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A note on Lagrangian submanifolds
in symplectic 4m-manifolds
Yuguang Zhang

Abstract. This short paper shows a topological obstruction of the existence of certain Lagrangian
submanifolds in symplectic 4m-manifolds.

1 Introduction

Let (X , ω) be a symplectic manifold. A submanifold L ⊂ X is called Lagrangian
if ω∣L ≡ 0 and dim L = 1

2 dim X. See the textbook and papers [1, 12, 16] for basic
properties, general backgrounds, and developments in the study of Lagrangian sub-
manifolds. One question is to understand topological obstructions of embedding
manifolds into symplectic manifolds as Lagrangian submanifolds, which has been
intensively studied (cf. [1, 3, 4, 6, 11, 13, 14, 17, 18]).

In [19], a phenomenon has been noticed while searching for obstructions of the
existence of positive scalar curvature Riemannian metrics on symplectic 4-manifolds.
More precisely, Theorem 2.3 of [19] should be interpreted as a simple topologi-
cal consequence of the presence of certain Lagrangian submanifolds in symplectic
4-manifolds, and this topological constraint is a well-known obstruction of positive
scalar curvature metrics by quoting Taubes’ theorem on the Seiberg–Witten invariant.
The goal of this paper is to reformulate this result in a more suitable context, and to
generalize it to the case of 4m-dimensional symplectic manifolds, which might have
some independent interests.

If X is a compact oriented 4m-dimensional manifold, the intersection pairing is
the symmetric nondegenerated quadratic form

Q ∶ H2m(X ,R) ⊕H2m(X ,R) → R, Q([α], [β]) = ∫
X

α ∧ β,

which is represented by the diagonal matrix diag(1, . . . , 1,−1, . . . ,−1) under a suitable
basis. Denote b+2m(X) the number of plus ones in the matrix, and b−2m(X) the
number of minus ones. Both of b±2m(X) are topological invariants, and the 2m-
Betti number b2m(X) = b+2m(X) + b−2m(X). If X admits a symplectic form ω, then
[ωm] ∈ H2m(X ,R), and

Received by the editors April 16, 2022; revised July 20, 2022; accepted July 21, 2022.
Published online on Cambridge Core July 25, 2022.
AMS subject classification: 53D12.
Keywords: Lagrangian submanifolds, symplectic 4m-manifolds, Einstein metric.

https://doi.org/10.4153/S0008439522000480 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439522000480
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439522000480&domain=pdf
https://doi.org/10.4153/S0008439522000480


526 Y. Zhang

Q([ωm], [ωm]) = ∫
X

ω2m > 0,

which implies

b+2m(X) ≥ 1.

The main theorem asserts that b±2m(X) provides some constraints of the existence
of certain Lagrangian submanifolds.

Theorem 1.1 Let (X , ω) be a compact symplectic manifold of dimension 4m, m ≥ 1,
m ∈ Z, and let L be an orientable Lagrangian submanifold in X.
(i) If the Euler characteristic χ(L) of L satisfies

(−1)m χ(L) > 0, then b+2m(X) ≥ 2.

(ii) If L represents a nontrivial homology class, i.e.,

0 ≠ [L] ∈ H2m(X ,R), and χ(L) = 0,

then b+2m(X) ≥ 2, and b−2m(X) ≥ 1.

(iii) If

(−1)m χ(L) < 0, then b−2m(X) ≥ 1.

(iv) If the 2m-Betti number b2m(X) = 1, then

χ(L) = 0, and 0 = [L] ∈ H2m(X ,R).

When X is four-dimensional, this theorem is known to experts (Proposition 2.17
of [18]), and (i) and (ii) have appeared in the proof of Theorem 2.3 of [19]. There are
some immediate applications of Theorem 1.1 that are surely known to experts (cf. [3,
4, 6, 7, 13, 14]):
(i) Neither CPm nor S2m can be embedded in CP

2m as a Lagrangian submanifold.
(ii) Only possible orientable Lagrangian submanifolds in CP

2 are 2-tori T2. Ori-
entable Lagrangian submanifolds in CP

1 ×CP1 are either tori T2 or spheres S2

by b+2 (CP1 ×CP1) = 1.
(iii) There is no Lagrangian sphere S4m in CP

4m−1 × Σ, where Σ is a compact
Riemann surface, since b+4m(CP4m−1 × Σ) = 1.

Theorems in [6, 7, 14] assert that Riemannian manifolds with negative sectional
curvature do not admit any Lagrangian embedding into uniruled symplectic mani-
folds. As a corollary, we show certain constraints of the existence of special metrics
on Lagrangian submanifolds.

Corollary 1.2 Let (X , ω) be a compact symplectic 4m-dimensional manifold with

b+2m(X) = 1.
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(i) A compact orientable 2m-manifold Y admitting a hyperbolic metric, i.e., a Rie-
mannian metric with sectional curvature −1, cannot be embedded into X as a
Lagrangian submanifold.

(ii) If m = 2, and L is an orientable Lagrangian submanifold in X admitting an
Einstein metric g, i.e., the Ricci tensor

Ric(g) = λg

for a constant λ ∈ R, then a finite covering of L is the 4-torus T4.

We remark that the condition b+2m(X) = 1 is necessary for Corollary 1.2(ii). For
example, any symplectic 4-manifold (X , ω) admitting an Einstein metric could
be diagonally embedded into the symplectic 8-manifold (X , ω) × (X ,−ω) as a
Lagrangian.

We prove Theorem 1.1 and Corollary 1.2 by using classical differential
topology/geometry techniques in the next section.

2 Proofs

First, we recall basic relevant facts, and provide the detailed proofs for the complete-
ness. Let (X , ω) be a compact symplectic 4m-dimensional manifold, and let L be an
orientable Lagrangian submanifold in X. The symplectic form ω induces a natural
orientation of X, i.e., given by ω2m . We fix an orientation on L.

Lemma 2.1

[L]2 = (−1)m χ(L),

where [L]2 is the self-intersection number of L in X. Consequently, if χ(L) ≠ 0, then
[L]2 ≠ 0, and

0 ≠ [L] ∈ H2m(X ,R).

Proof The Weinstein neighborhood theorem (cf. [16, 12]) asserts that there is a
tubular neighborhood U of L in X diffeomorphic to a neighborhood of the zero
section in the cotangent bundle T∗L, and the restriction of ω on U is the canonical
symplectic form on T∗L under the identification. More precisely, if x1 , . . . , x2m are
local coordinates on L, then the symplectic form

ω =
2m
∑
i=1

dx i ∧ d p i ,

where p1 , . . . , p2m are coordinates on fibers induced by dx j , i.e., any 1-form
2m
∑
i=1

p i dx i

is given by the numbers p j . We regard L as the zero section of T∗L, and assume that
dx1 ∧⋯∧ dx2m gives the orientation of L.

If we denote ϖ i = dx i ∧ d p i , i = 1, . . . , 2m, then the algebraic relationships are

ϖ i ∧ ϖ j = ϖ j ∧ ϖ i , i ≠ j, and ϖ2
i = 0.
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The orientation inherited from the symplectic manifold is given by

ω2m = (2m)!ϖ1 ∧⋯∧ ϖ2m .

The orientation on L induces an orientation on T∗L given by

dx1 ∧⋯∧ dx2m ∧ d p1 ∧⋯∧ d p2m = (−1)m ϖ1 ∧⋯∧ ϖ2m .

If L′ is a small deformation of L intersecting with L transversally, the intersection
number L ⋅ L′ with respect to the orientation given by ω2m is the self-intersection
number of L in X, i.e., L ⋅ L′ = [L]2. The Euler characteristic of L equals to the
intersection number L⋅̃L′ with respect to the orientation defined by dx1 ∧⋯∧ dx2m ∧
d p1 ∧⋯∧ d p2m (cf. [5]), i.e., L⋅̃L′ = χ(L), where we identify the tangent bundle
TL with T∗L via a Riemannian metric. Since L ⋅ L′ = (−1)m L⋅̃L′, we obtain [L]2 =
(−1)m χ(L). ∎

There are analogous formulae in more general contexts (see, e.g., [15]).
Let g be a Riemannian metric compatible with ω, i.e., g(⋅, ⋅) = ω(⋅, J⋅) for an almost

complex structure J compatible with ω, and let ∗ be the Hodge star operator of g. The
volume form dvg of g is the symplectic volume form, i.e., dvg = 1

(2m)! ω2m . When ∗
acts on ∧2m T∗X, ∗2 = Id holds. H2m(X ,R) is isomorphic to the space of harmonic
2m-forms by the Hodge theory (cf. [8]). Thus, H2m(X ,R) admits the self-dual/anti-
self-dual decomposition

H2m(X ,R) ≅H+(X) ⊕H−(X), where

H±(X) = {α ∈ C∞(∧2m T∗X)∣dα = 0, ∗α = ±α}.
Note that b±2m(X) = dimH±(X).

Lemma 2.2

ωm ∈H+(X).

Proof Since dωm = 0, we only need to verify that ωm is self-dual, i.e., ∗ωm =
ωm , which is a pointwise condition. For any point x ∈ X, we choose coordinates
x1 , . . . , x2m , p1 , . . . , p2m on a neighborhood of x such that on the tangent space Tx X,

ω =
2m
∑
i=1

dx i ∧ d p i , and g =
2m
∑
i=1
(dx2

i + d p2
i ).

The calculation is the same as those in the Kähler case (cf. [8]) because of the locality.
If we still write ϖ i = dx i ∧ d p i , i = 1, . . . , 2m, then the volume form dvg = ϖ1 ∧⋯∧
ϖ2m . Denote the multi-index sets I = {i1 , . . . , im}, i1 < ⋯ < im , and the complement
Ic = {1, . . . , 2m}/I. Note that

ωm = (ϖ1 +⋯+ ϖ2m)m = m! ∑
I⊂{1, . . . ,2m}

ϖI , ϖI = ϖ i1 ∧⋯∧ ϖ im .

By ϖI ∧ ∗ϖI = dvg = ϖI ∧ ϖIc , we obtain ∗ϖI = ϖIc . Hence, ∗ωm = ωm . ∎

Now, we are ready to prove the results.
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Proof (Theorem 1.1) Note that the assumptions imply 0 ≠ [L] ∈ H2m(X ,R) in the
cases (i)–(iii). If PU(L) ∈ H2m(X ,R) is the Poincaré dual of [L], then

PU(L) = α+ + α− ≠ 0, and α± ∈H±(X).

Since ∫X α+ ∧ α− = 0,

(−1)m χ(L) = [L]2 = ∫
X
(α+ + α−)2 = ∫

X
α2
+ + ∫X

α2
−.

If (−1)m χ(L) ≥ 0, then

∫
X

α2
+ ≥ −∫X

α2
− = ∫X

α− ∧ ∗α− = ∫
X
∣α−∣2g dvg ≥ 0.

If α+ = 0, then α− = 0 and PU(L) = 0, which is a contradiction. Thus, α+ ≠ 0, and

∫
L

α+ = ∫
X

α+ ∧ (α+ + α−) = ∫
X

α2
+ = ∫X

∣α+∣2g dvg ≠ 0.

Since

∫
L

ωm = 0,

ωm and α+ are linearly independent in H+(X). Therefore, we obtain b+2m(X) ≥ 2.
If χ(L) = 0, then

0 = [L]2 = ∫
X

α2
+ + ∫X

α2
− , and ∫

X
∣α−∣2g dvg = ∫

X
∣α+∣2g dvg .

Thus, α− ≠ 0 and b−2m(X) ≥ 1.
If we assume (−1)m χ(L) < 0, then

0 > ∫
X

α2
+ + ∫X

α2
− , and ∫

X
∣α−∣2g dvg > ∫

X
∣α+∣2g dvg ≥ 0.

We obtain the conclusion b−2m(X) ≥ 1.
If b2m(X) = 1, then b+2m(X) = 1, b−2m(X) = 0, and H2m(X ,R) ≅H+(X). Hence,

χ(L) = 0 and [L] = 0. ∎

Proof (Corollary 1.2) Let Y be an orientable compact 2m-manifold, and let h be a
hyperbolic metric on Y. By the Gauss–Bonnet formula of hyperbolic manifolds (cf.
[9, 10]),

(−1)m χ(Y) = ε2mVolh(Y) > 0,

where ε2m > 0 is a constant depending only on m, and Volh(Y) is the volume of the
hyperbolic metric. Theorem 1.1 implies (i).

Now, we assume that m = 2. If g is a Riemannian metric on L, then the Gauss–
Bonnet–Chern formula for 4-manifolds reads

χ(L) = 1
8π2 ∫L

(R2

24
+ ∣W+∣2g + ∣W−∣2g −

1
2
∣Rico ∣2g)dvg ,
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where R is the scalar curvature, W± denotes the self-dual/anti-self-dual Weyl cur-
vature of g, and Rico = Ric − R

4 g is the Einstein tensor (cf. [2]). If g is Einstein, then
Rico ≡ 0 and thus χ(L) ≥ 0. By Theorem 1.1, either χ(L) < 0, or χ(L) = 0 and [L] = 0
in H4(X ,R) since b+4 (X) = 1. Therefore, χ(L) = 0, which implies that

R ≡ 0, W± ≡ 0, Ric ≡ 0.

The curvature tensor of g vanishes, i.e., g is a flat metric. Thus, a finite covering is the
torus T4. ∎

A An alternative proof

by Anonymous Referee

Proposition 2.17 of [18] gives a very simple argument using the light cone lemma
(which is a version of the Cauchy–Schwartz inequality) to eventually prove Theorem
1.1(i) and (ii), the harder parts, for m = 1. In fact, using the light cone lemma to give
topological restriction on Lagrangians is not new (cf. [11, 17]). This argument is easily
generalized to prove the whole Theorem 1.1 for arbitrary m as follows.

The light cone lemma asserts that for the light cone C of signature (1, n) (n > 0),
C ⊂ R1,n , any two elements in the forward cone C+ have a nonnegative inner product.
Especially, if the inner product is zero, then the two elements are proportional to each
other. Note that C/{0} has two connected components. One is the forward cone C+,
and the other is the backward cone C−. Furthermore, C+ = −C−.

Now, we follow Proposition 2.17 of [18] to prove Theorem 1.1 instead. If
(−1)m χ(L) ≥ 0, we have

PU(L)2 ≥ 0, [ωm]2 > 0, [ωm] ⋅ [L] = 0.

If we assume [L] ≠ 0 and b+2m(X) = 1, both classes PU(L) and [ωm] ∈ H2m(X ,R) are
in the forward cone by choosing a suitable orientation of L. Then the light cone lemma
implies that this is a contradiction. That is, if b+2m(X) = 1, then (−1)m χ(L) < 0, and
if χ(L) = 0, then [L] = 0 ∈ H2m(X ,R). Other parts of Theorem 1.1 can be similarly
argued and are easier (without using Riemannian metrics and self-dual/anti-self-dual
decompositions).

Finally, the same argument of Corollary 1.2(i) also works to show that a manifold
admitting a complex hyperbolic metric, X ≅ CHm/�, cannot be embedded as a
Lagrangian since

Vol(X) = (−4π)m

(m + 1)! χ(X)

by the traditional Gauss–Bonnet theorem. This in particular implies that fake pro-
jective planes cannot be embedded as Lagrangians of eight-dimensional symplectic
manifolds with b+4 = 1.
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