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Abstract

Biles (1970) has called a subring 4 of the ring C(X), of all real valued
continuous functions on a topological space X, a Wallman ring on X
whenever Z(A), the zero sets of functions belonging to 4, forms a normal
base on X in the sense of Frink (1964). Previously, we have related algebraic
properties of a Wallman ring A to topological properties of the Wallman
compactification w(Z(A)) of X determined by the normal base Z(4). Here
we introduce two different generalizations of the concept of “a C*-embedded
subset” and study relationships between these and topological (respectively,
algebraic) properties of w(Z(A)) (respectively, A).

Subject classification (Amer. Math. Soc. (MOS) 1970): 54 C 45, 54 C 40,
54 C 50 54 E 05.

1. Introduction

H. Wallman (1938) gave a method for associating a compact T; space w(F) with
a distributive lattice F; w(F) is the space of all F-ultrafilters and the topology of
w(F) has as a base for closed sets a lattice F* which is isomorphic to the lattice F.

O. Frink (1964) defined the concept of a normal base F on a Tychonoff space X
and he applied Wallman’s construction to obtain Hausdorff compactifications w(F)
of X. Throughout this paper X will denote a Tychonoff space (completely regular +
Hausdorff).

1.1. DEFINITION. A collection F of closed subsets of X is called a lattice of closed
subsets of X provided that:

() 9,XeF; and

(2) if A4,Be Fthen AnBeF and AUuBEF.

1.2. DErFINITION. A base F for the closed subsets of X is called a normal base
on X provided:
(1) Fis a lattice of closed subsets of X.
(2) F is disjunctive (that is, if A€ F and xe X— A4, then there exists Be F with
xeBand 4nB = 0).
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(3) F is normal (that is, if A, BEF with AnB = O, then there exist C,DeF
with4nD=@, BanC=@ and CuD = X),

If Fis a normal base on X, then w(F) is the set of all F-ultrafilters which becomes
a space as follows: If A€ F, let A* be the set of all F-ultrafilters having 4 as a
member. F* then denotes the set of all A* with 4 € F. F* is a base for the closed
sets of a topology on w(F). w(F) with this topology is always a Hausdorff
compactification of X. Here X is embedded into w(F) by the map which sends
each point x€ X to the F-ultrafilter {4 € F|xe 4}.

Frink observed that the family Z(X) of all zero sets of continuous real valued
functions on X is a normal base on X which gives rise to a compactification
w(Z(X)) equivalent to the Stone-Cech compactification 8.X of X. He also observed
that if Y is any given compactification (all spaces are Hausdorff) of X, and if
E(X, Y) denotes the subset of C(X) consisting of those real-valued continuous
functions on X which are continuously extendible to all of ¥, then Z(E(X, Y)),
the zero sets of such functions, is a normal base on X. Biles (1970) later called a
subring 4 of C(X) a Wallman ring on X provided Z(A), the zero sets of functions in
A, is a normal base on X. Bentley and Taylor (1975) studied relationships between
algebraic properties of a Wallman ring A and topological properties of the
compactification w(Z(4)) of X.

We adopt our notation and terminology from our earlier paper (1975); these are
mostly consistent with that of Gillman and Jerison (1960).

2. Generalizations of C*-embedding

A well-known example of a Wallman ring is C*(X) whose Wallman compacti-
fication is equivalent to the Stone-Cech compactification. Since considerable work
has been done with C*(X), it is natural to investigate which properties of C*(X)
carry over to arbitrary Wallman rings. ’

In this paper we shall study two concepts which are related to a generalization
of the question of when is a subset of a space C*-embedded in the space.

Gillman and Jerison (1960), p. 89 proved that if .S is a subspace of X, then S
is C*-embedded in X if and only if Cl;x S~ BS. We begin with the investigation of
a generalization of this property. If we replace Stone-Cech compactifications with
Wallman compactifications induced by arbitrary Wallman rings on X and S,
then Cl,x S BS leads us to the following definition.

2.1. DerINITION. If S< X, A is a Wallman ring on X, and B is a Wallman ring
on S, then S is (B, A)-embedded in X if and only if Cl,, 54 S=wW(Z(B)).

2.2. THEOREM. If S X, then S is (C*(S), C*(X))-embedded in X if and only if S
is C*-embedded in X.
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The proof of this theorem, which shows (B, 4)-embedding is in fact a generali-
zation of C*-embedding, is an immediate consequence of the aforementioned
property from Gillman and Jerison (1960) and the property shown by Frink
(1964) that for any Tychonoff space X, w(Z(X))~BX.

Many of the results in Gillman and Jerison (1960) involving C*(X) and
C*-embedded subsets of X have generalizations involving (B, A)-embedding. We
give a sample of these. The results from Gillman and Jerison (1960) which motivated
the theorems are given as corollaries.

2.3. THEOREM. If Y is a compactification of X and A is a Wallman ring on X,
then Y w(Z(A)) if and only if X is (4, C*(Y))-embedded in Y.

PrOOF. Y2 w(Z(A)) is equivalent to Cl,,zy) X'= w(Z(A4)) which is equivalent
to X is (4, C*(Y))-embedded in Y.

2.4. CoroLLARY (Gillman and Jerison (1960), Theorem 2.5(I)). If Y is a
compactification of X, then Y~BX if and only if X is C*-embedded in Y.

2.5. THEOREM. If S< X, A is a Wallman ring on X and B is a Wallman ring on S,
then S is (B, A)-embedded in X if and only if S is (B, C*(W(Z(A))))-embedded in
WZ(A)).

Proor. Since w(Z(C*(Y)))~ Y for any compact space Y, we have that the
following are equivalent:

(@) Clyzan SZW(Z(B));

(®) Clyzicsaiziamn S=W(Z(B));

(c) Sis (B, C*(W(Z(A))))-embedded in w(Z(A4)).

2.6. CoroLLARY (Gillman and Jerison (1960), Theorem 6.9). If S< X, then S is
C*-embedded in X if and only if it is C*-embedded in X.

2.7. THEOREM. If S< X, S is compact, A is a Wallman ring on X and B is a
Wallman ring on S, then S is (B, A)-embedded in X.

Proor. Since S is compact and S<w(Z[A]), we have w(Z(B))~S and
Clz4n S S. Therefore Clyz(4)) S w(Z(B)).

2.8. CoroLLARY (Gillman and Jerison (1960), Theorem 6.9b). Every compact
set S in X is C*-embedded in X.

2.9. THEOREM. If S< X, A is a Wallman ring on X and B is a Wallman ring on S,
then S is (B, A)-embedded in X if and only if S is (B, C*(Cl,,z(4) S))-embedded in

Clyizan S-
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Proor. The following are equivalent:

(a) Sis (B, A)-embedded in X;

(6) Clyzean STWZ(B));

(©) ClClw(zunS S=w(Z(B));

(@) Clpz(os (Ctuzansm S=WZ(B));

(e) Sis (B, C*(Clyz(4) S))-embedded in Cl,z( 4 S.

2.10. CoroLLARY (Gillman and Jerison (1960), Theorem 6.9). S is C*-embedded
in X if and only if S is C*-embedded in Clgx S.

Proximities are a useful tool in the investigation of Wallman rings since they
simplify the notation and help isolate critical ideas. So we now introduce a proximity
induced by a Wallman ring. For basic information on proximities we refer the
reader to Naimpally and Warrack (1970).

2.11. DeFiviTION. If 4 is a Wallman ring on X then a binary relation 8 , on the
power set of X is defined by: if E, F< X, then ES 4 F (E and F are A-near) if and
only if whenever f,g€ A with E<Z(f) and F<Z(g) then Z(f)nZ(g)#J. ESY F
means not (E 84 F) and is read as E and F are A-far.

The following theorem gives an equivalent definition for this proximity for
inverse closed Wallman rings (Hager, 1960).

2.12, THEOREM. If A is an inverse closed Wallman ring on X, then for H, and H,
subsets of X, H, ', H, if and only if there is a function f€ A such that f(H)) =0
and f(Hy) = 1.

Proor. If H, 8%, H,, then there are functions f; and f,€ 4 such that HICZ(fQ,
Hy=Z(fy) and Z(f)nZ(f,) = 9. Let f=f2/(f2+f2). Then fe A4, since

Z(fi+fD =Z(f)nZ(f) = 9;
also

S(H)=0 and f(H)=1.

If there is a function fe 4 such that f(H,) =0 and f(H,) = 1, then H,<Z(f-1)
and Z(f)nZ(f—1) = . f-1€ 4 since the constant function 1 belongs to every
inverse closed Wallman ring. Therefore H, &%, H,.

2.13. DeFINITION. Let G and H be sets and let 4 be a collection of real valued
functions, then G and H are completely A-separated if there are disjoint zero sets
Z, and Z,€Z(A) such that G=Z, and H<Z,,
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2.14. DEFINITION. Let S be a set. Let 4 and B be two sets of real valued functions,
whose domains may vary from function to function. Then we write:

(1) A< gBif and only if any two subsets of S which are completely A-separated
are also completely B-separated.

(2) AzgBifand only if A<gB and B<gA.

In terms of the notation of Bentley and Taylor (1975) we have the following,.

2.15. THEOREM. If X is a space and A and B are subsets of C(X), then A< x B
ifand only if A< B, and A~ x B if and only if A~ B.

In our study of subspaces which may be (B, 4)-embedded in a space, we shall
want to be able to consider the proximity 8 4 restricted to the subspace and so we
have the following theorem.

2.16. TaeoreM. If S< X, A is a Wallman ring on X, &' is the proximity on S
induced by & 4 and B is a Wallman ring on S, then A ~ g B if and only if & = 8.

Given two proximities on the same space, as we had in the previous theorem,
we have the following standard partial order relation.

2.17. DermNiTION. If 8, and &, are proximities on a space X, then &,< 38, if
and only if, for any two subsets G and H of X, G 8, H implies G 6, H. Thus §; = &,
if and only if 8, < 8, and §,< 4.

2.18. THEOREM. If A and B are Wallman rings on X, then A< B if and only if
8,< 65

A proximity on a space induces a compactification of that space called the
Smirnov compactification. The following theorem, due to Njastad (1966), states
that the Wallman compactification induced by a Wallman ring and the Smirnov
compactification induced by &, are equivalent.

2.19. THEOREM. Let A be a Wallman ring on X, then the Smirnov compactification
of the proximity space (X,8,) and the Wallman compactification w(Z(A)) are
equivalent compactifications of X.

The next theorem gives a convenient method for establishing which sets are far
with respect to a proximity associated with a Wallman ring.

2.20. THEOREM. If G and H are subsets of X, and A is a Wallman ring on X, then

G &% H if and only if
Clyzoan G0 Clypzean H= 9.

https://doi.org/10.1017/51446788700038805 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038805

220 H. L. Bentley and B. J. Taylor [6}

Proor. If G 8%, H, then there are disjoint zero sets F; and F,eZ(4) such that
G<F; and H<F,. Since

Clozan iNClyzun Fo =9, Clyz(a) GO Clyzun H=9.

If Clyz(a) G Clyz(ay H =D, then there are disjoint closed sets in w(Z(4))
of the form Cl,,z(4y F, and Cl,,z( 4 Fz where F,, F,€Z(A) such that

Clyzan G=Clyzun i and  Clyz(4) HE Clyzoan Fa-
Therefore G F;, H<F, and F,nF, = @.

In the work which follows, we will use a theorem due to Taimanov (1952), the
proof of which is implicit in Engelking (1968, p. 127). Smirnov (1952) also proved
the same result using proximity space theory.

2.21. TueoreM (Taimanov, 1952). If Y; and Y, are compactifications of X, then
a necessary and sufficient condition that Y, <Y is the following: For any two closed
subsets B, and B, of X, Cly,B, 0 Cly, B, = & implies Cly, BynCly, B, = O.

We are now in a position to prove a series of theorems which establish a
relationship between the proximities we have just defined and (B, A)-embedding.

2.22. THEOREM. If S is a subspace of X, A is a Wallman ring on X, B is a Wallman
ring on S and &' is the proximity on S induced by 8 4, then the following are equivalent:

(1) B<g4;

(2) dp< ¥

(3 WZ(B) < Clyp(z(an S-

Proor. That (1) and (2) are equivalent is clear.
(2)~>(3): Let B, and B, be disjoint closed subsets of .S such that

Clyizn B10 Clyzp) By = 9.

Then B, 6}y B, which implies by (2) that B,8tB,. Thus B, 8% B, and so
Clozan B10 Clyzay Be = @ and Clgy,(,.,s B1" Cley, 50,05 B2 = 9. Therefore by
the Talmanov Theorem w(Z[B]) < Cl,,(z(4) S

(3)>(2): Let 4, and A4, be subsets of S such that 4, 8%, 4,. Let B, = Clg4,,
B, = Clg A,. Then A4, 8% 4, and so B, 8%, B,. Therefore

Clyzn B10 Clyzsn Bo = 9

which is equivalent to Clg,,,..s B1n Clg,,,,,,,s B: = 9 and

Clipz(an B1 0 Clyp 241 By = O.
This means that B, 81, B,. Therefore B, 6’ B, and A, &'t 4,.
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2.23. THEOREM. If S is a subspace of X, A is a Wallman ring on X, B is a Wallman
ring on S and & is the proximity on S induced by 8 4, then the following are equivalent:

(1) A<gB;

(2) 8'<dp;

) Clyzan S<WZ(B)).

Proor. That (1) and (2) are equivalent is clear.
(2)>(3): Let B, and B, be disjoint closed subsets of S such that

ClCI»(zm)S B0 ClClu(zu))S By =0.

Then Cly,z(4y By N Clyzany B: =9 which means that B, 8% B,. Thus B, 't B,
and by (2) B, 8%, B, which implies that Cl,,z(z) By 0 Clyzsy B; = 9. Therefore
by the Taimanov Theorem we have Cl, 74 S <W(Z(B)).
(3)>(2): Let 4, and A, be subsets of S such that 4,8t 4,. Let B, = Clg4,
and B, = Clg A,. Then we have B, 8’ 'B, and so B, 8}, B,.
This means Cl,,z(4y) By 0 Clyyz4y) B = @ which is equivalent to
Clotzans B0 Cloyyns Be =9 and - Clyzpy Bi0 Clyzm) By = 9.

This means B, 8, B, and so 4; 8}, 4,.
As a corollary to these two theorems we have the following theorem.

2.24. THEOREM. If S< X, A is a Wallman ring on X, B is a Wallman ring on S
and &' is the proximity on S induced by 6 4, then the following are equivalent:

(1) Azg¢B;

(2) & =dp;

(3) S is (B, A)-embedded in X.

In the special case when 4 = C*(X), and B = C*(S), Theorem 2.24 yields the
following.

2.25. THEOREM. If S is a subspace of X, then the following are equivalent:
(1) S is C*-embedded in X;

(2) C*(S)= g C*(X);

(3) C*S)<gC*(X);

@ Z(S)<xZ(X);

(5) any two completely separated sets in S are completely separated in X.

ProoF. By Theorem 2.2, S is C*-embedded in X if and only if S is (C*(S),
C*(X))-embedded in X. Therefore (1) and (2) are equivalent. The restriction to
S of any function in C*(X) is a function in C*(S), so (3), (4), and (5) are
equivalent to (2).

The next corollary to Theorem 2.24 gives a sufficient condition for (B, A)-
embedding.
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2.26. COROLLARY. If S is a subspace of X, A is a Wallman ring on X, Bis a
Wallman ring on S, Z(BY<Z(A), and for each FeZ[A], FnS€Z(B), then S is
(B, A)-embedded in X.

PROOF. Z(B)<Z(A) implies B< g4 and FnSeZ(B) for each FEZ(A) implies
A<gB.

Problem 1F (2) from Gillman and Jerison (1960) is a corollary to Corollary 2.26.

2.27. COROLLARY. If S is a subspace of X and Z(S)< Z(X), then S is C*-embedded
in X,

ProoF. By hypothesis Z(C*(S))< Z(C*(X)). If FeZ(C*(X)), there is a func-
tion feC*(X) such that F=Z(f). FnS = Z(f|S)eZ(C*(S)). Therefore S is
(C*(S), C*(X))-embedded in X. By Theorem 2.2 S is C*-embedded in X.

A second concept which is related to C*-embedding will be introduced in the
next theorem and then generalized to arbitrary normal bases.

2.28. THEOREM. If S is C*-embedded in X, then the following condition is satisfied:
For each pair of sets F,, F, € Z(X) such that F, 0 Fyn S = @ there are sets Ey, E, e Z(X)
such that FnS=EnS, FhbnS=EnSand E\nE, = Q.

ProoF. Let F;, = Z(f)) and F, = Z(f,) for fi,fo€ C*X). Since F;nF,nS = O,
Z(f1]S)0Z(f;] S) = O. By Theorem 2.25 there are functions f3,f;€ C*(X) such
that Z(f,| S)S Z(f7), Z(fo| S)= Z(f3) and Z(f) 0 Z(f?) = O. Let E; = Z(f)n Z(fD)
fori=1,2.

2.29. DerFINITION. If F is a normal base on X and S is a subspace of X, then S
is F-embedded in X if and only if the following condition is satisfied: For each
pair of sets F;, F,€ F such that F,nF,nS = O, there are sets E,, E,€ F such that
FaS=EnS, KEnS=EnSand E,nE,=¢.

Later it will be shown that if X is a metric space, then S is Z(X)-embedded in X
if and only if S is C*-embedded in X; but, in general Z(X)-embedding does not
imply C*-embedding.

The next theorem gives a necessary and sufficient condition for F-embedding,
one which is frequently easier to exhibit than the condition in the definition.
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2.30. THEOREM. If F is a normal base on X and S< X, then S is F-embedded in X
if and only if the following condition is satisfied: For each pair of sets Fy, F, € F such
that F;nF,n S = @, there are sets E;, Ey€ F such that F,nS< E,, F,nS<E,, and
EnE,=0.

Proor. The sufficiency of the condition follows from the fact that F;nS< E,,
F,nS<E, and E;nE, = implies FnS = (E,nF)nS, F,nS = (E;nFy)n S and
(E;nF)n(E;n Fy) = . The necessity is obvious.

If we had defined F-embedding by considering any finite number of sets F}, ..., F,
instead of two sets we would have had an equivalent definition.

2.31. THEOREM. If S is a subspace of X and F is a normal base on X, then S is
F-embedded in X if and only if the following condition is satisfied: For each finite
collection of sets Fy, ..., F, € F such that

n
i=1

there are sets E,, ..., E, € F such that FnS=E;nSand N~ ,E; = 9.

Proor. Obviously this condition implies F-embedding. To prove the other
direction let S be F-embedded in X and let F,, ..., F,, € F such that
n
Sn ( n )Fi =0,
i=1
Then there exist E;, and P F such that
n
SaF, =SnE, Sn(n F,) =SnP and E,nP=9.
i=2
So for m =1 we have shown the following property: There exist E,...,E,eF
(where m<n) such that SN E; = SnF, i=1,...,m; and there exists PeF such
that
m n
(nEi)nP=Q and SnP= ( N F,-)nS.
\=1 t=m+1
Now assume this property holds for some me{l,2,...,n—2} and show it holds
for m+-1. Since by assumption the property holds for m, we have E,, ..., E, and
Pe F such that
m
( A )EnP=0.
i=1

So by the normality of F, there are J,L € F such that

(ﬁEi)nJ=Q, PAL=O and JUL=X.

i=1
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Also by assumption

SnP=Sn( N F,.) =SnFm+1n( N Fi).
i=m+1

i=m+1

So SO (Fp)n(Npse F)OL =SaoPnL =G since PNL =@.
We now have two elements of F, F,, ., and (N2, F)nL disjoint on S. So
by the hypothesis that S is F~embedded in X, we obtain T and R e F such that

SAF, ., =80T, Sn( N Fi)nL=SnR and RnT=0.
\i=m+2

Now let E,,.; =T and @ =(JUR)n(NL ;2 Fy)- So E, ., and Q€F are such
that:

SNE, .. =8SnT=80F,;

(f15)o0
=()reema( A.5)
=[G osof, 4,5 () = (4,7

(g
(

ﬁ Et) NJNEq 10 (i fn] I'})] U [(:lEt) nTnRn ( F] Fi)]

t=1 =m+2 i=m+2

=0
since (N7, EpnJ =G and RnT =, and

SnQ = Sﬂ[(JUR)”( N Ei)]

{=m-+2

=[senl ) u](soo (21,5

=[sorn( .7 u](s0(8,5)x)n( 5]

=Sn( N Fi)n(JuL)

i=m+2

=Sn( F] F;)nX

i=m+2

Sn( N a)

t=m+2 |

https://doi.org/10.1017/51446788700038805 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038805

[ C*-embedding for Wallman rings 225

So we have shown that the property stated above holds for m+1. We know
there exists sets Ej, ..., E,_; from F such that SnE;=SnF;, i=1,...,n—1 and
for these sets there is a set P € F such that (2L E)nP =& and PnS=F,nS.
We set E, = P and our proof is complete.

We now look at a couple of examples of types of sets which are F-embedded.
Every member of a normal base is F-embedded.

2.32. THEOREM. If F is a normal base on X and S€ F, then S is F-embedded in X.

Proor. If F,,F,€F such that FnF,nS =, then F;nS and F,nSeF, and
(FinS)n(F,nS)=0.

In‘terms of Wallman rings, this theorem tells us that the zero sets of a Wallman
ring A are Z[A]-embedded.
Hamburger (1971) gave the following definition.

2.33. DEFINITION. Let F be a closed base in X. We say that S is F-dense in X
if Clx(Sn A) = A for each A€F.

Being F-dense is a sufficient but not necessary condition for a subset to be
F-embedded.

2.34. TBEOREM. If S is a subspace of X, F is a normal base on X and S is F-dense
in X, then S is F-embedded in X.

Proor. Let Fy, F€ F such that FnF,nS =@, then Clx(F,nF,nS) = . So if
Sis F-dense in X, F;nF, = O.

An example of a set which is Frembedded but not F-dense is .S = N which is
Z(X)-embedded in X = BN, since it is C*-embedded in X. S is dense in X; but it
is not Z(X)-dense in X since Clx(SnZ(g))#Z(g) where g is the continuous
extension to SN of the function f: N-> R defined by f(n) = 1/n. Clearly SnZ(g) =9
but Z(g)# .

The principal use of the concept of F-embedding is indicated in the following
theorem.

2.35. THEOREM. If F is a normal base on X and S is F-embedded in X, then
{EnS: EcF} is a normal base on X.

PROOF. Let G = {En S: EcF}. If it can be shown that G is normal on S, then it

will be clear that G is a normal base on S.
8
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Let G,, G,€G such that G;n G, = &. By definition of G, there are sets F;, F,eF
such that G; =F,nS and G, = F,nS. Then SnFnF, =G nGy=O. So there
are sets E;, E; € F such that SnF; = SnE,;, SnF, = SnE; and E;nE, = . Since
Fis a normal base on X, there are sets P, P,e Fsuchthat E,n P, = O, EsnPy=0
and P,UP, = X,

Let0, =P nS,0,=P,nS. Then G;nQ; = FFnS=E;nPnS =9, fori=1,2,
and Q;u Q, = S. Therefore G is normal on S.

This theorem shows us that the restriction of a Wallman ring 4 to a Z(A)-
embedded subspace is again a Wallman ring.

2.36. CoROLLARY. If A is a Wallman ring on X and S is Z(A)-embedded in X,
then {f|S: f€ A} is a Wallman ring on S.

The next theorem gives a necessary and sufficient condition for F-embedding
involving the restrictions of F-sets.

2.37. THEOREM. If F is a normal base on X and S is a subspace of X, then S is
F-embedded in X if and only if

{EnS: E€F}<4F.

Proor. If {EnS: E€F}<gF, then for each pair of sets F;, F,€F such that
FnF,nS=¢, there exist E;,E,eF such that F,nS<E,, F,nScE, and
E,n E, = . Therefore, by Theorem 2.30, S is F-embedded in X.

Suppose S is F-embedded in X. Then if F,,F,eF such that FnFnS =9,
there are sets E,, E, € F such that F; n S< E,;, F,n Sc E, and E,; n E, = @, Therefore

{EnS: EeF}<4F.

2.38. CoRrROLLARY. If A is a Wallman ring on X and S< X, then the following are
equivalent:

(1) S is Z(A)-embedded in X;

(2) {f]S: fed}<s4;

@) {f]S: fe A}z sA.

2.39. CoroLLARY. If A is an inverse closed Wallman ring on X and S< X, then
S is Z(A)-embedded in X if and only if for each pair F, and F,€Z(A) such that
FnF,nS =, there exists g€ A such that g[SnF]=0and g[SnF] = 1.

Proor. By Theorem 2.12 two subsets G and H of X are completely 4-separated
if and only if there is a function f€ 4 such that g[G] = 0 and g[H] = 1. Therefore,
for F;, F,€Z(A) such that F,nF,nS =, there are sets E;, E,€Z(A) such that
FnS<E, F,nS<E, and E,nE, =@ if and only if there is a function ge 4 such
that g[SnF,]=0and g[SnF,]=1.
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Continuing in our investigation of conditions under which a subspace is Z(A4)-
embedded for a Wallman ring A we present the following theorem.

2.40. THeOREM. If S<X, A is an inverse closed Wallman ring on X and
B = {f|S: fe 4} is an inverse closed Wallman ring on S, then S is Z(A)-embedded
in X.

PROOF. Let f;,f/o€A4 such that Z(f)nZ(f)nS=3. Let g, =£|S, g =/|S
and g =g3/(g3+g3). Then Z(g3+gd) =0 so geB. Also g[Z(fP)nS]=0 and
glZ(fy) 0 S1 = 1. Since there is a function f€ 4 such that f| S = g there is a function
in A which is zero on Z(f})n S and one on Z(fy)n S. Therefore by the previous
theorem S is Z(A)-embedded in X.

We ‘naturally wonder how Z(A)-embedding is related to (B, A)-embedding, for
some appropriate B. The next theorem tells us for which Wallman rings B, a
Z[Al-embedded subset is (B, A)-embedded.

2.41. THEOREM. If S is a subspace of X, A is a Wallman ring on X, B is a Wallman
ring on S, and S is Z(A)-embedded in X, then S is (B, A)-embedded in X if and only

if Bx{f|S: fe A}.

Proor. By Corollary 2.36, {f|S:fe€A4} is a Wallman ring on S. Clearly
A= g{f|S: fe€ A}. Theorem 2.24 established that S is (B, 4)-embedded if and only
if A~ gB. Therefore S is (B, A)-embedded in X if and only if Bx g{f|S: fe 4}.
So, since B and {f|S: feA}=C(S), S is (B, A)-embedded in X if and only if
Bx{f|S: feA}.

2.42. COROLLARY. If S is a subspace of X, A is an inverse closed Wallman ring
on X and B={f|S: fe A} is an inverse closed Wallman ring on S, then S is
(B, A)-embedded in X.

The next theorem is the converse to part of Theorem 2.41.

2.43. THEOREM. If A is a Wallman ring on X, S< X, B is a Wallman ring on
S, B {f|S: fe A} and S is (B, A)-embedded in X, then S is Z(A)-embedded in X.

ProoOF. By Theorem 2.24 S is (B, A)-embedded in X if and only if A~gB.
Therefore S is (B, A)-embedded in X implies 4 < g{f|S: f€4}. Then by Corollary
2.38 S'is Z(A)-embedded in X.

For an arbitrary Waliman ring B on S, (B, A)-embedding may not imply
Z(A)-embedding, as is illustrated by this example.
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2.44. ExampLE. Let X=[0,1], S=1[0,3)u(},1], 4 = C(X) and
B ={f|S: feC(X) and is constant on a neighborhood of 3}.

Then by Bentley and Taylor (1975, Corollary 4.10), B is a Wallman ring and
W(Z(B))= X=ClyzwunS so S is (B, A)-embedded in X. Now let F, =[0,1],
F, = [4,1]. These are zero sets of A since every closed subset of a metric space is
a zero set.

F,nF,nS = @, but the zero sets of A are the closed sets of [0,1], so there are
no disjoint zero sets of A which separate [0,1) and (3, 1]. Therefore S is not
Z(A)-embedded in X.

In the case of a metric space X with subspace S and Wallman rings 4 = C*(X)
and B = C*(S), Z(A)-embedding and (B, 4A)-embedding are equivalent.

2.45. THEOREM. If X is a metric space and S< X, then the following are
equivalent

(1) S is C*-embedded in X;

(2) S is (C*(S), C*(X))-embedded in X;

(3) S is Z(X)-embedded in X.

Proor. That (1) and (2) are equivalent was shown in 2.2 for all spaces. That (1)
implies (3) was shown in 2.28 for all spaces.

(3)—~(1). Since X is a metric space, the zero sets of X are precisely the closed
subsets of X and the zero sets of S are the intersections with S of closed subsets
of X. Since, by the Z(4)-embedded hypothesis, disjoint sets of this type are
completely C*(X)-separated, we have Z(S)<Z(X). Therefore by Theorem 2.25,
S is C*-embedded in X.

The only part of the previous theorem which depended on X being a metric
space was the proof that Z(X)-embedding implies C*-embedding. If X were not
a metric space, this conclusion would not necessarily be valid as is illustrated by
the following example of a space which is not a metric space. (The example of the
non-metric space is from Gillman and Jerison (1960), Problem 3K, p. 50.)

2.46. ExampLE. Let X denote the subset {(x,y): y=0} of Rx R provided with
the following enlargement of the product topology: for r>0, the sets

Vi(x,0) = {(x, 0} u{(w, v) € X (u—x)*+(v—r)*<r?%}

are also neighborhoods of the point (x,0).
S ={(x,0): xeR} is Z(X)-embedded in X since it is a zero set of X; however,
it is not C*-embedded in X.
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