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1. Introduction. In a recent paper [7], Rooney used a technique involving the
Mellin transform to obtain solutions in certain spaces X^v of an integral equation which
had been studied previously by Sub-Sizonenko [9]. The integral equation in question can
be written as

(1.1)

where / denotes the identity operator and G01/2 is given by

(G°-1/24>)(x) = 7T-/2 f (log t/x)-1/2<M0 dt/t,

with the inversion formula obtained by Rooney taking the form

4>(x) = f ((f/x)erfc((log t/x)112) - 7r-1/2(log t/x)"1/2)^(f) dt/t
•"x

+ iMx) (x>0). (1.2)

Rooney verified that (1.1) and (1.2) formed an inversion pair in i?^p for l=£p<oo and
|x>0.

In this paper, we shall extend Rooney's result by obtaining inversion formulae for the
integral equations

= ^(x) (x>0) (1.3)
and

= ^(x) (x>0) (1.4)

where A >0 and G""2 and H""1-"2 are particular cases of the operators G"" and ff71"
defined, for R e a > 0 and rjeC, by

Gog t/xr-'<f>(t)dtlt (x>0), (1.5)

(1.6)

Note that equation (1.3) reduces to equation (1.1) when A = 1 and 17 = 0 and therefore in
deriving inversion formulae for (1.3) and (1.4), we shall also obtain an inversion formula
for (1.1).

Working within the framework of the Banach spaces L£ (where L£ =££Up_^p when
fi, is real), we shall first determine properties of Hva and G71™ and shall establish that,
under certain conditions, jrhll2 = (W-1)112, GTll/2 = (GTll)1/2 where (H11-1)1'2 and (GvA)m
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denote fractional powers of order 1/2 of H1"1 and GvA respectively. Then, by applying a
result concerning the resolvent of a fractional power of an operator, we shall obtain the
required inversion formulae which will be shown to include (1.2) as a special case.

2. Preliminaries. Let X denote a complex Banach space with norm || || and let L(X)
denote the Banach space of bounded linear operators A : X —* X. We say that A is in the
class P(X) if

(a) AsL(X);
(b) R(\; A) = (AJ-A)-1eL(X) for each A>0;
(c) ||A.R(A; A)<£||*£M|M| for all A>0 and <peX where M, a positive constant, is

independent of both A > 0 and <j>eX.
If A is an operator in P(X), then a family of operators {(—A)™; Re a > 0} can be

generated by means of the formulae

(-A)a<t> = Tr-1 sin(Tra) j Aa-1[K(X; A) - A/(l + A2)](-A</>) d\

-sin(7ra/2)A<k 0 < R e a < 2 , 4>eX, (2.1)

(-A)a<t> = (-A)°-n(-A)"4>, n < R e a < n + 2, n = 1,2,. . . , <j><=X. (2.2)

By appealing to conditions (b) and (c) above, we can readily show that the integral in
(2.1) exists, for each <f>eX, as a Bochner integral in X (see [4, p. 34 and pp. 118-119]).
The main properties of the operators {—A)a are summarised below.

THEOREM 2.1. Let A be an operator in P(X) and let (-A)** be defined via (2.1) and
(2.2). Then

(a) (-A)° 6 L(X) for each a such that Re a >0 ;
(b) ( -A) a ( -A) 3 = (-A)"+ e for Re a, Re 0 >0 ;
(c) [(-A)af = (-A)a(3 for 0 < a < l and Re0>O;
(d) for each A>0 and a e(0,1), the resolvent operator R(A; - ( -A) a ) exists in L(X)

and is given by the Bochner integral

R(k;-(-A)a)<f>= f gKa(u)R(u;A)<t>du (<fieX)' (2.3)

where
gx,a(") = ir'1 sin(Tra)ua[A2 + 2Auo< cos(ira) + u 2 a ] - \ (2.4)

Proof. These results can be found in [1] and [3] and can also be deduced as a special
case of the theory presented in [4] and [5].

Motivated by the properties possessed by the operators (-A)", we shall henceforth
refer to (—A)a as the ath power of -A.

3. The operators G1"" and H"'a on the spaces L£. In this section, we shall
determine certain properties of the integral operators G71" and H^a given by (1.5) and
(1.6) respectively. In particular, we shall examine the behaviour of these operators on the
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spaces L£ of (equivalence classes of) functions <f> such that ^ |x~^(x)|p dx <°°. Here, and
in the sequel, (x is any complex number and lssp<o°. Equipped with the norm || ||pii

defined by

the space L£ is a Banach space and, for /J, real, coincides with the space 5BVp-^p of
Rooney [8].

LEMMA 3.1. Let R e a > 0 and
(a) If Re(ri + /*) + 1 > 1/p, then Hn-a is a bounded operator on L£ with

c» ||4>||p>li. (3.1)

(b) If ReOrj — JLL) > - 1 / p , then G"1" is a bounded operator on L£ with

I|G^4>IU «(T(Re a)/|r(a)|)(Re(r, - ^ ) + l/p)-Rc° ||^||p,,. (3.2)

Proof. This can be proved in a routine manner by using a generalisation of an
inequality of Hardy [6].

THEOREM 3.2. Let R e a > 0 .
(a) J/Re(Tj + n) + l > l / p , then -H^leP(LD and (H^)" = H™.
(b) Z/Re(T)- j L t )>- l /p , then -G^ePiL'J and (G71-1)" = G"*.

Proo/. We shall prove (a), the proof of (b) being similar. Firstly, we remark that,
under the given conditions, -H7 1 1 e LiLty. Secondly, a routine calculation (see [4, p. 67)])
can be used to show that, for A >0,

(3.3)

Hence, it follows that

||*IU (from (3.1))

<2||C
and this holds for all A >0 . Consequently, -H^1 belongs to the class P(L^) and so, from
Theorem 2.1(a), ( f f 1 ) " exists as a bounded operator on L£. Now let t/> belong to the
space C£(0, °°) of smooth functions having compact support in (0, °°) and suppose that
0 < R e a < l . In this case, formula (2.1) can be replaced by

(-A)a4> = IT"1 sin(77«) f Aa-1JR(A; A)(-A)<f> dk (see [1] and [5]),
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and therefore

(x>0)

77"1 sin(ua)J Aa~2HT1+1/)l-V(x) d\

77"1 sin(ua) f A""2 f X(t/xr+ 1 A +V(0 dt/tdk.

The justification for transferring the point x inside the Bochner integral in the above
analysis is provided by [4, Theorems 4.19 and 4.24]. If we now apply Fubini's theorem to
interchange the order of integration, we obtain

riHx) = TT~X sin(«u) f (t/x)11+V(0 dtlti Aa~2expt-AT1 log(x/t)] dk

In a similar fashion, we can prove that (fT1-1)01^ = H^if/ for n<Rea<n + l, n =
1,2, . . . , and <// e Co(0, °°) while, for a = n + ii;, we have

where the last step can be verified by direct calculation. This proves that (ff1'1)™ = tPa,
Re a > 0, as operators on CQ(0, 00) and the general result follows from the continuity of
the operators on L^ in conjunction with the denseness of Co(0,00) in L£. This completes
the proof.

Using the properties of fractional powers listed in Theorem 2.1, we can now write
down the properties of £ P a and G11" on L£.

THEOREM 3.3. Let Re(r) + \i) +1 > 1/p and <$> e L£.. Then
(a) H^JT'-fy = H^a+(3</) /or Re a, Re |3 >0 ;
(b) {W-aY4> = ff1-0"3^ /or 0 < a < 1 and Re |3 > 0.

THEOREM 3.4. Let Re(r)-|Lt)>-l/p and ^ e L ^ . Then
(a) G™G^4> = Gv-a+li<t> for Re a, Re /3 >0 ;
(b) (G"-")^ = G11-"3^ /or 0 < a < 1, Re 0 > 0.

4. The resolvent operators R(X; -G"'"2) and JR(A;-H1"1'2). In this final section,
we apply the results of Sections 2 and 3 to obtain solutions of equations (1.3) and (1.4)
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when the right-hand side ifr belongs to L^. We begin by stating the following results
concerning the resolvent operators R(k; —Gv'a) and R(K; -H"™*).

THEOREM 4.1. Let A >0, 0< a < 1, TJ e C and let gKa be the function defined by (2.4).
Then

(a) if Re(Tj + /j ,)+l>l/p, the resolvent operator R(\; -FT1-") exists in L(LD and is
given by

^ (4.1)

(b) if Re(r}-jLt)>-l/p, the resolvent operator £(A;-G™*) exists in L(LPJ and is
given by

J[ (4.2)
The integrals which appear in (4.1) and (4.2) exist as Bochner integrals in L£.

Proof. Formula (4.1) follows immediately from Theorem 2.1(d), (3.3) and the fact
that J^u~1gXa(u)du = A~1 for 0 < a < l and A >0 (see [3]). The derivation of (4.2) is
similar.

From Theorem 4.1, we can deduce immediately that the equations

(\I+Hr'a)<{> = i{>;(kI+G^a)<1> = ip, («/»eLH,0<a<l,A>0)

have unique solutions in L^ under appropriate restrictions on TJ, JU, and p. For the
particular case when a = 1/2 we can proceed as follows to determine these solutions more
explicitly.

THEOREM 4.2. Let A >0 and

(a) If Re(t) + M.) +1 > 1/p, then

; 3/2; A-2logx/f)(f/xr+1£(f) dt/t

(4.3)
where ^ is as defined in [2, p. 255].

(b) Z/Re(T)-n)>-l /p,

= (l/A)£(x)-(A37r)-1r(3/2)[ V(3/2; 3/2; \-2log t/x)(x/trc(t) dt/t (x>0). (4.4)

Proof, (a). Let T be the operator defined on L£ by
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By proceeding as in the proof of Theorem 3.2, we can verify that, for each x>0 ,

= j w-2gx.a/2(") jX( ' /xr+ 1 / u + 1£(0 dt/tdu

= [ (t/x)T1+1^(t) dt/t f (f/x)1/uu~2gx-1/2(u) du (by Fubini's theorem)

provided £e C^(0, °°). The inner integral can be evaluated using [2, p. 255(2)] and we can
state that, for feC£(0,°°),

(T^)(x) = (\377)-Ir(3/2)| (r/xr+1¥(3/2;3/2;A-2logx/t)£(0*/f. (4.5)

If we now apply the extended version of Hardy's inequality [6] in conjunction with
the asymptotic expansion for ^ given in [2, p. 278(1)], we can deduce that the operator
defined by the right-hand side of (4.5) is in LiLty under the stated conditions on TJ, JA and
p. Consequently, from (4.1), the continuity of the operators and the denseness of CQ(0, «>)
in LI, it follows that (A7+HTll/2)""1^(x) is given by (4.3) for any (eL^ . This completes the
proof of (a). The proof of (b) is similar.

COROLLARY 4.3. Under the conditions stated in Theorem 4.2, we can write

(log x/t)-1/2(t/xr+1£(t) dt/t

f c[\-1(log x/t)1/2R(t) dt/t; (4.6)

(KI+ G-1/2)-^(x) = (l/A)f(x)-(A2r(l/2))-1 f (log t/x)-1/2(x/tra0 dt/t

+ ( l / \ ) 3 f (x/tr-1/x2 erfctX-Hlog t/x)1/2]£(t) dt/t. (4.7)

Proof. We note first that the function ^(3/2; 3/2; x) can be written as e*T\-l/2; x)
[2, p. 266(21)] which in turn can be expressed as -2ex(I\ l /2; x)-x~1/2e~x).

Since T(l/2; x) = 7TTerfc(Vx) [2, p. 266(24)], substitution into (4.3) and (4.4) gives the
stated formulae.

Finally, if we set TJ = 0 and \ = 1, then, from Theorem 4.2 and Corollary 4.3, we can
state that (1.1) has a unique solution in L£, given by (1.2), whenever i/>eL£ and
Re fi, < 1/p. This agrees with the result obtained by Rooney.
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