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ESTIMATES ON RENORMALIZATION GROUP
TRANSFORMATIONS

D. BRYDGES, J. DIMOCK AND T. R. HURD

ABSTRACT. We consider a specific realization of the renormalization group (RG)
transformation acting on functional measures for scalar quantum fields which are ex-
pressible as a polymer expansion times an ultra-violet cutoff Gaussian measure. The
new and improved definitions and estimates we present are sufficiently general and
powerful to allow iteration of the transformation, hence the analysis of complete renor-
malization group flows, and hence the construction of avariety of scalar quantum field
theories.

1. Introduction. The present technical monograph contains the detailed analysis
of asingle RG transformation of a type general enough to use on scalar quantum field
models of a broad class, including infra-red ¢3, and the non-Gaussian ¢, model.
It is one of a series of papers by the authors ([BY90], [DH91], [DH93], [BDH94b],
[BK94], [BDH944a], [BDH95], [BDH98]) in which we use rigorous renormalization
group techniquesto study the short and long distance behavior of various quantum field
theories.

We consider afamily of d-dimensional tori A, and scalar fields ¢ which arereal valued
functionson A. In its smplest form the problem is to study functional integrals over the
fields of theform

(2) [V dp(o)
where p is a Gaussian measure on the fields over A. The covariance v of y may be a
smoothed inverse Laplacian or more generally given by a sum over scales

@ Vi y) = 5oL A9mIG(Loix, L),
i=0

Each piece Ci(x,y) is to be a smooth positive-definite function with good decay as
|x—y| — oo (uniformly in the size of A) which is almost independent of theindex i. The
scaling factor L is a large positive integer, and the “scaling dimension” dim ¢ is some
real number determined by the model. The potential V(A, ¢) is somelocal function of ¢,
for example of the form

(3) V(A.(b)://\[)\:¢4:+§:(a¢)2:+u:¢2:]ddx
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where the coupling constants A, ¢, u are small, and A > 0.

Thedecomposition (2) hasthe consequencethat convol ution by the Gaussian measure
pxF (@) = S F(¢+¢) duu(¢) canbewritten asasequenceof convolutions . . . up* ug % puo*F
where p; has covariance L=29M¢C;(L~x, L~'y). Therefore integration with respect to ;1
can be expressed as a sequence of convolutions.

The renormalization group analysis carries out this sequence of convolutions, ex-
pressing such an integral in terms of more general integrals

) [Z(6)du(s)

with new densities Z(¢) that are more complicated but less singular. A characteristic
feature of our program is that we keep careful track of the localization of the densities
by expressing them in terms of polymer expansions of the form

5) Z(6) = 3 [TAX. ).
X} i

Here the sum isover collections {X; } of polymers X defined to be unions of unit blocks.
The polymer activities A(X, ¢) are required to have their ¢ dependence localized in X
and to show decay with the “size of X”. The polymer activities generally have more
structure, and are expressed in the form

(6) AX, ¢) = O(X)eVD + K(X. ¢)

where O is the characteristic function of unit blocks, and V isalocal potential similar to
the original potential. If K = 0 werecover Z = eV, so K describes the deviation from a
strictly local potential.

A single renormalization group transformation replaces A or (K, V) by new activities
A’ or (K’,V'). This happens in three steps. The first step is called “fluctuation”: a
Gaussian convolutionis applied to the density Z (¢), and theresult is expressed as anew
polymer expansion. The essential properties of Gaussian integration we need for thisare
summarized in the Appendix. The second step is extraction and consists of localizing
relevant piecesof K and transferring themto V. One can think of this asthe step in which
coupling constants are renormalized, and the resulting “renormalization cancellations’
are exhibited. Thethird step is scaling which returns the Gaussian measureto its original
form (on asmaller torus). In thisway, the RG transformation has been realized in aform
ready for iteration. The complete analysis of a RG problem now proceeds by iterating
these three steps and tracking the flow of the activities.

The purposeof this paper isto estimate the effect of each of these stepson the polymer
activities. Intheinitial section (Section 2) we describe polymer expansionsand the norms
weuse, and in Section 3asmall norm condition is proved for the specific case of thelocal

4 potential. Then in Section 4 we give definitions and estimates for the three parts of a
single RG transformation: the fluctuation step, the extraction step, and the scaling step.
Finally, we include an appendix which states important properties of Gaussian integrals.
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Our theorems are variations on earlier proofs of similar theorems, see especially
[BDH944], [BDH95]. However we have technical improvements which are of such a
wide scope that a complete new treatment seems necessary. The main changes are:

1. Formerly thedetailed estimateson K(X, ¢), particularly inthe scaling step, required
that the dependence on ¢ be explicitly separated in a dependence on ¢ and a
few low order derivatives. Thus polymer activities might be written in the form
KX, ¢) = R(X. #,9 ¢,0°¢). Doing this consistently was a nuisance. The present
treatment does away with this extra structure and works directly with K(X, ¢).

2. We haveintroduced a new notion of “dimension” which appliesto polymer activ-
ities. With this definition, the split of activitiesinto relevant (dimension < d) and
irrelevant (dimension > d) parts becomes more systematic.

3. Formerly thelarge field behavior of the polymer activitiesK(X, ¢) wasrequired to
be no worse than exp(x |9 ¢||) where the norm is a suitable Sobolev norm. This
was supposed to be moreor lesspreserved through each step. For infrared problems
this causes alot of trouble becauseit leads to the introduction of boundary terms,
closed polymers, hybrid polymers, etc. For problems in which the background
potential e~V supplies a stabilizing factor exp(—«||4||?) (such as (3)) we find that
it is sufficient make the weaker requirement that large field behavior be no worse
than exp(x || 2¢||%)- This decreases under scaling and so is easily preserved. This
idea also appearsin Lemma 19 of [AR96]. With no boundary terms we are free to
take all polymersto be open which is the simplest possibility.

4. Formerly in the extraction step one was allowed to remove pieces from K(X, ¢)
only if X was a small set. The new treatment allows extractions for any X. This
makesit possibleto track more cleanly the leading contributionsto K(X, ¢) in low
order perturbation theory, something that is essential for good control.

5. Wemakeno assumption of translation invariance, or that fieldshavetheir canonical
scaling dimension.

The new theorems are especially designed for a problem on non-Gaussian infrared
fixed pointsin 4 — e dimensions [BDH98]. However they are quite general and should
be appropriate tools for any problem with ascalar field and potential similar to (3). This
should be true in any dimension and for both infrared and ultraviolet problems. With
modifications we are hopeful that they are useful for more than just scalar field theories.

In this paper, we adopt the convention for constants that O(1) signifies a number
which isindependent of the parameters. By C we denote numbers which may depend on
L, but not on other parameters.

2. Polymersand Norms.

2.1. Polymer expansions. The base space A is the torus RY/LNZ¢ for N an integer.
A polymer X is a possibly empty union of blocks where a block, A, is an open unit
hypercubein A centered on a point of the lattice Z¢ / LNZ9. Every set considered in what
follows will be a polymer unless otherwise specified. For example, A is now identified
with the polymer U{A : A C A}. An L-block isan open hypercube of sideL centered on
apoint of the lattice LZ9/LNZ9. An L-polymer isaunion of L-blocks.
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Polymer activities are complex valued functions K (X) defined on polymers, including
the empty set, although one should assume that K(f)) = O, unless cautioned otherwise.
Our polymer activities are also functions K(X, ¢) of the fields ¢.

On the space of functions A(X), B(X), . . . defined on polymersthere isacommutative
product [BY 90], [GMLMST71], [Rue69]

(Ao B)(X) = 2 A(V)B(X\Y)

YcX
and an Exponential
1
Exp(A) =1 +A+ EAOA+ e

where | (§) = 1 and otherwise | (X) = 0. The domain of the Exponential is all functions
that vanish on the empty set and

() Exp(AX) = > TTAX)

51
where the sum is over partitions of X into a set of polymers {X; }. The Exponential is a
terminating series. It deserves attention because Exp (A + B) = Exp (A) o Exp (B).

An exampleof afunction on polymersisthe ordinary exponential of alocal interaction
(e7V)(X. ¢) whereV(X, ¢) isthelocal potential (3). Notethat (e~)(X, ¢) isindependent of
theval ues ¢(x) taken onthecomplement, i.e.: (e7V)(X. 1) = (€7V)(X. ¢2) if ¢1(X) = ¢2(X)
for all x € X. All polymer activities we consider will have this localization property.
Note also that the function (e~V)(X) is multiplicative which meansthat (e™V)(XUY) =
(EeYX)(e™V)(Y) whenever XN Y = 0.

Another exampleis the function

1 if Xisaunit block
0 otherwise.

®) 0(x) =

Since every polymer has a unique decomposition into blocks, it follows from (7) that
Exp(O) = 1, the function that is identically one on all polymers, and more generally
Exp@eV)=¢eV.

Thus, the initial density of a local field theory has the form Z = (Exp (Oe™"))(A).
The renormalization group does not preservethis form, but (Exp (e V+ K)) (M), where
K isafield dependent polymer activity, is preserved in form. Note that

© (Exp@e ™V +K))(Y) = {XZ} exp(—V(Y\ X)) TTK(X)
: j

where now the sum is over sets {X;} of disjoint polymersin Y and X = U; X;.

In general the polymer activities K(X, ¢) we need to consider have certain decay
properties depending on the “size” of X, certain growth and decay behavior depending
on the value of ¢ and its derivatives, and finally analyticity in the variable ¢. All three
properties are controlled by imposing afinite norm condition on K, for one of ageneral
family of norms we now introduce.
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2.2. DecayinX: thelargesetregulator I'. Let K(X) beapolymer activity (with possible
¢ dependence suppressed). The decay of K in the“size” of X is controlled by anorm of
the following type

(10) IK]lr, = sup 3 [KX)[Fa(X)
A XDA
Here the large set regulators I, (X) are defined in dimension d by

Mn(X) = 2" (X)

(11) r(X) = LE*2XIg(x)
O(X) = inf T] 6(b]).
T ber

Thevolume|X| of X isthe number of blocksin X. Theinfimum is over treesT composed
of bonds b connecting the centers of the blocksin X. The length |b| of abond b = xy is
defined by the (*°-metric sup; 4 X — Yj|- & isarapidly increasing function described
in Lemma 1 below.

DerINITION 1. 1. A polymer X is called asmall set if its closure X is connected and
it hasvolume|X| < 2. Otherwise it is alarge set.
2. TheL-closure X of apolymer X is the smallest union of L-blocks containing X.

LEMMA 1. Let the function 6 be chosen so that 6(s) = 1 for s= 0.1 and
(12) 0({s/L}) > L7%(s). s=2.3....

where {x} denotes the smallest integer greater than or equal to x. Then, for each
g,p =0,1,2,... thereis a constant ¢y, such that for L sufficiently large and for any
polymer X, _

(13) F(L™X5) < cqplg—p(X).

For any large set X, thereis a stronger bound
(14) Fo(L™2XY) < cqpl 8 Mg p(X).

Theproof of therelated Lemma3.2in[BY 90] also givesthisbound, (but thedefinition
of small set givenin [BY 90] isincorrect and was corrected in [DH92]).

2.3. Smoothnessin thefields. Functionals of ¢ are defined on the Banach space C"(A)
of r-times continuously differentiable fields with the norm

(15) Ifllcray = maxsup |9 °f (¥)].
led<r x
Here o = (a1, .., ag) isamulti-index, |a| = >3 ara, @nd 9 = 9,0* - - - 9,20, Derivatives
with respect to ¢ are symmetric multilinear functionalsfy, .. ., fn — Kn(X, 951, ... . )
on this Banach space defined by
d d

a—sl.-.EK(x.¢+23fi)|$o = Kn(X, ¢, - -+, ).
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Note that such multilinear functionals define distributions on A" by the kernel theorem.
The choiceof r isarestriction on how singular these distributions are allowed to be and
is determined by the model being considered.

We have further conditions on the polymer activities K(X, ¢):

1. Each K(X, ¢) should be Frechet-analytic in ¢ in a complex strip around the real
space C:(K). It is equivalent to the condition that they are continuous functions
on C"(A) and that the finite dimensional functions s — K(X, ¢ + ¥ sf;) are all
analyticin astrip. B

2. Weassumethat the ¢ dependenceof K(X, ¢) islocalizedin Xin the sensethat it is
actually afunction on C'"(X) which is evaluated on ¢ € C"(A) by first taking the
restriction of ¢ to X. ThenKn(X. ¢; f1. . . . . f,) isalso definedfor fj € C (X) and for
f, € C'(A\) by restriction. The derivative vanishesif any f; vanisheson X. (C"(X)
is al functionsin C"(X) such that partial derivatives have continuous boundary
values. Thenorms || [|crx) and || [|cr(x) coincide).

The size of the derivatives Ky (X, ¢) is naturally measured by the norm

(16)  [[Ka(X. &) = sUp{[Kn(X. ¢; 1. ... .£)| : §; € CT(X. [Ifillcrp < 1}

for n > 0and |Ko(X, ¢)|| = |Ko(X, ¢)|.
However, in the fluctuation step we find we need a localized version. Therefore we
consider derivatives restricted to neighborhoods

(17) A= {x:dist(x.0) < 1/4}
of blocksA. Let A*" = (Ag, ..., A,) be an n-tuple of blocks. The localized normiis

(18)|Kn(X. §)||z-n = SUP{[Kn(fr. ... %) : f; € C"(X). [|fjllcrog < 1. supp fj € &NX}.

A connection between the natural norm (16) and the localized version is given if we
select a smooth partition of unity ya indexed by unit blocks A such that suppya C A.
We assume that each x, is atranslate of afixed function y. We define || x || as the best
constant such that

(19) Ixafll < IIxI[I]l-
LEMMA 2. For any ¢ and any polymer activity K

(20) [Kn(X. 9)|| < ”X”nAZm [IKn(X. &)l[z<n-

PrOOF.

[Kn(X, 9)]| SlprlKn(X-¢;fX“)l

IN

up [ Kn(X. 01 (xa 1))

AanllKn(X M zllx1E-- .

IN
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2.4. Growth in the fields: the large field regulator G. The growth of K(X, ) as a
function of (derivativesof) ¢ is controlled by alargefield regulator which isafunctional
G(X, @) with properties:

G1 G(X.0) > 1

G2 G(XUY. $) > G(X. 9)G(Y.¢) if XNY=0.

Our standard choice will be G = G(k) = G(k, X, ¢) where

(21) Gl X, 0) = exp(]|8]|% 2.0)-
Here
(22) 6/|%an = %@IIE%H%-

and ||¢||x is the L2(X) norm. We take o large enough so that this norm can be used in
Sobolev inequalities for any low order derivative d *¢, a point we discuss shortly.
For any such G define anorm on derivatives Kn(X, ¢) by

(23) IKn)llG = Azf‘é) IKn(X. 8)l|zG~*(X. ¢)

where A" = (Aq, . .., ).

For these norms to be useful, we will need further properties for the regulators G.
Thefluctuation step involves convol ution with a Gaussian measure j.c with acovariance
operator C which has a kernel C(x. y) with good decay and regularity properties. We
discuss general properties of Gaussian convolution in the Appendix.

To control the fluctuation step we will need a family of regulators G;(X, ¢) that are
integrable with respect to ¢ in the sense that

G3 fig-9c * Gs(X. ¢) < G(X, ¢).

Thesewill generally havethe form

(24) Gi(X. ¢) = (2MG*(X. 6))'G(X. )1

for some regulator G*. If we choose G(X, ¢) = G(x. X, ¢) and
Gk, X, ¢) = G(2k. X, §)

then thefollowing lemma showsthat for  sufficiently small theintegrability is satisfied.

LEMMA 3. There exists ko > 0 depending only on norms of C such that for all
k € [0, ko] property G3 holdsfor all s<t € [0, 1].
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ProoOF. Let U(s, ¢) =log Gs(9). It is enough to prove that

ou oU aU
&~ — >
(25) Py AcU C(M Bd))_o
where the functional Laplacian A¢ is defined in the Appendix, and
au aU) oU U
— — dx dyCi
(55 35) = ] oovetens sy

Thisis because of the implications

auU au au 9 Gs
——AU——C 0= 222 _AGs>0
gs ¢ (aqs aqs) gs o=

G
= [Ut-9)C * (a—ss - Ach) >0

= % Hgc * Gs(X) > Ofor s € (0. 1)

= [—gc * Gs(X) < Gi(X).

where we have used the functional heat equation discussed in the Appendix.
From the definitions

(26) U=tlog@X|+r > [ [0~ (A —1)+21)

2<|a|<o
we verify (25). For exampleif we choose ko small so that

(27) Kosup |07y C(X. Y)|

is small for 2 < |a|, |3] < o then the ¢ independent term in 9U /9t dominates AcU.

To dominate C(f?g ‘Zg) let ||C|| be the operator norm on the (matrix-valued) kernels

028y C(x.Y)|, 2 < ||, |8] < 0. Then we have

o(5o-50) = 200X [ 0Oy 00 o) ey

8+7/|Cll [|811% 2.0

and this is smaller than the ¢ dependent terms in U /at when rol|C|| is sufficiently

IN

small, because k2 is small compared with «. .
Next we need some special Sobolev inegualities in which intermediate derivatives
are omitted.

LEMMA 4. Leto > d/2+ 2. Let X beany polymer and let Y be an L~2-scale polymer
(possibly empty) contained in X such that AN Y is a small polymer for all unit blocks
A C X. Thenfor |a| <landx e X

(28) 061 < O (lIollxy + 1¢llx.20)-
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PrOCF. It sufficesto prove the lemmafor aunit block X = A. Let p > 0 be asmooth
function compactly supportedin X\ Y with [ p = 1 chosen so that [|0 “p|[a\y < o) for
|a| < 1. Thisispossible by the conditionon AN'Y. We write

(29) 97009 = [| dY()aTB() + || dy(y)(276() —a6(y)).

First suppose || = 1. By integration by parts and the Schwarz inequality the first term
is bounded by

(30) 0% pllavllelay < O@I¢lay-

Joining x, y by apath in A we find the second term is bounded by

(31) 0(1) sup 1076 <O0@)lI9llaz20

zel

by a Sobolev inequality. Thusthe bound holdsfor |«| = 1. For |«| = 0 we again use (29).
Now the first term is bounded by

(32 lollavllollay < O@IIellay-
The second term is bounded by

(33) O sup 15”631 < OM(I1¢llary * 1¢lla2a)

zeh

by the first result and the desired bound follows. ]

2.5. Norms. We introduce the final ingredient, the derivative parameter h > 0, and
construct normson K = K(X, ¢). Our preferred choiceis

IKOOln = 3 K09

(34) IKllenr = [IKONen -

However we sometimes want to change the order and take
IKnller = [[IKnCllg] -

hn
(@) Kllorn =3 i [Kaller

n

Thereisalso alimiting caseof thenorms||K||g r» inwhich G~ isconcentrated at ¢ = 0.
These are called kernel norms and are defined by

[Kn(X. 0 = 32 [Kn(X. Oz
hn
(36) Klnr =[5 5 Ka(- Ol

hn
Klrn =3 15| KaC- O]

Let Go(a, X. ¢) = exp(a Jx |¢]2). Then Go(a)G(c) is aregulator and we have
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LEMMA 5. Suppose || K | gywe.nr < oo. Then
(37) [Klnr = 1im [|K]|gyoe@hr

and similarly for |K|r p.

Proor. We show that

(38)  lim sup[[Kn(X. 6)]50Goler X. 6) G(e. X, )™ = [Kn(X. O}
) (4

assuming that

(39) C = sup||Kn(X. )|| g0 Go(L. X. ¢) " G(L X. ¢) ™+ < 0.

The supremum is greater than or equal to the value at zero which is ||[Kn(X, 0)||zxn-
We claim that for o sufficiently large the supremum is taken on the set ||¢||c, < a~Y/4,
To see this note that

[IKn(X. ®)l| 30 Golax. X, ) *G(ar. X. ) * < CGolar — 1. X. ¢) ' G(ar — 1. X, ¢)
(40) < Cexp(—0(@)(e — Dl|9]%0.,)
< Cexp(—0()(a - D8]1Z).
Here O(1) depends on X, and we have used Lemma 4 and a Sobolev inequality. For
¢llc, > o~/* this goesto zero as a« — oo and henceis smaller than ||Kn(X., 0)|| 5.~ for
a sufficiently large. Hence the claim.

Having established the claim, it now sufficesto prove the lemmawith the supremum
taken over ||¢||c < a/*. However we have

[Ka(X. O[30 < sUp  [[Kn(X. 9)]3:0Golex. X. $) " G(x. X ¢) ™+

s <or /4

(41) < sup [[Kn(X d)]|zxn-

[ fller <ot/

Theright end of this string of inequalities convergesto the left end by the continuity of
the function at ¢ = 0. Hence the result. ]

In the casewhere K(X, ¢) isinvariant under translations X — X+ a, ¢(X) — ¢(X— a)
by lattice vectors a we have,

(42) IKllern=IlKllenr; [Klnr = |K|rh.
Otherwisethereis

LEMMA 6. For anyh’ < h

/

h _1
IKllew.r < [IKllerw < (1— F) IKllenr

together with an analogousresult for the kernel norms.
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ProOOF. Thefirst inequality is easy. For the second let jn(&) = Zx-a T'(X)||[Kn(X) ||

m /n n

h . h h".
IKllerm = zn: = Sl:pln(A) < (Zn: W) sup —in(&)

An T
Myt h". Myt
< (1— F) SlAJpznj ﬁ]n(ﬂ) = (1— F) IK|lehr -
The bound for the kernel norm is a corollary by (37). ]
Property G2 implies the following lemma.
LEMMA 7. For all digoint polymers X, Y

[KnOKnMlle < [KnX)lalIKiWMlle
(43) [KOOK' Mllen < KX lenllK'(Mlleh

where G is evaluated on X U Y on the left side. If X, Y are permitted to intersect then

[Kn(OKnWNllaie, < [[KnX)le, 1KMWl
(44) [KOOK' Mlle,6,0 < KX enllK'Mlle,n
IKOYK' (N[ < [KK)|n|K'(Y)]n-

3. Boundson densitiesof theform e™V(?).  An appropriateillustration of all of the
preceding formulation is to analyze densities of the form

(45) Z(N.¢) =€ V(N ¢) = (Exp@e™))(\ ¢)

for some specific potential V. Thisisthe usual starting point of the renormalization group
in quantum field theory, and is moreover, in most elementary examples, the form of the
leading approximation to the flow of the RG.

We shall give abound on ||e™VX)|| , for the general ¢* potential in d-dimensions;

(46) VOO = [[[A: 6" 4Gt (06) 4Gt ¢(—B)6 o7 1] dx

and the regulator G = G(k) = G(k, X, ¢) defined in Section 2.4. Since we have an
ultraviolet cutoff thisis not a deep result. The proof we present hereis aslight variation
on the proof in [BDH95].

In fact we prove a stronger bound with G(x)Gy (ko) Where

(47) Go(ko. X ¢) = exp(rol|0]1%)
and then use
(48) 1€Vl gayn < [l€7V 6665 2s0) -

The Gy meansthat the norm remembers the stabilizing effect of ¢* at large ¢.
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The boundis proved under the following hypotheses. Re(\)h* is positive and bounded
by asufficiently small constant,and Im(\) / Re()) isbounded by aconstant. Furthermore
we assume

(49) lu|h? < Re(\)h*,  [¢|h? < Re(W)h*.  koh? < Re(A)h*
where |¢| = max((. () and finally that h=2v(0), h™202v(0), h=2x~%, h=2kg? are all
bounded by constants. In all the above, constants only depend on the dimension d.

THEOREM 1. Under the above hypothesesfor any polymer X:
(50) ||e_V(X)||G(n‘)GO’1(Ho).h < 2\XI; |e—V(X)|h < olX|
If X isa subset of a unit block A, then
(51) ’|67V(X)||G(r;,.A)Gal(r;o,A).h <2 eV, <2
REMARK. The theorem also holds if the coupling constants are moved inside the

integrals and are permitted to have x dependence but are bounded as described above.

PROOF. Wefirst prove the result when Xisasingle block A with V(¢) = V(4, ¢). Let
N =(f,..., f,) be C"(A) functions with norm one. We compute the derivatives of eV

by |
h_n —V CEXNY — h_n — 1\I7l X7y V(o)
n! (e )n(d’:f ) - n! ;( 1) ];[an (¢1f )e .

Here 7 = {m;} is any partition of 1,....nand nj = |x|, and f*™ denotes the set of
functions f; with i € 7. We use |V (¢; )| < ||V (9)]|. Furthermore classify the
partitions by the number of elements r and order the elements in the partition which
overcounts by a factor of r!. Finaly use the fact that there are n! /n;!...n,! ordered
partitions with given n;. Thisyields
n b ‘
S CRRNE 3D o | ETNCTIERat

r! n j=1...r

Dropping the constraint 35 nj = n gives

Tl < exp(~Re(V() + - TN

>1

Now we consider monomialsin V,, separately. If q(¢) = ¢™, then
(52) ([ a@)dx) | < b [ a@(glydx =" [ gP(o|/h)ax.

Since: ¢*:y = ¢* — 6v(0)¢? + 3v(0)?, we apply the calculation to each term and obtain

(53) —Re(\) [16%y+ m H (A/A¢4:V)n

a1 N

< —Re(h* [ p(h o))
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where p(t) = t*+ terms of lower degree in t. The coefficients of lower order terms
are of order one because hy?v(0) < 1. Clearly this is bounded above by O (Re(A)h*).
Furthermore, since |u|h? < Re(A\)h*, the term J: ¢?:, can be included without affecting
this upper bound. In the same way we can include aterm like xol| ||z from Go. For the

W=G [ 007+ [ o(-0)6

termin V, bounds such as

(54) | (f@or2ax) | <2n S laoln?

together with |¢|h? < Re(\)h* assure us that

(55) ~ W) + 3 W] < O (ReAHY) 1+ 613 0,/

We estimate |0 4|2 using Lemma 4, and estimate h=2||¢||3 < O(1)xol|4||Z as before to
(():é?n ~Re(V() + 3 ';—THVn(qs)n < O(Re()*) (L+ 18112 5., /D).

In the second factor on the right hand side, replace h=2 by x and bound it by G. From all
the aboveit follows that

57) I sup (&) G (6)Go(o) < exp( O (Rea)*)).
o

Thisargument wasvalid for arbitrary large h. Therefore we can replace h by 4ah with
a > 1 and dominate the norm on A*" by the full norm to conclude
(ah)"

(58) o

Up (€Yol 3.0~ (6)Gol) < 47" exp(0(Re()h?) ).

Since the A*" norm vanishes unless every block neighborhood in A*" intersects A, and
sincethere are a = 3¢ tilde blocks that intersect A, we also have

v ah)" V(4 _
(59) Tl nlgss < BV sup (e~ ¥)(6)[G(¢)Go(o).

We combine these and take the parameters sufficiently small, so that the sum over nis
bounded by 2 as required.
In the general case, where X is no longer asingle block, we write

eV = T VO,
AeX

By the multiplicative property (43),

1™ llae,1n < I1 €7@ lleg,in < 2K,
AEX
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The bound for the kernel norm is a corollary by (37), taking ko = —a and k = o and
then the limit o« — oo. ]

We now estimate the norms of certain classes of functionals which will arise later.
P(X, ¢) issaid to be apolynomial of degreer if derivativesof higher order than r vanish.

LEMMA 8. Suppose that G = G(k. X, ¢) is as defined in (2.4), k = O(\Y/2) and
h =0 (\"/4). For any polynomial P of degreer thereis a constant O(1) (depending on
r) such that
(60) IPeY|lchr < O)IPlhr,-

PROOF. Let Gy = Go(k, X, ¢) asabove. Then we claim that
(61) Pl ccon < OD)IPX)|h-

To prove this suppose we are given A", Let f*" be functions with support in A*" and
with || fi[|crx) < 1. Expand Py(X, ¢; f*") in powers of ¢

;
Pn(X, ¢; T =371/ (k — n)! P(X, 0; F <1, ¢>k=M).
k=n
Localize ¢ using the partition of unity y introduced in Section 2.3. Then we have

1Pa(X. g0 < kil/(k— M3 PO Ol o)™ Mlcroo-

Axk—n

The ¢ term is bounded using Lemma4 to obtain

[éllcrog < /O@r /& (GGo)M" (X, )
and this leads to

r k—n
[P0 < 321/ (k= PUX. O (O /)
=n
We multiply by h" /n!, sum over n and use the binomial theorem with the result

[PX)]lceon < |P(X)|h+\/m

< (1+ \/W/th)r IPX)|

which proves (61).
By Lemma7, Theorem 1 and (61) we have

(62) 1Pe™Y(llgzn < IPMlleeonlle™Mllas;:n < O@IPIn2™.

The result follows by taking the || ||r norm of both sides, because G> = G(2x) and
2k = 0(\Y?). .
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4. The Renormalization Group Map. In this section we compute and estimate
changesin the polymer activities under RG transformations. Applying the RG transfor-
mation to adensity Z (A, ¢) = (Exp A)(A. ¢) expressed in polymer activities A leads to
anew density

Z'(N', ¢) = const (uc * Exp AN, ¢-1)

on a new torus A’ where A = LA’. We want to express this new density in the form
Z'(N, ¢) = const (Exp A) (N, ) with new polymer activities A'. We treat this problem
in three steps: A fluctuation step which is the convolution with uc, an extraction step
which is arearrangement of the polymer expansion and, thirdly, the scaling step.

In the modelsof interest, it will be necessary to know more about A than just its norm:
it will be necessary to “guess’ an approximateform of A, and to estimate the norm of the
error. The leading order guessisthe form A = Oe™ + K where O isgiven by (8), V is of
the form (3) for some parameter values, and the error K is suitably small. For each of the
three steps making up the RG map, we will state and prove atheorem which mapsan A of
thistypeto anew A’ of the sameform. More refined guessescan be expressed as afurther
breakdown of the form K = Qe~V + Rwhere Qe are some leading contributions to K
and Ris very small. Expressed another way, we have A = B+ Rwhere B = (O + Q)e™V
describes the leading form of A. We then want to write the new activities in the form

' = B’ + R with B’ known and R’ very small.

Estimates on polymer activitieswill be givenin terms of thenorms|| - |lc.rn. || - llehr
introduced in Section 2. Unless otherwise noted the (G, I', h) will be of the general form
discussed in that section.

4.1. Fluctuation. The fluctuation step is the map induced on polymer activities by
Gaussian convolution with respect to ameasure with covariance C = C(x, y). In applica-
tions, the covariance C is usually a smooth Euclidean or toral invariant function rapidly
decaying in the separation |x — y|. The technical hypotheses on C needed to control the
fluctuation step turns out to be smoothness and finiteness of the following norm:

(63) |Gl = 3 sup > Css. 22)6(d(B1, 52))
1 N
(64) C(A1,82) = [|xa,Cxa,llcar

and 6(s) isthe function given by (12). xa(X) isthe “bump” function chosenin Section 2.
For Theorem 3 and Theorem 4 we also require the condition on C:

(65) sup  [@*0°C)(x. %) < O(1).
0<|or|<r+d/2+1

The main fluctuation theorem refers to norms which involve G(t, X, ¢), a one-
parameter family of regulators G(t, X, ¢) that satisfy G3in addition to the basic properties
Gland G2:
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THEOREM 2. For any polymer activity Aandanyt € [0, 1], thereis a unique polymer
activity A(t) so that

(66) o x (ExpA) = Exp(A()

where ;i = uc. The map Fy(A) = A(t) is analytic. If b < h and
(h— )2

67 A <D=

(67) IAlls).rh < 16]C],;

then _

(68) IFAllew.rv < |IAlco.r -

REMARK. A consequenceof this theoremisthat if A(s) isany polymer activity with
|A(S)|lag.rn < D, thenfor 0 <s<ft,

A lep.rrv < [AG)leg.rn
because the theorem says
”FFS(A)HG(FS),I'.W < ”AHG(O),I'.h
when A = A(s) and G(t) = G(s +1).

PrOOF. We define A(t) by A(t) = Log(pt * Exp (A)) wherethe Log istheinverseto
the Exp and is given by a terminating series'. Then (66) is satisfied. To estimate A(t) we
derive an integral equation for it.

An essential characteristic of Gaussian convolution, discussed in detail in the Ap-
pendix, is that for any sufficiently smooth functional F(¢), thefunctiont — F; = uic xF
solvesthe functional heat equation

9
aFt = ACF(
with initial condition Fo = F. The functional Laplacian is formally
1
(69) AcF(9) = 5 [ Fa6ix.Y)C(x.y) dxdy.
Asthe precise definition we take
1
(70) AcF(9) = 5 [ Fa(:6.0) duc ).

Now differentiating (66) and using the definition of the Laplacian we have

%Et) o Exp(Alt.¢)) = ACA(. ¢) o Exp(A. ¢))
+ % / dua(QAu(t, ¢;¢) o Aut, 9;¢) o EXp(A(t. ¢))

L LogA= (A= —3(A-Do(A=D+---
Domain: A() = 1.
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We cancel out the Exp(A(t. ¢)) and obtain

d 1
(72) AL 8) = AcA(t. ) + 5Be(A At 9)
where the bilinear operator on activities B¢ is defined by

(72) Be(A.B)(©) = [ dua(QAu(6:0) © Bu(6;C).

This eguation can be converted to an integral equation by convolving and integrating:

t 9 t
/O stie—s * ==A(S) = /0 dsiit_s * ACA®S)
1
+5 [} dsusx Bo(A®. A9).

Theintegrandsin the first two terms combineto give atotal derivativein s, so thisisthe
same as

(73) A(t) = e AQ) + % | /0 " dsji_s * Bc(AS). A®).

Thisisthe desired integral equation satisfied by A(t).

The next step is to take norms in this equation, which in a manner reminiscent of
the proof of the Cauchy-Kowaleska existence theorem of partial differential equations,
replacesthe ¢ dependencein the integral equation by a single parameter h. Using

s+ F@)| = | [ dus©O5(s. 6 +QG(s. 6+ (6 +0)

and | st x G(S, ¢)| < G(s+ ét, ¢) we obtain general formulas

(74) [ st * Fnllosrsty < [|Fnlla
(75) | st * Fllasesy.rn < [|Fllee,r.n-
These enable us to take the norm || ||t = || ||c.r.n Of both sides of the integral

equation (73), and obtain

(76) 1Ol < 1AO)o+ 5 [ ds|Bo(A®. AG))

We combine this with the following lemma

LEMMA 9. For any regulator G

1 ad
51Be(ABllarn < ICll | 55 [Alar

d
3F1Blars

together with the same bound with 9P /9 hP applied to both sides.
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This givesan integral inequality

2
IAO < Ao + Sl ) ds( 3-1AG):]

together with the same bound with 9 P/ 9 hP applied to both sides. In thisintegral inequality
the ¢ dependenceof the original integral equation has been replaced by asingle variable
h.

Iteration of these inequalities results in an upper bound (a “majorant” series) for
||A®)||: which is the unique formal power series in t, h solution to the corresponding
integral equality. This majorant series solvesthe initial value problem

k(t. h k(t. )\
9 gtt ) _ HC”H(B a(th )) . K. h) = [|Allsorh-

By the action principle applied to this Hamilton-Jacobi equation thereis a solution which
isanalyticint, hneart, h = 0. By uniquenessthe majorant series must be the power series
in t, h that represents this solution and therefore the majorant series is convergent for t,
h sufficiently small depending on the initial data ||Al|g(),r,h. The boundsin Theorem 2
are obtained by exploiting explicit solutions for this Hamilton-Jacobi equation obtained

by the action principle. The detailsare in Lemma 8.4 in [BY 90]. ]
PrROOF (LEMMA 9). For the derivativein the direction f <" = (f;,. .., f,) we have
(77) (Bc(A.B)) (¢: ") = {Z } Be(A (63 £7). e (6: F7)).
oC{L...,n

This can be written as

(78) 3 3 [ dicQA (557 x0.0) © B (67 0,0

After taking the supremum over functions f *" supported in A<" with unit C" norms one
finds

(79) |(Bc(A.B)) (4)

i S ZAZA: Cx- B[ Aario (D)3, 50 © [IBuejoel (D) |3, fixos-
o Dby

(We digress to explain the justification of this step. Let L, M be linear functionals on
C" definedby L(¢) = Ao (9177, Q) and M(Q) = Byyjpe (0 f xo° (). We need to show that

(80) [ duc@LOaOM(xa,0) < LIz, IMIla I xa,Cxallca-

To seethiswe usethefact that any continuouslinear functional L onC r(/T) can bewritten
in theform

TOEDD /a"’f dite

| <r
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where each ., is abounded Borel measure on A. The idea of the proof can be found in
[SR72, p. 176]. Actually they consider the case A = R", but the case A= torus which
we quote here is even easier. Given this representation it is straightforward to show for
any function f(x.y) in C2(A x A) that L(f(-.y)) which we denote Ly(f(x.y)) isaC"
function of y and that ay'Ly(f (. y)) = Lx(dy'f (x.y)). Thusexpressionslike My (Lyf (x. Y))
are defined. Furthermore one can show that

(81) | QLG OMOa,) = My(Li(xa, 0 Yxa,) )

The estimate now follows by dominating this expression by the ||M|| norm and then the
|IL]| norm.)

Returning to the main proof we evauate on Z, take the supremum over ¢ weighted
by G2, and sum over the n-tuple of cubes A"

|(Ber )@,
(82 S22 2 OB A AL (K3, 4.6 I Brejos NIz, a4 6-
o Axn XA YDy

Here [|Anllzn g = Sup, [|Anll3G(#) ™ still needs the sum over A*" to become the G-
norm. To obtain this bound we needed the property G2 and the fact that the sum is over
digoint sets X, Y with XU'Y = Z. Note that X, Ax must be nearest neighbors and so must
Y, by.

Shortly we want to sum over Z containing a fixed A. This forces one of X or Y to
contain A. By including a factor of two we can restrict to the case where it is X which
contains A. (We drop the other constraint on X). Keep the sum over A, but use

2 Brajos Mz, 5.6 < [Brejoq (Mlle
Ao°
and obtain

IBe(AB)W@lle <23°3° > Cllx Ay)1Awo|(X)I, a4 6l Brsioe (Yl
o Ro XDY.0y

Now multiply by I'(Z) and sum over Z D A. On the right hand side the sum over Z
combined with the sum over X, Y constrained to have union Z is the same as summing
over X, Y without aconstraint on their union. On the right hand side we use the property
[(2) < T(X)6(d(Ax. )T (Y). Since Y must contain a block that is anearest neighbor to
Ay, and since A, has 3¢ neighbors including itself, the sum over Y gives 39 Busjocllar-
Thus

> IBe(A B@)leM(2) <230 3 3" 3 390 4)6(d(Bx A))T(X)
ZOA o XDA o Dby
X | Ag+16) KI5, & 6| Basjoe o

< 23 [IClollAgsjo) lor [1Brsjos loir -
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In the second step we have used that the sum over A, gives ||C||y and then identified
| A1+jollc.r- Taking the supremum over A gives the I'-norm.
Now note that the sum over ¢ is the same as summing over | = |o| with afactor of “n
choosel” and so
n
(83) IBe(ABhller =2 > 7 lICllollAsullerIBrmller

|
I'm!
I,m:l+m=n It'ml

We multiply by h"/n! and sum over n

J
IBe(AB)crn < 2Cls |57 Alar

d
[3F1Blees

A similar conclusion giving 9P /a hP of this inequality follows if we multiply (83) by
h™P/(n — p)! and sum over n > p. "

For the more refined versions of Theorem 2 which now follow, we will need some
ideas from its proof. Since Fi(A) = A(t) is the evolution under the fluctuation flow
equation (71), we have

(84) E(A®) = %A(t) _ ACA®) — %BC(A(t). A®) = 0.

If we are given some approximate evolution t — B(t), we can measure how well it
matches an exact evolution by the error E(B(t)). The following theorem tracks the
growth of theremainder R(t) under the fluctuation step A — A(t), when A(t) = B(t) + R(t)
with B(t) known and R(0) small.

THEOREM 3. Let B(t) beacontinuously differentiablefunctionof t € [0, 1] and define
R(t) = F(B(0) + R(0)) — B(t) so that

(85) = Exp(B+R) = Exp(B(t) + R(t)).
Suppose h > N and ||R0)co).rn SUPg<t<1 IBOlcp.rn < %D where D =

(h— )2 /(16]|C||s) asin (67). Then -
1

(86) IROlle@.rr < 2(HR(O)lle(O).r.h + ti‘iltOHE(B(S)) He(s),r.h)'

2. If we suppose further that ||R(0)]|g(0).r.n, SUPp<t<1 [IBM)ls.rn < 0/ (2]|Clls) and
h > 2, thenfor anyM > 0,

IROIr_,.1/2 < 0(1)(| RO)|r .1+ ™)™ R(0)||G(0).r.h)
(87) +0() i‘i?(‘E(B(S» ‘r,1.1 ()™ HE(B(S)> HG(S).I’,h)

where O(1) dependson M.
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PROOF. Let usintroduce notation for derivativesof F evaluated at A, namely:

d

(88) (F_)n(A;Bl.....Bn)):—---d%nF_(AwlBﬁ...wan){

B1=-6n=0
We claim that

89  RO)= [ (F)u(BO)+sRO):RO) ds— [(Fid(BO:E®)ds
Thisfollows from

R(t) = At) — B(t)
= [Fi(B(0) + R(0)) — F+(B(0)) | + [F:(B(0)) — B(t)]

= [ Fs(B0) + RO\ RO) ds— [ TFe o(BS) s
and

_%F_t—sﬂ(B(s_ n)|,

d —
d—SFt—s(B(S)) -0

o [Fes(Fi(8®)) + FBs-n)]|
(F-91(B(9): E(9)

r=0

because E(s) = (—d/dr)F, (B(s)) +aB(s) /9.
Theorem 3 follows from (89) in conjunction with the following theorem on the
linearized fluctuation operator (part (2) takenwith n = 1.1’ = 1/2). ]

THEOREM 4.
1. Suppose h > K and ||A|lg@.rn < 3D where D = (h — )?/(16||C|y) as in

Theorem2. Thenfor 0 <s<t<1

(90) I(Fe9)1(A B)lowriv < 2|IBllogrn

2. Supposein addition we have .’ sothat 0 < 5 — '’ < landh — 5’ > 1. Also
supposethat G(t, X. ¢ = 0) < 2XIfor all t € [0, 1] andthat (W —n') || Allc).rn <
|C|l;*. Thenfor anyM > Oandfor 0 <s<t<1

9)  [(FeiA By < O0@[0 — 1) MBIy + (0 — 1) ™|IBlloe.r.n]
where O(1) dependson M.

REMARK. Theideaisthat ||B||g) r n entersthekernel estimateswith alarge negative
power of h to reduceits contribution.
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PrROCOF. We give the proofsfor s = 0. The remark below Theorem 2 shows why this
is sufficient. _
(1) LetB(t) = (F)1(A; B). Thebound isaconsequenceof the Cauchy integral formula:

B(t) = (2ri)~L jé g—flft(m 3B).

We integrate over the contour |3| = %DHBHg(lO)_r_h and use ||Fi(A + 8B)|lgo.rn <
|A+ 3B||c).r,n < D/2+D/2which follows by Theorem 2.

(2) The difficulty hereis that there is no straightforward version of Theorem 2 for
the kernel norm. Instead we work directly from the flow equation (71) for A(t) whichin
integral form says:

t 1
(92) AW = A+ /O dSACA(S) + 5 /O dsBc(A(S). A(S).
Differentiate with respect to e when A — A + ¢B and obtain the linearized equation:
t t
(93) B(t) =B+ /0 dsACB(S) + /0 dsBc(A(s). B(9)).

We take seminorms | [P} = (d/dn)?| |r.,, of this equation. To bound the second term
note that by (65)

[(AcB)(X. Q)] < Z [1B2(X, 0)||AX><AV/||XA><<H [IxaySllr duc(©)

fave y

< 0(1)|Bx(X, 0)|

because the || ||r norm is bounded by a Sobolev norm which is integrable. Similar
estimates hold for higher derivatives and this leads to

(94) AcB® < O(D)|BIE.

The third term is bounded by Lemma 9, provided we use the singular G concentrated at
0. Altogether we have the bound

BOIP,, < [BE,,+0@) [ ds B(s)|<r”*f3]/
(95) *2lcll [} sy oo AT B
By use of a Cauchy bound onefinds
(96) AGIT, < (n+ 1) (W — 1) A

and we combine this with the bound

97) A, < [AS)lee.rv < |Alco.rn
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and the condition ||C|4||Allc).rn < (W — 1’). This leads to the inequality (with new

constants)
t +
BOIP,,, < B, +0@ [ ds|BOIE?,
n+1 _ _
(<) 0wy B [t — ) "B

Nowweclaimthatforallp = 0,1,...andalM = 0,1, ... thereexistsC\" independent
of L so that

BOI®Y , < CR[0—n) "Bl + (0 — )" ™[Blla.rn)-

Thetheoremisthe casep = 0.
Theproof of theclaimisby induction on M. ThecaseM = Qistruesinceasin (96), (97)

BOI,., < p'(0 = 1) "Bllco.rn
Now supposeit is true for M. Inserting the bound in (98) we find:

BOIP, , <8P, +0@)chH?

r 1,7
x [(n — )y P2 |B|r,1.,, + (' =) P> M|Blle).rn]
(99) +O(1)2 P. (n 1) [* ds(i’ — /) cr
n=0

x [(n—n )n PEMIBIE, o+ (0 — )P MIB g0 -
From this we identify the bound for M + 1. The first term is bounded by
B, <Pt —=n) Bl .,

which suffices since n — 5’ < 1. The second term has the correct form once we use
h — 5’ > 1. Thethird term also has the correct form since

(hl _ nl)—n((n _ nl)n+l + (hl _ 17/)n) S 2
which followsfromn —’ < Land b’ > . "

4.2. Extraction. Now suppose that the polymer activity has the form A = Oe™V + K.
The extraction step consists in removing terms F from the K’s and compensating by
shiftsin the potential V. Thiswill be used to put the relevant parts of K in V.

We assume F satisfies the following localization property: F(X, ¢) is defined on
polymers and has the decomposition

(100) F(X.¢) = > F(X.A.¢)

ACX
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where A is summed over open blocks, and F(X, A, ¢) hasthe ¢ dependencelocalized in
A, ie, F(X, A, ¢) isafunctional on C'(A).
For example we might have F(X, ¢) = a(X) Jx P (¢(x)) dx in which case

(101) F(X, A 6) = a(X) /A P (6(x)) dx.
However we also want to consider the more general case
(102) F(X, A, ¢) = /A a(X. B, X)P ($(x)) dix.

For the estimates we also assume the following stability of V relative to the perturba-
tion F: there are positive numbersf (X) independent of ¢ and aregulator G such that for
al A

(103) |lexp{—V(2) - )gA Z(X)F(X, A)}H&h <2
for al complex z(X) with |z(X)| f(X) < 2.
THEOREM 5. If K is a polymer activity and F satisfies the localization assumption
(100) then thereis a new polymer activity E (K. F) such that
(104) Exp(@e™ +K)(A) = Exp(0e™V® + E(K.F)) ().
where V(F) is defined on each cell A by
(105) (V(P)(@) = V() - YZDA F(Y. D).

Thelinearization E; of E inK and F is
(106) E:(K.F)=K —Fe™.

Suppose in addition the stability assumption (103) holds and || f||r,, and ||K||chr, are
sufficiently small. Then E isjointly analyticin K, F and thereis O (1) such that

IEK.B)llenr <O@(IKllenr, *Ifllr);
(107) IEK, F)lhr <O@K]nr, + | fllrs)-

REMARK. The proof is postponed. Note the distinguished role of A in this theorem.
To illustrate how we are going to use this theorem suppose that V(X) = A Jx : ¢* : and
F(X,A) = a(X) fp : ¢* : where a(X) vanishes on polymers X with three or more blocks.
Then the stability bound holds by Theorem 1 provided
(108) > 1209 [« ()] < A/2.

XDA
So we could take f(X) = C|O(X)| |a(X)|A~T with C = 43 x5 071(X), which is finite
for X summed over al polymers with |X| < 2. The smallness condition is now that
|| fllr, = CA72||6cx]|r, be sufficiently small.

The next theorem is a variation on these results in which a constant term Fq(X)
(independent of ¢) is also removed from K and factored out front.
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THEOREM 6. If K is a polymer activity and Fo(X), F1(X, ¢) satisfy the localization
hypothesis (100)?, then there exists a new polymer activity E (K. Fo. F1) so that:

(109) Exp(@e™ +K)(A) = e2xPOExp(0e V) + E(K, Fo. F1))(A).
wherethe linearization E; of E inK, Fo, F1 is
(110) E1(K.Fo.F1) =K — (Fg + Fy)e V.

If in addition F; satisfies stability hypothesis (103), || f||r, and ||K||cnr, are sufficiently
small, and Yy-a [Fo(X,A)| < log2 then E is jointly analytic in K, Fo, F; and there is

O(1) such that
|EK. Fo.F1)llenr < O@(IKllehr, +[Ifllr);
(111) |E(K, Fo. F1)lnr < O@)(K]nr, * [If]lr,)-
ProOOF. Define
(112) CD(X) = H eZ\oA Fo(Y.4)
ACX
and ®(P) = 1. Since DX UY) = ®(X)P(Y) whenever X, Y are disoint we have with
F=Fo+F

Exp(@e™ +K)(A) = Exp(DeV® + E(K.F))(A)
(113) = O(NExp(0d e VO + o~ E(K. F))(A).

But ®~1e"V®) = V) sp we may define E(K. Fo. F1) = ®*E(K. F) to obtain (109).
By the hypothesis on Fo we have ®~1(X) < 2Xl and so

(114) IE(K. Fo.F)llenr = |[EK.F)llgho-ir < |[EK.F)lchr,-

Therefore (111) follows from (107). ]
COROLLARY 7. For F = (Fo, F1) the quantity E>»(K. F) = E(K, F) — Ey(K, F) satis-

fies

IEs2(K. F)llenr < O@)Kllanr,ll fllr,
|E>2(K. F)[r < O@IK]|r, | fllr,-

PROOF. See[BDH95], Corollary 2.
The proof of Theorem 5 is given after the following lemmas have established a
formulafor E(K, F).

DEFINITION 2. {Xj:i=1,..., n} is overlap connected iff the graph G is connected,
where G isthe graph whose verticesare 1, . ..., n and whose bonds are the pairsij such
that X; N X; 7 0.

2 For Fo(X) this means that (100) holds with Fo(X. A, ¢) independent of ¢.
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Overlap connected is not the same as UX; being connected because the polymers X;
need not be connected. Given a polymer activity J define

(115) F= Y T1I0K)

{X, }—’X i

where the sum is over overlap connected sets of distinct polymerswhose unionis X.

LEMMA 10.
(116) > [130%) = Exp @+ I°)(X).
{x} i
where the sumis over sets of distinct polymers contained in X.
PrROOF. Group the {X;} into disjoint overlap connected sets. "
LEMMA 11. Let F be any polymer activity and let
(117) QX) = > F(Y).
YcX
Then
(118) e? = Exp(0+ (& —1)").
ProOF. Write €2(X) = [Tycx(e"™ — 1 + 1), expand the product and use Lemma 10
withd =€ — 1. [
LEMMA 12. Let K. F be any polymer activities and let
(119) K(X) = K(X) — (7 — 1)*(X)e™V™.
Then N
(120) e VoExp(K)=e Vo Exp(K)

with Q asin Lemma 11.

Proor. €V o Exp(K) = Exp(@eV + K) because V has the multiplicativity
property exp(—V(X U'Y)) = exp(—V(X)) exp(—V(Y)) whenever X.Y are dijoint.
Exp(@e™ +K) = Exp(0e™ + (¢F — 1)*e™) o Exp(K) by the definition of K. By
Lemma1l, Exp(Oe™ +(¢F — 1)*e™V) =e VExp(O+ (" — 1)*) = e ¥+ .

Since Q is not additive, we cannot immediately rewrite e V*2 o Exp (K) in the form
Exp(0eV' +K) for someV’ = V(F). We are now going to absorb this non-additivity by
reorganizing e V+2 o Exp (K) into new polymers.

LEMMA 13. Let F(Z,Y) = YA F(Z, A) and V' = V(F). Then formula (104) holds with
E(K.F) given by

EK.PHW= >  exp(-V'(W\X)

i {zg—-w

(122) TTRX) ]_k[(exp(—F(Zk. Z\ X)) — 1).

Here X = U;X;, and the sumis over collections of disjoint subsets {X;} and collections
of distinct subsets {Z} so that
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1. theunion over {X;} and {Z} isW,
2. each Z intersectsboth X and X© = A\ X;
3. the polymers {X;}, {Z} are overlap connected.

PrOOF. Let X®=A\ X. We have
QX)) = > F@)

ZCX®

=2 X Kz

ZCcXe AcZ

=Y {>X- X Fzn.

ACX® ZDA  ZDNZZXe
Subtract V(X®) = Sacxe V(A) from both sides. Recalling the definition of V' = V(F)
in (105) wefind

V-Q)X) =V X)+ > > FZD)

ACXC ZDA,ZgXe
=V + S FZZ\X).
Z¢X,ZgXe
Therefore
e—V+Q(XC) — e—V/(XC) . H e—F(Z.Z\X)

Z¢X,ZgXe

(122) = e V(X% 3 (e F@AW 1)
{z3 Kk

withZ € {Z;} required to intersect X and X°. Substitute Egs. (122) and the definition of

Exp(K) into

(123) e V"o Exp(K)(A) = 3 e V" (X)Exp (K)(X).

XCA

Then group the polymersin the sum over {X; }, {Z} into disjoint overlap connected sets.
One finds that e+ o Exp (K)(A) = Exp(0e™"" + E(K))(A) with E(K) = E(K.F) as
claimed in the lemma. ]

PrROOF (THEOREM 5). Now consider the bounds (107). We prove the first bound.
The second bound is a limiting case of the first in which the large field regulator G is
concentrated at ¢ = 0. Starting with (121)

EK-AW = > exp(-V(W\X)
EORFASY

(124) HK(X')H2|/zk(zk 5 exp{—2F (2 Z \ X))

Here the integral is over the circles |z| = 2/f(Z). We take the norm using the multi-
plicative property and obtain
IEK.FMWlen < > TTIRDIenIIf(Z)
Xih{zd—w i k

(125) supllexp{ V(W' X) = S 2F e 2\ 0} g
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Next we bound the norm by

(126) 1 [exp{-V'©@) - > aF@Zc 1)}, < 2" <]2%.
ACW\X k ' k

We used the stability hypothesis without concern for the difference between V and V’
becausef is sufficiently small and thereis afactor of 2 in the stability hypothesis. These
two points also are used in estimating the Cauchy integral asif z— 1 were z. Next we

write
1

where the sum is over ordered sets, but otherwise the restrictions apply.

We multiply by (W) and use (W) < TI; F (%) TIk ' (Z«) which follows from the
overlap connectedness. Then sum over W with a pin, and use a spanning tree argument®
and the small norm hypothesesto obtain

N + M)! M, ~
IEKPllenr < 3 TR 0@) IRy, 1111

N,M
N+M>1

A

(127)

IN

OW(IIKllenr, *IIfllr,).
Recall that K =K + (e F — 1)*e™V. Since

(€ -1V = e V™ Y [ - (%)
{x}i

1 _da EX
(128) = {;i} e / -1 &PV —zFe0)

we may use the same argument again with I" replaced by I'; to prove that
(129) IRllonr: < IKllonr; + 0@ fllr..

The theorem follows by combining (127,129). n
4.3. Scaling. Thescaedfieldis

(130) oL(¥) = LI (x/L)

where dim ¢ is the scaling dimension of the field ¢. Canonically dim¢ = (d — 2) /2 but
we do not restrict ourselvesto this choice. Functionals scale by

(131) K 1(X. 6) = K(LX. ¢1).
Rescaled polymer activities S(K) = S(K. V) are defined by the equation
(132) Exp(@e™ +K)(LX, ¢ 1) = Exp((@e ™)+ + S(K))(X. 9).

3 Described in the proof of Lemma5.1 of [BrYa90].
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Onefindsthe explicit formula
S(K)(Z. ¢) = {X}ZLZ exp(—V(LZ \ X, ¢1)) TTKOK, ¢r1)
}— i

(133) = > exp(—=Via@Z\LTX,¢)) TTK (L%, ).
{X}—-Lz i

Herethe sumisover disjoint 1-polymers {X; } with union X such that the L -block closures
X[~ are overlap connected* and have union LZ.
We continue to assume that for all open L~1-scale polymers X C someblock A

(134) 1E™)+X)en < 2.

For example if G is given by equation (21) then Theorem 1 verifies the bound for a
specific choice of V.
Now define
hL - L—dimqﬁh
(135) a = 2%xllcr

where x(X) is the bump function which defines the partition of unity in Section 2.3.

THEOREM 8. Let p.g > 0 be non-negative integers. Let V satisfy the stability as-
sumption (134) and suppose ||K ||, .an, r,_, iS Sufficiently small. Then

”S(K)HG.h.rq < O(l)LdHKHGL-ahL
(136) IS(K)Ihry < O(DLIK]an,.

Tap
FQ*P
O(2) dependson g, p.

We also need a sharper estimate on the linearization S; of S

SK)Z ¢) = X0 (€)LZ\ X gp1)K(X. d1)

X:Xt=LZ

(137) = 3 (€)@ \ LXK (LTIX, 9).
X:Xt=LZ

The new estimate needs the stronger bound for L= scale polymers X:
(138) I€™V)L+(X)llgn < 2
where
9(X. ¢) = Gy'(ko. X. $)G( /2. X. ¢)
(139) = exp|—rol| o[k + /2010 6% 2, ]

Again, Theorem 1 provesthis for achoice of V.
Next we define the scaling dimension of a polymer activity K. We set

4 This notion was defined in Section 4.2.
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DEFINITION 3.

dim(K,) =rp +ndim ¢;
(140) dim(K) = iqf dim(Kp)

where the infimum is taken over n such that Kn(X,0) # 0. Here r,, is defined to be the
largest integer satisfying r, < r and Kn(X, ¢ = 0; p*") = 0 whenever p*" is an n—tuple
of polynomials of total degreelessthanry,.

Roughly r,, gives the number of derivatives in K,. Omitting the conditionr, <'r
would give amore intrinsic concept, but adding the restriction is necessary becauseK is
afunctional onC".

As an example of how this definition works we compute the dimension of

K(X.9) = [ (06)0) dx

We have
Ka(X. 0;fu. f2) = 2 [ (9T)((@T2)() dx.

This vanishesif either f; or f, isaconstant and so r, = 2. Since K, (X, 0) = 0for n # 2
we have dim(K) = dim(Ky) =2+ 2dim¢.

THEOREM 9. Let p, g > 0 be non-negative integers. Let V satisfy (138).
1. If K(X) is supported on large sets, then

IS1(K)lenr, < O@L Ko ey,

(141) 1S1(K)hry < O@OL K |an.ry -
2. If K(X) is supported on small sets, and in addition xoh? > O(1) and kh? > O(1),
then
1S1(K)le.nry < O@L ™K |l6 n/2r,
(142) 1S1(K)hr, < OWL™ ™K}y 2r, -

O(1) dependson p, g.
The proof of these two theorems is given after the following lemmas.
LEMMA 14. For any regulator G

K2l 2X)le < L™ a|[Kn(X) 6,
|| KLfl(Lilx)”G,h < H K(X)HGL-ahL .
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PROOF. Given AX" let f*" be n functions supported in AX" with || f;[lc: < 1. Then
the left hand side is given by

Sosup K1 oL ¢ PN G HL X, 6)

Afxn q‘)_f
= A;n sup [Kn(X. 614 FEIGLHX, ¢1)
< Y sup|Kna(X, di-1; (xa fLa) "|GCHX, ¢L1)
AN A ¢.f
< > Sufp||Kn(X, ¢L*1)||Axn||(XAfol)Xn”C'G[l(x- bL-1)
DA,

< LM )M Ka(X) o -

Here we inserted the partition of unity xa«» to localize the scaled f, -1 back in blocks of
unit scale. Note that ya f, 1 = O unless LA intersects A, and for fixed A there are at most
29 blocks A satisfying this constraint. Thus doing the sum over A" first in the last step
givesriseto afactor 29", In the last step we have also estimated in C '

(143) Ixafiall < L™ < L= 9™x ]l

Now thefirst inequality is proved and the second is an immediate corollary. ]

LEMMA 15. Let X be a small set. Then for a constant O (1) depending on r

[Kn(X. 0; D] < O@)"L™ ™ |Kn(X. O)f| TT Il fillcr (1)
J

where ||[Kn(X, 0)|| isthe normin (16).

PROOF. We pick z € X and expand the functions f; | -1 in Ky(X, 0; f <) in a Taylor

series
rm—1 1
fiia®) = ZO % (o) (x=2)%(0 “f; L-)(2) + Rir, (%)
=0 o:a|=q
n
(144) = > Giqa(¥)
g=0
where r,, appearsin Definition 3.
We claim that
(145) Igiallcmey < O@L 9| | cm-1x-

For g < rp, note that

_ a0
(146) 90 = > (e
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and since ]
@ L)@ = L~ lel=dime g L2

one obtains (145). For q = ry note that for |3| < rn, °g;r,(X) is equal to the Taylor
remainder for the expansion of 9f; | -1 to order r, — |3| and is given by

(147) m / ds(1 — g) 1o 1 I - (a 1) (2= s(x — 2)).

ds’
Now X is connected and if we also assume that it is convex then the 2 path z — s(x — 2)
staysentirely in X and it follows that (145) isaso true for g = rp. If Xiis not convex we
haveto use another representation for the remainder which is discussed at the end of the
proof.

Thefirst inequality follows from the definition of r,: only the termswith total degree
> ry contribute to K;,. Using (145) we have

‘ ; X(Z q = I'n)Kn(X~ 0,01, X -+ X gn,qn)
qlfrn

; X(22 6 = ) IKa(X, Q) TTO@WL™4™™ ] [l crn -2y
G =rn |

0L [Kn(X, Ol TT i ller2-
J

IKn(X. 0; £<)]

IN

(148)

IN

X not convex: For any sufficiently smooth function f (x) let T(x, z) bethe Taylor polyno-
mial of order r — 1 around x = zand let R(x, 2) be the remainder so f (x) = T(X, 2) + R(X, 2).
Usually the remainder is expressed in terms of derivatives of order r along aline from z
to x. Here we argue that instead one can express the remainder in terms of derivatives of
order r along any piecewise linear curve from zto x.

Suppose for simplicity that we have acurve from zto Z to x. We define

G(x,27) =R(X,2 — R(X,Z) = —T(x, 2 + T(x, Z).

Since R(x,Z) has the properties we want it suffices to consider G(x, z Z). Since
G(x.Z,Z) = Owe have

/01 dﬂe(x.z +s(z—7).7)ds

/ (z—2)(0G)(x.Z + s(z—2).Z) ds.

|3]=1"

G(x,z 2)

But for |3| =

000 (x22) = —(@/Tx)=— 3 @ N@Dx—2 "

|a|=r,a>3 (Of - 6)‘

Thus G(x, z, Z) only involves derivatives of order r along the curve from zto Z'. ]
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The next lemma refers to aregulator G defined on L~-scale polymers by

G(L™X) = G(k. L™2XY) g7 H(L~1X \ L71X)
= G(k, L™X)G(k /2, L™\ LX) G (ko L™XE \ L72X)

where g = G(r / 2)Gy (ko) is the regulator appearing in (138). Note that
(149) G(k. L™1X) < G(L~X).
LEMMA 16. For any small set X and roh? > O(1) and kh? > O(1)
1K (LX) |6 < O (@)L 4 KXl e.n/2

0O(1) dependson dim(K).

PROCOF. Takep large enough so that pdim ¢ > dimK. For n < p we expand the n-th
derivative K -1 ,(L™1X, t¢; f*") in a Taylor seriesin t to order p — n.

p—1
Kian(LX i £y = > ———— 1 Ki1g(L7IX, 0 %" x ¢*9")
' &n (@—n)!
_fpn-1
(150) / dtgl_:]) i Ki1p(L71X 1 £ x ¢*P ).

To proceed, we defineforn < g <p
Ingt(L™X ;£ = Ko g (LKt £ x 9%
and will show that
(151) [9naeLX)lg < 0L PhT=(1 — ) 9/2||Kq(X) |,
whilefort =0
(152) 9oL X)]lg < O@)L™ 4D Ky(X)]| g, -

In these bounds O (1) dependson p.
Note that with these boundsthe t integral in the remainder term of (150) isintegrable.
From this, and the fact that L= dmKa) | —pdim¢ < | —dim(K) it follows that
0(1)
—n)!

(159 < 0L dim“)zo a2 001,
2Ty

h"
> S IKnLX)le < Z (s 2t
on q—n

n= " n=0

L AmORt” ”IIKq(X)IleL>

< 0L ™K (X)| g ny2-
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For p > n we use the first bound in Lemma 14 and G;* < G ! to obtain
o0 QN _ o
(154) 2 K lls < 0L ™OIKX) o2
n=p+ -

Combining the two proves the lemma.
To bound J we proceed asin the proof of Lemma 14:

gL X)) = ZSUP|KQ(X to ;7 x ¢4 )IGHLIX, ¢)

& o
(155) <O@L9meal 3 supl|gllgy
paxnpZI )
(156) % [[Ka(X. 1612l gnczranGHLTHX. ).
Now write
(157) G HL X ¢) = G (X to1)G H{L7IX. (1 — )M29).

Thefirst factor is paired with ||Kq(X, t¢, -1)|| and the second factor is paired with ||¢[|9".
Using Lemma 4, the fact that a small set has O (1) blocks and the hypotheses on . ko,
one finds that

[llcr1x < lollcra-1x
< 0@l N1z -1x * 19 DMl -1 2.0)
(158) < O@h(sg *ll9ll s ox *+ (/2?0 6l s22,)
and hence

110 < O@WNT"Golro, L X"\ L7*X, 6)G(x /2, L X", )

(159) < O()h*"G(LX, ¢).
Thisleads to the bound
(160) [9nqiL ™ X)]|g < O@)L-A9M adha—n(1 — 2)9/2||Ky(X) |5,

and since G, < G[* this gives (151).
When't = 0 we use Lemma 15 and have instead of (156)

I9ngoL™ Xl ZSUIO|Kq(X 0;f7 x /TG (L X. )

><n 4)

(161) < 0L 4™ 3 sup([|61& -1y G L ™*X. 6))[[Ka(X, O)-

Axn ¢

The sum over Ay" has at most O(1)" terms because X is a small set and Kq(X, 0; 4 x
¢*9=M = 0iif, for any A, LA N X = (. By Lemma 2 and again using (159) we have

(162) IFngoL™X) 5 < O@L™ ™ h™"[Ky(X)]|5,
which gives (152). L]
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PrROOF (THEOREM 8). The bound on the kernels is a corollary of the first bound
by letting the large field regulator G become concentrated at ¢ = 0 as in (37). We
rewrite (133) as

(163) S(K)(z,qs):;l/l\l! > @@\ LX) TT K (LX),

(X1 XN)

where the X; are disjoint but the L-closures )?i'- overlap andfill LZ. Using

(164) G(Z.¢) ™ = G(Z \ LX) P[] G(L X ¢)

we obtain by the multiplicative property of the norm (7)

ISK)Dlen < ZN: /N Zx ) x[[(€™V)<(Z\ L™ X)/leh 1|_[ 1K+ (LX) | -
By the multiplicative property of the norm and the small V hypothesis (138),
(165)  [|(eV)(Z\ L X)len < AI;IZ [€™Y)2 (A L_lx)”G(A\L*lX).h <2,

By Lemma 14,
KL+ (L™2X) lon < KX |6, ah, -

Now multiply by I'q and note that [q(2)24 = [q1(2). By the connectedness we have
Fg1(2) < TH(Mge)(L71XE). Furthermore we have the bound (13) for some constant
0(): 3

(M) (LX) < O g-p)(X).

Summing over Z with a pin and using a spanning tree argument® we obtain
o0
ISK)lleren < NZlO(l)N_l(LdHK||GL,rqu.ahL)N-

This givesthe result. ]

PROOF (THEOREM 9). (1. Large sets) Proceeding asin the proof of Theorem 8 we
obtain

[S1K)@D)len <24 3 K1 (L™X) |-
X:Xt=LZ

Wetakethe || ||r, norm of both sides using

DRI RS

7oA X X217 XXOLA  BoCLAXShg

which leadsto

I1S1(K) e, < L9sup 3= (Faen)(L™XD)IKX) 6o,
Ao XDAy

5 Described in the proof of Lemma5.1 of [BY90].
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because [|[K -+(L™*X)|[gh < [|K(X)||g..an. by Lemma 14. But for X large, by Lemma 1
we have the bound (I g+1)(L~1X) < O (L)L~ q—p)(X) which givesthe result.
(2. Small sets) We have

G(Z. ¢) = G(LT'X. 9)9(Z \ LX. ¢)

from which we obtain

IS1K)@len < 2 KL X)llgnll€)+EZ\ L™ X)gh
XX=LZ
<27 5 [IKes (LX) g
X:Xt=LZ
so that _
1S1(K)llonry < LYsup 3= (M) (L XD) KL (LX) g -
Ao XDhg
Now use the Lemma 16 and the bound (Igu1)(L2X") < O(1)(Tq-p)(X) from Lemma 1
to complete the proof. n

A. Gaussian integration. We recall some facts about Gaussian measures (see for
example [Sim79]). Let (-, -)c be an inner product on the real Sobolev space H_s. By
general probability theory there is an abstract measure space (Q. F , ;1) and alinear map
f — @ fromf € H_g to random variables (functions on Q) such that

(166) / dju()ee® @ = g 1-N)c/2

for al o € C. Thisfamily of random variables is called the Gaussian process indexed
by H_s with mean zero and covariance C.

One can make the specific choice Q = H; provided r < sis such that the injection
Hs — H; istraceclass. In thiscase ®¢(¢) = (¢, f) for f € H_, andisdefined by LP limits
forf € H_.

The Gaussian processes of interest to us are derived from inner products of the form

(f.g)c= [ dxdyCxy) (g0

where C(x, y) isaC> function on A x A. This definesan inner product on H_ for any
s, and so we can get a process on any H;.

Additionprinciple: If ¢, ¢ aretwo Gaussian processeswith covarianceB, C respectively,
then the sum ¢ + ¢ isa Gaussian processwith covariance B + C:

(167) [ dus(@) ducQF (6 +Q) = [ dupicW)F(Y)

Convolution: When Fubini’s theorem holds on the left side of (167), the ¢ integral can
be donefirst, and the result is a measurable function of ¢ called the uc—convolution of
F denoted by uc *x F:

(168) (e * F)(@) = [ duc(QF (6 +0)

and

(169) [ dug(6) duc(QF(6+¢) = [ dus(@)(uc * F)6) = [ duc(Q)(ue * F)Q)-
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Semi-group property: A consequence of the addition principle is that the Gaussian
convolution (168) can be broken up into steps. For any t € [0, 1], define the convolution
function F — F; = utc * F. Thisfunction satisfies the semi-group property:

(170) Fi = (Fo)s, foralse]0,t].

L et us now define the functional Laplacian of F with respect to the measure ¢

a7y BCF(9) = 5 [ duc(QF2(61¢.0

where F, denotesthe second functional derivative (cf. Section 2.3). The next proposition
states conditions under which Gaussian convolution leads to solutions of the functional
heat equation derived from Ac.

PROPOSITION 10. Let uc be a Gaussian measure on Hg(A), and F be a smooth func-
tional of the Gaussian field ¢ whose third derivative F3 is uniformly bounded pointwise
in¢:

ap JFROGCEAI
aoGems [GllnlGllnliGln
Then the one-parameter family of functionals Fy = uc * F parametrized by t € [0, 1]

solves the functional heat equation

a Fy

(172) Tt =Ackt
with the initial condition Fo = F.

PrOOF. We note that
(173) Fat(¢) = / dust(QF (¢ +¢) = / dpa(QF (6 +8tY%)
where we use the notation p; = pc. Into this we insert the Taylor expansion in powers
of 5t1/2

(6 +61420) = F(6) + 5tV°Fa(610) + SFa(i. Q) + 52R(6.0)

and obtain

(s‘lt(“& # F(6) — F(9)) — AcF(6) = 6t"2 [ dua(QR(©.©).

The F, term vanished becauseit is odd in ¢. By the Taylor remainder formula,

[ 4@ IRG.Ql < sup [ dua(Q) [Fa(6 +a?¢:¢.¢. Q)|

ac[061]

IN

K [ duma(© I<I13,
K’

IN

https://doi.org/10.4153/CJM-1998-041-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-041-5

ESTIMATES ON RENORMALIZATION GROUP TRANSFORMATIONS 793

Thus the remainder is uniformly bounded pointwisein ¢ for all small ét so that

E(uzst * F(¢) — F(¢)) — AcF(¢) — 0.

(174) T gt

Combining this with the semigroup property st = st * pex shows that the function
t — p x F satisfies the functional heat equation

d
ﬁut*F=Acut*F

pointwisein ¢ andt — y * Fissmoothint and ¢. ]
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