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Abstract

Let Fj} denote the kth successive inhomogeneous minima for positive values of real indefinite
ternary quadratic forms of type (2, 1). Here it is proved that for the class of zero forms

F<2| = 8/3 , I"£J = 9/4, F<4| = 2.

All the critical forms have also been obtained. Fj1} = 4 is already known. For non-zero forms it

is proved that r£J < 10/3.

1991 Mathematics subject classification (Amer. Math. Soc): 10 E 20.

1. Introduction

Let Q{x\, x2, •. •, xn) be a real indefinite quadratic form of determinant D ^ O
and of type (r, s), n — r + s. Let r r j be the infimum of real numbers F for
which the inequality

(1.1) 0 < Q(xx +cx,...,xn+cn)< (F|D|)1 / n

is solvable in integers x\,... ,xn, for any real numbers c\,..., cn and for all
quadratic forms Q of type (r, s). Similarly the symmetric non-homogeneous
minimum Cr-5 is defined for which

(1.2)
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[2] Inhomogeneous minima of a class of ternary quadratic forms 335

is solvable in integers x\,... ,xn.
The values of Frs and Cr s are known for various n. See for reference Bambah,

Dumir and Hans-Gill (1981) and Raka (1983). Davenport (1946) showed that
Cii and Tj j are not isolated. For n — 3, Davenport (1948) showed that C2,i is
isolated and later on Barnes (1954, 1956) obtained the second and third minima
also for symmetric non-homogeneous ternary forms. In fact for n > 3, Vulakh
(1985) has shown that Trs and Cr_s are isolated for rational forms. Whereas for
irrational forms, it is known that (1.1) or (1.2) is solvable with arbitrary small
constant, in view of Oppenheim's conjecture proved by Margulis (1987).

In this paper, we will obtain the second, third and fourth minima (namely
8/3,9/4 and 2) for positive values of zero ternary quadratic forms of type (2, 1),
(Theorem 1). The first minimum F2il = 4 has been obtained by Barnes (1961)
and Blaney (1950a) independently. For nonzero forms of type (2, 1), we prove
that F2,i < y (Theorem 2) which is better than the above result of Barnes and
Blaney. For the ternary forms of type (1,2), Dumir and Hans-Gill (to appear)
have shown that the second minima for positive values is 27/4. In fact they
showed that this is also isolated. The second minima for positive values of
quinary forms of type (2, 3) has also been obtained by Bambah, Dumir and
Hans-Gill (1984).

We prove the following results:

THEOREM 1. Let Q(x, y, z) be a zero ternary quadratic form oftype (2, I) and
determinant D ^ 0. For any real numbers (x0, yo, zo)> we can find (x, y, z) =
(*o, Jo, zo) (mod 1) satisfying

(1.3) 0< Q(x,y,z)

except when Q ~ pQt, i = 1, 2 , . . . , 8, p > 0. And for Qit (1.3) is soluble
unless (x0, y0, z0) = (XQ\ JO'\ ZQ') (mod 1) where Qt and (XQ\ y$\ z^0) are
given in the following table:

1
1
2
3
4
5
6
7
8

Qi
xy + 2z2

(x + \y)y + 2z2

Axy + 3v2 + z2

Axy + 3z2

4(JC + \y)y + 3z2

2xy + y2 + yz + 3z2

xy + z2

(x -\- -v\v A- z2

(x n

(0,0,

(i,o,
/ i i
(,2, 2 '
(0,0,
(5,0,
(5,0,
(0,0,
(5,0,

v(0 Z(0N

Jo ' zo J
0)
0)

1)
0)4
0)
0)
0)
0)

r2,,(e,)
2
2
2
9/4
9/4
8/3
4
4
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For the exceptional form Qt, the inhomogeneous minimum T2,\(Qi) is as
shown in the table. Clearly the forms Qt are not equivalent.

THEOREM 2. Let Q(x,y,z) be a non zero ternary quadratic form of type
(2, 1) and determinant D < 0. For any real numbers (x0, yo, z0), there exist
(x,y,z) = (xo,yo, zo) (mod 1) such that

(1.4) 0 < Q(JC, j , z) < (10jZ)|/3)1/3.

2. Some lemmas

Let a, P (a < P) be any real numbers. We say that the inequality

(2.1) a<Q(xu...,xn)<p

is soluble, if for any real numbers c\,...,cn there exist {x\,...,xn) =
(cu ..., cn) (mod 1) satisfying (2.1).

LEMMA 1. Let a, P,y be real numbers with y > 1. Let m be the integer
such that m < y < m + 1. Then given any real number x0, there exist x = x0

(mod 1) such that

0 < (JC + a)2 + p < y

provided that
-m2/4 < 0 < y - 1/4.

This follows from Lemma 6 of Dumir (1968).

LEMMA 2. Let a, p, y and m be as above. Then

0 < -{x + a)2 + P < y

is soluble in x = x0 (mod I), provided that

1/4 < p < y +m2/4.

This follows from Lemma 2 of Dumir (1967).
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LEMMA 3. Let <p(y,z) be an indefinite binary quadratic form of discriminant
A. Let v be any positive real number. Then for any real numbers yo, z0, there
exist (y, z) = (y0, z0) (mod 1) satisfying

(2.2) - A/4v < <p(y, z) < vA/4.

Ifv>3, the following better inequality is soluble

(2.3) „ ~ A , ^ < <p(y, z) < — = " A

This is Theorem 1 and 2 of Blaney (1950b).

LEMMA 4. Let <p(y, z) be as in Lemma 3, and v > 4. Then the following
inequality

(2.4) - A/4V5 < (p(y, z) < vA/4V5

is soluble.

This follows from Theorem 2 of Grover and Raka (1991).

LEMMA 5. Let a and A be positive numbers. Let ft be any real number. Let
2h,k be integers such that

(2.5) \ha3 - k2\ + a3/2 < A.

Suppose that either

a3^k2/h or fi^ah/k (mod a/k, 2/a2)

(that is, ft — ah/k is not an integral combination of a/k and 2/a2). Then for
any real number v, there exist integers x, y satisfying

(2.6) 0 < v + ax + fiy ± y2/a2 < A/a2.

for any sign.

This is a result of Macbeath (1951), stated as Lemma 10 and its subsequent
remarks in Bambah, Dumir and Hans-Gill (1984).
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LEMMA 6. Let Q(x, y, z) be as in Theorem 1. Let d = (2|D|)1/3. Suppose Q
represents a value (i where either

(2.7)
(2.8)

(2.9)

then (13)

PROOF.

is soluble.

o<
d/2.65

d/(2.

We can suppose, that

Q(x,: y,z) = M

n <
</*
5)1 / 3

d/3, or
< d/2, or
< li < d,

hy + gz)2 + cp(y, z)

where <p(y, z) is an indefinite binary quadratic form of discriminant A2 =
4\D\/n2. By homogeneity we can assume that fi — 1.

Let n < d < « + 1, so that n > 1. By Lemma 1, it is enough to solve

(2.10) - n2/4 < cp(y, z) < d - 1/4.

Applying Lemma 3 with v = A/n2 > 0, we obtain

- « 2 / 4 = - A / 4 v < <p(y, z) < vA/4 = 2d3/4n2.

Then (2.10) will be satisfied if

(2.11) 2d3/(4d - 1) < n2.

For n > 3, (2.11) is easily seen to be true, since d < n + 1. For n = 2, (2.11)
is true if d3 - Sd + 2 < 0 which certainly holds for 2 < d < 2.65. Thus (2.11)
and hence (2.10) is true in case (2.7) or (2.8) holds. When (2.9) holds, we have
1 < d < (2.5)1/3 and n = 1. Apply Lemma 3 with v = 4d - 1 > 3 to get (2.3).
Then (2.10) will be satisfied if

+ l)(v + 9) < d - 1/4.

Substituting for v and A and simplifying, we see that this is so if

2d2 - (d + 2) < 0

which is true for d < (1 + Vl7)/4 = 1.28.... If 1.28.. < d < (2.5)'/3, apply
Lemma 4 with v = 4d — \ > 4 to get

- A / 4 V 5 < <p(y, z) < vA/4>/5 < {Ad - l)/4.

This proves (2.10) and hence the lemma.
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3. Proof of Theorem 1

For zero form Q, we proceed as in Lemma 7 of Davenport (1948) and can
assume that
(3.1) Q(x,y,z) = X(x + 9y + 0'z)y + z2

where X, 0 and 6' are real numbers such that

(3.2) A. > 0 and - 1/2 < & < 1/2.

(3.3) Let d = (2|D|)1/3 = (A2/2)1/3.

LEMMA 7. Ifd > 3, then (1.3) is soluble.
Proof follows from Lemma 6, (2.7), as Q represents a value fi = 1.

LEMMA 8. If 2 < d < 3 then again (1.3) is soluble.

PROOF. If y0 = 0 (mod 1), take y — 0 and choose z = z0 (mod 1) such
thatO < z < 1, so that

0 < g(;t,;y,z) = z2 < 1 < d.

If )>o # 0 (mod 1), choose y such that 0 < \y\ < 1/2. (3.3) gives 4 < A <
V54 = 7.348 For this k, one can easily check that

k\y\/2-l \+k\y\/2<d = {\2/2)ll\

Therefore the condition (2.5) of Lemma 5 is satisfied with

a3 = A.|y|, d = A, h = 1/2 and it = 1.

We see that (1.3) is soluble if

(3.4) 0 < (sign)0a3(x + x0 + 0y + 0'(z + z0)) + (z + z0)
2 < d

has a solution in integers x and z.
If j > 0, (3.4) reduces to solving

(3.5) 0 < ax + )8z + z2/"2 + v < rf/a2

in integers x and z for some real numbers ft and v. By Lemma 5, (3.5) has a
solution unless a3 = k2/ h = 2. And in that case, take z arbitrary, and choose
an integer x such that

0 < ax + ySz + z2/a2 + v < a < d/a2.
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If y < 0, (3.4) reduces to solving

-d/a2 < ax + P'z - z2/a2 + v' < 0, that is,
( ' 0 < ax + P'z- z2/a2 + v" < d/a2

in integers x and z, for some real numbers fi', v' and v". This can be solved
again, using Lemma 5.

LEMMA 9.1fd<2 and y0 0 0 (mod 1), then (1.3) is soluble except when
Q~Q3 and (x0, y0, z0) = (1/2, 1/2, 1/2) (mod 1).

PROOF. Choosey = y0 (mod 1) such that 0 < \y\ < 1/2, z = z0 (mod 1)
arbitrarily and x = x0 (mod 1) to satisfy

0 < Q = k(x + 9y + O'z)y + z2 < k\y\ <X/2<d = (X2/2)l/3

as A = \j2d? < 4. Therefore (1.3) is soluble with strict inequality unless d — 2,
k - 4 and y0 = 1/2 (mod 1). In that case take y = 1/2. Then (1.3) is soluble
if

0 < 2(x + x0 + 0/2 + 9'(z + z0)) + (z + z0)
2 < 2 = d

that is, if
(3.7) 0 < ax + 0z + z2/a2 + v < 2/a2

has a solution in integers x and z where a3 = 2, ft = 2(z0 + 9')/a2 and v some
real number.

Apply Lemma 5 with h — 1/2 and k — 1 to see that

| / i a 3 - £ 2 | + a 3 / 2 = 1 < J = 2.

Therefore (3.7) is solvable unless /? = a/i/^ (mod a/k, 2/a2), that is, unless

(3.8) 2zo + 20' = l (mod 2).

Similarly taking y — —1/2 and working as above, we see that (1.3) is soluble
unless
(3.9) - 2 Z O + 2 0 ' E E 1 (mod 2).

From (3.8), (3.9) and (3.2) we get that

9' = 0 or 9' = 1/2.
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When 9' = 0, we have, from (3.8), z0 = 0 or 1/2 (mod 1). We discuss the
case 9' — 0 and z0 = 1/2 (mod 1) only. The other cases are similar and
are left to the reader. (The case 9' = 1/2 and z0 = 0 (mod 1) leads to the
form 4JCV + 2vz + z2 and x0 = 0 (mod 1), which is equivalent to Q3 by the
transformation x ^ x + y, z —> z — y.) We have

Q(x, v,z) = 4(x + 6>y)y + z2.

We can assume (applying a suitable unimodular transformation) that —1/4 <
0 < 3/4.

Choose x = x0 (mod 1) such that 0 < |x| < 1/2, take v = (signx)/2 and
z = 1/2, so that

0 < Q = 2\x\ + 9 + 1/4 < 1 + 3/4 + 1/4 = d

Thus (1.3) is soluble unless 6 = 3/4, x0 = 1/2 (mod 1), that is,

Q = Q3 = 4xy + 3 / + z2 and (x0, y0, z0) = (1/2, 1/2, 1/2) (mod 1).

LEMMA 10. Ifd < 2 and yo = O (mod 1), then (1.3) is soluble except when
z0 = 0 (mod 1) and

m m ( i ) * = l/2, 0' = O («) A. = 2/3, 0 ' = 1/2
1 ; (iii) A. = 1, 0' = 0 (iv) X = 4/3, 9' = 0or 111.

PROOF. If d > 1, take y = 0, choose x = x0 (mod 1) arbitrarily and z = z0

(mod 1) such that 0 < z < 1. So that

0 < £> = A.(JC + Oy + 9'z)y + z2 = z2 < 1 <d.

If d < 1/2, take y = 1, choose z = z0 (mod 1) arbitrarily and x = x0

(mod 1) such that

0< Q = k(x + 9+ 9'z) + z2 < A = 4ld? < d.

Thus we need consider 1/2 < d < 1 only which gives 1/2 < X < *Jl. Also
if z0 # 0 (mod 1), take y = 0, x = x0 (mod 1) arbitrarily and z = z0

(mod 1) such that 0 < |z| < 1/2 so that

0 < e (x ,y , z ) = z2 < 1/4 <d.

https://doi.org/10.1017/S144678870003408X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003408X


342 Madhu Raka [9]

Therefore we must have z0 = 0 (mod 1). Now take y = 1 and a3 = k. Then
(1.3) is soluble if

(3.11) 0 < ax + 0x + z2/a2 + v < d/a2

has a solution in integers x and z, where ft — a9' and v — a(x0 + 9).
Take

h = 2 and k = 1 if 1/2 < A. < 3/5,
/i = 3/2 and k = l if 3/5 < A < 4/5,

V-U) h = l and it = 1 if 4/5 < A < 5/4,
/? = 3 and k = 2 if 5/4 < X < -v/2.

One can easily check that

\hX - k2\ +k/2<d = (X2/2)1/3.

Now apply Lemma 5, with A — d and a3 = k, we see that (3.11) has a solution
in integers x and z unless when

(3.13) k = £2//* and 9' = h/k (mod \/k, 2/k).

Since from (3.2), - 1 / 2 < 9' < 1/2, (3.12) and (3.13) give the desired excep-
tional cases (3.10).

3.1. The exceptional cases. Firstly we note that (1.3) is soluble if the following
inequality

(3.14) 0<F(x,y,z) = -Q(x,y,z)<d/k = (l/2ky/3 = 8 (say)

is soluble in (x, y, z) = (x0, y0, z0) (mod 1).

LEMMA 11. Ifk = 1/2, 9' = 0 and y0 = 0 = z0 (mod 1) then (3.14) and
hence (1.3) is soluble unless 2 Q = F ~ £>! orQ2and(x, v, z) = (4° , >>o\ 4°)
(mod 1); i = 1,2.

PROOF. Here F(x, y, z) = (x + ^ J ) J + 2z2 and 5 = 1. We can assume that
\9\ < 1/2.

Take y — 1, z = 0 and choose JC = x0 (mod 1) such that 0 < x + 9 < I,
so that

0 < ^(x, 1,0) =JC + 0 < 1 = 5 .
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Thus (3.14) is soluble unless x + 9 — 1, that is, unless

(3.15) xo + 9=O (modi).

Similarly taking y = — 1 and z = 0 we see that (3.14) is soluble unless

(3.16) xo-9 = O (modi).

From (3.15) and (3.16) we get either 9 = 0 and x0 = 0 (mod 1) or 9 = 1/2
and x0 = 1/2 (mod 1). This gives the exceptional forms Q, for i = 1 and 2.

LEMMA 12. Let z0 = 0 (mod 1), and let the section of F(x, y, z), namely
F(x, y, 0) = (x + 9y)y, represent a value —v, v > 0, at a primitive point,
satisfying:

(3.17) 0 < v < 1/2 when X = 2/3;

(3.18) 0 < v < 8/4 or 8/3.9 <v<\/2 when k = 1;

(3.19) 0 < v < 8/3 or 5/2.81 < v < 1/2 when X = 4/3.

Then (3.14) is soluble.

PROOF. Applying a suitable unimodular transformation in which z is trans-
formed into itself, we can assume that

F(x, y, z) = -v(x + axy + a2z)2 + —{y + b2z)2 + -z 2 .

Let m be an integer such that m < 8/v < m + 1. Then m > 1, since
8/v >28 = 2(1/2A)1/3 > 1. Now by Lemma 2, (3.14) is soluble if

1 1 , , 1 , m2 8

( * ) + z < +4 4u 2 A-u 4 u

that is, if

(3.20) v2 < \(r(y, z) = (y + b2z)2 + Avz2/k < m2v2 + 48v

is soluble in (y,z) = (yo,O) (mod 1). Take z = 1 and choose y = y0

(mod 1) such that 0 < \y + b2\ < 1/2, so that

v2 < Av/X < \(r{y, z) < 1/4 + 4v/X.
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Then (3.20) will be satisfied if

(3.21) f(v) = m2v2 + 4v(S - \/k) > 1/4.

For m > 3, f(v) is an increasing function of v and v > 8/(m + 1). Therefore,

/(,)>/(4^ = 4 ^ V - T - ^ = ^ ) (say).
\m + lj \m + lj k(m +1)

Now g{m) is an increasing function of m. One can verify that

g(m) > 1/4

for w > 6 when k = 2/3; for m > 4 when A = 1; and for m > 3 when
k — 4/3. In the remaining cases, take z = 0 and choose y = y0 (mod 1) such
that 1/2 < \y\ < 1. Working as before one finds that (3.20) will be satisfied if

(3.22) f(v) = m2v2 + 4Sv > 1.

Since v > 8/(m + 1), this is so if

(3.23) f(S/(m + 1)) = (m + 2)282/(m + I)2 > 1.

For A. = 2/3 and m < 5, k — 1 and m < 2, k — 4/3 and m = 1, one checks
that (3.23) is true. When k = 1 and m - 3, we have u > 8/0.9) from (3.18)
and then

f(v) > /(S/3.9) = (24.6)S2/(3.9)2 > l.

Similarly when k = 4/3 and w = 2, we have u > 5/2.81 and (3.22) is satisfied.
This proves the lemma.

LEMMA 13. Ifk = 2/3,9' = 1/2 and yo = zo = O (mod 1) then (3.14) and
hence (1.3) is soluble unless 2F = 3>Q ~ (?6 and XQ = 1 / 2 (mod 1).

PROOF. Here

(3.24) F(x, y, z) = (x + 0y + z/2)y + 3z2/2.

Suppose without loss of generality that - 1 / 2 < 9 < 1/2. If - 1 / 2 < 9 < 0,
then F(x, y, 0) represents a value # = — v with 0 < v < 1/2, so the result
follows from (3.17) of Lemma 12. Let now 0 < 6 < 1/2. We have

1 / x 2

F ( ) ( + - +
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Let m be an integer (> 1) such that m < 8/9 < (m + 1). (Note that 8/9 =
(3/4)1/3/^ > i). Then by Lemma 1, (3.14) is soluble if there exist (x, z) =
(JC0, 0) (mod 1) such that

(7. 9«\ _ _ _ ^ _ _ 7
2 _ / r J 7 | ^

Take z = 0 and choose x = x0 (mod 1) such that 0 < |x| < 1/2. One finds
that (3.25) is true for m > 2. If m — 1, that is, when 8/2 < 9 < 1 /2, the section
F(x,y,0) represents a value-u = 4 0 - 2 at ( - 1 , 2), where 0 < u = 2-49 <
2-28 < 1/2; then the result follows from (3.17) of Lemma 12.

Thus we need consider 9 = 0 and 1/2 only. If 9 = 0 and x0 = 0 (mod 1),
(JC, y, z) = (0, —2, 1) gives a solution of (3.14). If x0 # 0 (mod 1), we
again have a solution of (3.14) by choosing x such that 0 < |JC| < 1/2 and
taking z = 0, y — (signx)l. When 9 = 1/2 and x0 # 1/2 (mod 1), we
get a solution of (3.14) by choosing x such that 0 < |x| < 1/2 and taking
z = 0, y = -(sigrut)l. When 9 = 1/2 and x0 = 1/2 (mod 1), we have the
exceptional form 2F = 2xy + y2 + yz + 3z2 — Q(,.

LEMMA 14. then (3.14) and hence (1.3) is soluble unless Q ~ Q-, andx0 = 0
(mod 1), or Q ~ Q% andx0 = 1/2 (mod 1).

PROOF. Here
Q = F{x, y, z) = (x + 9y)y + z2.

Suppose without loss of generality that —1/2 < 9 < 1/2. if —8/4 < 9 < 0 or
— 1/2 < 9 < —8/3.9, then the section F(x, y, 0) represents a value 9 = —v,
and the result follows from (3.18) of Lemma 12. If -8/3.9 < 9 < -8/4,
Q(x, y, z) represents a value \i — 49 + 1 where 0 < 49 + 1 < d/3. (Note
that here <i = 8 = (1/2)1/3). So the result follows from (2.7) of Lemma 6. If
0 < 9 < d/2, we have

1 _.
9 v * " " " V '29/ 9 492'

Apply Lemma 1, and working as usual, one finds that (3.14) is soluble on
choosing z = 0 and x = x0 (mod 1) such that 0 < |JC| < 1/2.

If d/2 <9 <(d+ l)/4, we have

d/(2.5)1/3 < /x = g ( - l , 2, 1) = 49 - 1 < d.
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If (d + l)/4 < 9 < (d/3 + 7)/16, we have

0 < fi = G( -4 ,4 , 3) = 166> - 7 < d/3.

Then the result follows from (2.7) and (2.8) of Lemma 6. If (d/3 + 7)/16 < 0 <
1/2, the Section F(x, y, 0) represents a value — u = 40 — 2 where 0 < v < d/4,
and the result follows from (3.18) of Lemma 12. Thus we are left with 9 = 0
and 1/2 only. This gives Q = Q1 and Qs. One easily finds that (1.3) is soluble
for Q-j or Q% except when x0 = 0 or 1/2 (mod 1) respectively.

LEMMA 15. Ifk = 4/3 and 9' = 0, then (3.14) and hence (1.3) is soluble
unless 9 = 0 or 1/2, r/wtf is, unless AF = 3(2 ~ £>4 a«d *o == 0 (mod 1) or
3Q ~ Q5 a/J^^o = I / 2 (mod 1).

LEMMA 16. Ifk = 4/3 and 9' = 1/2, then (3.14) W fte/jce (1.3) is soluble
unless 9 = —1/4 or 1/4, //wW is, unless 3<2 ~ 04 #"^ x0 = 0 (mod I) or
3Q- Q5 and xo = 1/2 (modi).

Proofs of Lemmas 15 and 16 are similar and are left to the reader. For the
exceptional forms Qt, and (x0, y0, z0) = (XQ\ y^\ ZQ0) (mod 1), 1 < / < 8,
one can easily check that r2,i(<2i) is as given in the table. This completes the
proof of Theorem 1.

4. Proof of Theorem 2

We need the following two results of Barnes (1955) and Cassels stated as
Lemma 3 in Barnes (1954).

LEMMA 17. Let Q(x, y, z) be as in Theorem 2. Then there exist integers xx,
y\,Z\ such that
(4.1) O 1 / 3

LEMMA 18. Let U be a 2 x 2 unimodular matrix of infinite order and £% be
a bounded set in R2. Let Si have the property.

U(M ) n (3P, + A) ^ 0 for some A e Z2

but U<& ) n (M + B) = 0, V B e Z 2 , 8 / A .

If P is a point such that U"(P), for all integers n=0, is congruent (mod 1)
to a point of 8% , then P is the unique fixed point given by U(P) — A = P.
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Using Lemma 17, and working as usual, see for example Dumir (1968), we
see that it suffices to prove

THEOREM A. Let Q(x, y, z) = (x + hy + gz)2 + 4>(y, z), where <f>(y, z) is a
non-zero indefinite binary quadratic form of discriminant

(4.2) A2 = 4|D| > 3, and

(4.3) \h\ < 1/2, |£| < 1/2.

Suppose further that for integers x, y, z we have

(4.4) either Q(x, y , z) < 0 or Q(x, y,z)>\-s

where s(> 0) is sufficiently small. Let

(4.5) d = (10|D|/3)1/3.

Then there exist (x, y, z) = (x0, yo, zn) (mod 1) satisfying

(4.6) 0 < Q(x, y, z) < d.

LEMMA 19. / / Q(x, y, z) is as in Theorem A, then for integers y, z we have
either

(4.7) <p(y,z) = O or </>(?, z) < - 1 / 4 or </>(y, z) > 3/4 - e.

For proof see Dumir (1968).

PROOF OF THEOREM A. From (4.2) and (4.5) we get d > (5/2)1/3. Let n be
an integer (> 1) such that n < d < n + 1. Then by Lemma 1, it suffices to solve

(4.8) -n2/4<<p(y,z) <d- 1/4.

LEMMA 20. Ifn > 2, then (4.8) and hence (4.6) is soluble.

PROOF. Apply Lemma 3 with v = A/n2 to get

- « 2 / 4 = - A / 4 v < 4>(y, z) < vA/4 = A2/4n2.

Then (4.8) will be satisfied if

A2/(4d - 1) = 6d3/5(4d - 1) < n2.

This can be easily seen to be true for d < n + 1 and n > 2.
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Let now n = 1, (5/2)'/3 < d < 2. Let

4>i = y 2 + yz - z2

<t>2 = y 2 - 2 z 2

By the Markoff Chain Theorem, if 0 / p<j>i, pfa and />03 then there exist integers
u, v not both zero with (u, v) = 1 suchthata = 0(w, i»)and \a\ < 13A/V1517.
In fact one can suppose that |a| < A/3 unless 0 is a Markoff form. A Markoff
form represents both a and —a, so for such forms we can assume that a > 0.
Since ^ is a non-zero form, we distinguish the following cases using (4.7):

I. 3/4-<? <a < 13A/V1517;
II. a = — b < 0, 1/4 < b < A/3, or <f>(y, z) ~ a<j)\ or a03, a = — b < 0;

III. 0 ( j , z ) ~ p 0 2 , P > O .
Replacing (/•(j, z) by an equivalent form we can suppose that

(4.9) Hy, z) = a(y + fzf - ~z2.
4a

LEMMA 21. If 3/4- s < a < 13A/V1517, r/ie/i (4.8) and /ze«c^ (4.6) is
true.

PROOF. Choose z = z0 (mod 1) such that 0 < \z\ < 1/2. If 0 < |z| <

(a2 + a)/A, choose y = j 0 (mod 1) such that 1/2 < \y + / z | < 1, so that

- 1 / 4 = a/4 - A2(a2 + a)/4a A2 < <j>(y, z) < a < d - 1/4.

If s/(a2 + a)/A < \z\ < 1/2 and d/a > 2, choose y = y0 (mod 1) such that
1 < Ij + fz\ < 3/2 to get (noting that a > \ - e and A2 < 11):

-1/4 < a - A2/16a < 0(^, z) < <7fl/4 - (a + l)/4 = 2a-\/4<d- 1/4.

If V(a2 + a)/A < \z\ < 1/2 and d/a < 2, shift z by ±1 to get 1/2 < \z\ <

Now choose y = y0 (mod 1) such that 1 < \y + fz\ < 3/2, so that

4° 16a'
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Then (4.8) will be satisfied if

(4.10) 9a2 - a(4d - 1) < A2/4,

(4.11)
A2 f 1 / 12 1

| l / 2| l v a + a <<* + .
4a I A J 4

One can easily check that (4.10) and (4.11) are true for

d/2 < a < 13A/V1517 < A/VJT97 and d < 2.

LEMMA 22. If a = -b, 1/4 < b < A/3, then again (4.8) and hence (4.6) is
true.

PROOF. (4.8) is equivalent to solving

(4.12) 0 < -(v + fif + A2z2/4b2 + 1/46 < d/b.

Let m be an integer such that m < d/b < m + 1. Since d < 2, we have here
1 < m < 7. By Lemma 2, it is enough to solve

(4.13) 1/4 < g(z) = A2z2/4b2 + \/4b < d/b + m2/4.

Choose z = z0 (mod 1) such that 0 < \z\ < 1/2. One can easily check, for
b > d/(m + l)andm < 7, that the second inequality in (4.13) is satisfied. Ub <
1 the first inequality in (4.13) is also satisfied. If b > 1 but \z\ > *J(b2 — b)/A,
we still have g(z) > 1/4, proving (4.13).

Let now b > 1 and 0 < \z\ < *J(b2 - b)/A. Shift z by ±1 to get

1 < |z| < \+y/(b2-b)/A.

Then choose y = y0 (mod 1) such that 1 < \y + fz\ < 3/2, so that

Now (4.8) will be satisfied if

(4.14) A2/4fe2 + 1/46 > 9/4

(4.15) -1 + A2 \l + J(b2 - b)/A) /4b2 <(4d-l)/4b.
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(4.14) follows immediately because b < A/3. (4.15) is true if on simplifying
we have
(4.16) f(b) = 3b2 + Abd - 2Ay/b2 - b > A2.

Since b < A/3 < v W B , Jb2 - b < 1/5, we have

f(b) > 3 +Ad-2A/5> A2 ford < 2.

This proves (4.16) and hence the lemma.

LEMMA 23. If<p ~ -

PROOF. We can have

or -b</>3 tfz<?n (4.8) and hence (4.6) « true.

= -b(y + fzf + A2z2/4b

where ft = A/V5 or 5A/V22I and rf/ft = y/25/6d or V221/3CW according
as (p — —bcpi or —b<p3. We work as in Lemma 22.

When 0 = —b<pi, we have w = 1 only. Choose z = z0 (mod 1) such that
1/2 < \z\ < 1. One can easily check that

1/4 < £(1/2) < < < d/b + 1/4.

proving thereby (4.13) and hence (4.8).
When <p = —b<pi, we have m — 1 or 2. Working exactly as in Lemma 22,

we see that it is enough to prove (4.14) and (4.16) for b — 5A/V221.
(4.14) reduces to b < 25/4 which is true. (4.16), on dividing by b2 and

substituting for b, reduces to

(4.17)
Ad

T
This is easily seen to be true since d/b > ^221/60 and b < 1.05, in this case.

LEMMA 24. If<p = pfc then again (4.6) is true.

PROOF. Here (j) — p(y2 - 2z2), p = A/ \ /8 . Choose j = j 0 (mod 1) such
that 1/2 < |_y| < 1 and z = z0 (mod 1) such that 0 < \z\ < 1/2.

I f \ / l ~ i < M < l o r i f O < |z| < y/1 + ^ (which are true if p < 1), we
have

-1/4 < p(y2 - 2z2) < p <d-\/A

https://doi.org/10.1017/S144678870003408X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003408X


[18] Inhomogeneous minima of a class of ternary quadratic forms 351

proving (4.8) and hence (4.6).

Let now p > 1, \ < |y| < J(\ - ±-p) and J\ + ^ < \z\ < \. This is same
2 — '-" — Y 4 4P V 8 8p — ' ' — 2 '

thing as saying that (y0, z0) = ( | + 9, \ + 9') (mod 1) where

CLAIM. If(4.6)hasnosolutionin(;t, j , z) = (x0, 1/2+9, 1/2+9') (mod 1)
where 9 and #' are given as in (4.18) then h — g = 0.

Assuming the claim, if (4.6) has no solution then one must have

Q = x2 + p(y2 - 2z2).

Now if p > 1, let p — 1 + 8, 8 > 0; then since p = A/V8 < V6/5, we have

0 < 0(3,0, 2) = 9 - 8p = 1 - 8S < 1 - e

on taking e sufficiently small. This contradicts (4.4). If p = 1, Q(l, I, I) = 0,
so that Q is a zero form, contradicting the hypothesis of Theorem 2. Hence
there is no Q for which (4.6) has no solution. This proves the lemma.

PROOF OF CLAIM. If (4.6) has no solution, for all integers p, q, r we must
have either

[+9') > d,
\+9') < 0.

or

Take q = — 1, r — 0 and choose an integer p such that

(4.20) 1 < a = <3/2.

Then from (4.19) and (4.18) we have either

2

(a)
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- f(p) (say), or

(b)

- p

= g(p) (say).

One can easily check that f(p) and g(p) are increasing functions of p for
1 < p = A/V8 < x/6/5; therefore either a2 > / ( I ) > 2.132 or a2 <
gis/6/5) < 0.3, that is, either a > 1.46 or ot < 0.55. From (4.20) we must
have 1.46 < a < 3/2, that is,

1.46 < 'j < 1.54 (mod 1),

that is,

(4.21) I - O . (modi).

Similarly taking (q, r) — (0, —1) or (—1, —1) and then choosing the integer p
suitably, (4.19) gives

(4.22) ]- - 0.04 < x0 + h IX- + 0 j - g (]- - 9' J < ]- + 0.04 (mod 1)

h(X--e\+g(X--9'\<X-+ 0.04 (mod 1).(4.23) l- - 0.04 < -

Adding (4.23) to (4.21) and (4.22) respectively we get

-0.08 < g < 0.08 (mod 1)
-0.08 < h < 0.08 (mod 1).

Since, from (4.3) |g| < 1/2, \h\ < 1/2, we must have

(4.25) - 0.08 < h, g < 0.08.

Let P = (h, g) in the plane R2 and 8% be the region

@ = {(X, y)€R2 - 0.08 < x, y < 0.08}.
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3 4

Then (4.25) gives p e & . Let U = (23) be an automorph of cj){y,z) —
p(y2 - 2z2). Let A = (0, 0), and

\J{@ ) = [(x, y ) e l 2 - 0.56 < x < 0.56, -0.4 < y < 0.4}.

Clearly U(0P. ) D (@, + B) = 0 for all B e Z2, B ^ A. The unimodular

transformation (0 un) for all integers n=0 transforms Q into

Q(X, Y,Z) = (X + hnY + gnZ)2 + p(Y2 - 2Z2).

The above argument shows that, if (4.6) has no solution then U"(P) — {hn, gn)
must also satisfy (4.24). Therefore by Lemma 18, we have

U(P)-A = P,

which gives h=0,g = 0, noting that U(P) = (hugi) = (3/i + 4g, 2h + 3g).
This proves the claim, and hence completes the proof of Theorem 2.

REMARK. One can improve the constant 10/3 in Theorem 2 slightly by this
method, but it becomes very difficult to get even the constant 8/3, the second
minima for positive values of zero ternary forms.
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