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Abstract

We characterize all finite linear spaces with p sj n2 points where n > 8 for p # n2 - 1 and n > 23 for
p = n2 — \. and the line range is \n — 1,n,n + 1 ]. All such linear spaces are shown to be embeddable in
finite protective planes of order a function of n. We also describe the exceptional linear spaces arising from
p < n2 - 1 and n > 4.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 25.

1. Introduction

A finite linear space (FLS) is a finite set of p elements called points together with a
collection of q sets of points called lines such that any two distinct points u and r
belong to precisely one common line, denoted uv, and every line contains at least two
points.

An FLS is trivial if it has fewer than two lines.
In case a point u is an element of a line x, we shall use phrases such as 'u is on x' or

'x passes through u. Points on the same line are said to be collinear, lines through the
same point concurrent.

The degree of a line x, denoted a(x), will be the number of points on x. The degree
of a point u, denoted b(u), will be the number of lines on u. If a(x) = k we call x a k-
line. If b(u) = k we call u a k-point.

A finite affine plane (FAP) of order m ^ 2 is an FLS with m2 points in which
a(x) = m, b(u) = m + 1 for every line x and point u. A finite protective plane (FPP) of
order m ^ 2 is an FLS with m2 +m+ 1 points in which a(x) = b(u) = m + 1 for every
line x and point u.
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The Nwankpa-Shrikhande plane (Shrikhande FLS) was examined by Totten
(1976) where it was shown to be the unique FLS other than the FAP of order four
less one line and all its points—with 12 points and 19 lines where b(u) = 5 for all
points u, a(x) = 3 or 4 for all lines x, and each point is on precisely one 4-line and four
3-lines. It was also shown that this FLS is embeddable in an FPP of order 5. By the
extended Nwankpa-Shrikhande plane, we shall mean the Nwankpa-Shrikhande
plane with one additional point on all 4-lines. The Nwankpa plane is the FLS on 11
points with one 5-point line and fifteen 3-point lines obtained from a 6-arc by adding
five points corresponding to the partitions of the arc into three 2-point lines.

Recently, de Witte (1979b) and Totten and the author (1979) classified FLS's with
p ^ (n+ I)2 points and line range {n,n + 1}. It was shown that, except possibly for
some small values of n, each such FLS is embeddable in an FPP. The purpose of this
paper is to classify and establish embeddability in FPP's of all linear spaces with
p =% n2 points in which each line has n — \,norn+l points, and for which n is greater
than some fixed positive integer. We prove the following.

THEOREM. Let L be a nontrivial linear space with p < n2 points and line range
{n-l,n,n + l}. Then if n ^ 23, L is

(i) an FAP of order n— 1 or n,
(ii) an FAP of order n less a point, a line and all its points, or a line and all its points

but one,
(iii) an FAP of order n— 1 with an additional 'point at infinity,
(iv) an FPP of order n — 2 or n — l, perhaps less a point in the latter case,
(v) an FPP of order n+l less three lines and all their points, or perhaps retaining

one of these points, not the point of intersection, if these lines are concurrent,
(vi) an FPP of order n, less a line and all its points but one, and less either one, two.

or all but one of the points (and therefore also the line in this last case) of a
second line on this point, while retaining the point,

(vii) an FPP of order n less an (n+ \)-arc or an(n + 2)-arc. the latter only if n is even,
(viii) an FPP of order n less all points save one of each of two lines, with the point of

intersection and the lines themselves deleted.

Furthermore, ifp = n2, n ^ 8, or p < n2 — 1, n ^ 4, we have the following additional
possibilities:

(ix) p = 11 and L is the Nwankpa plane,
(x) p = 12 and L is the Nwankpa-Shrikhande plane.

(xi) p = 13 and L is the extended Nwankpa-Shrikhande plane, a Steiner Triple
System on 13 points or the unique FLS on 13 points and 20 lines with one 6-
point and six 4-lines,

(xii) p = 46 and L is one of the problematic block designs (46,69,9,6,1).
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THEOREM 1. If L is a nontrivial FLS with p < n2 points, p # n2 — 1, n ^ 4 and line
range {n— \,n+ 1}, then L is one of the following:

(i) an FAP of order n — 1,
(ii) an FPP of order n less two lines and all their points except their meet,

(iii) an FPP of order n — 2,
(iv) one of the problematic block designs (46,69,9,6,1),
(v) the extended Nwankpa-Shrinkhande plane,

(vi) a Steiner Triple System on 13 points (see Batten and Totten (1979)), or
(vii) the Nwankpa plane.

THEOREM 2. / / L is an FLS with p = n2 — 1 points, n ^ 23 and line range
[n— I,n+ 1}, then L is

(i) an FPP of order n+ 1 less three concurrent lines and all their points, or
(ii) an FPP of even order n less an (n + 2)-arc.

2. Background from linear spaces

The points and lines of an FLS will normally be denoted by the symbols ua and xa

respectively, and for brevity's sake, we shall write bx for b(ux) and aa for a(xa).
We have the following easy formulas.
PI. By counting the points lying on the lines through any fixed point ux, we have

where

fl i fu . ex ,
" JO

P2. If Uj and xa are nonincident, there are precisely b^ — aa lines passing through
u, and missing xa.

Theorems A and B below are results from the papers by Totten (1976) and by de
Witte (1979b) mentioned in Section 1. Theorem C is due to Bose and Shrikhande
(1963)forn *S4,H ^ 6 and due to de Witte (1976) for n = 6. Theorem D is a result of
Mullin and Vanstone (1976); and Theorem E is the main theorem of Batten and
Totten (1979).

THEOREM A. Ifp = n2 + n, n ^ 3 and each line of the FLS L has n or n+\ points,
then L is an FPP of order n less a single point, an FAP of order n+i less a line and all
its points, or the Nwankpa- Shrikhande plane.

https://doi.org/10.1017/S1446788700016505 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016505


218 Lynn Margaret Batten [4]

THEOREM B. If L is a nontrivial FLS with p ^ (n + I)2 points and n ^ 3, in which
each line has n points, then L is an FPP of order n—\ or an FAP of order n, or an STS
on 13 or 15 points, or a Steiner Quadruple System on 25 points, or one of the
problematic block designs (46,69,9,6,1).

THEOREM C. Let L be an FLS with n2 — 1 points all of degree n + 1, n2 + n + 1 lines of
which n(n — 1 )/2 are of degree n + l and (n + 2).(n + l )/2 of degree n—\, where n ^ 4 is
even. Then L is an FPP of order n less n + 2 points no three of which are collinear.

THEOREM D. Let a be any positive integer and n be any integer satisfying n > a + 2.
Let L be a finite linear space with p = n2—xn points, each of degree n+\, and
q^n2 + n—a lines, at least n — y. of which have degree at least n. If
n > (a4 + 2a3 + 2a2 + 3a)/2, then L can be embedded in an affine plane of order n.

Letting a = 2 and n -» n +1, this becomes applicable to our case p = n2 — 1 below.

THEOREM E. IfL is an FLS with p < (H + I)2, n ^ 5, in which every line has either n
or n + l points, then L is one of:

(i) an FPP (resp. FAP) of order n — l or n (resp. n or n + l ) ,
(ii) a punctured FPP (resp. FAP) of order n (resp. n+ 1),

(iii) an FAP of order n with an additional 'point at infinity,
(iv) an FAP of order n+l less a line and all its points, but possibly one,
(v) an FPP of order n + 2 less three non-concurrent lines and all their points,

(vi) the problematic block design (46,69,9,6,1).

Furthermore, ifp < (n + I)2, n ^ 3 and p / 15 {see de Witte (1979b), then we need
only add to this list the following:

(vii) the Nwankpa-Shrikhande plane,
(viii) a Steiner Triple System on 13 points,

(ix) the unique FLS on 13 points and 20 lines with one b-point (the rest having
degree five) and six 4-lines.

3. Line range (n — l,n + l\

All three theorems are proved simultaneously.
We first of all suppose that L is a nontrivial linear space with p ^ n2 points and q

lines such that each line has degree n - 1 or n + 1. In case p ^ n2, n ^ 4, Theorem B
allows us to suppose that there are (n+ l)-lines. Moreover, PI implies that not
all lines are (« + l)-lines, and PI and P2 together imply

= n2-n-l.
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(i) p < n2 — 3, Suppose that p < n2 — 3. In this case, no b^ is ^ n + 2 by PI. Since
some fc3 = n + 1, we may suppose that p = n2 — n — 1 + 2m, 0 ^ 2m < n — 2, m an
integer. Letxbean(/? + l)-line. Then for u^x,b% = n+ 1 where m of these are (n + 1)-
lines and n + 1 — m are (/? - 1 (-lines. If m = 0 , then all lines distinct from x are (n — 1)-
lines and all lines meet x. Let u^ex. By PI,

In case n = 4, L\ x is a 6-arc, £>., = 4 for all points w, of x, and so L is the Nwankpa
plane implying n — 21 u so n ^ 4. If m = 1, then except for perhaps one point on x, all
points have bx as above. If there is an exceptional point uofx, it lies on all the(n + 1)-
lines, and on no (n — l)-lines by PI. Then L\ {u} is a linear space with n2 —n points,
bz = n + 1 for all ux, one of these an n-line and n of these (n — l)-lines. By Theorem A,
L is an FPP of order n less two lines and all their points except their meet (w), or L is
the Nwankpa-Shrikhande plane along with one additional point on all the 4-lines.

So we suppose m ^ 1 and fo3 = n + 1 for all a, m of these being (/? + 1 (-lines and
n+\—m(n— l)-lines. Clearly then, all (n + l)-lines meet any given line. Let x be any
(/i+l)-line and / any (n— l)-line. The number of (u + l)-lines meeting / is
(n-\)m = mn-m. The number of (u + l)-lines meeting x is
(m — \)(n+ 1 ) - 1 = mn-n + m. Hence 2m = n -̂  n — 2 and we have a contradiction.

(ii) p = n2 — 3. In this case, using PI and assuming for the moment that n ^ 6, we
obtain bx = n + 2, all ( H - l)-lines; ba = n + l, \(n-2) (n+l)-lines, j(n + 4) ( H - 1 ) -

lines; or bx = n, n — 2 (n + 1)-lines, 2 (n — l)-lines. Any n-point u must be on all
(/!+ l)-lines and is therefore unique. Let v be an (n+ l)-point. Then v can be on at
most one(n+ l)-line, forcing \(n — 2) ^ 1 or n ^ 4, and so a contradiction. Hence n-
points do not exist.

If all points have degree n + 1, counting incidences of (n + 1)-lines in two different
ways implies

so that n+ 11 3, a contradiction. Hence, let x bean(n+ l)-line and uan(« + 2)-point
not on x. Then u is on an (n - 1 )-line / missing x, and each point of / is an (n + 2) point.

If there is an (n + 2)-point v not on /, then as above, v is on an (n — l)-line /' missing
x. All lines meeting but distinct from / also meet x; these are (n+ l)(n — 1) = n2 — 1 in
number. Only (n — 1 )2 of these meet /', leaving n2 — \—(n—\)2 = 2n — 2 lines meeting
x but not /'. But n2 — 1 lines meet /' and x so that the number of lines meeting x is at
least n2 — 1 + 2n — 2 + 1 = n2 + 2n — 2. The precise number of lines meeting x is
;i(/i + 1)+ 1 = n2 +n + 1 yielding n2 +2n — 2 < n2 +n+ 1 or n ^ 3. Hence v does not
exist, and all points of L I are (n+ l)-points.

Since no (n+l)-line meets /, each (n + l)-point is on at most two (n + l)-lines
forcing %(n — 2) ^ 2 or n ^ 6.
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If n = 6, | L\l\ = 28, each point on two 7-lines and live 4-lines. Also all 7-lines
meet. Label these

{1,2,3,4,5,6,7}, {1,8,9,10,11,12,13}, {2,8.14,15,16,17,18},

{3,9,14,19,20,21,22}, {4,10,15,19,23,24,25}, 15,11,16,20,23,26,27},

{6,12,17,21,24,26,28}, {7,13,18,22,25,27,28}.

The points of / correspond to parallel classes each containing seven 4-point lines.
Without loss of generality, we may choose 1,14 and 23 to be collinear, forcing the line
{1,14,23,28}. Choosing, 2, 9 and 24, we find that {2,9,24,27} is a line. Choosing 3
and 10 we are forced to have {3,10,18,26} a line. The first two points of the next
three lines force the remaining points: {4,11,17,22}, {5.12,15,25}, {6,13,16,19}.

This leaves 7 and 8 with 20 and 21 while 20 and 21 are on a 7-point line. So Ldoes
not exist.

Suppose n — 4. In addition to the above possibilities for bv we have £>a = n — 1, all
lines being (n+ l)-lines.

If x is a unique 5-line, then each point not on x is on a unique 3-line missing x, thus
partitioning L into disjoint subsets of order three with one of order five, while this is
impossible asp = 13. Suppose Lhas at least two 5-lines. Since a 6-point is only on 3-
lines, any two 5-lines meet each other.

Suppose finally that some point u has at least two, and therefore precisely two or
three, 5-lines on it. If u has three 5-lines, then every other point is a 5-point, on one 5-
line and four 3-lines. Hence L\ {u} is the Nwankpa-Shrikhande plane or the FAP of
order four less one line and all its points. Suppose no point is a 3-point, and hence
suppose that u is a 4-point on the two 5-lines x and y. There can be no 5-lines not on
u, and so points not on x or y are 6-points. Points of x and y distinct from x n y are 5-
points. Let 1 denote the point x n y and 2, 3, 4, 5 the points not on x or y. We may
assume that {1,2,3} and {1,4,5} are the 3 lines on 1. What other points then are on a
line with 2 and 4? Certainly, none of 1, 3,5. Let 6 denote the third point on 24. So 6 is
on x or y. But each line on 6 then, meets both x and y and hence 24 has four points, a
contradiction.

(iii) p = n2-2. If p = n2 -2 then by PI, br = n+\ for all a, with %n- 1) of these
being (n+ l)-lines and j(n + 3) (n— l)-lines. Counting incidences of (H+ l)-lines in
two different ways implies

n+ I \(n2 -2)- $(n- 1) = $n2(n+ l)-{n + I)n + 1

and

j(n+ 1)| 1. impossible.

(iv) p = n2 — 1. By P l , b 3 = n, n — 1 (n + l)-linesandone(/!— l)-line, b7 = n+\,\n

of these (n + 1)-lines and jn + \ of these (n — l)-lines, or hx = n + 2, one of these an
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(«+ l)-line and the rest (n — l)-lines. If some point is on all (n+ l)-lines, let / be an
(n — l)-line not on this point u. Each point of / is joined to u by an {n + l)-line. Thus,
there is precisely one (n — 1 )-line honu and each point of h\ {u} is on an (n + l)-line
not on u—a contradiction. So no ^-points exist.

Suppose that the (« + 1 )-line x misses the (n — l)-line /. Then bx = n + 2 for all ua e /
and so there are n {n — 1 (-lines on each point of / meeting x. Let s be the number of
points Up of x with bfi = ti+l. Then the number of (n — l)-lines on points of x which
meet / is both

l - s ) ( H - l ) and ^$ns + (n + 1 - s ) ( n - 1).

So

s+\ns + ir -l—sn + s ^ n2 - n ^ {ns + n2 — 1 —sn + s

so s+ 1 > (i«— l)(s —2) ^ 1 implying n ^ 10, a contradiction. So each (n + l)-line
meets each (n— l)-line.

Assume now that all [n + l)-lines meet each other. Then bx = n+ 1 for all a, and
since all lines meet a fixed (n+ l)-line, q = n2 +n+ 1 where {n + 2)(n+ l)/2 of these
are of degree n — 1 and n(n — l)/2 are of degree n + 1. By Theorem C, L is an FPP of
even order n less an (n + 2)-arc.

Now let x and y be (n + l)-lines which do not meet. So all points on x and y have
b2 = n-\-2. Let ufx,y. Then u is on at least n + 1 (n— l)-lines and so b(u) — n + 2.
Hence bx = n + 2 for all a and no two (n + l)-lines meet. Thus there are
(n2-\)/(n + l) = n-\ (;i+l)-lines and q ~ (n+ l)(n + l) + n - 1 = n2 + 3«. By
Theorem D, L is embeddable in an FAP of order n + 1. Hence L is an FAP of order
ii + 1 less twononintersecting(/i+ l)-lines, orequivalently, an FPP of order n + 1 less
three concurrent lines and all their points.

(v) p = n2. If p = /i2 then by PI, ba = n+l for all a where %{n+l) of these are
(/! + l)-lines and \(n + 1) are (/? — l)-lines. Counting incidences of (n — l)-lines in two
different ways gives n — 1 |/?2 •j(n+1) while («,«— 1) = 1 if n ^ 2 and
( i (n+l ) ,H- l ) = 1 if H ^ 4 .

The requirement that /; ^ 23 in case p = n2 — 1 is rather disappointing. The
condition has not been improved upon as far as I know, in the graph theory context.

It may, however, be possible to improve it in the context of linear geometry.

4. Line range {n — 1, n, n + 1}

We may now assume that lines of lengths n—l,n,n+l exist. Then by P I ,

p ^ n2 - n - 1.

(i) n2 — n — 1 ^ p ^ n2 -2. For /) ^ 3, n2 — n— 1 < n2 — 4, and for values of p in
this range, PI implies that there are no (n + 2)-points.
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Ifp = n2 - 3 , b y P I , b x = n,n-2 (n+ l)-lines, 2 (n-l)-lines; bx = n, n-3

lines, 2 n-lines, 1 (n— l)-line; br = n, n — 4 ( « + l)-lines, 4 n-lines; ba = »i+ 1, s, H-

lines, i(« — s, — 2) («+l)- l ines, ^(n —s3 + 4) («—l)-lines where s, is a nonnegative

integer; or bx = n + 2, all (n — l)-lines.

Suppose there is an (n + 2)-point v. For any fixed (n — 1 )-line x, there is a line / on r

parallel to x, which therefore contains only (n + 2)-points. Suppose there is an (n + 2)-

point w not on /. Then w is also on a line /' parallel to x and whose points are all

(n + 2)-points; furthermore, / n /' = (/) as otherwise there is a point on at least n + 3

lines. Those lines meeting and distinct from / all meet x, and there are

(n— 1)(»+ 1) = n2 — 1 of them. Only(« — \){n — 1) of these meet /', leaving 2n- 2 lines

on x missing /'. But there are also n2 — 1 lines meeting x and /' so that the number of

lines meeting x is at least n2 — l+2n — 2 + 1 = n2+2n — 2, while x is on at most

n(n + 1) + 1 = n2 + n + 1 lines. This implies n2 + 2n — 2 < /J2 + /; + 1 or n ^ 3, and a

contradiction. Hence w does not exist.

Let u be any point not on /. Then u is on at least three (n— 1 (-lines implying

b(u) = n+\.
The linear space L\ I contains an n-line h. Since for all points u of L\/, b(u) = n + 1,

we get a partition of L \ / into (n - 2)-, (/i — 1)- and o-lines. noting that all (JI + 1 )-lines

meet h. As (n+ 1 (-lines exist, the partition has at least ;i + 1 lines and so the total

number of points in L \ I is at least n + n(n — 2) = n2 — n. However, the precise number

is n2 — 3— (n — 1) = n2 — n — 2. So n1 — n — 2 ^ n2 — n, implying - 2 ^ 0 and a

contradiction.

So no (n + 2)-point exists for p = n2 — 3, n ^ 4 .

Finally suppose that p = n2 — 2. By PI , bI = n, n — 2 (n+ l)-lines, 1 n-line,

1 (n— l)-line; b2 = n, n — 3 (n+ l)-lines, 3 «-lines: bJ = n+l, s2 /!-lines.

$(n — sx—l) (n+l)- l ines, ^ ( / i - s a + 3) (H— l)-lines, s, a nonnegative integer; or

b% = n + 2, 1 n-line, n + \ {n — 1 )-lines.

If r is an (/i + 2)-point, let x be a fixed (n + l)-line and / the line on i parallel to x.

If/ is an n-line, then there are n(n + 1) («— l)-lines meeting / and x. So n(n+ 1) ^

(n+ 1). max{l, ^(/i — 5a+3)J where ,s3 is the minimum value of the sa's varying over

the (n+ l)-points of x. Clearly, therefore, 2n ^ n — s2+ 3 or n — 3 ^ — .v3. The left-

hand side is positive for n ~$- 4 while the right-hand side is always nonpositive. So / is

in fact an (n— l)-line.

Suppose that there is an [n + 2)-point iv not on /. Then there is a line /' on w parallel

to x. and also to /as otherwise we would have an (n-l- 3)-pi>int. As for /, /' is an(/i— 1 )-

line. So there are (;j— l){n+ 1) lines on / and x, and the same number on /' and x.

while only (/i— I)2 of the lines on / and x meet /'. So at least / r — 1 +2n — 2+ 1 lines

meet x. But at most n{n + 1) + 1 lines meet x, and so n2 +n ~ 1 ^ ir + 2 /1-2 or 3 > n.

a contradiction. Therefore w does not exist.

Suppose there is an n-point u not on /. Then at most one line on u misses / and since

no (» + 1)-lines meet /, we must have n = 4 and u is on three 4-lines and one 5-line v.

https://doi.org/10.1017/S1446788700016505 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016505


[9] Linear spaces 223

Since ^(4 - sx — 1) is an integer, sx can never be zero and every point of L\l is on either
one or three H-lines. Since all (n+ l)-lines meet while no point is on more than one
(n + l)-line, y is unique. Hence each point of / is on one 4-line and five 3-lines. Each
point of y\ {u} is on one 5-line, one 4-line and three 3-lines. The six points of L\ I u y
are on three 4-lines and two 3-lines.

It is easy to check that in fact the linear space {u} u (L\(y u /)) is the Fano plane.
Label these points 1,2,....7 = u. Adding one point to each line of this configuration
on 7, we obtain the points 8. 9 and 10 of/, making them collinear. This gives us lines
{6,7,3,8}, {2, 7,5,10], {1,7.4,9} say. Now we add a point to each line of the Fano
plane not on 7 and make all of these points collinear and collinear with 7. Let this
line be {11,12,13,14,7} and the others so formed be {1,2,3,11}, {1,6,5,12},
{3,4,5,13}, {2,6,4,14}. Finally, each point of/ must be on an additional four 3-point
lines, all of which must meet y\ {u}. Starting with the point 8, it must go on distinct
lines with 1, 2, 4 and 5. Because of the lines we already have, 8 and 2 can be joined
only to 12 or 13. If we choose 12, this forces the following lines: {8,4,11}, {8,5,14},
[8,1,13}, {9,2,13}, [9,5,111 and {9,6,13} and a contradiction, as 9 and 13 cannot be
on two lines. If we choose [8,2,13} as a line, it is easy to see that a similar problem
arises. Hence our linear space does not exist.

So we may assume that all points off / are (/?+ 1 (-points.
We show now that no /i-lines miss /. Otherwise, let h be such an n-line. We obtain a

partition then of L\ I into lines parallel to h. Since all (n + l)-lines meet h but miss /,
there are at least n + 1 lines in the partition. Lines of L\ / have n — 2, n — 1 or n points,
so that the minimum value of L\l is n + n(n — 2) = n2 — n. But
L\ l\ = n2 — 2 — (n— 1) = n2 — n— 1. So n2 — n— 1 ^ n2 — n which is impossible.

Letting / and x be as above, we now count the number of (n — l)-lines meeting both
/ and x. There are precisely n(n- 1) such lines on / meeting x. Therefore,

where s is the minimum value of the ŝ 's varying over the points of x. So

In2-In sg n2+4n + 3-sx(n+\) or n2 - 6 n - 3 ^ -~sx{n+ 1).

The left-hand side is positive for n > 6 while the right-hand side is always
nonpositive, so that it suffices to consider 4 ^ /; ^ 6.

If n = 6, we have — 3 -s - 7Sa forcing 5a = 0. But this contradicts the fact that
i(n — s,-t-3) is an integer.

If n = 5. |(5 - sx - 1) an integer implies that s, is 0.2 or 4 for each sr As /?-lines exist,
some s,"s are not zero.

Let it e / with h an /i-line mi u. Since each point of/; , In his on one /i-line, it must be
on a second. So at least n I «-lines meet /; in k I n h and are distinct from h. But
there are onlv n —2 /(-lines in L h, so we have a contradiction.
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If n = 4, ^(4 — s^ — 1) an integer implies sa is 1 or 3 for every s r If a point u is on
three n-lines, it is the unique intersection of the i!-lines on /, and so points distinct
from M of lines on u not meeting / are on no n-lines, a contradiction. If each point of
L\l is on precisely one n-line, this yields at most (n—\)-n points so that
n 2 - n ^ n 2 - 2 o r n ^ 2, a contradiction.

We may now suppose that for n2 — n—l ^p < n2 — 2, no (« + 2)-points exist.
Since (n + l)-lines exist, it follows that the number of lines in L is at most
(n + l)n + 1 = n2 +n+ 1. Invoking Theorem 2.3 of McCarthy and Vanstone(1977),
we see that L is embeddable in a linear space L with line range {n — 1, n + 1}, with at
least one (n + l)-line and such that no point is on more than /?+l lines. If
| L | ^ n2 — 2, the previous part of the paper implies that L is an FPP of order n less
two lines and all their points except their meet, or the extended
Nwankpa-Shrikhande plane, or the Nwankpa plane. If | L | ^ n2 - 1; McCarthy and
Vanstone (1977) implies that it is embeddable in an FPP of order n.

Since n2 — n — 1 ^ | L | ^ n1 — 2 and L must contain (n — 1)-, n- and (n + 1 )-lines, the
sole possibility for L is an FPP of orders less all points save one of each of two lines
with the point of intersection deleted, and consequently the lines removed.

(ii) p = n2 — 1. Here, b = n, n — 1 (n+ l)-lines, 1 {n — 1 )-line; bt = n + 1, s, /?-lines,
^in—sj (n + l)-lines, $(n — sa + 2) (n— 1)-lines, ŝ  a nonnegative integer; b% = n + 2.
1 (« + l)-line, n+ 1 (« — l)-lines; bI = n + 2, 2 n-lines, n (»-l)-lines.

Suppose there are two disjoint (n + l)-lines x and y. So all points of x and y have
bai = n + 2 and are therefore of the third type mentioned above. Let u $ x, y. Then u is
also the third type of point as it is only on (n — l)-lines. We therefore have a partition
of L into H— 1 (n + l)-lines, and all other lines are {n — 1 (-lines. By Theorem 2, L is an
FPP of order n+ 1 less three concurrent lines and all their points. We therefore
assume that all (n+ l)-lines meet each other.

Suppose now that there is an /i-line / missing an (n + 1 (-line x. Points of/ must be of
the fourth type, so that any point uofxisonatmost two(i; + l)-lines. Ifuisan(/i+ 1)-
point, u must be on at least n— 4 and at most n — 2 /j-lines, all meeting /. There are
precisely n n-lines meeting / and x, and no (n + 2)-point of x is on /?-lines, so there is a
second (n + l)-point of x; also on at least n— 4 n-lines meeting /. This gives
2(n— 4) ^ n or n < 8, a contradiction. So all points ofx must be of type three, but as
mentioned, this means no rc-lines meet x, a contradiction.

Now suppose that / is an (n — l)-line missing the (n + 1 (-line x. Let 5 be the number
of(«+ l)-points ofx, and a the number of points of/ of type three. Thus the number
of (n + l)-lines on the (n+ l)-points ofx is at least a+ 1 and at most a + s+ 1. So the
number of (n— l)-lines on these (n + l)-points is at least a + 2s and at most a + 3s.

Hence, the number of n-lines on these points is at most

+{a + 2s)~] = sn-2u-2s.
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Now the number of/i-lines meeting /(all of which meet x) is 2(/i — 1 —a) and therefore

sn - 2a — 2s ^ 2n — 2 — 2a.

s(/i - 2) ^ 2/i - 2 = 2(/i - 2) + 2,

5 > 2.

Also, the number of (H — 1 (-lines on x is at most (/i+ 1 — s)(/i + l) + a + 3s while the

number on / meeting x is w/i + ( / i - 1 — a)(n — 1). Therefore,

»?2 + 2/i+ 1 — s/i + a + 2s ^ H2 — 2/i + 1 + a, 4/? ^ s(/i - 2 ) and so s < 4.

Hence s = 3 or 4.

Now the number of/i-lines on / meeting x is 2(/i - 1 — a), let b be the number of n-

lineson(/i + 1 (-points of x which do not meet /. Sos/i + 1 - 2 ( / i - 1 —a) — b of the lines

on the (/! + 1 (-points of .v are either (/?+ l)-lines distinct from x, or (/?— l)-lines. So

{{sn + \—2(n-\-a)-b-2s) of these are (/i+l)-lines and at least

\{sn + 1 - 2(/i - 1 - a) - b - 2s) - s of them meet /. So

sn + 3 - 2/i + 2a — b - 4s ^ 2a,

z i ( s - 2 ) < 4 s + b - 3 ,

which is ^ 12, a contradiction.

Thus all lines meet (/i + 1 )-lines. If there is an »-point u, it is unique. Let / be the

(n — l)-line on u, and vel \u). Any second line on r meets all (n + l)-lines on u and

hence can only bean /i-linc. So each point of L\ /is on at least /i —2 /?-lines and so has

b2 = n + 1 , 1 (/?+l)-line. </ - 2 /i-lines, and 2 (n— l)-lines. And in the new linear

space L I. each point has l\ = n + 1, 1 /i-line, n (/i — l)-lines. By Theorem E, L / is

an FAPoforder / i less a line and all its points but one. Therefore L i s a n F P P of order

n less a line and all its points but one, and less two additional points of a line on this

remaining point.

We assume that there arc no zi-points. Clearly, any point not on a fixed (/; + l)-line

has ft, = /!+ 1. Suppose some point v is on all (/1+ l)-lines. If this number is more

than one, then b(i) is still / i + l . So suppose v is on a unique (/7+l)-line x. If

b{ v) = /? + 2, all other lines on it are (/i — I )-lines, and since each ua ^ x is on a unique

(/i — l)-line, this line is u3 r. So all other points of x are only on /i-lines, which is a

contradiction. Hence all points have bO[ = n+l.

Finally, fix an n-line /. We get a partition into a /i-lines and b {n — 1 (-lines yielding

an +b(n— 1) = n2 — 1. Thus n\b — \ and n — 1 | a > 0. So a = n — 1 and b = 1, and

a + b = n so that (/i + 1 (-lines cannot exist, a contradiction.

(iii) p = /i2. In this last case b7 = n, n— 1 (/i+ l)-lines, 1 /i-line; bx = n+ 1, s2 n-

lines, i ( / i + l — s j (/i+ 1 (-lines, ${n+\—sx) (n- l)-lines, sx a nonnegative integer;
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3 n-lines, n — \ (rc-l)-lines; or b7! = n + 2. 1 (M +1 )-line, 1 n-line,
n (n— l)-lines.

Ifann-point u exists, then L\ {u} has only n- or (n- l)-lines. By Theorem E, Lx {u}
is a punctured FAP of order n. Hence, L is an FPP of order n less a line and all its
points but one, and less an additional point. So we suppose that n-points do not
exist.

Suppose there are two parallel (n + l)-lines x and v; so all points of x and y are of
type four above. Let ube a point not on x or y. If b{u) = n + 1, uis on no{n+ l)-lines
and therefore is only on rc-lines. Since each point of x is on precisely one n-line, u is a
unique (n + l)-point. Thus every other point is an (n + 2)-point, and since it can be on
at most two n-lines, it is of the fourth type mentioned above. So u is on all /?-lines, and
L\{u) has only (n + 1)- or(n- l)-lines. By Theorem 2, Lis an FPP of order n + 1 less
three concurrent lines and all their points but one, not the point of intersection.

So suppose all points have bx = n + 2. If some point is of type three above, we have
an(n — 1)- or n-line / missing x, and either 2n or 3(;i— 1) n-lines meeting /and x while
x meets precisely n + 1 n-lines. This forces n ^ 2, and a contradiction. So all points
are of the fourth type, and it follows that we have a partition of L into (n+ 1 (-lines,
implying n + 1 n, a contradiction.

Hence, we may assume that all (n+ l)-lines meet each other.
Suppose there is an (n + 2)-point not on the fixed (n + 1 )-line x. Hence it is on an n-

or («— l)-line / missing x. Let x be the number of points of type four on /, and s the
number of (n+ l)-pointsonx. There are precisely a + 1 (n + l)-lineson(/?+ l)-points
ofx. Since this includes x, there are precisely a + s (n- 1 (-lines in all on these points.
Therefore the total number of H-lines on (/i+1)-points of x is
sn + 1 - (a + 1 + a + s) = sn - 2a — s. The total number of /i-lines on / but not equal to
/ is either 2(« — a) or a + 3(/i - 1 - a), the smaller of which is 2(/i - a). All of these lines
meet x. Therefore,

2(H — a) ^ sn — 2a - .s + (n + 1 - s),

n - 1 ^ s(n - 2),

1 < (n-1)/(»;-2) ^ 5.

So s ^ 2.
Also, the number of {n- l)-lines on / but distinct from / ise i therna+(n-a)( / ! - 1)

or a{n- l) + (n— 1 — a)(n — 2), the smaller of which is the latter. All of these meet x.
The total number of (« —l)-lines on x is a + s + {n+\~s)n. So

n2 — 3n + 2 + a ^ n2 + n + a + s — sn,

S ( H - 1 ) ^ 4 » I - 2 = 2 ( n - l )

and so s ^ 2. So there are precisely two (n+ 1 (-points on x.
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Suppose there are (at least) two ( n + 1 (-points v,v'$x. There are, at least,

2(/i —1(— 1 distinct lines joining v and v' to (>? + 2)-points of x. At most n — 1 of these

can be /i-lines and the rest, at least 2n — 3 — (n — 1) = n — 2, are (n — 1 (-lines. Since any

(n + l(-point has the same number of (n + l)-lines as (n — l)-lines, v and r' are on at

least « —3 (n+ 1 (-lines. So r and i-' are on at least 2(«— 1)— 1 + n —3 = 3n —6 lines,

while they are on at most {n+\) + n = 2n+\. So 3;i — 6 < 2 / i + l or n < 7, a

contradiction. So there is at most one (n + 1 (-point not on x.

Suppose n is an (n + 1 (-point not on x, and u and v are (n+ 1 (-points of x. If n- is

only on /i-lines, then L\ {\v\ has n2 — 1 points, and(n— 1)-, n- a n d ( n + 1 (-lines, and we

may apply the last case. Since there are precisely two (n+ 1 (-points of x, w is on at

most two 0?+l)-lines. Each point of L\{w} is on a line parallel to x, giving a

partition P of L\ x u {vvj into n- and (;i — l)-lines (recall that all (n + l)-lines meet(.

Letting a be the number of n-lines and b the number of (n— l)-lines in P, we get

n+ 1 +an + h[n— 1) = n2 - 1, an + b(n- 1) = n2 — n — 2,

so n | b — 2, n — 1 | a + 2 > 0. So a = n — 3 and b = 2. So including x, there are n lines in

P. This means that all (n + 1 (-lines besides x, meet vv. Also, any H-line on w and not in

P meets each line of P. x meets either n—\+n — 3 + n — l (one (n+ l)-line on w) n-

lines or 2(n — 3) + n — 1 (two (n + 1 (-lines on w) (7-lines. All lines on w meet x so x is on

either 3n — 5 — («— 1) = In— 4 or 3H —7 —(;j —3) = 2«—4 n-lines missing vv and

therefore meeting all lines of P. Let / be an /i-line of f . There are either 2(n— 1) or

2(n — 2) /1-lines meeting /. distinct from /. But at least either n — 2 or n — 4 respectively

of these, pass through n\ So we have a contradiction, and w does not exist.

Suppose then, that u and v on x are the only ( « + 1 (-points. Again we get a

partition into a /i-lines and b (n— 1 (-lines where

n+ 1 +an +b(n— 1) = n2, an +b(n— 1) = n2 — n— 1

so that n\b—\,n—l\a+\ > 0. Thus a = n — 2 and b = 1. So there are H lines again

in this partition P. Thus x is a unique (n + 1 (-line and any /i-line not in P meets every

line of P. The number of /(-lines meeting x is 2{n — 1 ( + n — 1 = 3n — 3. The number

meeting an /?-line of P, and not equal to / is 2n, so we have a contradiction.

We may therefore suppose that no point not on x is an (n + 2)-point. Suppose some

point u of x is of the fourth type. Let /bean(»— l)-lineon u, and r a p o i n t o f / \ { n } . So

v is on an (/!+ l)-line y # v. u$y. Since b(u) = n + 2, there is a line /; on u missing y

and h # x. But then each point of /; has bx = n + 2, a contradiction.

So all points have b% = H + 1, forcing ty = n2 +n+ 1. By de Witte (1979a), L is a

projective plane of order n less an (n+ l(-arc.
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