimple. It is not known as to whether 
a C-semisimple Mal'cev algebra is Ci-semisimple as an algebra or not. 

Since a characteristic subspace of TA is a characteristic ideal of TA, the 
following characterization of the SCi-radical is evident, as in Remark 7. 

PROPOSITION 3.3. The SCi-radical of a MaVcev algebra A is precisely the set 
{x £ TA\ xD\D2. . . Dn = 0 for any n derivations Dt of TA, n being an integer 
depending on x}. 

The above characterization shows that a characteristic ideal R of TA for an 
SCi-semisimple Mal'cev algebra A is itself SCi-semisimple as an algebra. 

We shall call a Lie triple system T nilpotent if there exists an (odd) integer n 
such that all triple products in T involving n elements irrespective of the 
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association are zero. Further, an ideal B of T is said to be an annihilator ideal if 
[B, T, T] = 0; obviously, 

[5, r, T] = o ^ [r, s, r] = o = [r, r, E\. 
LEMMA 3.4 (cf. [6, Lemma 2] and Lemma 1.6). Let T be a nilpotent Lie triple 

system such that T is the direct sum of two non-zero ideals, one of which is an 
annihilator ideal. Then D(T) is not nilpotent. 

Now suppose that A is an SC-nilpotent Mal'cev algebra; then D(TA) is a 
nilpotent Lie algebra. Conversely, suppose that A is a Mal'cev algebra over a 
field F such that D (TA) is a nilpotent Lie algebra. Then we can assume F to be 
algebraically closed without loss of generality (see the remarks preceding 
Proposition 1.3 and note that the arguments hold for Lie triple systems). Now 
we can adapt the arguments of Léger and Togo [6, Theorem 1], noting that a 
characteristic subspace of TA is a characteristic ideal of TA, to show that 
TA — B © C, for characteristic ideals B, C of TA with D{TA) nilpotent on B 
and with [C, TA, TA] — 0. As in the proof of Lemma 1.8, we can show that 
dim C S 1. The system TA can be easily seen to be a nilpotent system. Thus 
we can appeal to Lemma 3.4 to deduce the following companion to Theorem 1.7, 
which is at the same time an analogue of the result of Léger and Togo 
[6, Theorem 1]. 

PROPOSITION 3.5. A MaVcev algebra A over a field of characteristic ^ 2 is 
SC-nilpotent if and only if D(TA) is nilpotent and A is not one-dimensional. 

Remark 13. A proof of Proposition 3.5 as in the case of Theorem 1.7 
(Lemma 1.8) using the "Fitting" decomposition does not seem to be possible 
here. 

Suppose now again that A is an SC-nilpotent Mal'cev algebra. Then there 
exists an integer n such that all products of n elements of D(TA) is zero. We 
can use this fact to show (by an easy computation) that the enveloping Lie 
algebra L = TA © D{TA) of TA (with the multiplication in L being defined as 
in [7, § 4, p. 555]) is a nilpotent Lie algebra. 

Conversely, if the enveloping Lie algebra L of TA for a Mal'cev algebra A is 
nilpotent, then D(TA) is a nilpotent Lie algebra, being a subalgebra of L. 
Also, A cannot be one-dimensional. Suppose, to the contrary, that A is one-
dimensional, i.e. A = {ax}aeF, x2 — 0; D'\ x —> x is a derivation of TA. By 
definition of multiplication in L (see [7, § 4]), 

[. . . [[*, £>'], £> ' ] . . . ,£> ' (r times)] = x 

for any r, and L cannot be nilpotent, a contradiction. Consequently, we have 
from Proposition 3.5 that A is an SC-nilpotent Mal'cev algebra. We have thus 
proved the following result. 

PROPOSITION 3.6. A MaVcev algebra A over a field of characteristic y£ 2 is 
SC-nilpotent if and only if the enveloping Lie algebra L (=TA © D(TA)) of TA 

is a nilpotent Lie algebra. 
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4. In this section we formulate a generalization of the notion of characteristic 
nilpotency and study its properties. (For an example of a characteristic 
nilpotent algebra which is not Lie, we again refer to [12].) 

Definition 4.1. Let & be any collection of derivations of an algebra A. 
Define inductively A™' = {A@},. . . , AV+W = \A^'Q\, . . . .A is said to be 
D-nilpotent if Aw = 0 for some integer r. The maximal D-nilpotent D-ideal 
of A arising out of such a definition can be called the D-radical of A. 

Remark 14. For a Lie algebra L, if we take 2 to be a Lie algebra of deriva
tions containing the inner derivations, then the Ci-radical is contained in the 
D-radical which is contained in the radical. 

The notion of D-nilpotency can be used to advantage in proving the following 
theorem, which simultaneously generalizes a recent result of Togo [12, Theorem] 
and a result of Chao [2, Theorem 2]: For an ideal TV of a non-associative 
algebra A, let us define Nj to be the subspace of N generated by all products of 
j elements in N (irrespective of association). N is nilpotent if Nr — 0 for some r. 
We further remark that for any D-ideal B of an algebra A, Qf induces a 
collection Q of derivations D on A/B defined by 

(x + B)D = xD + B for x e A and D G 2. 

THEOREM 4.2. Let Abe a non-associative algebra over a field F and let & be a 
collection of derivations of A. Let N be a nilpotent D-ideal of A such that the Nj 

are ideals of A for all j . Then A is D-nilpotent if and only if A/Nn is D-nilpotent 
for some integer n ^ 2, Q being the set of induced derivations in A/Nn. 

Proof. If A is D-nilpotent, evidently A/Nl is D-nilpotent (for any t). 
Conversely, suppose that A/Nn is D-nilpotent for an n ^ 2. Since Nn is a 
D-ideal of A, there exists an integer m such that A2iïm C Nn. We claim that 
AQfZlcm C Nn+k for all non-negative integers k. This being true for k = 0, by 
induction on k, we have 

A@zk+lm = A9zkjn* @2'*Km 

V v+Q=n+k\ )~v 

i p+q=n+k', 

Q jyn+p+k o r Nn+Q+k 

By the nilpotency of N, there exists an integer k for which Nn+k+1 = 0 and A 
will be D-nilpotent. 
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Remark 15. We note that the above result can be proved also by applying 
verbally the proofs of [12, Lemma and Theorem]. 

COROLLARY 4.3 (see [12, Theorem]). Let A be an algebra over F and let N 
be a nilpotent characteristic ideal of A such that the Nj are ideals of A for all 
positive integers j . Then A is characteristically nilpotent if and only if A/Nn is 
characteristically nilpotent for some integer n ^ 2. 

COROLLARY 4.4 (cf. [2, Theorem 2]). Let N be a nilpotent ideal of a Lie algebra 
L. Then L is nilpotent if and only if L/Nn is nilpotent for some integer n ^ 2. 

In order to prove Corollary 4.4, it suffices to observe that: 
(i) the nilpotency of a Lie algebra L is equivalent to its D-nilpotency for 

2$ = {adx}xeL, __ 
(ii) the nilpotency of L/Nn is equivalent to its D-nilpotency for the above 

9, 
(iii) the Nj are ideals of L and \Nj} j is the lower central series of N. 

Remark 16. Since the Nj are automatically ideals of A for an alternative or 
Lie algebra A, this assumption is superfluous in Theorem 4.2 in these cases 
(see also [12, Corollary]). 

The restriction stipulating that N} be ideals can be waived provided we use 
the following stronger notion of nilpotency. Let B be a subspace of an algebra A. 
Define B{lc) to be the set of all finite sums of finite products of elements of A 
involving at least k elements of B (irrespective of their association). Then B^k) 

are ideals of A. If B is an ideal of A, then B = B{l) 2 B{2) 3 . . . , and B is 
called strongly nilpotent if B^k) = 0 for some k. Evidently, a strongly nilpotent 
algebra is nilpotent and vice versa. However, for an ideal of an algebra this 
concept differs in general from that of nilpotency. 

We have the following result. 

PROPOSITION 4.5. Let A be a finite-dimensional non-associative algebra over a 
field F, let 3) be a collection of derivations of A, and let N be a strongly nilpotent 
D-ideal of A. Then A is D-nilpotent if and only if A/N{n) is D-nilpotent for some 
integer n ^ 2 (<& being the set of derivations induced in A/N(n) by 3). 

This proposition can be proved on similar lines as Theorem 4.2, with slight 
changes. 

Remark 17. For an alternative or a Lie algebra, N{n) is the same as Nn, and 
hence the above proposition simply reduces to Theorem 4.2 itself for these 
cases (see also Remark 16). 

We finally consider some questions regarding the D-nilpotency series, 
namely the descending chain of subspaces 

AW = {A9},...,A^' = {AW'9\,... 

of a D-nilpotent algebra A. 
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THEOREM 4.6. Let Lbea non-abelian Lie algebra whose centre is one-dimensional. 
Then L cannot be any N[i]/ i ^ 1, of a D-nilpotent Lie algebra N for a collection 
2) of derivations of N including all the inner derivations of N, where 

N = NW D A™' D . . . D NW D WW = {0} 

is the D-nilpotency series of N. 

Proof. Let, if possible, L be some N[i]', 1 ^ i ^ t, for some N. Since Q 
includes the inner derivations, [N™', N[t^f] C iVt'+u' = 0; NW is abelian so 
that L^NW; i.e. i S t - 1. Then, for any element £ **D, of A W 
(*, £ N,Df e 9), [# [ ' -« ' , E *i#<] C A ^ - u ' £ [ad *„£>,] C iV[<+1]' = 0 
(since ad xx 6 ^ and [ad x, D] = ad xD); i.e. N[t~1]f C centre of N[1]', hence 
of L. But dim N[t~1]' is at least 2, a contradiction to the hypothesis that the 
centre of L is one-dimensional. 

COROLLARY 4.7 (cf. [1, Theorem 1]). Let L be a non-abelian Lie algebra whose 
centre is one-dimensional. Then L cannot be any Niy i ^ 1, of a nilpotent Lie 
algebra N, where N = N0 D Ni D . . . D Nt D 0 is the lower central series of N. 

For the proof of the corollary, it suffices to recall the observations following 
Corollary 4.4. 

Remark 18. We note that Theorem 4.6 can also be stated in particular for 
characteristically nilpotent algebras. 

We also note that the proof given for the above theorem essentially works for 
the case of an associative algebra to yield the following result. 

THEOREM 4.8. Let A be a non-commutative associative algebra whose centre is 
one-dimensional. Then A cannot be any N[i]f, i ^ l,for a D-nilpotent associative 
algebra N (where 2 includes all the inner derivations Dy: x —» xy — yx in N). 

Corollary 4.7 (or [1, Theorem 1]) can also be deduced from the following 
more general result. 

PROPOSITION 4.9. Let A be anon-zero (AA ^ 0) non-associative algebra whose 
annihilator ideal I is one-dimensional. Then A cannot be any N\ i ^ 2, of a 
nilpotent algebra N, where N = N1 D N2 Z) • • • D Nl D 0 is the nilpotency 
series of N. 

Proof. Suppose, to the contrary, that A is N* (i ^ 2) for some N. Since 
NrNs C ATr+s for any integers r, s, A ^ Nl; we have 

N'-W* (and N'N1-1) C N1**-1 = 0 (since i + t - 1 ^ t + 1), 

so that Nl~x is contained in the annihilator ideal I oï Nf = A. But the dimen
sion of TV'-1 is at least 2, a contradiction to the hypothesis on / . 

Remark 19. The above theorem generalizes the result of Chao [1, Theorem 1] 
(see also Corollary 4.7) and simultaneously simplifies his proof. 
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In view of the generalized form (Theorem 4.6) of [1, Theorem 1], now avail
able, [1, Theorem 2] can be generalized as follows. 

PROPOSITION 4.10. Let L be a non-abelian Lie algebra with dimL/[L, L] = 2. 
Such an L cannot be any N[i]f, i ^ 1, of a D-nilpotent Lie algebra N, for a set 
2 of derivations of N including the inner derivations, where 

N = NW D NW D .. . 

is the D-nilpotency series of N. 
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