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ESTIMATES ON RENORMALIZATION GROUP
TRANSFORMATIONS

D. BRYDGES, J. DIMOCK AND T. R. HURD

ABSTRACT. We consider a specific realization of the renormalization group (RG)
transformation acting on functional measures for scalar quantum fields which are ex-
pressible as a polymer expansion times an ultra-violet cutoff Gaussian measure. The
new and improved definitions and estimates we present are sufficiently general and
powerful to allow iteration of the transformation, hence the analysis of complete renor-
malization group flows, and hence the construction of a variety of scalar quantum field
theories.

1. Introduction. The present technical monograph contains the detailed analysis
of a single RG transformation of a type general enough to use on scalar quantum field
models of a broad class, including infra-red û4

4, and the non-Gaussian û4
4�è model.

It is one of a series of papers by the authors ([BY90], [DH91], [DH93], [BDH94b],
[BK94], [BDH94a], [BDH95], [BDH98]) in which we use rigorous renormalization
group techniques to study the short and long distance behavior of various quantum field
theories.

We consider a family of d-dimensional tori Λ, and scalar fieldsûwhich are real valued
functions on Λ. In its simplest form the problem is to study functional integrals over the
fields of the form Z

e�V(ΛÒû) dñ(û)(1)

where ñ is a Gaussian measure on the fields over Λ. The covariance v of ñ may be a
smoothed inverse Laplacian or more generally given by a sum over scales

v(xÒ y) =
1X
i=0

L�2i dimûCi(L�ixÒL�iy)(2)

Each piece Ci(xÒ y) is to be a smooth positive-definite function with good decay as
jx� yj ! 1 (uniformly in the size of Λ) which is almost independent of the index i. The
scaling factor L is a large positive integer, and the “scaling dimension” dim û is some
real number determined by the model. The potential V(ΛÒ û) is some local function of û,
for example of the form

V(ΛÒ û) =
Z

Λ

hï : û4 : +ê : (]û)2 : +ñ : û2 :
i

ddx(3)
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where the coupling constants ï, ê, ñ are small, and ï Ù 0.
The decomposition (2) has the consequence that convolution by the Gaussian measure

ñŁF(û) =
R

F(û+ê) dñ(ê) can be written as a sequence of convolutions    ñ2Łñ1Łñ0ŁF
where ñi has covariance L�2i dimûCi(L�ixÒL�iy). Therefore integration with respect to ñ
can be expressed as a sequence of convolutions.

The renormalization group analysis carries out this sequence of convolutions, ex-
pressing such an integral in terms of more general integrals

Z
Z(û) dñ(û)(4)

with new densities Z(û) that are more complicated but less singular. A characteristic
feature of our program is that we keep careful track of the localization of the densities
by expressing them in terms of polymer expansions of the form

Z(û) =
X
fXig

Y
i

A(XiÒ û)(5)

Here the sum is over collections fXig of polymers X defined to be unions of unit blocks.
The polymer activities A(XÒ û) are required to have their û dependence localized in X
and to show decay with the “size of X”. The polymer activities generally have more
structure, and are expressed in the form

A(XÒ û) = tu(X)e�V(XÒû) + K(XÒ û)(6)

where tu is the characteristic function of unit blocks, and V is a local potential similar to
the original potential. If K = 0 we recover Z = e�V, so K describes the deviation from a
strictly local potential.

A single renormalization group transformation replaces A or (KÒV) by new activities
A0 or (K0ÒV0). This happens in three steps. The first step is called “fluctuation”: a
Gaussian convolution is applied to the density Z(û), and the result is expressed as a new
polymer expansion. The essential properties of Gaussian integration we need for this are
summarized in the Appendix. The second step is extraction and consists of localizing
relevant pieces of K and transferring them to V. One can think of this as the step in which
coupling constants are renormalized, and the resulting “renormalization cancellations”
are exhibited. The third step is scaling which returns the Gaussian measure to its original
form (on a smaller torus). In this way, the RG transformation has been realized in a form
ready for iteration. The complete analysis of a RG problem now proceeds by iterating
these three steps and tracking the flow of the activities.

The purpose of this paper is to estimate the effect of each of these steps on the polymer
activities. In the initial section (Section 2) we describe polymer expansions and the norms
we use, and in Section 3 a small norm condition is proved for the specific case of the local
û4

d potential. Then in Section 4 we give definitions and estimates for the three parts of a
single RG transformation: the fluctuation step, the extraction step, and the scaling step.
Finally, we include an appendix which states important properties of Gaussian integrals.
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Our theorems are variations on earlier proofs of similar theorems, see especially
[BDH94a], [BDH95]. However we have technical improvements which are of such a
wide scope that a complete new treatment seems necessary. The main changes are:

1. Formerly the detailed estimates on K(XÒ û), particularly in the scaling step, required
that the dependence on û be explicitly separated in a dependence on û and a
few low order derivatives. Thus polymer activities might be written in the form
K(XÒ û) = K̂(XÒ ûÒ ]ûÒ ] 2û). Doing this consistently was a nuisance. The present
treatment does away with this extra structure and works directly with K(XÒ û).

2. We have introduced a new notion of “dimension” which applies to polymer activ-
ities. With this definition, the split of activities into relevant (dimension � d) and
irrelevant (dimension Ù d) parts becomes more systematic.

3. Formerly the large field behavior of the polymer activities K(XÒ û) was required to
be no worse than exp(îk]ûk2

X) where the norm is a suitable Sobolev norm. This
was supposed to be more or less preserved through each step. For infrared problems
this causes a lot of trouble because it leads to the introduction of boundary terms,
closed polymers, hybrid polymers, etc. For problems in which the background
potential e�V supplies a stabilizing factor exp(�îkûk2) (such as (3)) we find that
it is sufficient make the weaker requirement that large field behavior be no worse
than exp(îk] 2ûk2

X). This decreases under scaling and so is easily preserved. This
idea also appears in Lemma 19 of [AR96]. With no boundary terms we are free to
take all polymers to be open which is the simplest possibility.

4. Formerly in the extraction step one was allowed to remove pieces from K(XÒ û)
only if X was a small set. The new treatment allows extractions for any X. This
makes it possible to track more cleanly the leading contributions to K(XÒ û) in low
order perturbation theory, something that is essential for good control.

5. We make no assumption of translation invariance, or that fields have their canonical
scaling dimension.

The new theorems are especially designed for a problem on non-Gaussian infrared
fixed points in 4 � è dimensions [BDH98]. However they are quite general and should
be appropriate tools for any problem with a scalar field and potential similar to (3). This
should be true in any dimension and for both infrared and ultraviolet problems. With
modifications we are hopeful that they are useful for more than just scalar field theories.

In this paper, we adopt the convention for constants that O(1) signifies a number
which is independent of the parameters. By C we denote numbers which may depend on
L, but not on other parameters.

2. Polymers and Norms.

2.1. Polymer expansions. The base space Λ is the torus RdÛLNZd for N an integer.
A polymer X is a possibly empty union of blocks where a block, ∆, is an open unit
hypercube in Λ centered on a point of the lattice ZdÛLNZd. Every set considered in what
follows will be a polymer unless otherwise specified. For example, Λ is now identified
with the polymer [f∆ : ∆ ² Λg. An L-block is an open hypercube of side L centered on
a point of the lattice LZdÛLNZd. An L-polymer is a union of L-blocks.
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Polymer activities are complex valued functions K(X) defined on polymers, including
the empty set, although one should assume that K(;) = 0, unless cautioned otherwise.
Our polymer activities are also functions K(XÒ û) of the fields û.

On the space of functions A(X)ÒB(X)Ò    defined on polymers there is a commutative
product [BY90], [GMLMS71], [Rue69]

(A Ž B)(X) =
X
Y²X

A(Y)B(X n Y)

and an Exponential

Exp (A) = I + A +
1
2!

A Ž A + Ð Ð Ð
where I (;) = 1 and otherwise I (X) = 0. The domain of the Exponential is all functions
that vanish on the empty set and

Exp (A)(X) =
X
fXjg

Y
j

A(Xj)(7)

where the sum is over partitions of X into a set of polymers fXjg. The Exponential is a
terminating series. It deserves attention because Exp (A + B) = Exp (A) Ž Exp (B).

An example of a function on polymers is the ordinary exponential of a local interaction
(e�V)(XÒ û) where V(XÒ û) is the local potential (3). Note that (e�V )(XÒ û) is independent of
the valuesû(x) taken on the complement, i.e.: (e�V)(XÒ û1) = (e�V)(XÒ û2) ifû1(x) = û2(x)
for all x 2 X. All polymer activities we consider will have this localization property.
Note also that the function (e�V)(X) is multiplicative which means that (e�V)(X [ Y) =
(e�V)(X)(e�V )(Y) whenever X \ Y = ;.

Another example is the function

tu(X) =
²

1 if X is a unit block
0 otherwise.

(8)

Since every polymer has a unique decomposition into blocks, it follows from (7) that
Exp (tu) = 1, the function that is identically one on all polymers, and more generally
Exp (tue�V) = e�V.

Thus, the initial density of a local field theory has the form Z =
�
Exp (tue�V)

�
(Λ).

The renormalization group does not preserve this form, but
�
Exp (tue�V + K)

�
(Λ), where

K is a field dependent polymer activity, is preserved in form. Note that
�
Exp (tue�V + K)

�
(Y) =

X
fXjg

exp
��V(Y n X)

�Y
j

K(Xj)(9)

where now the sum is over sets fXjg of disjoint polymers in Y and X = [jXj.
In general the polymer activities K(XÒ û) we need to consider have certain decay

properties depending on the “size” of X, certain growth and decay behavior depending
on the value of û and its derivatives, and finally analyticity in the variable û. All three
properties are controlled by imposing a finite norm condition on K, for one of a general
family of norms we now introduce.
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2.2. Decay in X: the large set regulator Γ. Let K(X) be a polymer activity (with possible
û dependence suppressed). The decay of K in the “size” of X is controlled by a norm of
the following type

kKkΓn = sup
∆

X
X¦∆

jK(X)jΓn(X)(10)

Here the large set regulators Γn(X) are defined in dimension d by

Γn(X) = 2njXjΓ(X)

Γ(X) = L(d+2)jXjΘ(X)(11)

Θ(X) = inf
ú

Y
b2ú

í(jbj)

The volume jXj of X is the number of blocks in X. The infimum is over trees ú composed
of bonds b connecting the centers of the blocks in X. The length jbj of a bond b = xy is
defined by the ‡1-metric sup1� j�d jxj � yjj. í is a rapidly increasing function described
in Lemma 1 below.

DEFINITION 1. 1. A polymer X is called a small set if its closure X̄ is connected and
it has volume jXj � 2d. Otherwise it is a large set.

2. The L-closure X̄L of a polymer X is the smallest union of L-blocks containing X.

LEMMA 1. Let the function í be chosen so that í(s) = 1 for s = 0Ò 1 and

í�fsÛLg� ½ L�d�1í(s)Ò s = 2Ò 3Ò   (12)

where fxg denotes the smallest integer greater than or equal to x. Then, for each
qÒ p = 0Ò 1Ò 2Ò    there is a constant cqÒp such that for L sufficiently large and for any
polymer X,

Γq(L�1X̄L) � cqÒpΓq�p(X)(13)

For any large set X, there is a stronger bound

Γq(L�1X̄L) � cqÒpL�d�1Γq�p(X)(14)

The proof of the related Lemma 3.2 in [BY90] also gives this bound, (but the definition
of small set given in [BY90] is incorrect and was corrected in [DH92]).

2.3. Smoothness in the fields. Functionals of û are defined on the Banach space C r(Λ)
of r-times continuously differentiable fields with the norm

k fkC r(Λ) = max
jãj�r

sup
x
j] ãf (x)j(15)

Here ã = (ã1Ò    Ò ãd) is a multi-index, jãj =
P

a ãa, and ] ã = ] ã1
x1
Ð Ð Ð ]ãd

xd
. Derivatives

with respect to û are symmetric multilinear functionals f1Ò    Ò fn ! Kn(XÒ û; f1Ò    Ò fn)
on this Banach space defined by

]

] s1
Ð Ð Ð ]

] sn
K
�
XÒ û +

X
si fi

�js=0 = Kn(XÒ û; f1Ò Ð Ð Ð Ò fn)
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Note that such multilinear functionals define distributions on Λn by the kernel theorem.
The choice of r is a restriction on how singular these distributions are allowed to be and
is determined by the model being considered.

We have further conditions on the polymer activities K(XÒ û):
1. Each K(XÒ û) should be Frèchet-analytic in û in a complex strip around the real

space C r(Λ̄). It is equivalent to the condition that they are continuous functions
on C r(Λ̄) and that the finite dimensional functions s ! K(XÒ û +

P
sifi) are all

analytic in a strip.
2. We assume that the û dependence of K(XÒ û) is localized in X̄ in the sense that it is

actually a function on C r(X̄) which is evaluated on û 2 C r(Λ̄) by first taking the
restriction of û to X̄. Then Kn(XÒ û; f1 Ò    Ò fn) is also defined for fj 2 C r(X̄) and for
fj 2 C r(Λ̄) by restriction. The derivative vanishes if any fj vanishes on X̄. (C r(X̄)
is all functions in C r(X) such that partial derivatives have continuous boundary
values. The norms k kC r(X) and k kC r(X̄) coincide).

The size of the derivatives Kn(XÒ û) is naturally measured by the norm

kKn(XÒ û)k = sup
njKn(XÒ û; f1Ò    Ò fn)j : fj 2 C r(X̄)Ò kfjkC r(X) � 1

o(16)

for n Ù 0 and kK0(XÒ û)k = jK0(XÒ û)j.
However, in the fluctuation step we find we need a localized version. Therefore we

consider derivatives restricted to neighborhoods

∆̃ =
n

x : dist(xÒ∆) Ú 1Û4
o

(17)

of blocks ∆. Let ∆ðn = (∆1Ò    Ò∆n) be an n-tuple of blocks. The localized norm is

kKn(XÒ û)k∆̃ðn = sup
njKn( f1Ò    Ò fn)j : fj 2 C r(X̄)Ò k fjkC r(X) � 1Ò supp fj ² ∆̃j\ X̄

o(18)

A connection between the natural norm (16) and the localized version is given if we
select a smooth partition of unity ü∆ indexed by unit blocks ∆ such that suppü∆ ² ∆̃.
We assume that each ü∆ is a translate of a fixed function ü. We define kük as the best
constant such that

kü∆ fk � kük k fk(19)

LEMMA 2. For any û and any polymer activity K

kKn(XÒ û)k � kükn X
∆ðn

kKn(XÒ û)k∆̃ðn (20)

PROOF.

kKn(XÒ û)k = sup
f
jKn(XÒ û; fðn)j

� sup
f

X
∆ðn

þþþKn

�
XÒ û; (ü∆ f )ðn

�þþþ
� X

∆ðn

kKn(XÒ û)k∆̃ðnkükn
C r 
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2.4. Growth in the fields: the large field regulator G. The growth of K(XÒ û) as a
function of (derivatives of) û is controlled by a large field regulator which is a functional
G(XÒ û) with properties:

G1 G(XÒ 0) ½ 1

G2 G(X [ YÒ û) ½ G(XÒ û)G(YÒ û) if X \ Y = ;

Our standard choice will be G = G(î) = G(îÒXÒ û) where

G(îÒXÒ û) = exp
�îkûk2

XÒ2Òõ

�(21)

Here
kûk2

XÒaÒb =
X

a�jãj�b

k] ãûk2
X(22)

and kûkX is the L2(X) norm. We take õ large enough so that this norm can be used in
Sobolev inequalities for any low order derivative ] ãû, a point we discuss shortly.

For any such G define a norm on derivatives Kn(XÒ û) by

kKn(X)kG =
X
∆ðn

sup
û2C r

kKn(XÒ û)k∆̃ðn G�1(XÒ û)(23)

where ∆ðn = (∆1Ò    Ò∆n).
For these norms to be useful, we will need further properties for the regulators G.

The fluctuation step involves convolution with a Gaussian measureñC with a covariance
operator C which has a kernel C(xÒ y) with good decay and regularity properties. We
discuss general properties of Gaussian convolution in the Appendix.

To control the fluctuation step we will need a family of regulators Gt(XÒ û) that are
integrable with respect to ñC in the sense that

G3 ñ(t�s)C Ł Gs(XÒ û) � Gt(XÒ û)

These will generally have the form

Gt(XÒ û) =
�
2jXjG#(XÒ û)

�t
G(XÒ û)1�t(24)

for some regulator G#. If we choose G(XÒ û) = G(îÒXÒ û) and

G#(îÒXÒ û) = G(2îÒXÒ û)

then the following lemma shows that for î sufficiently small the integrability is satisfied.

LEMMA 3. There exists î0 Ù 0 depending only on norms of C such that for all
î 2 [0Ò î0] property G3 holds for all s Ú t 2 [0Ò 1].
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PROOF. Let U(sÒ û) = log Gs(û). It is enough to prove that

] U
] s

� ∆CU � 1
2

C
 

] U
]û Ò

] U
]û

!
½ 0(25)

where the functional Laplacian ∆C is defined in the Appendix, and

C
 

] U
]û Ò

] U
]û

!
=
Z

dx dyC(xÒ y)
éU
éû(x)

éU
éû( y)



This is because of the implications

] U
] s

� ∆CU � 1
2

C
 

] U
]û Ò

] U
]û

!
½ 0 ) ] Gs

] s
� ∆CGs ½ 0

) ñ(t�s)C Ł
 

] Gs

] s
� ∆CGs

!
½ 0

) ]

] s
ñ(t�s)C Ł Gs(X) ½ 0 for s 2 (0Ò t)

) ñ(t�s)C Ł Gs(X) � Gt(X)

where we have used the functional heat equation discussed in the Appendix.
From the definitions

U = t log(2)jXj + î X
2�jãj�õ

Z
X
j] ãûj2 Ð �(1 � t) + 2t

�
(26)

we verify (25). For example if we choose î0 small so that

î0 sup
xÒy

j] ã
x ] å

y C(xÒ y)j(27)

is small for 2 � jãj, jåj � õ then the û independent term in ] UÛ] t dominates ∆CU.
To dominate C( ]U

]û Ò ]U
]û ) let kCk be the operator norm on the (matrix-valued) kernels

j] ã
x ] å

y C(xÒ y)j, 2 � jãj, jåj � õ. Then we haveþþþþþC
 

] U
]û Ò

] U
]û

!þþþþþ = 2(1 + t)2î2 X
ãÒå

Z
XðX

(] ã+åC)(xÒ y)(] ãû)(x)(] åû)( y) dx dy

� 8î2kCk kûk2
XÒ2Òõ

and this is smaller than the û dependent terms in ] UÛ] t when î0kCk is sufficiently
small, because î2 is small compared with î.

Next we need some special Sobolev inequalities in which intermediate derivatives
are omitted.

LEMMA 4. Let õ Ù dÛ2 + 2. Let X be any polymer and let Y be an L�1-scale polymer
(possibly empty) contained in X such that ∆ \ Y is a small polymer for all unit blocks
∆ ² X. Then for jãj � 1 and x 2 X

j] ãû(x)j � O(1)
�kûkXnY + kûkXÒ2Òõ

�(28)
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PROOF. It suffices to prove the lemma for a unit block X = ∆. Let ö ½ 0 be a smooth
function compactly supported in X n Y with

R ö = 1 chosen so that k] ãök∆nY � O(1) for
jãj � 1. This is possible by the condition on ∆ \ Y. We write

] ãû(x) =
Z

∆nY
dyö( y)] ãû( y) +

Z
∆nY

dyö( y)
�
] ãû(x) � ] ãû( y)

�(29)

First suppose jãj = 1. By integration by parts and the Schwarz inequality the first term
is bounded by

k] ãök∆nYkûk∆nY � O(1)kûk∆nY(30)

Joining x, y by a path in ∆ we find the second term is bounded by

O(1) sup
å:jåj=2

z2∆

j] åû(z)j � O(1)kûk∆Ò2Òõ(31)

by a Sobolev inequality. Thus the bound holds for jãj = 1. For jãj = 0 we again use (29).
Now the first term is bounded by

kök∆nYkûk∆nY � O(1)kûk∆nY(32)

The second term is bounded by

O(1) sup
å:jåj=1

z2∆

j] åû(z)j � O(1)
�kûk∆nY + kûk∆Ò2Òõ

�
(33)

by the first result and the desired bound follows.

2.5. Norms. We introduce the final ingredient, the derivative parameter h Ù 0, and
construct norms on K = K(XÒ û). Our preferred choice is

kK(X)kGÒh =
X

n

hn

n!
kKn(X)kG

kKkGÒhÒΓ =



kK(Ð)kGÒh





Γ
(34)

However we sometimes want to change the order and take

kKnkGÒΓ =



kKn(Ð)kG





Γ

kKkGÒΓÒh =
X

n

hn

n!
kKnkGÒΓ (35)

There is also a limiting case of the norms kKkGÒΓÒh in which G�1 is concentrated at û = 0.
These are called kernel norms and are defined by

jKn(XÒ 0)j =
X
∆ðn

kKn(XÒ 0)k∆̃ðn

jKjhÒΓ =



X

n

hn

n!
jKn(ÐÒ 0)j




Γ
(36)

jKjΓÒh =
X

n

hn

n!




jKn(ÐÒ 0)j



Γ


Let G0(ãÒXÒ û) = exp(ã RX jûj2). Then G0(ã)G(ã) is a regulator and we have
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LEMMA 5. Suppose kKkG0(1)G(1)ÒhÒΓ Ú 1. Then

jKjhÒΓ = lim
ã!1

kKkG0(ã)G(ã)ÒhÒΓ(37)

and similarly for jKjΓÒh.

PROOF. We show that

lim
ã!1

sup
û
kKn(XÒ û)k∆̃ðn G0(ãÒXÒ û)�1G(ãÒXÒ û)�1 = kKn(XÒ 0)k∆̃ðn(38)

assuming that

C = sup
û
kKn(XÒ û)k∆̃ðn G0(1ÒXÒ û)�1G(1ÒXÒ û)�1 Ú 1(39)

The supremum is greater than or equal to the value at zero which is kKn(XÒ 0)k∆̃ðn .
We claim that for ã sufficiently large the supremum is taken on the set kûkCr � ã�1Û4.
To see this note that

kKn(XÒ û)k∆̃ðn G0(ãÒXÒ û)�1G(ãÒXÒ û)�1 � CG0(ã � 1ÒXÒ û)�1G(ã � 1ÒXÒ û)�1

� C exp
��O(1)(ã � 1)kûk2

XÒ0Òõ

�
(40)

� C exp
��O(1)(ã � 1)kûk2

Cr

�
Here O(1) depends on X, and we have used Lemma 4 and a Sobolev inequality. For
kûkCr ½ ã�1Û4 this goes to zero as ã ! 1 and hence is smaller than kKn(XÒ 0)k∆̃ðn for
ã sufficiently large. Hence the claim.

Having established the claim, it now suffices to prove the lemma with the supremum
taken over kûkCr � ã�1Û4. However we have

kKn(XÒ 0)k∆̃ðn � sup
kûkCr�ã�1Û4

kKn(XÒ û)k∆̃ðn G0(ãÒXÒ û)�1G(ãÒXÒ û)�1

� sup
kûkCr�ã�1Û4

kKn(XÒ û)k∆̃ðn (41)

The right end of this string of inequalities converges to the left end by the continuity of
the function at û = 0. Hence the result.

In the case where K(XÒ û) is invariant under translations X ! X + a, û(x) ! û(x� a)
by lattice vectors a we have,

kKkGÒΓÒh = kKkGÒhÒΓ; jKjhÒΓ = jKjΓÒh(42)

Otherwise there is

LEMMA 6. For any h0 Ú h

kKkGÒh0ÒΓ � kKkGÒΓÒh0 �
 

1 � h0

h

!�1

kKkGÒhÒΓ

together with an analogous result for the kernel norms.
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PROOF. The first inequality is easy. For the second let jn(∆) =
P

X¦∆ Γ(X)kKn(X)kG

kKkGÒΓÒh0 =
X

n

h0n

n!
sup

∆
jn(∆) � �X

n

h0n

hn

�
sup
∆Òn

hn

n!
jn(∆)

�
 

1 � h0

h

!�1

sup
∆

X
n

hn

n!
jn(∆) =

 
1 � h0

h

!�1

kKkGÒhÒΓ 

The bound for the kernel norm is a corollary by (37).
Property G2 implies the following lemma.

LEMMA 7. For all disjoint polymers X, Y

kKn(X)K0
m(Y)kG � kKn(X)kGkK0

m(Y)kG

kK(X)K0(Y)kGÒh � kK(X)kGÒhkK0(Y)kGÒh(43)

where G is evaluated on X [ Y on the left side. If X, Y are permitted to intersect then

kKn(X)K0
m(Y)kG1G2 � kKn(X)kG1kK0

m(Y)kG2

kK(X)K0(Y)kG1G2Òh � kK(X)kG1ÒhkK0(Y)kG2 Òh(44)

jK(X)K0(Y)jh � jK(X)jhjK0(Y)jh

3. Bounds on densities of the form e�V(û). An appropriate illustration of all of the
preceding formulation is to analyze densities of the form

Z(ΛÒ û) = e�V(ΛÒ û) =
�
Exp (tue�V)

�
(ΛÒ û)(45)

for some specific potential V. This is the usual starting point of the renormalization group
in quantum field theory, and is moreover, in most elementary examples, the form of the
leading approximation to the flow of the RG.

We shall give a bound on ke�V(X)kGÒh for the general û4 potential in d-dimensions:

V(X) =
Z

Λ

hï : û4 : +ê1 : (]û)2 : +ê2 : û(�∆)û : +ñ : û2 :
i

dx(46)

and the regulator G = G(î) = G(îÒXÒ û) defined in Section 2.4. Since we have an
ultraviolet cutoff this is not a deep result. The proof we present here is a slight variation
on the proof in [BDH95].

In fact we prove a stronger bound with G(î)G�1
0 (î0) where

G0(î0ÒXÒ û) = exp
�î0kûk2

X

�
(47)

and then use
ke�V(X)kG(î)Òh � ke�V(X)kG(î)G�1

0 (î0)Òh(48)

The G�1
0 means that the norm remembers the stabilizing effect of û4 at large û.
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The bound is proved under the following hypotheses. Re(ï)h4 is positive and bounded
by a sufficiently small constant, and Im(ï)ÛRe(ï) is bounded by a constant. Furthermore
we assume

jñjh2 � Re(ï)h4Ò jêjh2 � Re(ï)h4Ò î0h2 � Re(ï)h4(49)

where jêj = max(ê1Ò ê2) and finally that h�2v(0), h�2] 2v(0), h�2î�1, h�2î�1
0 are all

bounded by constants. In all the above, constants only depend on the dimension d.

THEOREM 1. Under the above hypotheses for any polymer X:

ke�V(X)kG(î)G�1
0 (î0)Òh � 2jXj; je�V(X)jh � 2jXj(50)

If X is a subset of a unit block ∆, then

ke�V(X)kG(îÒ∆)G�1
0 (î0Ò∆)Òh � 2; je�V(X)jh � 2(51)

REMARK. The theorem also holds if the coupling constants are moved inside the
integrals and are permitted to have x dependence but are bounded as described above.

PROOF. We first prove the result when X is a single block ∆ with V(û) = V(∆Ò û). Let
fðn = ( f1Ò    Ò fn) be C r(∆̄) functions with norm one. We compute the derivatives of e�V

by
hn

n!
(e�V)n(û; fðn) =

hn

n!

X
ô

(�1)jôj
Y

j
Vnj (û; fðôj )e�V(û)

Here ô = fôjg is any partition of 1Ò    Ò n and nj = jôjj, and fðôj denotes the set of
functions fi with i 2 ôj. We use jVnj (û; fðôj )j � kVnj (û)k. Furthermore classify the
partitions by the number of elements r and order the elements in the partition which
overcounts by a factor of r!. Finally use the fact that there are n!Ûn1!    nr! ordered
partitions with given nj. This yields

hn

n!
k(e�V(û))nk �X

r

1
r!

X
n

Y
j=1ÒÒr

"
hnj

nj!
kVnj (û)k

#
e�Re(V(û))

Dropping the constraint
P

j nj = n gives

hn

n!
k(e�V(û))nk � exp

�
�Re

�
V(û)

�
+
X
n½1

hn

n!
kVn(û)k

�


Now we consider monomials in Vn separately. If q(û) = ûm, then

hn



�Z

∆
q(û) dx

�
n




 � hn
Z

∆
q(n)(jûj) dx = hm

Z
∆

q(n)(jûjÛh) dx(52)

Since :û4:v = û4 � 6v(0)û2 + 3v(0)2, we apply the calculation to each term and obtain

� Re(ï)
Z

∆
:û4:v +

X
n½1

hn

n!






�
ï Z

∆
û4:v

�
n





 � �Re(ï)h4
Z

∆
p(h�1jûj)(53)
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where p(t) = t4+ terms of lower degree in t. The coefficients of lower order terms
are of order one because h�2

0 v(0) � 1. Clearly this is bounded above by O
�
Re(ï)h4

�
.

Furthermore, since jñjh2 � Re(ï)h4, the term
R
:û2:v can be included without affecting

this upper bound. In the same way we can include a term like î0kûk2
∆ from G0. For the

W = ê1
Z

: (]û)2 : +ê2
Z

: û(�∆)û :

term in V, bounds such as

h





�Z

∆
(]û)2 dx

�
1





 � 2h2
Z

∆

X
i
j]iûjh�1(54)

together with jêjh2 Ú Re(ï)h4 assure us that

� W(û) +
X
n½1

hn

n!
kWn(û)k � O

�
Re(ïh4)

�
(1 + kûk2

∆Ò0ÒõÛh2)(55)

We estimate k]ûk2
∆ using Lemma 4, and estimate h�2kûk2

∆ � O(1)î0kûk2
∆ as before to

obtain

� Re
�
V(û)

�
+
X
n½1

hn

n!
kVn(û)k � O

�
Re(ï)h4

�
(1 + kûk2

∆Ò2ÒõÛh2)(56)

In the second factor on the right hand side, replace h�2 by î and bound it by G. From all
the above it follows that

hn

n!
sup
û
k(e�V(û))nkG�1(û)G0(û) � exp

�
O
�
Re(ï)h4

��(57)

This argument was valid for arbitrary large h. Therefore we can replace h by 4ah with
a ½ 1 and dominate the norm on ∆̃ðn by the full norm to conclude

(ah)n

n!
sup
û
k(e�V(û))nk∆̃ðnG�1(û)G0(û) � 4�n exp

�
O
�
Re(ï)h4

��(58)

Since the ∆̃ðn norm vanishes unless every block neighborhood in ∆̃ðn intersects ∆, and
since there are a = 3d tilde blocks that intersect ∆, we also have

hn

n!
k(e�V(û))nkGG�1

0
� (ah)n

n!
sup
û
k(e�V(û))n(û)kG�1(û)G0(û)(59)

We combine these and take the parameters sufficiently small, so that the sum over n is
bounded by 2 as required.

In the general case, where X is no longer a single block, we write

e�V(X) =
Y

∆2X
e�V(∆)

By the multiplicative property (43),

ke�V(X)kGG�1
0 Òh �

Y
∆2X

ke�V(∆)kGG�1
0 Òh � 2jXj
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The bound for the kernel norm is a corollary by (37), taking î0 = �ã and î = ã and
then the limit ã ! 1.

We now estimate the norms of certain classes of functionals which will arise later.
P(XÒ û) is said to be a polynomial of degree r if derivatives of higher order than r vanish.

LEMMA 8. Suppose that G = G(îÒXÒ û) is as defined in (2.4), î = O(ï1Û2) and
h = O(ï�1Û4). For any polynomial P of degree r there is a constant O(1) (depending on
r) such that

kPe�VkGÒhÒΓ � O(1)jPjhÒΓ1 (60)

PROOF. Let G0 = G0(îÒXÒ û) as above. Then we claim that

kP(X)kGG0Òh � O(1)jP(X)jh(61)

To prove this suppose we are given ∆ðn. Let fðn be functions with support in ∆̃ðn and
with k fjkC r(X) � 1. Expand Pn(XÒ û; fðn) in powers of û

Pn(XÒ û; fðn) =
rX

k=n
1Û(k � n)! Pk(XÒ 0; fðnÒ ûðk�n)

Localize û using the partition of unity ü∆ introduced in Section 2.3. Then we have

kPn(XÒ û)k∆̃ðn �
rX

k=n
1Û(k � n)!

X
∆ðk�n

kPk(XÒ 0)k∆̃ðkk(ü∆û)ðk�n)kC r(X)

The û term is bounded using Lemma 4 to obtain

kûkC r(X) �
q

O(1)rÛî (GG0)1Ûr(XÒ û)

and this leads to

kPn(X)kGG0 �
rX

k=n
1Û(k � n)! jPk(XÒ 0)j

�q
O(1)rÛî

�k�n 

We multiply by hnÛn!, sum over n and use the binomial theorem with the result

kP(X)kGG0Òh � jP(X)j
h+
p

O(1)rÛî

�
�

1 +
q

O(1)rÛîh2
�r jP(X)jh

which proves (61).
By Lemma 7, Theorem 1 and (61) we have

kPe�V(X)kG2Òh � kP(X)kGG0Òhke�V(X)kGG�1
0 Òh � O(1)jP(X)jh2jXj(62)

The result follows by taking the k kΓ norm of both sides, because G2 = G(2î) and
2î = O(ï1Û2).
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4. The Renormalization Group Map. In this section we compute and estimate
changes in the polymer activities under RG transformations. Applying the RG transfor-
mation to a density Z(ΛÒ û) = (Exp A)(ΛÒ û) expressed in polymer activities A leads to
a new density

Z 0(Λ0Ò û) = const (ñC Ł Exp A)(ΛÒ ûL�1)

on a new torus Λ0 where Λ = LΛ0. We want to express this new density in the form
Z 0(Λ0Ò û) = const (Exp A0)(Λ0Ò û) with new polymer activities A0. We treat this problem
in three steps: A fluctuation step which is the convolution with ñC, an extraction step
which is a rearrangement of the polymer expansion and, thirdly, the scaling step.

In the models of interest, it will be necessary to know more about A than just its norm:
it will be necessary to “guess” an approximate form of A, and to estimate the norm of the
error. The leading order guess is the form A = tue�V + K where tu is given by (8), V is of
the form (3) for some parameter values, and the error K is suitably small. For each of the
three steps making up the RG map, we will state and prove a theorem which maps an A of
this type to a new A0 of the same form. More refined guesses can be expressed as a further
breakdown of the form K = Qe�V + R where Qe�V are some leading contributions to K
and R is very small. Expressed another way, we have A = B + R where B = (tu + Q)e�V

describes the leading form of A. We then want to write the new activities in the form
A0 = B0 + R0 with B0 known and R0 very small.

Estimates on polymer activities will be given in terms of the norms k Ð kGÒΓÒhÒ k Ð kGÒhÒΓ

introduced in Section 2. Unless otherwise noted the (GÒΓÒ h) will be of the general form
discussed in that section.

4.1. Fluctuation. The fluctuation step is the map induced on polymer activities by
Gaussian convolution with respect to a measure with covariance C = C(xÒ y). In applica-
tions, the covariance C is usually a smooth Euclidean or toral invariant function rapidly
decaying in the separation jx � yj. The technical hypotheses on C needed to control the
fluctuation step turns out to be smoothness and finiteness of the following norm:

kCkí = 3d sup
∆1

X
∆2

C(∆1Ò∆2)í�d(∆1Ò∆2)
�

(63)

C(∆1Ò∆2) = kü∆1Cü∆2kC 2r(64)

and í(s) is the function given by (12). ü∆(x) is the “bump” function chosen in Section 2.
For Theorem 3 and Theorem 4 we also require the condition on C:

sup
0�jãj�r+dÛ2+1

j(] ã] ãC)(xÒ x)j � O(1)(65)

The main fluctuation theorem refers to norms which involve G(tÒXÒ û), a one-
parameter family of regulators G(tÒXÒ û) that satisfy G3 in addition to the basic properties
G1 and G2:
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THEOREM 2. For any polymer activity A and any t 2 [0Ò 1], there is a unique polymer
activity A(t) so that

ñt Ł (Exp A) = Exp
�
A(t)

�
(66)

where ñt = ñtC. The map F̄t(A) � A(t) is analytic. If h0 Ú h and

kAkG(0)ÒΓÒh � D � (h � h0)2

16kCkí(67)

then
kF̄t(A)kG(t)ÒΓÒh0 � kAkG(0)ÒΓÒh(68)

REMARK. A consequence of this theorem is that if A(s) is any polymer activity with
kA(s)kG(s)ÒΓÒh � D, then for 0 � s � t,

kA(t)kG(t)ÒΓÒh0 � kA(s)kG(s)ÒΓÒh

because the theorem says

kF̄t�s(Ã)kG̃(t�s)ÒΓÒh0 � kÃkG̃(0)ÒΓÒh

when Ã = A(s) and G̃(t) = G(s + t).

PROOF. We define A(t) by A(t) = Log
�ñt ŁExp (A)

�
where the Log is the inverse to

the Exp and is given by a terminating series1. Then (66) is satisfied. To estimate A(t) we
derive an integral equation for it.

An essential characteristic of Gaussian convolution, discussed in detail in the Ap-
pendix, is that for any sufficiently smooth functional F(û), the function t ! Ft � ñtC ŁF
solves the functional heat equation

]

] t
Ft = ∆CFt

with initial condition F0 = F. The functional Laplacian is formally

∆CF(û) =
1
2

Z
F2(û; xÒ y)C(xÒ y) dx dy(69)

As the precise definition we take

∆CF(û) =
1
2

Z
F2(û; êÒ ê) dñC (ê)(70)

Now differentiating (66) and using the definition of the Laplacian we have

] A(t)
] t

Ž Exp
�
A(tÒ û)

�
= ∆CA(tÒ û) Ž Exp

�
A(tÒ û)

�

+
1
2

Z
dñ1(ê)A1(tÒ û; ê) Ž A1(tÒ û; ê) Ž Exp

�
A(tÒ û)

�

1 Log(A) = (A � I ) � 1
2 (A� I ) Ž (A� I ) + Ð Ð Ð

Domain: A(;) = 1
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We cancel out the Exp
�
A(tÒ û)

�
and obtain

]

] t
A(tÒ û) = ∆CA(tÒ û) +

1
2

BC(AÒA)(tÒ û)(71)

where the bilinear operator on activities BC is defined by

BC(AÒB)(û) =
Z

dñ1(ê)A1(û; ê) Ž B1(û; ê)(72)

This equation can be converted to an integral equation by convolving and integrating:

Z t

0
dsñt�s Ł ]

] s
A(s) =

Z t

0
dsñt�s Ł ∆CA(s)

+
1
2

Z t

0
dsñt�s Ł BC

�
A(s)ÒA(s)

�
The integrands in the first two terms combine to give a total derivative in s, so this is the
same as

A(t) = ñt Ł A(0) +
1
2

Z t

0
dsñt�s Ł BC

�
A(s)ÒA(s)

�(73)

This is the desired integral equation satisfied by A(t).
The next step is to take norms in this equation, which in a manner reminiscent of

the proof of the Cauchy-Kowaleska existence theorem of partial differential equations,
replaces the û dependence in the integral equation by a single parameter h. Using

jñét Ł F(û)j =
þþþþZ dñét(ê)G(sÒ û + ê)G(sÒ û + ê)�1F(û + ê))

þþþþ
and jñét Ł G(sÒ û)j � G(s + étÒ û) we obtain general formulas

kñét Ł FnkG(s+ét) � kFnkG(s)(74)

kñét Ł FkG(s+ét)ÒΓÒh � kFkG(s)ÒΓÒh(75)

These enable us to take the norm k kt = k kG(t)ÒΓÒh of both sides of the integral
equation (73), and obtain

kA(t)kt � kA(0)k0 +
1
2

Z t

0
ds



BC

�
A(s)ÒA(s)

�



s
(76)

We combine this with the following lemma

LEMMA 9. For any regulator G

1
2
kBC(AÒB)kGÒΓÒh � kCkí

"
]

] h
kAkGÒΓÒh

# "
]

] h
kBkGÒΓÒh

#

together with the same bound with ] pÛ] hp applied to both sides.
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This gives an integral inequality

kA(t)kt � kA(0)k0 + kCkí
Z t

0
ds
 

]

] h
kA(s)ks

!2

together with the same bound with ] pÛ] hp applied to both sides. In this integral inequality
the û dependence of the original integral equation has been replaced by a single variable
h.

Iteration of these inequalities results in an upper bound (a “majorant” series) for
kA(t)kt which is the unique formal power series in tÒ h solution to the corresponding
integral equality. This majorant series solves the initial value problem

] k(tÒ h)
] t

= kCkí
 

] k(tÒ h)
] h

!2

; k(0Ò h) = kAkG(0)ÒΓÒh

By the action principle applied to this Hamilton-Jacobi equation there is a solution which
is analytic in t, h near tÒ h = 0. By uniqueness the majorant series must be the power series
in tÒ h that represents this solution and therefore the majorant series is convergent for t,
h sufficiently small depending on the initial data kAkG(0)ÒΓÒh. The bounds in Theorem 2
are obtained by exploiting explicit solutions for this Hamilton-Jacobi equation obtained
by the action principle. The details are in Lemma 8.4 in [BY90].

PROOF (LEMMA 9). For the derivative in the direction fðn = ( f1Ò    Ò fn) we have

�
BC(AÒB)

�
n
(û; fðn) =

X
õ²f1ÒÒng

BC

�
Ajõj(û; fðõ)ÒBjõc j(û; fðõ

c
)
�(77)

This can be written as

X
õ

X
∆xÒ∆y

Z
dñC(ê)A1+jõj(û; fðõÒ ü∆xê) Ž B1+jõcj(û; fðõ

c Ò ü∆yê)(78)

After taking the supremum over functions fðn supported in ∆̃ðn with unit C r norms one
finds




�BC(AÒB)
�

n
(û)





∆̃ðn �

X
õ

X
∆xÒ∆y

C(∆xÒ∆y)kA1+jõj(û)k∆̃xÒ∆̃ðõ Ž kB1+jõcj(û)k∆̃yÒ∆̃ðõc (79)

(We digress to explain the justification of this step. Let L, M be linear functionals on
C r defined by L(ê) = A1+jõj(û; fðõÒ ê) and M(ê) = B1+jõcj(û; fðõ

c Ò ê). We need to show that

Z
dñC(ê)L(ü∆x ê)M(ü∆yê) � kLk∆̃x

kMk∆̃y
kü∆xCü∆ykC 2r (80)

To see this we use the fact that any continuous linear functional L on C r(Λ̄) can be written
in the form

L(f ) =
X
jãj�r

Z
] ãf dñã
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where each ñã is a bounded Borel measure on Λ. The idea of the proof can be found in
[SR72, p. 176]. Actually they consider the case Λ = Rn, but the case Λ= torus which
we quote here is even easier. Given this representation it is straightforward to show for
any function f (xÒ y) in C 2r(Λ̄ ð Λ̄) that L

�
f (ÐÒ y)

�
which we denote Lx

�
f (xÒ y)

�
is a C r

function of y and that ] å
y Lx

�
f (xÒ y)

�
= Lx

�
] å

y f (xÒ y)
�
. Thus expressions like My

�
Lxf (xÒ y)

�
are defined. Furthermore one can show that

Z
dñC(ê)L(ü∆x ê)M(ü∆yê) = My

�
Lx

�ü∆x C(xÒ y)ü∆y

��(81)

The estimate now follows by dominating this expression by the kMk norm and then the
kLk norm.)

Returning to the main proof we evaluate on Z, take the supremum over û weighted
by G�1, and sum over the n-tuple of cubes ∆̃ðn.



�BC(AÒB)

�
n
(Z)





G

� X
õ

X
∆̃ðn

X
XÒ∆xÒYÒ∆y

C(∆xÒ∆y) kA1+jõj(X)k∆̃xÒ∆̃ðõÒG kB1+jõcj(Y)k∆̃y Ò∆̃ðõc ÒG(82)

Here kAnk∆̃ðnÒG = supû kAnk∆̃ðnG(û)�1 still needs the sum over ∆̃ðn to become the G-
norm. To obtain this bound we needed the property G2 and the fact that the sum is over
disjoint sets XÒY with X [ Y = Z. Note that X, ∆x must be nearest neighbors and so must
Y, ∆y.

Shortly we want to sum over Z containing a fixed ∆. This forces one of X or Y to
contain ∆. By including a factor of two we can restrict to the case where it is X which
contains ∆. (We drop the other constraint on X). Keep the sum over ∆y but use

X
∆̃õc

kB1+jõcj(Y)k∆̃y Ò∆̃ðõc ÒG � kB1+jõcj(Y)kG

and obtain

kBC (AÒB)n (Z)kG � 2
X
õ

X
∆̃õ

X
XÒ∆xÒYÒ∆y

C(∆xÒ∆y)kA1+jõj(X)k∆̃xÒ∆̃ðõÒGkB1+jõcj(Y)kG

Now multiply by Γ(Z) and sum over Z ¦ ∆. On the right hand side the sum over Z
combined with the sum over X, Y constrained to have union Z is the same as summing
over X, Y without a constraint on their union. On the right hand side we use the property
Γ(Z) � Γ(X)í�d(∆xÒ∆y)

�
Γ(Y). Since Y must contain a block that is a nearest neighbor to

∆y, and since ∆y has 3d neighbors including itself, the sum over Y gives 3dkB1+jõcjkGÒΓ.
Thus

X
Z¦∆

kBC(AÒB)n(Z)kGΓ(Z) � 2
X
õ

X
X¦∆

X
∆̃õ

X
∆xÒ∆y

3dC(∆xÒ∆y)í�d(∆xÒ∆y)
�
Γ(X)

ð kA1+jõj(X)k∆̃xÒ∆̃ðõÒGkB1+jõcjkGÒΓ

� 2
X
õ
kCkíkA1+jõjkGÒΓkB1+jõcjkGÒΓ
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In the second step we have used that the sum over ∆y gives kCkí and then identified
kA1+jõjkGÒΓ. Taking the supremum over ∆ gives the Γ-norm.

Now note that the sum over õ is the same as summing over l = jõj with a factor of “n
choose l” and so

kBC(AÒB)nkGÒΓ � 2
X

lÒm:l+m=n

n!
l! m!

kCkíkA1+lkGÒΓkB1+mkGÒΓ(83)

We multiply by hnÛn! and sum over n

kBC(AÒB)kGÒΓÒh � 2kCkí
"

]

] h
kAkGÒΓÒh

# "
]

] h
kBkGÒΓÒh

#


A similar conclusion giving ] pÛ] hp of this inequality follows if we multiply (83) by
hn�pÛ(n � p)! and sum over n ½ p.

For the more refined versions of Theorem 2 which now follow, we will need some
ideas from its proof. Since F̄t(A) = A(t) is the evolution under the fluctuation flow
equation (71), we have

E
�
A(t)

� � ]

] t
A(t) � ∆CA(t) � 1

2
BC

�
A(t)ÒA(t)

�
= 0(84)

If we are given some approximate evolution t ! B(t), we can measure how well it
matches an exact evolution by the error E

�
B(t)

�
. The following theorem tracks the

growth of the remainder R(t) under the fluctuation step A ! A(t), when A(t) = B(t)+R(t)
with B(t) known and R(0) small.

THEOREM 3. Let B(t) be a continuously differentiable function of t 2 [0Ò 1] and define
R(t) = F̄t

�
B(0) + R(0)

�� B(t) so that

ñt Ł Exp (B + R) = Exp
�
B(t) + R(t)

�(85)

Suppose h Ù h0 and kR(0)kG(0)ÒΓÒh, sup0�t�1 kB(t)kG(t)ÒΓÒh � 1
4 D where D =

(h � h0)2Û(16kCkí) as in (67). Then
1.

kR(t)kG(t)ÒΓÒh0 � 2
�
kR(0)kG(0)ÒΓÒh + t sup

s�t




E�B(s)
�




G(s)ÒΓÒh

�
(86)

2. If we suppose further that kR(0)kG(0)ÒΓÒh, sup0�t�1 kB(t)kG(t)ÒΓÒh � h0Û(2kCkí) and
h0 ½ 2, then for any M ½ 0,

jR(t)jΓ�1 Ò1Û2 � O(1)
�jR(0)jΓ�1 Ò1 + (h0)�MkR(0)kG(0)ÒΓÒh

�
+ O(1) sup

s�t

�þþþE�B(s)
�þþþ

Γ�1Ò1
+ (h0)�M




E�B(s)
�




G(s)ÒΓÒh

�
(87)

where O(1) depends on M.
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PROOF. Let us introduce notation for derivatives of F̄ evaluated at A, namely:

(F̄ )n(A; B1Ò    ÒBn)) =
d

då1
Ð Ð Ð d

dån
F̄ (A + å1B1 +    + ånBn)

þþþ
å1=ån=0

(88)

We claim that

R(t) =
Z 1

0
(F̄t)1

�
B(0) + sR(0); R(0)

�
ds � Z t

0
(F̄t�s)1

�
B(s); E(s)

�
ds(89)

This follows from

R(t) = A(t) � B(t)

=
h
F̄t

�
B(0) + R(0)

� � F̄t

�
B(0)

�i
+
h
F̄t

�
B(0)

�� B(t)
i

=
Z 1

0
(F̄t)1

�
B(0) + sR(0); R(0)

�
ds � Z t

0

d
ds

F̄t�s

�
B(s)

�
ds

and

d
ds

F̄t�s

�
B(s)

�
= � d

dr
F̄t�s+r

�
B(s � r)

� þþþ
r=0

= � d
dr

�
F̄t�s

�
F̄r

�
B(s)

��
+ F̄t�s

�
B(s � r)

�½ þþþþ
r=0

= (F̄t�s)1

�
B(s); E(s)

�

because E(s) = (�dÛdr)F̄r

�
B(s)

�
+ ] B(s)Û] s.

Theorem 3 follows from (89) in conjunction with the following theorem on the
linearized fluctuation operator (part (2) taken with ë = 1Ò ë0 = 1Û2).

THEOREM 4.
1. Suppose h Ù h0 and kAkG(0)ÒΓÒh � 1

2 D where D = (h � h0)2Û(16kCkí) as in
Theorem 2. Then for 0 � s � t � 1

k(F̄t�s)1(A; B)kG(t)ÒΓÒh0 � 2kBkG(s)ÒΓÒh(90)

2. Suppose in addition we have ëÒ ë0 so that 0 Ú ë � ë0 � 1 and h0 � ë0 ½ 1. Also
suppose that G(tÒXÒ û = 0) � 2jXj for all t 2 [0Ò 1] and that (h0�ë0)�1kAkG(0)ÒΓÒh �
kCk�1

í . Then for any M ½ 0 and for 0 � s � t � 1

j(F̄t�s)1(A; B)jΓ�1 Òë0 � O(1)
h
(ë � ë0)�2MjBjΓ�1 Òë + (h0 � ë0)�MkBkG(s)ÒΓÒh

i
(91)

where O(1) depends on M.

REMARK. The idea is that kBkG(s)ÒΓÒh enters the kernel estimates with a large negative
power of h to reduce its contribution.
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PROOF. We give the proofs for s = 0. The remark below Theorem 2 shows why this
is sufficient.

(1) Let B(t) = (F̄t)1(A; B). The bound is a consequence of the Cauchy integral formula:

B(t) = (2ôi)�1
I då
å2

F̄t(A + åB)

We integrate over the contour jåj = 1
2 DkBk�1

G(0)ÒΓÒh and use kF̄t(A + åB)kG(t)ÒΓÒh0 �
kA + åBkG(0)ÒΓÒh � DÛ2 + DÛ2 which follows by Theorem 2.

(2) The difficulty here is that there is no straightforward version of Theorem 2 for
the kernel norm. Instead we work directly from the flow equation (71) for A(t) which in
integral form says:

A(t) = A +
Z t

0
ds∆CA(s) +

1
2

Z t

0
dsBC

�
A(s)ÒA(s)

�(92)

Differentiate with respect to è when A ! A + èB and obtain the linearized equation:

B(t) = B +
Z t

0
ds∆CB(s) +

Z t

0
dsBC

�
A(s)ÒB(s)

�(93)

We take seminorms j j(p)
ΓÒë = (dÛdë)pj jΓÒë of this equation. To bound the second term

note that by (65)

j(∆CB)(XÒ 0)j � X
∆xÒ∆y

kB2(XÒ 0)k∆̃xð∆̃y

Z kü∆xêkrkü∆yêkr dñC(ê)

� O(1)jB2(XÒ 0)j
because the k kr norm is bounded by a Sobolev norm which is integrable. Similar
estimates hold for higher derivatives and this leads to

j∆CBj(p)
ΓÒë � O(1)jBj(p+2)

ΓÒë (94)

The third term is bounded by Lemma 9, provided we use the singular G concentrated at
0. Altogether we have the bound

jB(t)j(p)
Γ�1 Òë0

� jBj(p)
Γ�1 Òë0

+ O(1)
Z t

0
dsjB(s)j(p+2)

Γ�1 Òë0

+ 2kCkí
Z t

0
ds

pX
n=0

p!
(p � n)! n!

jA(s)j(n+1)
Γ�1 Òë0

jB(s)j(p+1�n)
Γ�1 Òë0

(95)

By use of a Cauchy bound one finds

jA(s)j(n+1)
Γ�1 Òë0

� (n + 1)! (h0 � ë0)�n�1jA(s)jΓ�1 Òh0(96)

and we combine this with the bound

jA(s)jΓ�1 Òh0 � kA(s)kG(s)ÒΓÒh0 � kAkG(0)ÒΓÒh(97)
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and the condition kCkíkAkG(0)ÒΓÒh � (h0 � ë0). This leads to the inequality (with new
constants)

jB(t)j(p)
Γ�1 Òë0

� jBj(p)
Γ�1 Òë0

+ O(1)
Z t

0
ds jB(s)j(p+2)

Γ�1 Òë0

+ O(1)
pX

n=0

p! (n + 1)
(p � n)!

Z t

0
ds(h0 � ë0)�njB(s)j(p+1�n)

Γ�1 Òë0
(98)

Now we claim that for all p = 0Ò 1Ò    and all M = 0Ò 1Ò    there exists C(p)
M independent

of L so that

jB(t)j(p)
Γ�1 Òë0 � C(p)

M

h
(ë � ë0)�p�2MjBjΓ�1 Òë + (h0 � ë0)�p�MkBkG(0)ÒΓÒh

i
The theorem is the case p = 0.

The proof of the claim is by induction on M. The case M = 0 is true since as in (96), (97)

jB(t)j(p)
Γ�1 Òë0

� p! (h0 � ë0)�pkBkG(0)ÒΓÒh

Now suppose it is true for M. Inserting the bound in (98) we find:

jB(t)j(p)
Γ�1 Òë0

� jBj(p)
Γ�1 Òë0

+ O(1)C(p+2)
M

ð h
(ë � ë0)�p�2�2M jBjΓ�1 Òë + (h0 � ë0)�p�2�MkBkG(0)ÒΓÒh

i

+ O(1)
pX

n=0

p! (n + 1)
(p � n)!

Z 1

0
ds(h0 � ë0)�nC(p+1�n)

M(99)

ð h
(ë � ë0)n�p�1�2M jBjΓ�1 Òë + (h0 � ë0)n�p�1�MkBkG(0)ÒΓÒh

i
From this we identify the bound for M + 1. The first term is bounded by

jBj(p)
Γ�1 Òë0

� p! (ë � ë0)�pjBjΓ�1 Òë

which suffices since ë � ë0 Ú 1. The second term has the correct form once we use
h0 � ë0 ½ 1. The third term also has the correct form since

(h0 � ë0)�n
�
(ë � ë0)n+1 + (h0 � ë0)n

� � 2

which follows from ë � ë0 Ú 1 and h0 Ù ë.

4.2. Extraction. Now suppose that the polymer activity has the form A = tue�V + K.
The extraction step consists in removing terms F from the K’s and compensating by
shifts in the potential V. This will be used to put the relevant parts of K in V.

We assume F satisfies the following localization property: F(XÒ û) is defined on
polymers and has the decomposition

F(XÒ û) =
X
∆²X

F(XÒ∆Ò û)(100)
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where ∆ is summed over open blocks, and F(XÒ∆Ò û) has the û dependence localized in
∆, i.e., F(XÒ∆Ò û) is a functional on C r(∆̄).

For example we might have F(XÒ û) = ã(X)
R

X P
�û(x)

�
dx in which case

F(XÒ∆Ò û) = ã(X)
Z

∆
P
�û(x)

�
dx(101)

However we also want to consider the more general case

F(XÒ∆Ò û) =
Z

∆
ã(XÒ∆Ò x)P

�û(x)
�

dx(102)

For the estimates we also assume the following stability of V relative to the perturba-
tion F: there are positive numbers f (X) independent of û and a regulator G such that for
all ∆ 


exp

n�V(∆)� X
X¦∆

z(X)F(XÒ∆)
o




GÒh
� 2(103)

for all complex z(X) with jz(X)j f (X) � 2.

THEOREM 5. If K is a polymer activity and F satisfies the localization assumption
(100) then there is a new polymer activity E(KÒF) such that

Exp (tue�V + K)(Λ) = Exp
�tue�V(F) + E(KÒF)

�
(Λ)Ò(104)

where V(F) is defined on each cell ∆ by�
V(F)

�
(∆) = V(∆)� X

Y¦∆
F(YÒ∆)(105)

The linearization E1 of E in K and F is

E1(KÒF) = K � Fe�V(106)

Suppose in addition the stability assumption (103) holds and k fkΓ3 Ò and kKkGÒhÒΓ1 are
sufficiently small. Then E is jointly analytic in K, F and there is O(1) such that

kE(KÒF)kGÒhÒΓ � O(1)(kKkGÒhÒΓ1 + k fkΓ3 );

jE(KÒF)jhÒΓ � O(1)(jKjhÒΓ1 + k fkΓ3 )(107)

REMARK. The proof is postponed. Note the distinguished role of Λ in this theorem.
To illustrate how we are going to use this theorem suppose that V(X) = ï RX : û4 : and
F(XÒ∆) = ã(X)

R
∆ : û4 : where ã(X) vanishes on polymers X with three or more blocks.

Then the stability bound holds by Theorem 1 provided
X
X¦∆

jz(X)j jã(X)j � ïÛ2(108)

So we could take f (X) = Cjí(X)j jã(X)jï�1 with C = 4
P

X¦∆ í�1(X), which is finite
for X summed over all polymers with jXj � 2. The smallness condition is now that
k fkΓ3 = Cï�1kíãkΓ3 be sufficiently small.

The next theorem is a variation on these results in which a constant term F0(X)
(independent of û) is also removed from K and factored out front.
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THEOREM 6. If K is a polymer activity and F0(X)ÒF1(XÒ û) satisfy the localization
hypothesis (100)2, then there exists a new polymer activity E(KÒF0ÒF1) so that:

Exp (tue�V + K)(Λ) = e
P

X F0(X)Exp
�tue�V(F1) + E(KÒF0ÒF1)

�
(Λ)Ò(109)

where the linearization E1 of E in KÒF0ÒF1 is

E1(KÒF0ÒF1) = K � (F0 + F1)e�V(110)

If in addition F1 satisfies stability hypothesis (103), k fkΓ4 and kKkGÒhÒΓ2 are sufficiently
small, and

P
Y¦∆ jF0(XÒ∆)j � log 2 then E is jointly analytic in KÒF0ÒF1 and there is

O(1) such that

kE(KÒF0ÒF1)kGÒhÒΓ � O(1)(kKkGÒhÒΓ2 + k fkΓ4 );

jE(KÒF0ÒF1)jhÒΓ � O(1)(jKjhÒΓ2 + kfkΓ4 )(111)

PROOF. Define
Φ(X) =

Y
∆²X

e
P

Y¦∆ F0(YÒ∆)(112)

and Φ(;) = 1. Since Φ(X [ Y) = Φ(X)Φ(Y) whenever XÒY are disjoint we have with
F = F0 + F1

Exp (tue�V + K)(Λ) = Exp
�tue�V(F) + E(KÒF)

�
(Λ)

= Φ(Λ)Exp
�tuΦ�1e�V(F) + Φ�1E(KÒF)

�
(Λ)(113)

But Φ�1e�V(F) = e�V(F1) so we may define E(KÒF0ÒF1) = Φ�1E(KÒF) to obtain (109).
By the hypothesis on F0 we have Φ�1(X) � 2jXj and so

kE(KÒF0ÒF1)kGÒhÒΓ = kE(KÒF)kGÒhÒΦ�1Γ � kE(KÒF)kGÒhÒΓ1 (114)

Therefore (111) follows from (107).

COROLLARY 7. For F = (F0ÒF1) the quantity E½2(KÒF) = E(KÒF)�E1(KÒF) satis-
fies

kE½2(KÒF)kGÒhÒΓ � O(1)kKkGÒhÒΓ2k fkΓ4

jE½2(KÒF)jΓ � O(1)jKjΓ2k fkΓ4 
PROOF. See [BDH95], Corollary 2.
The proof of Theorem 5 is given after the following lemmas have established a

formula for E(KÒF).

DEFINITION 2. fXi : i = 1Ò    Ò ng is overlap connected iff the graph G is connected,
where G is the graph whose vertices are 1Ò    Ò n and whose bonds are the pairs ij such
that Xi \ Xj 6= ;.

2 For F0(X) this means that (100) holds with F0(XÒ∆Ò û) independent of û.
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Overlap connected is not the same as [Xi being connected because the polymers Xi

need not be connected. Given a polymer activity J define

J+(X) =
X

fXig!X

Y
i

J(Xi)(115)

where the sum is over overlap connected sets of distinct polymers whose union is X.

LEMMA 10. X
fXig

Y
i

J(Xi) = Exp (tu + J+)(X)Ò(116)

where the sum is over sets of distinct polymers contained in X.

PROOF. Group the fXig into disjoint overlap connected sets.

LEMMA 11. Let F be any polymer activity and let

Ω(X) =
X
Y²X

F(Y)(117)

Then
eΩ = Exp

�tu + (eF � 1)+
�(118)

PROOF. Write eΩ(X) =
Q

Y²X(eF(Y) � 1 + 1), expand the product and use Lemma 10
with J = eF � 1.

LEMMA 12. Let KÒF be any polymer activities and let

K̃(X) = K(X) � (eF � 1)+(X)e�V(X)(119)

Then
e�V Ž Exp (K) = e�V+Ω Ž Exp (K̃)(120)

with Ω as in Lemma 11.

PROOF. e�V Ž Exp (K) = Exp (tue�V + K) because V has the multiplicativity
property exp

��V(X [ Y)
�

= exp
��V(X)

�
exp

��V(Y)
�

whenever XÒY are disjoint.

Exp (tue�V + K) = Exp
�tue�V + (eF � 1)+e�V

� Ž Exp (K̃) by the definition of K̃. By

Lemma 11, Exp
�tue�V + (eF � 1)+e�V

�
= e�VExp

�tu + (eF � 1)+
�

= e�V+Ω.
Since Ω is not additive, we cannot immediately rewrite e�V+Ω Ž Exp (K̃) in the form

Exp (tue�V0
+ K̃) for some V0 = V(F). We are now going to absorb this non-additivity by

reorganizing e�V+Ω Ž Exp (K̃) into new polymers.

LEMMA 13. Let F(ZÒY) =
P

∆ F(ZÒ∆) and V0 = V(F). Then formula (104) holds with
E(KÒF) given by

E(KÒF)(W) =
X

fXigÒfZkg!W

exp
��V0(W n X)

�
Y

i
K̃(Xi)

Y
k

�
exp

��F(ZkÒZk n X)
� � 1

�
(121)

Here X = [iXi, and the sum is over collections of disjoint subsets fXig and collections
of distinct subsets fZkg so that
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1. the union over fXig and fZkg is W;
2. each Zk intersects both X and Xc = Λ n X;
3. the polymers fXigÒ fZkg are overlap connected.

PROOF. Let Xc = Λ n X. We have

Ω(Xc) =
X

Z²Xc

F(Z)

=
X

Z²Xc

X
∆²Z

F(ZÒ∆)

=
X

∆²Xc

nX
Z¦∆

� X
Z¦∆ÒZ6²Xc

o
F(ZÒ∆)

Subtract V(Xc) =
P

∆²Xc V(∆) from both sides. Recalling the definition of V0 = V(F)
in (105) we find

(V � Ω)(Xc) = V0(Xc) +
X

∆²Xc

X
Z¦∆ÒZ6²Xc

F(ZÒ∆)

= V0(Xc) +
X

Z6²XÒZ6²Xc

F(ZÒZ n X)

Therefore

e�V+Ω(Xc) = e�V0
(Xc) Ð Y

Z6²XÒZ6²Xc

e�F(ZÒZnX)

= e�V0
(Xc) Ð X

fZkg

Y
k

(e�F(ZkÒZknX) � 1)(122)

with Z 2 fZjg required to intersect X and Xc. Substitute Eqs. (122) and the definition of
Exp(K̃) into

e�V+Ω Ž Exp (K̃)(Λ) =
X

X²Λ
e�V+Ω(Xc)Exp (K̃)(X)(123)

Then group the polymers in the sum over fXig, fZkg into disjoint overlap connected sets.
One finds that e�V+Ω Ž Exp (K̃)(Λ) = Exp

�tue�V0
+ E(K)

�
(Λ) with E(K) = E(KÒF) as

claimed in the lemma.

PROOF (THEOREM 5). Now consider the bounds (107). We prove the first bound.
The second bound is a limiting case of the first in which the large field regulator G�1 is
concentrated at û = 0. Starting with (121)

E(KÒF)(W) =
X

fXigÒfZkg!W

exp
��V0(W n X)

�

Y
i

K̃(Xi)
Y
k

1
2ôi

Z dzk

zk(zk � 1)
exp

n�zkF(ZkÒZk n X)
o(124)

Here the integral is over the circles jzkj = 2Ûf (Zk). We take the norm using the multi-
plicative property and obtain

kE(KÒF)(W)kGÒh � X
fXigÒfZkg!W

Y
i
kK̃(Xi)kGÒh

Y
k

f (Zk)

sup
z




exp
n�V0(W n X) �X

k
zkF(ZkÒZk n X)

o



GÒh
(125)
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Next we bound the norm by

Y
∆²WnX




exp
n�V0(∆) �X

k
zkF(ZkÒ∆)

o



GÒh

� 2jWnXj �Y
k

2jZkj(126)

We used the stability hypothesis without concern for the difference between V and V0

because f is sufficiently small and there is a factor of 2 in the stability hypothesis. These
two points also are used in estimating the Cauchy integral as if z � 1 were z. Next we
write X

fXigÒfZkg
=
X
N

1
N! M!

X
(X1ÒÒXN)Ò(Z1ÒÒZM)

where the sum is over ordered sets, but otherwise the restrictions apply.
We multiply by Γ(W) and use Γ(W) � Q

i Γ(Xi)
Q

k Γ(Zk) which follows from the
overlap connectedness. Then sum over W with a pin, and use a spanning tree argument3

and the small norm hypotheses to obtain

kE(KÒF)kGÒhÒΓ � X
NÒM

N+M½1

(N + M)!
N! M!

�
O(1)

�N+MkK̃kN
GÒhÒΓ1

k fkM
Γ2

� O(1)(kK̃kGÒhÒΓ1 + k fkΓ2 )(127)

Recall that K̃ = K + (e�F � 1)+e�V. Since

(e�F � 1)+e�V(X) = e�V(X) X
fXig

Y
i

(e�F � 1)(Xi)

=
X
fXig

Y
i

1
2ôi

Z dzi

zi(zi � 1)
exp

n�V(X) � ziF(Xi)
o

(128)

we may use the same argument again with Γ replaced by Γ1 to prove that

kK̃kGÒhÒΓ1 � kKkGÒhÒΓ1 + O(1)k fkΓ3 (129)

The theorem follows by combining (127,129).

4.3. Scaling. The scaled field is

ûL�1(x) = L� dimûû(xÛL)(130)

where dimû is the scaling dimension of the field û. Canonically dimû = (d � 2)Û2 but
we do not restrict ourselves to this choice. Functionals scale by

KL�1(XÒ û) = K(LXÒ ûL�1 )(131)

Rescaled polymer activities S(K) = S(KÒV) are defined by the equation

Exp (tue�V + K)(LXÒ ûL�1 ) = Exp
�
(tue�V)L�1 + S(K)

�
(XÒ û)(132)

3 Described in the proof of Lemma 5.1 of [BrYa90].
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One finds the explicit formula

S(K)(ZÒ û) =
X

fXjg!LZ

exp
��V(LZ n XÒ ûL�1 )

�Y
j

K(XjÒ ûL�1 )

=
X

fXjg!LZ

exp
��VL�1 (Z n L�1XÒ û)

�Y
j

KL�1(L�1XjÒ û)(133)

Here the sum is over disjoint 1-polymers fXjgwith union X such that the L-block closures
X̄L

j are overlap connected4 and have union LZ.
We continue to assume that for all open L�1-scale polymers X ² some block ∆

k(e�V)L�1 (X)kGÒh � 2(134)

For example if G is given by equation (21) then Theorem 1 verifies the bound for a
specific choice of V.

Now define

hL = L� dimûh

a = 2dkükC r(135)

where ü(x) is the bump function which defines the partition of unity in Section 2.3.

THEOREM 8. Let pÒ q ½ 0 be non-negative integers. Let V satisfy the stability as-
sumption (134) and suppose kKkGLÒahL ÒΓq�p is sufficiently small. Then

kS(K)kGÒhÒΓq � O(1)LdkKkGLÒahLÒΓq�p

jS(K)jhÒΓq � O(1)LdjKjahL ÒΓq�p(136)

O(1) depends on qÒ p.

We also need a sharper estimate on the linearization S1 of S

S1(K)(ZÒ û) =
X

X:X̄L=LZ

(e�V)(LZ n XÒ ûL�1 )K(XÒ ûL�1 )

=
X

X:X̄L=LZ

(e�V)L�1 (Z n L�1XÒ û)KL�1 (L�1XÒ û)(137)

The new estimate needs the stronger bound for L�1 scale polymers X:

k(e�V)L�1 (X)kgÒh � 2(138)

where

g(XÒ û) = G�1
0 (î0ÒXÒ û)G(îÛ2ÒXÒ û)

= exp
h�î0kûk2

X + îÛ2k]ûk2
XÒ2Òõ

i(139)

Again, Theorem 1 proves this for a choice of V.
Next we define the scaling dimension of a polymer activity K. We set

4 This notion was defined in Section 4.2.
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DEFINITION 3.

dim(Kn) = rn + n dimû;

dim(K) = inf
n

dim(Kn)(140)

where the infimum is taken over n such that Kn(XÒ 0) 6= 0. Here rn is defined to be the
largest integer satisfying rn � r and Kn(XÒ û = 0; pðn) = 0 whenever pðn is an n–tuple
of polynomials of total degree less than rn.

Roughly rn gives the number of derivatives in Kn. Omitting the condition rn � r
would give a more intrinsic concept, but adding the restriction is necessary because K is
a functional on C r.

As an example of how this definition works we compute the dimension of

K(XÒ û) =
Z

X
(]û)2(x) dx

We have

K2(XÒ 0; f1Ò f2) = 2
Z

X
(] f1)(x)(] f2)(x) dx

This vanishes if either f1 or f2 is a constant and so r2 = 2. Since Kn(XÒ 0) = 0 for n 6= 2
we have dim(K) = dim(K2) = 2 + 2 dimû.

THEOREM 9. Let pÒ q ½ 0 be non-negative integers. Let V satisfy (138).
1. If K(X) is supported on large sets, then

kS1(K)kGÒhÒΓq � O(1)L�1kKkGLÒahLÒΓq�p

jS1(K)jhÒΓq � O(1)L�1jKjahL ÒΓq�p (141)

2. If K(X) is supported on small sets, and in addition î0h2 ½ O(1) and îh2 ½ O(1),
then

kS1(K)kGÒhÒΓq � O(1)Ld�dim(K)kKkGLÒhÛ2ÒΓq�p

jS1(K)jhÒΓq � O(1)Ld�dim(K)jKjhÛ2ÒΓq�p
(142)

O(1) depends on pÒ q.

The proof of these two theorems is given after the following lemmas.

LEMMA 14. For any regulator G

kKL�1Òn(L�1X)kG � L�n dim(û)ankKn(X)kGL

kKL�1(L�1X)kGÒh � kK(X)kGLÒahL 
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PROOF. Given ∆ðn
f let fðn be n functions supported in ∆̃ðn

f with k fjkC r � 1. Then
the left hand side is given by

X
∆ðn

f

sup
ûÒf

jKL�1Òn(L�1XÒ û; fðn)jG�1(L�1XÒ û)

=
X
∆ðn

f

sup
ûÒf

jKn(XÒ ûL�1 ; fðn
L�1 )jG�1

L (XÒ ûL�1 )

� X
∆ðn

f Ò∆ðn

sup
ûÒf

jKn(XÒ ûL�1 ; (ü∆ fL�1 )ðnjG�1
L (XÒ ûL�1 )

� X
∆ðn

f
Ò∆ðn

sup
ûÒf

kKn(XÒ ûL�1 )k∆̃ðnk(ü∆ fL�1 )ðnkC r G�1
L (XÒ ûL�1 )

� L�n dimû(2dkük)nkKn(X)kGL 

Here we inserted the partition of unity ü∆ðn to localize the scaled fL�1 back in blocks of
unit scale. Note that ü∆ fL�1 = 0 unless L∆̃f intersects ∆, and for fixed ∆ there are at most
2d blocks ∆f satisfying this constraint. Thus doing the sum over ∆ðn

f first in the last step
gives rise to a factor 2dn. In the last step we have also estimated in C r:

kü∆ fL�1k � L� dimûkük k fk � L� dimûkük(143)

Now the first inequality is proved and the second is an immediate corollary.

LEMMA 15. Let X be a small set. Then for a constant O(1) depending on r

jKn(XÒ 0; fðn
L�1 )j � O(1)nL� dim(Kn)kKn(XÒ 0)kY

j
k fjkC r(L�1X)

where kKn(XÒ 0)k is the norm in (16).

PROOF. We pick z 2 X and expand the functions fjÒL�1 in Kn(XÒ 0; fðn
L�1 ) in a Taylor

series

fjÒL�1(x) =
rn�1X
q=0

X
ã:jãj=q

(ã!)�1(x � z)ã(] ãfjÒL�1 )(z) + RjÒrn(x)

�
rnX

q=0
gjÒq(x)(144)

where rn appears in Definition 3.
We claim that

kgjÒqkC rn (X) � O(1)L�q�dimûk fjkC rn (L�1X)(145)

For q Ú rn, note that

] ågjÒq(x) =
X

ã:jãj=q

(x � z)ã�å

(ã � å)!
(] ãfjÒL�1 )(z)(146)
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and since
(] ãfjÒL�1 )(z) = L�jãj�dimû(] ãfj)(L�1z)

one obtains (145). For q = rn note that for jåj � rn, ] ågjÒrn(x) is equal to the Taylor
remainder for the expansion of ] åfjÒL�1 to order rn � jåj and is given by

1
(rn � jåj � 1)!

Z 1

0
ds(1 � s)rn�jåj�1 drn�jåj

dsrn�jåj
(] åfjÒL�1 )

�
z � s(x � z)

�(147)

Now X̄ is connected and if we also assume that it is convex then the path z � s(xj � z)
stays entirely in X̄ and it follows that (145) is also true for q = rn. If X̄ is not convex we
have to use another representation for the remainder which is discussed at the end of the
proof.

The first inequality follows from the definition of rn: only the terms with total degree
½ rn contribute to Kn. Using (145) we have

jKn(XÒ 0; fðn
L�1 )j =

þþþ X
qi�rn

ü�X qj ½ rn

�
Kn(XÒ 0; g1Òq1 ð Ð Ð Ð ð gnÒqn)

þþþ
� X

qj�rn

ü�X qj ½ rn

�kKn(XÒ 0)kY
j

O(1)L�qj�dimûk fjkC rn (L�1X)

� O(1)nL�rn�n dimûkKn(XÒ 0)kY
j
k fjkC r(L�1X)(148)

X not convex: For any sufficiently smooth function f (x) let T(xÒ z) be the Taylor polyno-
mial of order r�1 around x = z and let R(xÒ z) be the remainder so f (x) = T(xÒ z)+R(xÒ z).
Usually the remainder is expressed in terms of derivatives of order r along a line from z
to x. Here we argue that instead one can express the remainder in terms of derivatives of
order r along any piecewise linear curve from z to x.

Suppose for simplicity that we have a curve from z to z0 to x. We define

G(xÒ zÒ z0) = R(xÒ z) � R(xÒ z0) = �T(xÒ z) + T(xÒ z0)
Since R(xÒ z0) has the properties we want it suffices to consider G(xÒ zÒ z0). Since
G(xÒ z0Ò z0) = 0 we have

G(xÒ zÒ z0) =
Z 1

0

d
ds

G
�
xÒ z0 + s(z � z0)Ò z0� ds

=
X
jåj=1

Z 1

0
(z � z0)å(] å

z G)
�
xÒ z0 + s(z � z0)Ò z0� ds

But for jåj = 1

(] å
z G)(xÒ zÒ z0) = �(] å

z T)(xÒ z) = � X
jãj=rÒã½å

(] ãf )(z)(x � z)ã�å

(ã � å)!


Thus G(xÒ zÒ z0) only involves derivatives of order r along the curve from z to z0.
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The next lemma refers to a regulator Ḡ defined on L�1-scale polymers by

Ḡ(L�1X) = G(îÒL�1X̄L) g�1(L�1X̄L n L�1X)

= G(îÒL�1X)G(îÛ2ÒL�1X̄L n L�1X)G0(î0ÒL�1X̄L n L�1X)

where g = G(îÛ2)G�1
0 (î0) is the regulator appearing in (138). Note that

G(îÒL�1X) � Ḡ(L�1X)(149)

LEMMA 16. For any small set X and î0h2 ½ O(1) and îh2 ½ O(1)

kKL�1(L�1X)kḠÒh � O(1)L� dim(K) kK(X)kGLÒhÛ2

O(1) depends on dim(K).

PROOF. Take p large enough so that p dimû ½ dim K. For n Ú p we expand the n-th
derivative KL�1Òn(L�1XÒ tû; fðn) in a Taylor series in t to order p � n.

KL�1Òn(L�1XÒ û; fðn) =
p�1X
q=n

1
(q � n)!

KL�1Òq(L�1XÒ 0; fðn ð ûðq�n)

+
Z 1

0
dt

(1 � t)p�n�1

(p � n � 1)!
KL�1Òp(L�1XÒ tû; fðn ð ûðp�n)(150)

To proceed, we define for n � q � p

JnÒqÒt(L
�1XÒ û; fðn) = KL�1Òq(L�1XÒ tû; fðn ð ûðq�n)

and will show that

kJnÒqÒt(L�1X)kḠ � O(1)L�q dimûhq�n(1 � t2)(n�q)Û2kKq(X)kGL(151)

while for t = 0

kJnÒqÒ0(L�1X)kḠ � O(1)L� dim(Kq)hq�nkKq(X)kGL (152)

In these bounds O(1) depends on p.
Note that with these bounds the t integral in the remainder term of (150) is integrable.

From this, and the fact that L� dim(Kq), L�p dimû � L� dim(K), it follows that

pX
n=0

hn

n!
kKL�1Òn(L�1X)kḠ �

pX
n=0

hn

n!

0
@ pX

q=n

O(1)
(q � n)!

L� dim(K)hq�nkKq(X)kGL

1
A

� O(1)L� dim(K)
pX

q=0
4q (hÛ2)q

q!
kKq(X)kGL(153)

� O(1)L� dim(K)kK(X)kGLÒhÛ2
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For p Ù n we use the first bound in Lemma 14 and Ḡ�1
L � G�1

L to obtain

1X
n=p+1

hn

n!
kKL�1Òn(L�1X)kḠ � O(1)L� dim(K)kK(X)kGLÒhÛ2(154)

Combining the two proves the lemma.
To bound J we proceed as in the proof of Lemma 14:

kJnÒqÒt(L�1X)kḠ =
X
∆ðn

f

sup
ûÒf

jKq(XÒ tûL�1 ; fðn
L�1 ð ûðq�n

L�1 )jḠ�1(L�1XÒ û)

� O(1)L�q dimûaq X
∆ðnÒ∆ðq�n

û

sup
û
kûkq�n

C r(L�1X)(155)

ð kKq(XÒ tûL�1 )k∆̃ðnð∆̃ðq�n
û

Ḡ�1(L�1X̄Ò û)(156)

Now write

Ḡ�1(L�1XÒ û) = Ḡ�1
L (XÒ tûL�1 )Ḡ�1

�
L�1XÒ (1 � t2)1Û2û�(157)

The first factor is paired with kKq(XÒ tûL�1 )k and the second factor is paired with kûkq�n.
Using Lemma 4, the fact that a small set has O(1) blocks and the hypotheses on îÒ î0,
one finds that

kûkC r(L�1X) � kûkC r(L�1X̄L)

� O(1)(kûkL�1X̄LnL�1X + k]ûkL�1X̄LÒ2Òõ)

� O(1)h
�î1Û2

0 kûkL�1X̄LnL�1X + (îÛ2)1Û2k]ûkL�1X̄LÒ2Òõ

�
(158)

and hence

kûkq�n
C r(L�1X) � O(1)hq�nG0(î0ÒL�1X̄L n L�1XÒ û)G(îÛ2ÒL�1X̄LÒ û)

� O(1)hq�nḠ(L�1XÒ û)(159)

This leads to the bound

kJnÒqÒt(L�1X)kḠ � O(1)L�q dimûaqhq�n(1 � t2)(n�q)Û2kKq(X)kḠL
(160)

and since Ḡ�1
L � G�1

L this gives (151).
When t = 0 we use Lemma 15 and have instead of (156)

kJnÒqÒ0(L�1X)kḠ =
X
∆ðn

f

sup
ûÒf

jKq(XÒ 0; fðn
L�1 ð ûðq�n

L�1 )jḠ�1(L�1XÒ û)

� O(1)L� dim(Kq) X
∆ðn

f

sup
û

�kûkq�n
C r(L�1X)Ḡ

�1(L�1XÒ û)
�kKq(XÒ 0)k(161)

The sum over ∆ðn
f has at most O(1)n terms because X is a small set and Kq(XÒ 0; fðn

L�1 ð
ûðq�n) = 0 if, for any ∆f , L∆̃f \ X = ;. By Lemma 2 and again using (159) we have

kJnÒqÒ0(L�1X)kḠ � O(1)L� dim Khq�nkKq(X)kḠL
(162)

which gives (152).
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PROOF (THEOREM 8). The bound on the kernels is a corollary of the first bound
by letting the large field regulator G become concentrated at û = 0 as in (37). We
rewrite (133) as

S(K)(ZÒ û) =
X
N

1ÛN!
X

(X1ÒÒXN)
(e�V)L�1 (Z n L�1XÒ û)

Y
i

KL�1(L�1XiÒ û)Ò(163)

where the Xi are disjoint but the L-closures X̄L
i overlap and fill LZ. Using

G(ZÒ û)�1 = G(Z n L�1XÒ û)�1 Y
i

G(L�1XiÒ û)�1(164)

we obtain by the multiplicative property of the norm (7)

kS(K)(Z)kGÒh �
X
N

1ÛN!
X

(X1ÒÒXN)
ðk(e�V)L�1 (Z n L�1X)kGÒh

Y
i
kKL�1(L�1Xi)kGÒh

By the multiplicative property of the norm and the small V hypothesis (138),

k(e�V)L�1 (Z n L�1X)kGÒh �
Y

∆²Z
k(e�V)L�1 (∆ n L�1X)kG(∆nL�1X)Òh � 2jZj(165)

By Lemma 14,
kKL�1(L�1Xi)kGÒh � kK(Xi)kGLÒahL 

Now multiply by Γq and note that Γq(Z)2jzj = Γq+1(Z). By the connectedness we have
Γq+1(Z) � Q

i(Γq+1)(L�1X̄L
i ). Furthermore we have the bound (13) for some constant

O(1):
(Γq+1)(L�1X̄L) � O(1)(Γq�p)(X)

Summing over Z with a pin and using a spanning tree argument5 we obtain

kS(K)kGÒΓqÒh �
1X

N=1
O(1)N�1(LdkKkGLÒΓq�p ÒahL )N

This gives the result.

PROOF (THEOREM 9). (1. Large sets) Proceeding as in the proof of Theorem 8 we
obtain

kS1(K)(Z)kGÒh � 2jZj
X

X:X̄L=LZ

kKL�1(L�1X)kGÒh

We take the k kΓq norm of both sides using
X
Z¦∆

X
X:X̄L=LZ

Ð Ð Ð =
X

X:X̄L¦L∆
Ð Ð Ð � X

∆0²L∆

X
X¦∆0

Ð Ð Ð

which leads to

kS1(K)kGÒhÒΓq � Ld sup
∆0

X
X¦∆0

(Γq+1)(L�1X̄L)kK(X)kGL ÒahL

5 Described in the proof of Lemma 5.1 of [BY90].
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because kKL�1 (L�1X)kGÒh � kK(X)kGLÒahL by Lemma 14. But for X large, by Lemma 1
we have the bound (Γq+1)(L�1X̄L) � O(1)L�d�1(Γq�p)(X) which gives the result.

(2. Small sets) We have

G(ZÒ û) = Ḡ(L�1XÒ û)g(Z n L�1XÒ û)

from which we obtain

kS1(K)(Z)kGÒh � X
X:X̄L=LZ

kKL�1(L�1X)kḠÒhk(e�V)L�1 (Z n L�1X)kgÒh

� 2jZj
X

X:X̄L=LZ

kKL�1(L�1X)kḠÒh

so that
kS1(K)kGÒhÒΓq � Ld sup

∆0

X
X¦∆0

(Γq+1)(L�1X̄L)kKL�1 (L�1X)kḠÒh

Now use the Lemma 16 and the bound (Γq+1)(L�1X̄L) � O(1)(Γq�p)(X) from Lemma 1
to complete the proof.

A. Gaussian integration. We recall some facts about Gaussian measures (see for
example [Sim79]). Let hÐ Ò ÐiC be an inner product on the real Sobolev space H�s. By
general probability theory there is an abstract measure space (ΩÒF Ò ñ) and a linear map
f 7! Φf from f 2 H�s to random variables (functions on Ω) such thatZ

dñ(û)eãΦf (û) = eã
2h f Ò f iCÛ2(166)

for all ã 2 C. This family of random variables is called the Gaussian process indexed
by H�s with mean zero and covariance C.

One can make the specific choice Ω = Hr provided r Ú s is such that the injection
Hs ! Hr is trace class. In this case Φf (û) = hûÒ f i for f 2 H�r and is defined by Lp limits
for f 2 H�s.

The Gaussian processes of interest to us are derived from inner products of the form

h f Ò giC =
Z

ΛðΛ
dx dy C(xÒ y) f (x)g(x)

where C(xÒ y) is a C1 function on Λ ð Λ. This defines an inner product on H�s for any
s, and so we can get a process on any Hr.

Addition principle: IfûÒ ê are two Gaussian processes with covariance BÒC respectively,
then the sum û + ê is a Gaussian process with covariance B + C:Z

dñB(û) dñC(ê)F(û + ê) =
Z

dñB+C(†)F(†)(167)

Convolution: When Fubini’s theorem holds on the left side of (167), the ê integral can
be done first, and the result is a measurable function of û called the ñC–convolution of
F denoted by ñC Ł F:

(ñC Ł F)(û) =
Z

dñC(ê)F(û + ê)(168)

and Z
dñB(û) dñC(ê)F(û + ê) =

Z
dñB(û)(ñC Ł F)(û) =

Z
dñC(ê)(ñB Ł F)(ê)(169)
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Semi-group property: A consequence of the addition principle is that the Gaussian
convolution (168) can be broken up into steps. For any t 2 [0Ò 1], define the convolution
function F 7! Ft = ñtC Ł F. This function satisfies the semi-group property:

Ft = (Fs)t�sÒ for all s 2 [0Ò t](170)

Let us now define the functional Laplacian of F with respect to the measure ñC

∆CF(û) =
1
2

Z
dñC(ê)F2(û; êÒ ê)(171)

where F2 denotes the second functional derivative (cf. Section 2.3). The next proposition
states conditions under which Gaussian convolution leads to solutions of the functional
heat equation derived from ∆C.

PROPOSITION 10. Let ñC be a Gaussian measure on Hs(Λ), and F be a smooth func-
tional of the Gaussian field û whose third derivative F3 is uniformly bounded pointwise
in û:

sup
ê1Òê2Òê32Hs

jF3(û; ê1Ò ê2Ò ê3)j
kê1kHskê2kHskê3kHs

� K

Then the one-parameter family of functionals Ft = ñtC Ł F parametrized by t 2 [0Ò 1]
solves the functional heat equation

] Ft

] t
= ∆CFt(172)

with the initial condition F0 = F.

PROOF. We note that

Fét(û) =
Z

dñét(ê)F(û + ê) =
Z

dñ1(ê)F(û + ét1Û2ê)(173)

where we use the notation ñt = ñtC. Into this we insert the Taylor expansion in powers
of ét1Û2

F(û + ét1Û2ê) = F(û) + ét1Û2F1(û; ê) +
ét
2

F2(û; êÒ ê) + ét3Û2R(ûÒ ê)

and obtain

1
ét
�ñét Ł F(û) � F(û)

� � ∆CF(û) = ét1Û2
Z

dñ1(ê)R(ûÒ ê)

The F1 term vanished because it is odd in ê. By the Taylor remainder formula,
Z

dñ1(ê) jR(ûÒ ê)j � sup
ã2[0Òét]

Z
dñ1(ê) jF3(û + ã1Û2ê; êÒ êÒ ê)j

� K
Z

dñ1(ê) kêk3
Hs

� K0

https://doi.org/10.4153/CJM-1998-041-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-041-5


ESTIMATES ON RENORMALIZATION GROUP TRANSFORMATIONS 793

Thus the remainder is uniformly bounded pointwise in û for all small ét so that

lim
ét!0

1
ét
�ñét Ł F(û)� F(û)

� � ∆CF(û) ! 0(174)

Combining this with the semigroup property ñt+étŁ = ñét Ł ñtŁ shows that the function
t ! ñt Ł F satisfies the functional heat equation

]

] t
ñt Ł F = ∆Cñt Ł F

pointwise in û and t ! ñt Ł F is smooth in t and û.
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