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Abstract

The main goal of this study is to investigate if the publicly available sea state forecasts for the Aran Islands region in
the Republic of Ireland can be improved. This improvement is achieved by using the combination of local scale sea
state forecasts and Bayesian Model Averaging techniques. The question of a good forecast has been around since the
start of forecasting. With current state-of-the-art numerical models, computational power, and vast data availability,
we consider whether it is possible to improve model forecasts only by using the combination of publicly available
forecasts, free open-source software, and very moderate computational power. It is shown that it is possible to
improve the sea state forecast by at least 1%, and in some cases up to 8%. The reduction of error is between 6% and
48%. With a more careful and specific selection of training parameters, it is possible to improve the forecast accuracy
even more. The possibility of extending this local improvement to the whole coastal area around the island of Ireland
is explored. Unfortunately, it is currently impossible, due to a lack of live data buoys in the coastal waters.
Nonetheless, it is shown that the proposed process is simple and can be implemented by anyone whose livelihood
depends on an accurate sea state forecast. It does not require large computational power, model forecasts are publicly
available, and there is minimal to no training in forecasting and statistics required to enable one to perform such
improvements for one’s area of interest, provided one has access to live wave data.

Impact Statement

This article discusses the importance and accessibility of accurate and timely sea state forecasts. It serves as a
guide for a wider audience that might be interested in improving the accuracy of the local area forecasts.

1. Introduction

According to the United Nations Statistics Division, around 600 million people live in coastal areas that
are less than 10 m above sea level, while nearly 2.4 billion people (about 40 per cent of the world’s
population) live within 100 km of the coast (United Nations, 2017). Such proximity to the ocean has a
great impact on the livelihood of the people—the coastal communities depend on the sea in many aspects,
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from transportation to sustenance. Providing great benefits, such proximity to the ocean brings great
challenges as well. All the activities and general safety highly depend on the state of the ocean, and the
ability to forecast the sea state accurately is of paramount importance.

Weather and sea state forecasting has been a subject of interest for more than a century. It is becoming
more interesting with the latest extreme weather events brought by changes in the climate (Monirul Qader
Mirza, 2003). One has to be mindful of how difficult it is to produce accurate weather and sea state
forecasts. There are numerous groups of professionals who work daily on forecasting models to produce
accurate forecasts. The number of variables that one needs to account for, the computational expenses, the
in-situ measurements, and satellite observations illustrate the huge amount of work that is required to
produce an accurate forecast. High-standardmodels include the Global Forecast System (GFS), a weather
forecast model produced by the National Centers for Environmental Prediction (NCEP); Wavewatch III
(WW3) (wind and wave forecast), developed by an international team around NOAA/NCEP and used to
forecast marinemeteorology byMétéo-France (for wave and submersion vigilance), SHOM,NOAA, and
Previmer; the Wave Model (WAM); Icosahedral Nonhydrostatic Model (ICON).

In addition to just producing accurate forecasts, forecast validation and improvement have been long-
standing questions. Brier and Allen (1951) talk about weather forecast validation being a controversial
subject for the last 6 years, and the paper was published in 1951! So it is clear that the question “How good
is a certain forecast?” has been out there from the beginning of forecasting.

When talking about forecast evaluation, we need to specify precisely what we are trying to achieve and
what the purpose of the verification is. Are we pursuing an economic purpose, for example providing
better meteorological and sea state forecasts for the fishermen of the Aran Islands, Ireland, or is our
purpose purely scientific? Arewe just interested in the individual model’s accuracy? In this article, wewill
present the results of a novel procedure for improving local sea state forecasts by utilizing observations
from a low-cost buoy (Raghukumar et al., 2019) and the free open-source ensembleBMAsoftware (Fraley
et al., 2008).

An extensive research project in improving forecast errors and uncertainty was undertaken by the UW
Probcast Group, resulting in a number of publications. The goals of the UW Probcast Group were to
develop methods for evaluating the uncertainty of mesoscale meteorological model predictions, and to
create methods for the integration and visualization of multi-source information derived from model
output, observations, and expert knowledge; see Grimit and Mass (2002) for example. A number of
questions were addressed by the group, including the uncertainty in forecasts (Gneiting et al., 2005),
calibration of forecasts ensembles, model evaluation (Fuentes and Raftery, 2005), and the work of
Gneiting and Raftery (2007) on proper forecast scoring rules, amongst many other publications.

The work presented in this article was inspired by the work of the UW Probcast Group. However, the
original work of the UW Probcast Group focused on atmospheric variables, such as temperature,
precipitation, and wind. The work presented in this publication concentrates on improving the sea state
forecast. We will use the significant wave height (‘Hs’) as a forecast variable that will be improved using
the proposed techniques.

Here we will present partial results of the ongoing project Wave Obs, which is part of the HIGHWAVE
project. HIGHWAVE is an interdisciplinary European Research Council (ERC) project at the frontiers of
coastal/ocean engineering, earth system science, statistics, and fluid mechanics that explores fundamental
open questions in wave breaking. The objectives of the project are primarily to develop an innovative
approach to include accurate wave breaking physics into coupled sea state and ocean weather forecasting
models, but also to obtain improved criteria for the design of ships and coastal/offshore infrastructure, to
quantify erosion by powerful breaking waves, and finally to develop new concepts in wave measurement
with improved characterization of wave breaking using real-time instrumentation. The project includes
new approaches to field measurements and breaking wave forecast improvements. TheWave Obs project
develops tools for improved wave forecasts, but at the same time plays a role in the whole project by
providing daily forecasts for the team, and a wider audience.

Wave Obs started in January 2020 as an alert service for the project engineer. This alert service was
put in place for timely weather warnings and to assist in the planning of instrument deployment and
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maintenance. Asmentioned above, HIGHWAVE is an interdisciplinary project that requires extensive
instrument deployment and real-time data transmission. The physical research station is currently
located on Inis Meáin, Aran Islands, a place of highly energetic wave events, strong gale force winds,
and rapidly changing weather. Hence weather and sea state dependence is a high risk factor for the
successful completion of all aims of HIGHWAVE, which requires careful planning.

The original aim ofWaveObs was to provide daily forecasts from various sources to allow for accurate
planning of instrument deployment and maintenance. Wave Obs has developed further, and now
comprises a collection of historical daily forecasts that are stored on the HIGHWAVE website (www.
highwave-project.eu) for the benefit of the team, and local community of the Aran Islands. Additionally, a
Telegram bot has been set up, and the same daily forecasts are distributed through Telegram, where any
member of the public can subscribe to receive daily forecasts, including a short text description and three
plots with atmospheric and sea state variables. Constant striving to improve the provided information has
led the authors to the idea of improving the collected forecasts by using Bayesian Model Averaging
(BMA) techniques and providing an improved forecast. A short description of Wave Obs can be found in
theMethods section. Amore detailed description of particular variables of interest (Hs) can be found in the
Methods section as well.

The article is structured as follows: in the Methods section, we present Wave Obs, observational data
collection using weather stations and low-cost buoys, a short overview of the free ensembleBMA
software, and basic statistics. In the Results section, we present a comparison of raw observation data
with the forecasts, and then a comparison of improved forecasts with real ocean observations. In the
Discussion section, we share our views on the possibility of extending the improved forecasts to a global
scale, and discuss possible extensions to the improved forecast.

2. Methods

2.1. Wave Obs

Originally Wave Obs started as a warning tool for the HIGHWAVE project engineer based on the West
Coast of Ireland. As the wider HIGHWAVE project requires instrument deployment in the field, weather
plays an important role in planning the deployment of instruments. Wave Obs has developed and evolved
into an intricate collection of forecasts from various sources, and includes not only wind and wave
forecasts but many more variables, such as temperature, atmospheric pressure, and solar radiation.
Initially, Wave Obs was a manual task. On a daily basis, the forecasts for the next 3 days were collected
from the different sources, then the forecasts were passed to the interested parties, and a database was
populated manually. The forecast collection process was automated in May 2020. A Python application
was developed to automatically download, process, and distribute the forecast data from the different
sources. This application extracts a number of sea state and meteorological variables for several locations
around the Aran Islands region (Figure 1), accessing the servers of the forecast data providers through
different API protocols.

Considering that all data providers deliver their data in numerous kind of formats and specifications, a
process of data cleaning and transformation into a uniform format is applied and then the data is stored
locally using a JSON (JavaScript Object Notation) file format. Each file contains the forecast for five
consecutive days, and it is stored following the name convention given by the current date. The
automation process is carried out by GitHub workflows and includes two basic steps: first, data is stored
in the Google Drive cloud servers on a daily basis, and second, using a Telegram bot, a daily digest on the
marine weather forecast contrasting different sources is automatically sent to a Telegram channel, making
it available for the Aran Islands local community (see Wave Obs pipeline in Figure 2).

In the development of the project, it was established that many agencies that provide forecasts draw the
actual information from just a handful of sources. Hence it was decided to only track “original” sources.
As this article concentrates on wave forecasts and measurements, we list the wave information
forecasts only.
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2.1.1. Sources
As mentioned above, only four sources are considered for forecast collection. A brief description of each
source is presented below.

• Marine Institute (Ireland): The numerical wave model, SWAN, simulates surface gravity waves
for a domain covering Irish waters at a resolution of 0.025° (approximately 1.5 km). The model
uses Global NCEP GFS for wind forcing and FNMOC WW3 data for the wave boundary
conditions. A daily 6-day forecast is generated for wave parameters such as Hs, swell wave
height, mean wave period, and mean wave direction. The Marine Institute provides its data
through the THREDDS and ERDDAP protocols. The latter is used to access the data using the
Wave Obs application. We will denote the Marine Institute as “MI” in the figures and tables that
follow.

• NOAAWAVEWATCH III Global: Well-established and widely used model with spatial resolution
0.25° and temporal resolution of 1 h. This is a global forecast issued by NOAA/NCEP.

Figure 1. Locations (marked with red X) of the points where the forecasts are obtained for.

Figure 2. Wave Obs pipeline showing a brief description of the data collection, processing, and
distribution.
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WAVEWATCH III, alike SWAN, solves the random phase spectral action density balance
equation for wavenumber-direction spectra. The forecast data is officially delivered using an
ERDDAP server. NOAA/NCEP WAVEWATCH III data is the most comprehensive forecast; it
includes wind speed and direction, andmain wave sea state parameters (wave height, mean period,
and direction) for the three main spectral partitions (wind waves, and primary and secondary
swells). We will denote NOAAWAVEWATCH III Global as “WW3” in the figures and tables that
follow.

• Météo-France Wave Model (MFWAM) Global Forecast: The operational global ocean analysis and
forecast system of Météo-France with a spatial resolution of 1/12° and a temporal resolution of 3 h
provides daily analysis and 5-day forecast for the global ocean sea surface waves. Météo-France
uses an implementation of the third-generation spectral wave model WAM (The Wamdi Group,
1988). This product includes 3-hourly instantaneous fields of integrated wave parameters from the
total spectrum (Hs, period, direction, Stokes drift, and others), as well as the following partitions: the
wind wave, and the primary and secondary swell waves. We will denote the Météo-France Wave
Model Global as “MF” in the figures and tables that follow.

• DWD Wave Model Global: This forecast model, alike MF, uses the generation wave model WAM
(TheWamdi Group, 1988). This forecast is issued by the GermanWeather Service (DWD). A global
domain with spatial resolution of 0.25° and temporal resolution of 3 h is used. The wind forcing is
obtained from the ICONmodeling framework, which is a joint project between the GermanWeather
Service and theMax Planck Institute forMeteorology.Wewill denote theDWDWaveModel Global
as “DWD” in the figures and tables that follow.

AsHIGHWAVE experiments take place on theWest Coast of Ireland, and theMobile Research Station
(MRS) is currently located on Inis Meáin, one of the Aran Islands, daily forecasts were made available to
the local island community. This was achieved by posting 5-day forecasts daily on the HIGHWAVE
website (see examples in Figures 3 and 4). The same forecasts are delivered through a Telegram channel to
anyone who has subscribed to it. It is accompanied by a short text description of the weather and sea state
expected in the next 5 days.

In addition to the graphs, a database containing the daily forecasts collection has been developed. Data
from this database will be used to validate and train the new and improved forecast.

2.2. Observational data collection

Themain goal being an improvement of the forecasts in the future, it is desirable to validate the forecasts
in order to determine the accuracy of the available forecasts. To achieve that, a weather station was
installed for the validation of atmospheric variables. To establish the accuracy of the sea state forecast,
two low-cost buoys were deployed in the area of interest. Since we are interested in the sea state
forecast, we will only present the data collection process from the buoys and not from the weather
station.

2.2.1. Buoys
As part of the HIGHWAVE project, two Spotter buoys were purchased. They were named Wanderer and
Explorer. With these two buoys, three campaigns were completed:

• Wanderer first mission - June 1, 2020–September 19, 2020
• Explorer first mission - August 11, 2020–September 5, 2020
• Explorer first mission - adrift - September 5, 2020–October 1, 2020
• Wanderer second mission - November 7, 2020–March 3, 2021

The data of interest can be obtained by the software on board the buoys, either in real-time through
satellite connection or directly from the SD card after recovery of the buoy. The downside of using the pre-
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processed data, in general, is that the on-board algorithms are a “black box” as such, and the end user is not
aware of how the Hs, for example, is calculated. The following variables are recorded by the Spotter
buoys:

• Hs, for all practical purposes:

Hs ≈ 4
ffiffiffiffiffiffi
m0

p
,

where m0 is the zeroth-order moment of the variance density spectrum E fð Þ. In the wave mode, the Hs is
estimated from the zeroth-order moment of the wave spectrum (Sofar Ocean Technologies, 2022).

1. MeanWave Period (T0) and PeakWave Period (Tp), where themean period is the variance-weighted
mean period (Tm01 ), and the Peak Period is the period associated with the peak of the wave spectrum.

2. Mean (θ) and Peak (θp) Directions: One can define the peak direction θp as the direction
corresponding to the most energetic wave component. It is calculated in terms of the circular
moments or Fourier coefficients a1 fð Þ and b1 fð Þ, which are the result of the cross-spectral analysis
of the wave-induced horizontal wave displacement and surface elevation (x, y, and z, respectively)

Figure 3. Wind and wave forecast example.
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as shown by Kuik et al. (1988). The exact definitions of both peak wave direction and mean
direction are

θp ¼ tan�1 b1 f p
� �

a1 f p
� �

( )
,

and

θ¼ tan�1 b1
a1

� �

respectively, where the overbar indicates energy-weighted averaged quantities.

• Other wave parameters, including mean and peak directional spreading.

In this article, we only concentrate on Hs. The comparison between the Spotter-recorded data and
forecasts from various agencies is presented in the Results section (Section 3).

Figure 4. Atmospheric variables forecast.
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2.3. Statistics

In order to evaluate the accuracy of the individual forecast and the “trained” ensemble forecast, we use the
mean absolute error (MAE), mean absolute percentage error (MAPE) in some instances, and the
continuous rank probability score (CRPS). In addition, individual weights of each forecast, contributing
to the ensemble forecasts, were monitored, see Figure 9.

Let yi be the observed value, f i be a point forecast, and Fi be the probabilistic forecast for
each observation i¼ 1,2,…,n. MAE, MAPE, and CRPS can be calculated using the model
forecasts and observations, as per equations (1)–(3), or using the built-in functions in the ensem-
bleBMA software. These three measures were selected to evaluate the performance of individual,
adjusted, and ensemble forecasts, as they are widely used in measuring the performance of prob-
abilistic forecasts. In addition, MAE and CRPS were used to estimate the optimal training window for
each buoy.

The mean absolute error is given by

MAE¼
Pn

i¼1∣yi� f i∣
n

: (1)

The MAPE is similar to MAE, and is given by

MAPE¼ 1
n

Xn
i¼1

∣yi� f i∣
∣yi∣

: (2)

The continuous rank probability score is widely used to assess the accuracy of probabilistic forecasts
(e.g., Gneiting and Raftery, 2007). Let Fi be the cumulative distribution function of the probabilistic
forecast for observation i, then the continuous rank probability score is given as

crps Fi,yið Þ¼
Z ∞

�∞
Fi xð Þ�H x� yið Þð Þ2dx,

where H is the Heaviside step function. The mean CRPS is given as the average score over all instances:

CRPS¼ 1
n

Xn
i¼1

crps Fi,yið Þ: (3)

The value of the weight of the individual forecast indicates howmuch the individual model contributes
to the ensemble forecast. By evaluating theweight of each individual contribution of forecast, it is possible
to exclude forecasts that have no or little contribution to the ensemble. However, in the results presented
here, we did not exclude low-weighting forecasts from the ensemble forecasts.

2.4. Bias-corrected forecasts

In the process of producing the ensemble-averaged forecast, individual forecast models are first bias-
corrected (Gneiting et al., 2005, Sloughter et al., 2013). There are variousways of performing this process.
We briefly describe how such a bias correction is completed in the ensembleBMA software.

Let yi be the observed value, and let f i be the point forecast for observation i¼ 1,2,…,n. A simple
linear model is used to model the relationship between the forecast and the observed values. That is,

yi ¼ aþbf iþ εi,

where εi �N 0,σ2ð Þ. The linearmodel is fitted using least squares to yield parameter estimates â and b̂. The
bias-corrected forecasts are then given as

f̂ i ¼ âþ b̂ f i;

the estimates â and b̂ determine howmuch the forecast needs to be shifted and scaled in the bias-correction
process. Furthermore, the linear model gives a probabilistic individual forecast, where
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Yi∣f i �N aþb f i,σ
2

� �
: (4)

In practice, the bias-correction process is fitted to a time window of m observations and it is then
applied to forecasts immediately after the time window.

2.5. Bayesian Model Averaging techniques

The forecasting process used to be a deterministic one. It was believed that if you initialized your model
with the most accurate input information, you would produce the most accurate forecast. However, with
advances in high-performance computing and available resources, ensemble forecasts became available.
An ensemble forecast is one that would consist of a number of numerical model outputs, with slightly
perturbed initial conditions. For a comprehensive overview of ensemble forecasting, we refer the reader to
Gneiting and Raftery (2015). In essence, the ensemble forecasts are probabilistic ones, and even though
both deterministic and probabilistic forecasting is trying to predict a certain “event,” the actual error or
uncertainty can only be found in the probabilistic forecast. There are of course errors present in the
ensemble forecasts as well. However, it has been shown by Gneiting et al. (2005) that it is possible to
improve the ensemble forecasts by applying some post-processing based on Bayesian Model Averaging
techniques.

The essence of the BMA idea is in combining not the outcome of different initial conditions for one
model but rather different models. Properly introduced in the late 1970s by Leamer (1978), it did not get
much attention till the 1990s (Kass and Raftery, 1995); see a comprehensive review in Hoeting et al.
(1999), for example. We will not try to re-explain here the whole theoretical background for the BMA
technique but will merely give the reader the basic idea.

The BMA forecasting model is based around taking a weighted combination of individual forecasting
models. Suppose, we have K bias-corrected individual forecasting models (see Section 2.4), then the
BMA forecast based on (4) is given as

Yi∣f 1i, f 2i,…, f Ki �
XK
k¼1

wkN akþbk f ki,σ
2

� �
: (5)

The unknown parameters are estimated using an expectation–maximization (EM) algorithm (Dempster
et al., 1977), and the details of this are given in (Gneiting et al., 2005, Section 2b).

A point forecast of Yi from the BMA model is thus given as

ŷi ¼E Yij f 1i, f 2i,…, f Kið Þ¼
XK
k¼1

wk akþbk f kið Þ,

which is a weighted average of the bias-corrected individual forecasts. In practice, the weights are also
estimated using an m observation time window and used for subsequent forecasts.

Thus, in BMA, rather than concentrating on the various outputs of one selected model, a number of
different models are considered, determined by the estimated weights ŵ1, ŵ2,…, ŵK . As shown below
(Section 3.3.1), it is possible, and it is the case, that one model outperforms another for a short period of
forecasting, with the original model performing better again later. In the case of sea state forecast, it can be
as simple as one model being better at predicting calm summer seas, and another being more accurate in
the winter. We present below the evidence of one model outperforming another in different conditions.

2.5.1. Data distribution normality assumption
The proposed method, as outlined in Sections 2.4 and 2.5, is based on a normality assumption for the
difference between the adjusted forecast and the observed significant wave height (see equations (4) and
(5)). The proposed BMA technique, based on the normality assumption, has also been successfully used
in previous studies for sea-level air pressure and temperature forecasting (Raftery et al., 2005). However,
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there also exist BMA techniques based on non-normal distributions (Sloughter et al., 2007) which have
been successfully used for precipitation forecasts.

We investigated the use of using the BMA approach with other distributional assumptions (e.g.,
gamma distribution), but we found that the results were less accurate than the approach based on the
normal distribution.

We investigated the normality assumption by comparing the observed significant wave height to the
bias-adjusted forecasts using histograms and QQ-plots, see Figures 5 and 6 for the M6 winter adjusted
forecasts (all other missions are provided in the Supplementary Material). The results showed that the
normality assumption held approximately, but some extreme differences were observed that were not well
accommodated by the normal distribution. This suggests that an extension of the proposed approach could
be developed using heavy-tailed distributions to accommodate these large differences.

3. Results

3.1. Forecasts vs buoy observations

Asmentioned in theMethods section, we present here a “brute force” comparison between the forecasts of
interest and records from Spotter buoy campaigns. As part of Wave Obs, we have been collecting 3-day
forecasts until December/January 2020, and 5-day forecasts since January 2021. However, in this article,
we concentrate on 24, 48, and 72 h forecasts, denoted 24H, 48H, and 72H in the plots and tables. In
Figure 7 we present the 24, 48, and 72 h forecasts and the real data from the Wanderer first mission. A
similar comparison is presented for the first Explorer and secondWanderermissions in the Supplementary
Material; see Figures 33 and 34.

As one would expect, the forecasts are quite reasonable, and predict the Hs quite well. However, the
further away the forecast from the forecast date, the less accurate it is, which is not surprising. In Table 1
we present the MAE for individual models, depending on the forecast hour. As mentioned above, the
MAEvalues confirm that the 24 h forecast is themost accurate one.We present results for all missions and
all model forecasts.

We would like to point out that the previous statement regarding the accuracy of the forecast that
decreases with a longer time lag is still true for the DWD. However, the WW3 and MF models do not
follow the same behavior. Overall, for the period covered, the best accuracy shifts to either 48 h or even
72 h forecasts at some stage, or matches the accuracy of the 24 h forecast.

Similar results are presented in the Supplementary Materials, Figures 33 and 34 for the first Explorer
and second Wanderer missions. The period covered is between June 2020 and early March 2021. This
period, which included calm summer seas and rough winter seas, can be considered versatile enough for
forecast training purposes. The interannual variability is a valid concern point that can be raised. The long-
term variability of wave climate and extreme wave events, particularly at the Irish coast, North Atlantic,
and theBay of Biscay, have been a topic of a number of recent studies. However, an overall message is that
for the period 1979–2012 at least there were no significant trends for the mean up to the 99th percentile of
significant wave height, with the caveat that climate trends are very hard to differentiate from low
frequency variability in the climate system. For the comprehensive review of studies regarding wave
climate trends, we would refer the reader to Gallagher et al. (2014) and Gallagher et al. (2016).

The total observational period with the Spotter buoys was between June 2020 and early March 2021,
and for the M6 location, the authors looked at summer 21 June 2020–September 2020, and separately for
October 20, 2021–November 20, 2021. The same process of forecast improvement was carried out for the
period between June 2020 andMarch 2021 for the Spotter buoy in retrospect. In other words, we produced
a daily ensemble forecast for this period, and compared it to the actual observations. Hence, we believe
that seasonality was taken into consideration in the training process. These retrospect forecasts are not
presented for the sake of brevity.

The months of April and May were not included, and hence the whole year was not covered. But this
should not be an issue due to the training period selected. For the three missions (Explorer I, Wanderer I,

e36-10 Tatjana Kokina et al.

https://doi.org/10.1017/eds.2023.31 Published online by Cambridge University Press

http://doi.org/10.1017/eds.2023.31
http://doi.org/10.1017/eds.2023.31
http://doi.org/10.1017/eds.2023.31
http://doi.org/10.1017/eds.2023.31
http://doi.org/10.1017/eds.2023.31
https://doi.org/10.1017/eds.2023.31


Figure 5. Histograms of the difference between the adjusted forecasts for M6 winter period versus the
actual observed value. From top to bottom: DWD, WW3, MF, Marine Institute. From left to right: 24H,
48H, 72H.
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and Wanderer II), the sliding training period was 5, 10, and 20 days, respectively. Even at the maximum
training period of 20 days, the window is a sliding window, and hence the changing conditions are being
captured by the training period, as the forecast develops in time.

As previouslymentioned, themonths of April andMay have not been part of the forecast improvement
period. Even though a number of unusual weather events tend to occur in Ireland during the month of
April, on most occasions these events are heatwaves, or extreme rainfall events—but not marine
heatwaves that would affect the whole oceanic ecosystem including wave heights.

Overall, we are confident, that since the training window is not fixed, and is of a sliding nature, any
variability that might affect the forecast will be captured during the training period, as it moves together
with the improved forecast. However, the subject of training windows will be addressed separately.

Taking into account the Explorer drifting period, and the period of change of the data collection
algorithm, from here, we will only present the results of the first Wanderer mission. Results from the two
other missions are available in the Supplementary Material.

Figure 6.Q-Q plots of the difference between the adjusted forecast forM6winter period versus the actual
observed value. From top to bottom:DWD,WW3,MF,Marine Institute, from left to right: 24H, 48H, 72H.
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Before any forecast training could begin, the optimal training window had to be established. Adopting
the approach described in Raftery et al. (2005), a sliding window of length m (number of days) was
chosen.

To select the right value for m, a number of factors need to be considered. One would expect that the
longer the training window, the better the training process would be. However, with longer periods, one
might end up accumulating forecast errors for longer. In addition, the behavior of ocean waves is not as
uniform as that of temperature. For example, one would expect temperatures to stay within average
summer values during the months of June and July. Ocean waves, however, are known to have rapidly
changing patterns, and for that reason, one would prefer to have a short training period—one capable of
adapting quickly to changing conditions. During the selection process, authors looked at MAE and CRPS
with a range of values for m from 5 to 90 days.

In Figure 8 we present the evolution of theMAE and CRPS, depending on the number of training days
selected. Similar plots are presented in the Supplementary Material for the Explorer I and Wanderer II
missions in figure 35. From Figure 8 it is clear that at some point extending the training window will no

Figure 7. Comparing actual recorded Hs to the 24 h (top), 48 h (middle), and 72 h (bottom) forecasts of
the Hs for the first Wanderer mission.

Table 1. Average mean absolute error (in meters) of individual forecasting models, depending on the
forecast time for Explorer I, Wanderer I, and Wanderer II missions

24H 48H 72H

Mission DWD WW3 MF DWD WW3 MF DWD WW3 MF

Explorer I 0.58 1.23 0.55 0.77 1.27 0.82 1.01 1.29 1.01
Wanderer I 1.03 1.07 1.03 1.04 1:06a 1.06 1.05 1:06a 1:03b

Wanderer II 1.49 1.86 1.64 1.65 1.95 1.76 1.73 1:85a 1:62a

Note: The graphs reflecting the difference between the first Explorer and second Wanderer missions are provided in the Supplementary Material.
aNote the improved accuracy of either 48H or 72H forecasts.
bNote the accuracy of the 72H matching the 24H accuracy.
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longer improve the accuracy: the values of MAE and CRPS plateau. Similar observations can be found in
Gneiting et al. (2005).

As can be seen from Figure 8, the lowest values of MAE and CRPS are at around 10 training days.
Hence, a 10-day training window was selected for Wanderer’s first mission. The training window
selection and MAE CRPS plots for Explorer I and Wanderer II missions are presented and discussed
in the Supplementary Material, see Figure 35.

3.2. Ensemble forecast performance in coastal waters

In this section, the authors present the results of the improved forecast for the coastal areas. Explorer and
Wanderer were deployed near Aran Islands, which can be considered to be in close proximity to the shore.
In the next section, the results of the improved forecast in the open ocean are presented.

Once the training windows are selected, the training process is performed. The algorithm works as
follows, using first the Wanderer mission as an example. We take forecasts and actual recorded data from

Figure 8.Comparison of first Wanderer mission training period lengths forHs: MAE (top, meters), CRPS
(bottom).

Figure 9.Wanderer I weights of individual forecast models. It is clearly visible howMF is dominating the
weight count towards the higher contribution to the ensemble forecast.
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the Spotter buoy from June 19, 2020, to June 29, 2020, and predict the significant wave height for June
30, 2020. Thenwemove to the time period from June 20 to June 30 and predict theHs for July 1, 2020, and
keep going until the end of the Wanderer’s first mission on September 18, 2020. During this process we
track individual weights of each forecasting model (each broken down into three: 24H, 48H, and 72H,
which results in 9 forecasts), and the overall CRPS and MAE. This process is two-fold: first we can see
which individual forecasting model contributes the most to the ensemble forecast, and hence is more
accurate in this instance; and we see the overall accuracy of the ensemble improved forecast. The
evolution of individual weights is presented in Figure 37 in the Supplementary Material. In similar
fashion, as before, the results of individual weights for Explorer I and Wanderer II are presented in the
Supplementary Material in Figure 37.

In addition, the authors looked at the number of effective forecasts over time. This value of entropy
shows the number of effective forecasts used in the production of the ensemble forecast. The results of the
Wanderer I mission are presented in Figure 10. The same information for the Explorer I and Wanderer II
missions is presented in the Supplementary Material in Figure 38.

One of the main reasons why the authors looked at the number of effective forecasts was to understand
if the ensemble forecast is only dominated by onemodel at a time. From Figure 10 it can be seen that there
are 6 days where the ensemble forecast is dominated by one forecast model. However, this represents only
7.4% of the total time period. For 45:7% of the time, the number of effective forecasts is two, and for
24:7% of the time, it is three. Four effective forecasts are present in the ensemble for 14:8% of the time,
and we can see that five forecasts are effective for 7:4% of the time.

3.3. Ensemble forecast performance in the open ocean

The results mentioned in the previous section were obtained by using the historical collected forecasts and
not the real-time data from the Spotter buoys. A natural question arises: can the approach be extended to
real-time forecasting? In this section, the authors will present the results of applying the process to the real-
time forecast for the M6 buoy location, off the West Coast of Ireland, for the period of October 2, 2021 to
October 20, 2021. The period of the summer of 2020 was used as a training and validation example
as well.

Figure 10. Wanderer I number of effective forecasts over time.
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M6 is a part of the Irish Marine Weather Buoy Network. It is a joint project designed to improve
weather forecasts and safety at sea around Ireland. The project is the result of collaboration between the
Marine Institute, Met Éireann, The UKMet Office, and the Irish Department of Transport. Data from the
M6 is publicly available through the Marine Institute andMet Éireann websites, with hourly updates. M6
is located at 53:07 N, �15:88 E, approximately 210 nautical miles (389 km) west southwest of Slyne
Head. In addition to atmospheric variables, oceanographic data, such asHs, wave period, maximumwave
height, maximum wave period, mean direction, sea temperature, and salinity are recorded and made
available to the public.

For the purpose of this exercise, the data fromM6was collected on a daily basis, and the forecasts were
collected as a daily routine for the Wave Obs project. Once the forecasts were collected, training was
performed, and the new HIGHWAVE forecasts for the location were produced. The actual Hs on the
following date is then compared to individual forecast models and the new ensemble HIGHWAVE
forecast.

As described in the previous sections, the question of the optimal training window length m was
addressed before any training and ensemble forecast production was performed. To achieve this, the time
period between June 2020 to September 2020was selected. This time period is the same as the time period
covered by the Explorer first mission and Wandered first mission. Looking at straightforward forecast
versus M6 measurements, we see a good agreement between the two, with the expected behavior of 24H
forecast being more accurate than 48H or 72H (see Figure 11 [summer/autumn], and 12 [winter], and the
values of MAE and MAPE in Table 2).

Table 4 presents the mean absolute percentage error of individual forecasting models for the original
forecasts (left columns) and bias-corrected forecasts (right columns). The MAPE of the HIGHWAVE
forecast was equal to 0:12. Comparing this value to the individual models, note the reduction in error can
be as significant as 48%. And the forecast improvement can be as high as 8%.

We would like to point out two observations one can make from this comparison. First, the values of
MAE are lower for this location, compared toMAE values for the forecast near the Aran Islands. This is a
direct confirmation that the forecast models considered are much better at predicting sea state in the open
ocean (recall theM6 location). However, forecast accuracy starts to decrease as we get closer to the shore.

Figure 11.M6 Met buoy area forecast from WW3, MF, and DWD for 24 h (top), 48 h (middle), and 72 h
(bottom).
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The selection of the sliding training window is based on the values of CRPS and MAE, as it was
previously for the Spotter buoy missions. The training for a specific date was performed using 5, 10,
15, 20, to 85 training days at a time, for two different periods, summer and winter (Figure 13). It appears
that 20 training days is a reasonable training period. FromFigure 13 one can notice that 50 days seem even
better—however, the authors opted for a shorter training period, due to the reasonsmentioned before. One
can notice the increase in the error in the winter period, similar to the Explorer I mission. This will be
addressed further in the publication.

Before live training and production of the ensemble forecast began, the suggested approach was tested
on the aforementioned summer and winter periods. Using a range of training windows between 5 and
95 days, the overall values of MAE and CRPS were calculated for the ensemble forecasts, see Figure 13.
In the summer period, both MAE and CRPS decrease with increasing training day period, as it was seen
before in the Wanderer I mission. The winter period, however, displays a behavior where the error is
increasing with increasing training window—this will be discussed separately. Looking at individual
forecast model weights contributing most to the ensemble forecast, one can note that the MF and WW3
forecasts had dominant weights across the two periods, see Figure 14. We will address the question of
weights of the individual models later. It is obvious that the ensemble forecast is more accurate than the

Table 2. Mean absolute error (winter, m) and mean absolute percentage error (summer, %) of
individual raw forecasting models, depending on the forecast time for M6

24H 48H 72H

Mission DWD WW3 MF MI DWD WW3 MF MI DWD WW3 MF MI

M6 Summer 0.20 0.14 0.10 – 0.13 0.15 0.12 – 0.18 0.19 0.15 –

M6 Winter 0.33 0.39 0.33 0.33 0.60 0.46 0.43 0.42 0.49 0.39 0.45 0.39
HIGHWAVE (winter) 0.31 0.31 0.31

Figure 12.M6 Met buoy area forecast from WW3, MF, MI, and DWD for 24 h (top), 48 h (middle), and
72 h (bottom), for the winter period.
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raw un-adjusted individual forecastmodels. However, an additional questionwas asked:would individual
bias-corrected model perform better than the ensemble forecast? As discussed in the Statistics section, as
part of the ensembleBMA software, correction coefficients for each individual model can be obtained, see
Figure 16. In the next section we present individual adjusted forecasts compared to the ensemble forecast.
Values for the MAE and MAPE are presented in Tables 2 for the raw and 3 adjusted forecasts.

Figure 13. Selection of the training window for theM6 ensemble forecast during the summer period (top)
and the winter period (bottom). MAE in meters.

Figure 14. Weights of individual un-adjusted forecast models for the summer period (top) of 2020 and
winter (bottom), at M6 buoy location.
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Similar to theWanderer I, the authors looked at the effective number of forecasts for both periods at the
M6 buoy. The results are presented in Figure 15.

3.3.1. Individual bias-corrected forecast performance versus the ensemble forecast
In this subsection, the authors compare the performance of the combined ensemble forecast (denoted
HIGHWAVE) to individual bias-corrected models. As described above, this was “live” daily training
between October 2, 2021, and October 20, 2021. It was performed with free ensembleBMA software and
publicly available forecasts from each model mentioned here and below. The training was performed on
an Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz 2.49 GHz processor, with 16.0 GB RAM, and took
seconds. There was no additional time spent on the forecast data collection, as it is a part of the automated
process of Wave Obs.

In Figures 17 and 18 one can see that the adjusted MAPE or MAE in the case of winter period is lower
on particular days, than the MAPE or MAE of the ensemble forecast. However, overall, over the whole
period, HIGHWAVE ensemble forecast is on average more accurate than any raw or adjusted individual
models.

On average, over a month, taking into consideration all four models, the ensemble forecast produced,
using the BMA techniques is at least ≈ 1% better than individual forecasting models, and 3% better on

Figure 15. Number of effective forecasts for M6 summer (top) and winter (bottom) period.

Table 3. Mean absolute error (winter, m) and mean absolute percentage error (summer, %) of
individual adjusted forecasting models, depending on the forecast time for M6

24H 48H 72H

Mission DWD WW3 MF MI DWD WW3 MF MI DWD WW3 MF MI

M6 Summer 0.21 0.12 0.11 – 0.14 0.14 0.13 – 0.19 0.19 0.16 –

M6 Winter 0.44 0.40 0.31 0.32 0.58 0.47 0.42 0.44 0.56 0.47 0.45 0.49
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average. On a few days individual forecast models performed better than the ensemble forecast. However,
this number is negligible, and this is reflected in the overall MAE values. The visual comparison of the
HIGHWAVE ensemble forecast to the M6 buoy observation is presented in Figure 19.

In addition, from this set of data, it is clear that MF (24H) has the highest weight 45% of the time,
followed byWW3 (24H) 28%, and DWD (24H) 10% of the time. Figure 20 visualizes the contribution of
each individual model in the ensemble forecast for the summer period.

For the winter period, it is surprising to see that the 72H forecast has the dominant effect on the
contribution towards the ensemble forecast (Figure 21).

There is no particular pattern, as the forecast having the highest impact does change. There would be a
week or two where for example one is dominating. For example, from June 30, 2020, till July 7, 2020,
DWD 24H forecast has the highest weight. But then it can change to MF taking over for a week. The
reasons behind that could be an extension to the present work.

4. Discussion and concluding remarks

The results of the present study indicate that it is possible to produce an averaged forecast for a particular
location, with an accuracy at least ≈ 1% higher than any available model discussed in this work. The
accuracy can be further improved upon by selecting a suitable trainingwindow, and possibly adjusting the
weights of individual models, depending on the time of year, as we saw that different models perform
better under different conditions. The 1% improvement might not seem like a lot at first sight. However,
this is still an improvement, and it should be noted that it is “at least 1%.” In reality, we are looking at
improvement of the forecast up to 8%. If wewere to look at the reduction of error, in theM6 case presented
in the article, we see the range of the mean absolute percentage error reduction between 1�9%, see
Table 4, with HIGHWAVE forecast yielding a 0:12 value for the MAPE. In the case of forecast
improvement for the M6 winter period, we see the error reduction between the minimum of 6% to
substantial 48%. This is comparable with other attempts at wave forecast improvement, see for example
Callens et al. (2020), where random forest and gradient boosting trees were used to improvewave forecast
at a specific location, and the authors achieved a 39:8% error decrease in their proposed method, which is
comparable with our range of 6�48%. Other attempts, mostly involving Machine Learning and Neural

Figure 16. Bias coefficients for the corrected forecasts: intercept (a) top panel, slope (b) bottom panel.
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Networks have been a highlight in recent years, see for example Londhe et al. (2016) for a coupled
numerical and artificial neural network model for improving location-specific wave forecast. In similar
fashion the tidal predictions were addressed, see for example Yin et al. (2013).

We believe that it is a good improvement, since the shores on the West Coast of Ireland experience
waves reaching very steep values duringwinter storms (O’Brien et al., 2013; O’Brien et al., 2018). It is not
computationally expensive, and can be completed without the use of cluster or any type of high-
performance computing. Implementing the forecast collection process is straightforward. It only requires
theWave Obs package, available on GitHub. EnsembleBMA software used for training of the forecasts is
free software available from cran.r-project.org. This free access to information and the straightforward
process of collecting and training the forecast opens up the opportunity to a wider population to use this
tool for their daily needs. This might appeal to harbour-masters, fisherman, and others who depend on an

Figure 17. Daily MAPE (%) of individual DWD—raw,– adjusted, and HIGHWAVE (top panel); MF—
raw, – adjusted, and HIGHWAVE (middle panel); WW3—raw, – adjusted, and HIGHWAVE (bottom
panel) forecasts for the summer period in the M6 location.
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Figure 18. Daily MAE of individual DWD—raw,- adjusted, and HIGHWAVE (top panel); MF—raw, –
adjusted, and HIGHWAVE (second panel); WW3—raw, – adjusted, and HIGHWAVE (third panel); MI—
raw, – adjusted forecasts for the winter period in the M6 location.
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Figure 19. Ensemble forecasts (HIGHWAVE) produced by the procedure proposed in this publication
compared to the actual record from the M6 buoy for the winter period.

Figure 20. Visual representation of each individual model having the highest weight on the ensemble
forecasts for the period of interest.

Figure 21. Visual representation of each individual model having the highest weight on the ensemble
forecasts for the winter period.

Table 4. Mean absolute percentage error of individual forecasting models, depending on the forecast
time for M6 summer period (%)

24H 48H 72H

Model
Original
forecast

Adjusted
forecast

Original
forecast

Adjusted
forecast

Original
forecast

Adjusted
forecast

DWD 0.2 0.21 0.13 0.14 0.18 0.19
MF 0.10 0.11 0.12 0.13 0.15 0.16
WW3 0.14 0.12 0.15 0.14 0.19 0.19
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accurate sea state forecast. Of course, the authors are aware of recent works in the forecast improvement
area withMachine Learning algorithms (Guillou and Chapalain, 2021, Gracia et al., 2021, amongst many
others). Readers interested in Machine Learning algorithms are referred to Ali et al. (2021) for evaluation
of Machine Learning, Deep Learning, and Statistical Predictive Models. However, the nature of ML
requires specific knowledge and training to perform such improvements. For example inWu et al. (2020),
the PBML model has an MAE of 0:1961 for 24 h lead time forecast of the Hs, to be compared with the
HIGHWAVEMAEof ≈ 0:08 for the 24 h forecast. In noway the authors are trying to downshift the role of
ML algorithms in improving the sea state forecasting. However, one can consider different applications of
ML and Wave Obs. Where ML can be used on large scale predictions, it might be beneficial, on a local
scale, in terms of how easy it is to use, and the low computational cost of the Wave Obs process to be
considered as a possibility for a non-scientific community audience.

The only issue is the availability of real-time or even historical data for the purposes of training. If there
are some buoys in the area of interest and the data is publicly available, one can produce improved
ensemble forecasts using the combination of the recorded measurements and available forecasts.
However, if there is no field data available, the training process would suffer from the lack of data.

We investigated the possibility of extending this improved forecast to all coastal areas around Ireland.
It was found that there exist 11 buoys that have live data available to the public that can be used in the
training process. However, the distribution of the buoys would not allow for cross-coverage of the whole
coastal area, please refer to Figure 22 to see the locations, and the extent of the forecast resolution around
each buoy.

Despite the issues in extending the improved ensemble forecast to a global scale, it can be concluded
that if a particular area requires more accurate forecasting (due to fishing, sailing, or transportation
activities), it can easily be achieved using the approach described in this publication.

Abbreviations

API API Application Programming Interface
BMA Bayesian Model Averaging
CDF Cumulative Distribution Function
CPU Central Processing Unit
CRPS Continuous Rank Probability Score

Figure 22. Map of buoys with open-access data around Ireland.
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DWD Deutscher Wetterdienst (German weather forecasting service)
ERC European Research Council
ERDDAP Environmental Research Division’s Data Access Program
FNMOC Fleet Numerical Meteorology and Oceanography Center
GFS Global Forecast System
ICON Icosahedral Nonhydrostatic Model
JSON JavaScript Object Notation
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MF Météo-France
MI Marine Institute
ML Machine Learning
MRS Mobile Research Station
NCEP National Centers for Environmental Prediction
NOAA National Oceanic and Atmospheric Administration
RAM Random-access memory
SHOM Service Hydrographique et Océanographique de la Marine
SWAN Simulating WAves Nearshore
THREDDS Thematic Real-time Environmental Distributed Data Services
UW University of Washington
WAM the Wave Model
WW3 Wavewatch III
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