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A B S T R A C T . Non-spherical dynamical models for galaxies, and the methods for 
their construction, are reviewed. The theory for two-integral axisymmetric models 
is reasonably well developed. Stäckel models give considerable insight in the struc-
ture of both three-integral axisymmetric models and non-rotating triaxial systems. 
Triaxial galaxies with appreciable figure rotation require much further study. Ap-
plications to elliptical galaxies and the bulges of disk galaxies are discussed. 

1. THE FUNDAMENTAL PROBLEM OF STELLAR DYNAMICS 

The structure and dynamics of a collisionless stellar system are determined com-
pletely by specification of the distribution function / ( r , v , ¿ ) , which gives the dis-
tribution of the stars in the system over position r and velocity ν as function of the 
time t. The distribution function satisfies the collisionless Boltzmann equation 

g + T . V / - W . § i = 0 , (,) 

where V is the potential in which the stars move, and we have used Newton's 
equations of motion ν = — V V . If the stellar system is in a steady state then 
df/dt = 0. The density p(r) of the system is the integral of / over the velocities 

P(r) = Iff / ( r , v ) d 3 v . (2) 

In a self-gravitating system, V is the gravitational potential of the density itself, 
and is connected to ρ via Poisson's equation 

V 2 F - 4nGp. (3) 

In order to obtain a dynamical model for a self-gravitating stellar system in equi-
librium, equations (1), (2) and (3) have to be solved simultaneously. A solution 
corresponds to a dynamical model only if / > 0. The problem of finding / for 
a stellar system in equilibrium is the fundamental problem of stellar dynamics 
(Chandrasekhar 1942). It is often referred to as the self-consistent problem. 
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In many cases, Jeans' theorem can be used in order to reduce the number of 
variables in the problem. It states that / depends on the phase-space coordinates 
(r, v ) only through the isolating integrals of motion admitted by the potential (Jeans 
1915; Lynden-Bell 19626). Any such function automatically satisfies equation ( l ) . 
Hence one is left with equations (2) and (3). 

Two main approaches towards a solution of the self-consistent problem may 
be identified. In the first method one specifies / as a function of the integrals of 
motion. Then equations (2) and (3) combined form an integro-differential equation 
for V. The alternative is to specify the density and/or the potential, and then to 
solve the integral equation (2) for / . Non-consistent models are obtained in a 
similar way. Since in this case Poisson's equation does not have to be satisfied, one 
usually chooses a potential and then either gives / and calculates ρ from equation 
(2), or one specifies ρ and solves equation (2) for / . 

As an example, consider spherical galaxies. A spherical potential admits four 
isolating integrals. In addition to the energy E, the three components Lx, Ly and 
Lz of the angular momentum vector L are conserved as well. As a result, the 
general distribution function of a spherical galaxy must be of the form /(£",L). If 
/ is spherical in all its properties, it can depend only on the magnitude of L, but 
not on its direction, so that / = f(E,L2). Such models have anisotropic veloc-
ity distributions. For / = f{E) the velocity distribution is isotropic. Eddington 
showed in 1915 that, for a given p(r), it is always possible to invert equation (2) 
explicitly in order to obtain a unique f(E). If p(r) falls off with radius sufficiently 
rapidly (cf. Hunter 1974) this f{E) is nowhere negative, and represents the unique 
isotropic solution. Many anisotropic solutions f(E,L2) exist. They can sometimes 
be found by analytic inversion techniques (e.g., Dejonghe 1987a), but they are usu-
ally constructed by assumption of a special functional form for / , or by numerical 
techniques. For recent reviews, see Binney (1982a), Binney & Tremarne (1987), 
and Richstone (1987). 

In this paper, we review dynamical models that are not spherically symmetric. 
In §2 we discuss axisymmetric models with distribution functions that depend on 
two integrals. It has recently become clear that such models apply at most to the 
spheroidal bulges of disk galaxies only. Elliptical galaxies and box-shaped bulges 
require three-integral models. These may be axisymmetric, but most likely they 
are triaxial and have slow figure rotation. Due to lack of knowledge regarding extra 
integrals of motion, few such models exist to date. They are described in §§3 and 
4. §5 is devoted to the so-called Stäckel models, for which three exact integrals 
are known in closed form. They can be used to construct realistic three-integral 
models of axisymmetric galaxies, and also of non-rotating triaxial systems. 

2. AXISYMMETRIC MODELS WITH / = f{E,Lz) 

Let (π,φ,ζ) be cylindrical coordinates. An axisymmetric potential V(m,z) always 
admits two exact isolating integrals of motion, the energy E and the component 
of the angular momentum vector that is parallel to the symmetry axis, Lz. It 
is therefore natural to consider dynamical models with / = f(E,L2). Although 
such models are not as widely applicable to galaxies as was once believed, it is 
nevertheless useful to review the various methods for their construction. We shall 
mainly discuss three-dimensional models; for a review of circular disks, see Kalnajs 
(1976). 
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2.1 Inversion 

Fricke (1952) showed that in a potential V(w,z), a distribution function / of the 

where the summation is over i and j , and the a t J and 6 t J are constants that are 
related one to one. Thus, if a given density p(w,z) in a potential V(u?,z) can 
be expressed as p(w,V), and can be expanded in the form (5), then the unique 
distribution function f(E,Lz) that is consistent with it follows from equation (4). 
The corresponding velocity moments can be given as series expansions in a form 
similar to equation (5). However, the velocity dispersions can often be derived more 
rapidly by direct integration of the stellar hydrodynamical equations (see §2.3). A 
major drawback of Fricke's method is that the convergence of the series (4) is not 
guaranteed for all values of E and Lz. 

An early application of Fricke's method was given by Kuzmin & Kutuzov 
(1962), who calculated f(E,Lz) for a family of oblate mass models found previ-
ously by Kuzmin (1956). The models are nearly spheroidal, and form a continuous 
sequence between Hénon's (1960) spherical isochrone and Kuzmin's (1953) disk. 

Miyamoto & Nagai (1975) presented a remarkable (p,V)-pair that describes 
a sequence of flattened models that connects the spherical Plummer (1911) model 
with Kuzmin's disk. At large radii, the density falls off as cu~ 3 in the equatorial 
plane, but it decreases as z~5 everywhere else. As a result, the models appear to 
have both a bulge and a disk. Nagai & Miyamoto (1976) derived f(E,Lz) for their 
models by Fricke's method, and delineated the kinematic properties. 

Lynden-Bell (1962a) generalized Eddington's (19156) isotropic spherical in-
version formula to axisymmetric models. His method for the actual calculation of 
/ is not easy to apply in practice. It requires taking a Laplace transform, and 
then two inverse Laplace transforms, and hence is restricted to very special densi-
ties. Alternative formulations in terms of Stieltjes and Mellin transforms (Hunter 
19756; Kalnajs 1976) avoid this problem. However, just as in Fricke's method, these 
different versions of the inversion method all require that ρ is given explicitly as 
p(to,V). Only very few (p, V)-pairs with this property are known. Consequently, 
only a small number of exact models have been constructed. 

The inversion method has been applied to various modifications of the Plum-
mer model, both oblate and prolate (Lynden-Bell 1962a; Hunter 19756; Lake 
1981a). Lynden-Bell's generalized Plummer models have a finite total mass; their 
distribution function is the sum of two terms of the form (4), so that it could have 
been calculated easily with Fricke's method as well. 

Hunter (1975a) calculated f(E,Lz) for a homogeneous spheroid of finite ra-
dius by Lynden-Bell's method, and showed that it is not everywhere positive. He 
also derived an approximate form for the distribution function of a mildly inhomo-
geneous spheroid, in the limit of small flattening, and found that / > 0. 

Recently, Dejonghe (1986) rediscussed the inversion method in detail, with 
emphasis on the use of Mellin transforms. He gives a very useful list of explicit dis-
tribution functions f(E, Lz) that correspond to a variety of fairly general functions 

form 

(4) 

corresponds to a density ρ that is given by 

(5) 
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p(w,V). These can be used as convenient building blocks for dynamical models. 
Dejonghe's list includes all previously known cases, and many new ones. In partic-
ular, he derived f(E,Lz) for a density of the form ρ — Va(l - OJ2V2)b, with a and 
b constants. This allowed him to give the distribution function for the Miyamoto 
& Nagai (1975) model in a more convenient form, and to show that it is positive 
everywhere. By using the same building block, Dejonghe & de Zeeuw (1987) found 
the exact distribution function for the Kuzmin & Kutuzov (1962) model. 

Dejonghe discusses the connection between the inversion problem for axisym-
metric systems and the corresponding problem for anisotropic spherical models, 
and shows explicitly that the direct inversion method is numerically unstable. As 
a result, in practice the method is limited to analytic (p ,y)-pai rs for which, as we 
have seen, it must be possible to write ρ — p(w,V) in closed form. In addition to 
the six cases already mentioned, not counting the homogeneous spheroid, only one 
further (p,V r)-pair with this property is known. These are Satoh's (1980) η = oo 
models, which form a continuous sequence connecting the Kuzmin disk with the 
point mass. The models resemble those of Miyamoto & Nagai (1975), but have a 
weaker disk component. Satoh calculated the kinematic properties of these mod-
els (see also §2.3), but he did not derive f(E,Lz). This can be done by Fricke's 
method, and most likely also by direct inversion. 

Although the above results seem to indicate that the calculation of f(E,Lz) 
for a given density p(w, z) is limited to a few special cases, which have been found 
in a haphazard way, the situation is not quite desperate. Dejonghe (1986) has 
developed a method to generate many (p,V)-pairs with the desired property in a 
systematic fashion. In an earlier paper the same method was used to generate new 
exact spherical models (Dejonghe 1984). Construction of axisymmetric models via 
this technique promises to yield many new and useful models. 

Finally, we remark that ρ constrains only the part of the distribution function 
that is even in the velocities, i.e., it can be used to determine f(E,Ll). The odd 
part of / can be found by exactly the same techniques as the even part, by inversion 
of τυρ(νφ) (cf. §2.3), instead of ρ (Hunter 1975a; Dejonghe 1986). 

2.2 Assumed Form for / . 

The alternative to direct inversion is to assume a functional form for f(E,Lz), 
and then to find the potential-density pair (ρ, V ) that is consistent with it. This 
approach has produced realistic spherical models (e.g., Michie 1963; King 1966; Bin-
ney 19826). Prendergast & Tomer (1970) developed an efficient numerical technique 
to do this for axisymmetric models. After adopting a simple form for f(E, Lz), they 
calculate ρ by equation (2), and substitute the result in equation (3). This produces 
a non-linear equation for the potential V , which is solved by iteration. The authors 
then employed this self-consistent field method for the construction of models with 
a variety of flattenings and radial density profiles. 

Wilson (1975) extended the work of Prendergast &: Tomer, with a smoother 
form for / , and constructed a small number of oblate models designed to fit the 
observations of the elliptical galay NGC 3379. He was able to reproduce the radial 
density profile, the isophote shape and even the inner part of the rotation curve. 
Further exploration showed that the models have a variation of eccentricity with 
radius that is always peaked, and that models flatter than about E4 are unrealistic. 
Lake (19816) used another form for / , and was able to find prolate models flatter 
than E4. His models have eccentricity profiles which are decreasing with radius, 
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and can have streaming, i.e., rotation, around the long axis only. 
The most recent, and succesful, application of the self-consistent field method 

is by Jarvis &¿ Freeman (1985a, b). They constructed models for the bulges of disk 
galaxies. A new aspect of their models is that the potential is taken as the sum of a 
bulge potential and a disk potential. During the iteration, the latter is kept fixed, 
and is set equal to the potential of a Miyamoto & Nagai model. Thus, the resulting 
bulge models are not self-consistent, which—for this application—is exactly as it 
should be. Jarvis & Freeman find that, with only a small contribution from the 
disk, their models accurately reproduce all available photometric and kinematic 
properties of spheroidal bulges, but not of the box-shaped ones. 

A difficulty with the self-consistent field method is that the shape of a dynam-
ical model is not related to the form of / in a very transparent way. This is evident 
from the differences between the above mentioned models, and also from the work 
of Ruiz & Schwarzschild (1976), who constrained the form of f(E,Lz) and the 
shape of the density distribution simultaneously, and found that their conditions 
overspecified the model. This problem was studied in detail by Hunter (1977), who 
derived the conditions that / must satisfy in order to produce density distributions 
with roughly constant eccentricity profiles. 

A special case where a particular choice of f(E,Lz) leads to an analytic 
solution of the self-consistent problem was given by Toomre (1982). He consid-
ered scale-free axisymmetric density distributions with, in spherical coordinates, 
p(r,fl) = S(e)/r2, so that V oc ln[r + P(0) ] . Here S(0) and Ρ (β) describe the shape 
of the model, and are still to be determined. Toomre assumed that / is given by 

/„ = cnLl"e~E, (6) 

with cn a constant. Combination of equations (2) and (3) then produced a nonlinear 
equation for Ρ(θ) which, remarkably, can be solved in closed form for all η > 0. 
S (θ) then follows by differentiation. Thus, the form (6) describes a one-parameter 
family of exact scale-free models. Two special cases are the standard isothermal 
halo (n — 0) and Mestel's (1963) disk of infinite extent (n = o o ) . 

The scale-free models are not realistic, since they have infinite total mass, 
central density, and central potential. Also, for η > 0 the surfaces of constant 
density are tori with vanishingly small central holes. However, this last defect 
can be remedied by considering two-component models. Toomre showed that the 
structure of a model consisting of an infinite Mestel disk and a halo with distribution 
function fn can also be found analytically. The special case η = 0 had already been 
discussed in detail by Monet, Richstone & Schechter (1981). Furthermore, two-
component models with / = fn + / m and 0 < η < m < o o can have a bulge-disk 
structure, and can be given in closed form for m — 2n + 1. The particular case 
η = 0, ra = 1 is the model used by Richstone in his extensive study of scale-free 
models with three integrals of motion (Miller 1982; §3.3 below). 

2.3 Stellar Hydrodynamics 

The kinematic properties of a dynamical model can be derived from the velocity 
moments of / . Let νψ and vz be the velocity components in the cylindrical co-
ordinates (ce, φ, z \ and denote an average over all velocities by ( ) . By symmetry, 
it follows that (vw) — (vz) = 0, so that there can be mean streaming around the 
symmetry axis only, with velocity (νψ) (which is a function of OJ and z). 
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The second order moments of / are related to ρ and V by the Jeans equations, 
also referred to as the equations of stellar hydrodynamics (Jeans 1922; Chandra-
sekhar 1942). By symmetry, (ν^νψ) = (νφνζ) = 0. For / = f(E,Lz), we also have 
(vwvz) — 0, (v%j) = (vz)^ and the Jeans equations reduce to 

Given a density ρ in a potential V , the moments (v^) — (v2) and (v%) can be 
determined by direct solution of equations (7), without knowing the explicit form 
of the corresponding / . In fact, even if / is known, it is often easier to calculate the 
moments in this way, rather than by averaging of and over velocity space. 
However, a solution of the Jeans equations may give velocity dispersions that are 
unphysical, since the implied / is not guaranteed to be non-negative. 

As already mentioned, specification of ρ does not fix the part of / that is 
odd in the velocities. Hence (νψ) is undetermined. In many cases (νψ) is chosen 
such that the local velocity dispersions are equal in all three directions, i.e., (v^) — 
(v2) — (v%) — (νψ)2. These solutions are referred to as isotropic. It is also possible 
to determine (νψ) via an entropy argument (Dejonghe 1986). 

The Jeans equations have played a central role in Galactic Dynamics (e.g., 
Oort 1965). They have also been put to good use for spherical galaxies (Binney & 
Mamon 1982), but few applications to general axisymmetric models exist. Bagin 
(1972) considered rather special density distributions. A very interesting set of 
solutions was given by Nagai & Miyamoto (1976). They derived an infinite set of 
axisymmetric (p, V)-pairs, each of which connects the Plummer model with one of 
Toomre's (1963) disks. The Miyamoto &¿ Nagai (1975) models mentioned earlier 
are given by the first of these pairs, since Toomre's η = 1 disk is identical to 
Kuzmin's disk. The authors were able to integrate equations (7) explicitly for all 
these generalized Toomre models, so that the velocity dispersions could be given 
in closed form. In the same fashion, Satoh (1980) presented another infinite set of 
three-dimensional models, connecting the Kuzmin disk with various generalizations 
of the Plummer model. He solved the Jeans equations for his η — oo model only, 
and compared the results with observations of NGC 4697. 

Hunter (1977) used the Jeans equations in his investigation of the relations 
between the functional form of f(E, Lz), the anisotropy of the velocity dispersions, 
and the shape of the density distribution in self-consistent models (cf. §2.2). He also 
showed that equations (7) can be solved by simple quadrature in case ρ = ρ(π, V) 
explicitly. Since both the Nagai & Miyamoto η — 1 models and the Satoh η — oc 
models have densities with this property, it is not surprising that for them the Jeans 
equations can be solved exactly. 

2.4 Applications 

The standard example of an axisymmetric system is our own Galaxy. However, it 
has long been known that (ν*,) Φ (υ2) in the solar neighbourhood (e.g., Oort 1928). 
It was concluded that the distribution function of the Galaxy must depend on a 
third argument, i.e., there must be a third isolating integral of motion, Is. Although 

ldpjvi) , {vl)-{vp dv_ 
(9 CD ' 

ä7' 

(7) 
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special potentials which admit a third integral were considered by various authors 
(Oort 1932; Lindblad 1933; Kuzmin 1953, 1956; Hori 1962) it was established 
only through the analytic work of Contopoulos (1960) and the numerical work of 
Ollongren (1962) that in realistic galactic potentials indeed most stellar orbits have 
an effective third integral (see also Martinet ¿¿ Mayer 1975). No simple expression 
is known for J 3 , and to date no satisfactory dynamical model for the Galaxy exists. 

Although a two-integral model was known to be inadequate for the Galaxy, 
it was thought for a long time that elliptical galaxies have a simpler dynamical 
structure, and are oblate axisymmetric systems with / — f(E,Lz) and an isotropic 
velocity distribution, so that their flattening is caused by rotation (Freeman 1975). 
This premise generated most of the work described in the previous sections. How-
ever, at about the time that Wilson (1975) produced his two-integral models, spec-
troscopic observations indicated that large elliptical galaxies rotate much slower 
than expected (Bertola &¿ Capaccioli 1975; Illingworth 1977). 

All Lz φ 0 orbits in an oblate galaxy have a definite sense of rotation around 
the symmetry axis, but both clockwise and counter-clockwise motion may occur. 
By reversing the direction of motion for an arbitrary fraction of stars in each orbit, 
and hence making the velocity distribution anisotropic (§2.3), we may obtain as 
small a mean streaming velocity (νψ) (i.e., observed rotation) as desired, even with 
/ = f(E,Lz). However, by using the tensor virial theorem to connect the ratio 
of the observed maximum rotational velocity and the central velocity dispersion 
with the apparent flattening, Binney (1978a) concluded that the then available 
kinematic observations of elliptical galaxies were best represented by models with 
(v^j) φ (vi). This is supported by more recent studies (§3.4). As a result, it 
is generally accepted that the most natural models for elliptical galaxies have all 
three velocity dispersion components unequal, and hence must have distribution 
functions that depend on three integrals. 

In smaller elliptical galaxies the velocity anisotropy decreases, and rotation 
becomes more important (Davies et al. 1983). The still smaller bulges of disk 
galaxies, which resemble elliptical galaxies in many respects, all rotate nearly as fast 
as the oblate isotropic models (Kormendy &; Illingworth 1982). Jarvis & Freeman 
(1985b) have shown that, by inclusion of the effect of the disk, the spheroidal bulges 
are completely consistent with f (E, Lz)-models. However, the box-shaped bulges 
have velocity fields that need three-integral models. 

3. AXISYMMETRIC MODELS WITH / = f{E,Lz,I3) 

Most orbits in realistic axisymmetric potentials are tubes around the symmetry 
axis, and have an effective third integral. The remainder is generally made up of 
a host of minor orbit families and irregular orbits. The latter do not have a third 
integral of motion. Binney (1982c) has argued that Jeans' theorem is not valid for 
potentials that support irregular orbits (see also Pfenniger 1986). Hence, no true 
equilibrium solutions may exist for such systems. In many cases of interest, however, 
the fraction of irregular orbits is small. On time scales of the order of a Hubble 
time these orbits are nearly indistinguishable from regular ones (e.g., Goodman 
& Schwarzschild 1981). For practical purposes, one may probably still use Jeans' 
theorem for these systems, and construct approximate equilibrium models. Since a 
given p[pj,z) determines a unique f(E,Lz), generally many different distribution 
functions f(E,Lz,Is) are consistent with it. 
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3.1 Exact Models 

An exact third isolating integral of motion is known for the special axisymmetric 
potentials for which the Hamilton-Jacobi equation separates in spheroidal coordi-
nates (Stäckel 1890; Lynden-Bell 1962c). In a classic paper, Kuzmin (1956) showed 
that many such Stäckel potentials correspond to realistic axisymmetric mass mod-
els. For such models Jeans' theorem is strictly valid. We shall consider exact 
solutions based on these potentials in §5. 

3.2 Approximate Distribution Functions 

For nearly spherical systems, the third integral is related closely to the square of 
the total angular momentum. This is suggested by the form of Is in the Stäckel 
potentials, most clearly in the limiting case where V(r,0) = F(r) + G ( 0 ) / r 2 , with 
F(r) and G(0) arbitrary functions. This is the Eddington (1915a) potential, which 
admits Is = L2 — 2G(9) as exact integral. Numerical orbit calculations in more 
realistic potentials show that L2 indeed does not vary much along an orbit (e.g., 
Saaf 1968; Innanen & Papp 1977). This fact can be used to include the dependence 
of / on Is in an approximate way. 

Lupton (1985) simply used L2 as third integral, and constructed realistic 
models of globular clusters with an assumed form for f(E, Lz,Is). A more elaborate 
treatment was given by Petrou (1983a). She used an approximation of the form 
Is — L2 — 2G(r ,0) , with G(r, Θ) a simple function of the potential. This J 3 turned 
out to be constant along individual orbits to better than a few percent. She then 
modified the lowered Maxwellian form of the distribution function f(E, Lz) used by 
Prendergast & Tomer (1970), by inclusion of a factor that depends on J 3 , chosen 
such that the orbits that do not come close to the center are all depopulated, 
independent of their inclination. The potential and density that correspond to this 
/ were then determined by the self-consistent field method (§2.2). This produced 
quite realistic models for nearly round elliptical galaxies. Due mainly to the chosen 
L^-dependence of / , the models all have peaked rotation curves, and cannot become 
much flatter than E2.3. In order to remedy this defect, Petrou (19836) modified / 
in such a way that the non-radial orbits are depopulated predominantly outside the 
equatorial plane, which results in flatter models. She presented detailed results for 
an E3.5 model. It has a nearly flat rotation curve, a velocity ellipsoid that becomes 
radially aligned at large distances from the center, a realistic density profile, and 
elliptical isophotes. 

A somewhat different approach was taken by Binney &: Petrou (1985). They 
proposed a particular form for the three-integral distribution function for b o x -
shaped bulges, and showed that the corresponding density in the potential of the 
spherical isochrone has the correct photometric and kinematic properties. It is likely 
that more realistic models can be obtained by taking their distribution function, 
and applying the self-consistent field method after inclusion of a disk potential, 
just as was done for spheroidal bulges by Jarvis & Freeman (1985a, 6). 

3.3 Scale-Free Models 

As we have seen in §2.2, scale-free models suffer from some defects. They can, 
however, provide considerable insight in the structure of more realistic models. 
Richstone (1980, 1982, 1984) made a detailed study of the possible three-integral 
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models that are consistent with a particular axisymmetric scale-free model. He 
took the case where the potential is logarithmic, and constant on similar oblate 
spheroids. The associated density has dimples near the symmetry axis. Richstone 
studied a particular example with a flattening similar to an E6 galaxy. The great 
majority of orbits in this potential belongs to one family, that of tubes circling the 
short axis. He did not encounter any stochastic orbits in his survey. Thus, all orbits 
have an effective third integral. 

Richstone used Schwarzschild'smethod (§4.2) to compute numerical distribu-
tion functions by reconstructing the given density with individual orbit densities. 
Because the model is scale-free, this reconstruction needs to be done at one radius 
only, so that the problem is effectively one-dimensional. By optimizing the values 
of the total angular momentum and the total second velocity moments, Richstone 
found a large variety of different dynamical models. 

Subsequently, Levison & Richstone (1985a, b) produced non-consistent mod-
els in the same potential, by using the orbits to reproduce a density p(r) ~ r - 3 , 
instead of p(r) ~ r~ 2 , so that the mass-to-light ratio M/L oc r. They obtained 
the somewhat unexpected result that the kinematics of these different models are 
very similar. If this is true for more realistic models as well, then the chances of 
finding evidence for dark matter in elliptical galaxies when only observations of 
stellar kinematics are available, are very slim. 

3.4 Stellar Hydrodynamics 

Solutions of the Jeans equations for anisotropic axisymmetric models relevant for 
elliptical galaxies have been given only recently. Bacon, Simien & Monnet (1983), 
and Bacon (1985) considered the case where (v^) ψ {v^), but with the restriction 
that the velocity ellipsoid is radially aligned everywhere, so that {vrv$) — 0. By 
analogy with the spherical case (Binney & Mamon 1982), they derived the formal 
solution of the Jeans equations for an assumed functional form of the anisotropy 
parameter β — 1 — (VQ)/(V2). They considered the case β — ß(r) — kr/{l + ar), 
with k and a constants, in detail. This corresponds to a velocity distribution that 
is isotropic in the center, and, for 0 < k < 1, predominantly radial at large radii, 
as suggested by N-body simulations (van Albada 1982). The authors evaluated 
their solutions numerically for density distributions that are stratified on similar 
oblate spheroids and have, in projection, a de Vaucouleurs profile. Comparison of 
the results with observations of a small number of well-observed elliptical galaxies 
revealed that the larger ones are indeed best fit with anisotropic models. 

A similar investigation was done by Fillmore (1986), who solved the Jeans 
equations by an iterative numerical technique for three different assumptions for the 
shape of the velocity ellipsoid. He employed a mass model identical to the one used 
by Bacon, and showed that observations of both major and minor axis dispersion 
profiles can put strong constraints on the form of the velocity distribution. 

4. TRIAXIAL MODELS 

Since models with / = f(E,Lz,Is), and hence with anisotropic velocity distribu-
tions, seem to be required for the majority of elliptical galaxies, the assumption that 
these galaxies are oblate, i.e., with two of the three axes exactly equal, becomes 
rather artificial. It is much more natural to assume that these galaxies are triaxial 
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(Binney 1978a, b). This hypothesis is supported by a number of observational lines 
of evidence (e.g., Schechter 1987). 

A general triaxial potential admits only one isolating integral, the orbital en-
ergy E. Although there are three planes of reflection symmetry, there is no symme-
try axis, and no component of the angular momentum is conserved. Schwarzschild 
(1979, 1982) has shown by numerical means that in realistic triaxial potentials most 
stellar orbits possess two effective integrals I2 and J 3 in addition to E. Just as for 
the third integral in axisymmetric systems, in the general case no simple expressions 
are known for these extra integrals. 

4.1 Exact Solutions 

There exists a large class of triaxial mass models with non-rotating figures that 
have a potential of Stäckel form, and admit three exact integrals of motion. Self-
consistent models of this kind will be discussed in §5. For triaxial systems with 
rotating figures, only two analytic solutions exist, one exact, the other approximate. 

Freeman (1966) constructed dynamical models for homogeneous triaxial el-
lipsoids of arbitrary axis ratios, rotating at a critical frequency such that the cen-
trifugal force exactly balances the gravitational attraction on the long axis. The 
distribution function / of his models depends on the energy integral in the corotat-
ing coordinate system only. However, shape and rotation are related in a unique 
way, which is in contradiction with the observations of elliptical galaxies. Hunter 
(1974) proved that for general axis ratios, and a general figure rotation, no solutions 
exist. In the special case of a homogeneous spheroid, solutions exist that depend 
on more integrals (Bisnovatyi-Kogan & Zeldovich 1970), although the model with 
f(E,Lz) is unphysical (§2.1). 

Vandervoort (1980a, 6) constructed approximate solutions for rotating poly-
tropic models in which the density is a power of the potential, and is only mildly 
concentrated towards the center. The distribution functions found by Vander-
voort depend on the energy only, and the velocity dispersions are isotropic. This 
illustrates that even triaxial models can have an isotropic velocity distribution. 
However, these models again require a unique rotation speed. Vandervoort & 
Welty (1981, 1982) developed an analytic—and approximate—version of the self-
consistent field method (§2.2), in which the iterative solution is terminated after 
the first one-half iteration. They used this method to construct a more general set 
of poly tropic models, with a variety of rotation speeds. They considered distribu-
tion functions that depend on an approximate second integral, which is only valid 
in nearly homogeneous systems. The resulting anisotropic models can be consid-
ered as the stellar dynamical counterparts of the 5-type Riemann fluid ellipsoids 
(Chandrasekhar 1969). Bohn (1983) used the same method to construct prolate 
models. 

4.2 Schwarzschild's Method 

A completely new approach to the self-consistent problem, which sidesteps our 
ignorance of two of the three arguments of / , was introduced by Schwarzschild 
(1979). He specified a mass model and derived the gravitational potential by inte-
gration of Poisson's equation. Then he calculated a large number of stellar orbits 
by numerical means, and computed their individual density distributions on a grid 
of cells, by determining the average time spent in each cell by each orbit. He then 
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used linear programming to find a combination of orbital densities that reproduces 
the original density distribution, with all occupation numbers non-negative. 

If this procedure is succesful, one has obtained a numerical representation of 
a distribution function that is consistent with the assumed density. In each cell the 
number of stars going through it are known. Since the orbits have been computed, 
the velocities of the stars are known at each position. Thus, the orbits and their 
occupation numbers give the distribution of the stars over position and velocities. 
This is, by definition, the distribution function (§1). Schwarzschild (1979) applied 
this method to a nearly ellipsoidal triaxial mass model with axis ratios 1 : 5/8 
: 1/2, and a realistic density profile, and was able to find a solution for / . This 
established the existence of realistic triaxial equilibrium models. 

Most orbits in Schwarzschild'smodels have three effective integrals of motion, 
and belong to four major families: box orbits, which have no net average angular 
momentum, tube orbits around the short axis and two kinds of tubes circling the 
long axis. Each star in a tube orbit has a definite sense of rotation around the 
appropriate axis, but both clockwise and counter-clockwise motion may occur on 
the same orbit. The orbital shapes and their individual density distributions are 
determined by the values of the integrals. As a result, the derived occupation 
numbers depend on the integrals. Thus, without knowledge of the explicit forms of 
two of the integrals, still a distribution function / is found that depends on all three 
of them. We remark that instead of linear programming, one can also use Lucy's 
(1974) method (Newton & Binney 1984), non-negative least squares (Pfenniger 
1984), or a maximum-entropy method (Tremarne & Richstone 1987). 

Schwarzschild constructed his model with boxes and short axis tubes only. Its 
internal structure, and the observable properties, were studied by Merritt (1980). 
Later work showed that long axis tubes can be included in the model as well, indi-
cating that different equilibrium models can exist for the same density distribution. 
Levison & Richstone (1987) used Schwarzschild's method to survey the solutions 
for two different triaxial scale-free models, one nearly oblate, and the other nearly 
prolate. These models contain the same major orbit families as found in Schwarz-
schild's model (Levison, priv. comm.) . The equilibrium models can have mean 
streaming about the long axis and about the short axis (but see below), and show 
a large variety in observable properties. 

4.3 Figure Rotation 

Schwarzschild (1982) constructed two distinct equilibrium solutions for his original 
model, but now with a slow rotation of the figure around its short axis. This showed 
that realistic triaxial dynamical models exist whose shape is not determined by the 
(figure) rotation. 

In the rotating models, the Coriolis force distinguishes direct and retrograde 
motion, and each of the tube orbit families mentioned above splits up in two 
branches, with different shapes. The long axis tubes tip out of the plane that 
contains the intermediate and short axes, with the direct and retrograde branches 
tipping in opposite directions. In order to obtain a model with triaxial symmetry, 
each branch of this family has to be populated equally, so that no net streaming 
about the long axis can occur. The streaming about the short axis can be quite 
complicated, since in addition to the short axis tubes, also the boxes and the tipped 
long axis tubes have a net average angular momentum with respect to this axis. 

Vietri (1986) used Schwarzschild's method to construct rotating triaxial mod-
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els for the bulge of the Galaxy: He assumed that the bulge counter-rotates with 
respect to the disk, and heavily populated the tube orbits that are retrograde in 
a frame that corotates with the bulge. If this counter-streaming is large enough, 
then the bulge will seem to rotate in the normal sense to an external observer. This 
unorthodox approach was inspired by the possibility that in this way the Liszt &¿ 
Burton (1980) tilted HI disk can be explained as a stable dynamical phenomenon. 
Unfortunately, Vietri found that the counter-streaming is so small that the net 
rotation of the bulge (figure rotation minus counter-streaming) would be contrary 
to Galactic rotation, which is not observed. 

Vietri's result does not rule out the existence of slowly rotating triaxial el-
liptical galaxies with counter-streaming in their central parts, even although van 
Albada (1987) could not simulate them in N-body experiments. 

5. STÄCKEL MODELS 

It is evident from the two preceding sections that the collection of realistic three-
integral models for galaxies, both axisymmetric and triaxial, is still limited. Many 
questions regarding the structure of these systems remain. What are the extra 
integrals? How many / ' s are consistent with a given pi What is the full variety 
of equilibrium figures? What observations do we need in order to determine the 
intrinsic dynamical structure of an elliptical galaxy? 

These questions, and many others, cannot be answered easily by numerical 
methods alone. Each model has to be constructed, or simulated, separately. This 
involves considerable labour and expense. We now show that many general aspects 
of the dynamics of triaxial and axisymmetric galaxies can be understood by analytic 
means, through a study of the Stäckel models. 

5.1 Stäckel Potentials 

Many triaxial mass models exist with a gravitational potential of Stäckel form, for 
which the Hamilton-Jacobi equation separates in ellipsoidal coordinates (Kuzmin 
1973; de Zeeuw 19856). Every orbit in such a model enjoys three exact isolating in-
tegrals of motion, E, I2 and J 3 , which are known explicitly, and which are quadratic 
in the velocities. I2 and I3 are related to the angular momentum integrals in the 
axisymmetric and spherical limits. 

An individual orbit can be considered as the sum of three motions, one in each 
ellipsoidal coordinate. The stars are thus constrained—by the integrals of motion— 
to move between coordinate surfaces. Thus, all possible orbital shapes can be found 
by inspection of the ellipsoidal coordinate system in which the motion separates. 
It turns out that all centrally concentrated triaxial mass models of this kind have 
four families of orbits: boxes, short axis tubes, and two families of long axis tubes. 
These are exactly the four major orbit families that occur in Schwarzschild's (1979) 
nonrotating model, and also in Levison & Richstone's (1987) scale-free models. 
The orbital structure of the Stäckel models is generic for all moderately flattened 
triaxial systems without figure rotation (de Zeeuw 1985a; Gerhard 1985). 

The prototypical triaxial Stäckel model is the perfect ellipsoid. It has a density 
distribution given by 

ρ = p(m2) = 
( l + m 2 ) 2 ' 

Po 
(8) 
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with a > 6 > c. The oblate case, a — 6, was discovered by Kuzmin (1956), in 
his classic study of separable models of the Galaxy. He also obtained the general 
case (Kuzmin 1973), and showed that it has four major orbit families. The perfect 
ellipsoid was rediscovered by de Zeeuw h Lynden-Bell (1985), who showed that it 
is the only inhomogeneous triaxial mass model with a Stäckel potential in which the 
density is stratified exactly on similar concentric ellipsoids. The orbital structure 
was delineated in detail by de Zeeuw (19856). 

The general form of a Stäckel potential contains a free function of one variable. 
The associated ellipsoidal coordinate system is determined by specification of two 
parameters. As a result, there is a large variety of mass models with a Stäckel 
potential. They have remarkable properties. 

Kuzmin (1956, 1973) showed that in a Stäckel model the density p (x ,y , z ) 
at a general point is related to that on the short axis, p(0,0, z), by a very simple 
formula, and that p(x,y,z) > 0 if and only if /?(0,0,z) > 0. This makes it possible 
to choose a short-axis density profile, and the values of the central axis ratios of 
the model, and find the complete mass model that has a Stäckel potential and this 
density profile, by one integration in one variable. A second integration gives this 
potential explicitly (de Zeeuw 1985 c). This means that Poisson's equation can be 
integrated in closed form for the whole class of Stäckel models. 

De Zeeuw, Peletier &; Franx (1986) constructed many different mass models, 
and delineated their general properties. Models with a singular density in the centre 
only do not exist. The density cannot fall off more rapidly than r~4 as r —> oo, 
except on the short axis. Models in which ρ falls off less rapidly than r~4 become 
spherical as r —• oo. The only models that have surfaces of constant density that 
approach a finite flattening at large radii are those with ρ ~ r~4. 

With the exception of the perfect ellipsoid, on projection the triaxial Stäckel 
models have isophotes that are not exact ellipses. Their ellipticity changes with 
radius, but they do not show twisting isophotes (Franx 1987). 

5.2 Equilibrium Models 

The individual orbit densities in a Stäckel model are known in analytic form, 
and hence are evaluated easily. This makes it straightforward to construct self-
consistent models by means of Schwarzschild's method, while avoiding laborious 
numerical orbit integrations. This is true not only for the triaxial models, but also 
for the various limiting cases with more symmetry, and a simpler orbital structure. 
These cases are depicted schematically in Figure 1, which shows the axis ratio plane 
for the perfect ellipsoid, and hence gives the layout of "Ellipsoid Land". Elliptical 
galaxies are no flatter than at most E6, and hence occupy the upper part of the tri-
angle. This coincides with the area where the Stäckel models provide an adequate 
description of the orbital structure. 

Bishop (1986) considered the perfect oblate spheroids. All orbits in them are 
short axis tubes. He first constructed one-dimensional continua of orbits, effec-
tively specifying the dependence of / on one integral, and solved for the remaining 
unknown part of / by an algebraic technique (Vandervoort 1984). Prolate models 
have not yet been constructed. Since they can have streaming about the long axis 
only, they are probably less relevant for galaxies. 

For c — 0 the models reduce to elliptic disks. These contain flat box orbits, 
and flat short axis tubes. Teuben (1987) used Schwarzschild's method to construct 
equilibrium models for nine different axis ratios, both with minimum and with 
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Figure I. Plane of axis ratios for the perfect ellipsoid. The area above 
the dashed line corresponds to axis ratios relevant for elliptical galaxies. 

maximum possible streaming, and discussed the kinematic properties. De Zeeuw, 
Hunter & Schwarzschild (1987) used analytic methods to prove rigorously that exact 
equilibrium models exist, and showed that there is a two-dimensional continuum 
of different / ' s that all are consistent with the same p. They also constructed the 
model with maximum possible streaming in nearly explicit form, by using all the box 
orbits, but only the thinnest tubes, i.e., the elliptic closed orbits. The fundamental 
reason for the non-uniqueness of the dynamical solutions is the existence of more 
than one major orbit family, so that orbits can be exchanged while keeping the 
density fixed and / > 0. Schwarzschild (1986) showed that when the perfect elliptic 
disk is truncated inside the foci of the elliptic coordinate system in which the motion 
separates, and hence only box orbits can be used, the dynamical solution is unique. 
The circular limit of the perfect elliptic disk is Kuzmin's disk, for which many 
authors have derived self-consistent dynamical models (cf. Kalnajs 1976). The 
opposite limit is a one-dimensional needle. Its curious properties are discussed by 
Tremaine & de Zeeuw (1987). 

The triaxial case was investigated by Statler (1987). He considered 21 differ-
ent perfect ellipsoidal mass models covering a regular grid in Figure 1. For each 
of these he constructed one solution by Lucy's method, thus establishing existence, 
and 15-20 distinct solutions by means of linear programming. In these, he opti-
mized either the streaming around the short axis, or the streaming around the long 
axis, or a combination of the two. The properties of the models all vary smoothly 
with the axis ratios. Statler delineated the kinematic properties of the resulting 
models in detail, and discussed how observations might distinguish them. 

The fundamental result of Statler's study is that many different dynamical 
models can be constructed with the same density distribution, as already suggested 
by the earlier work discussed in §4.2. By analogy with the above mentioned results 
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for the perfect elliptic disk, this freedom is expected to be that of an arbitrary 
function of three variables (see also Dejonghe 19876). 

5.3 Exact Solutions 

Many properties of the Stäckel models can be given in analytic form. It is therefore 
natural to ask whether it is possible to give exact distribution functions f(E, J 2 , Í 3 ) . 

This is generally not to be expected since, after all, every spherical potential is of 
Stäckel form, but only few analytic spherical models exist. However, in the last 
year some special solutions have been obtained, and more are likely to follow soon. 
A formal solution of the inversion problem has been obtained by Dejonghe (1987). 

For any oblate Stäckel potential the special equilibrium model that contains 
the thinnest short axis tubes only (i.e., tubes without radial epicyclic motion) can 
be found by simple inversion of a one-dimensional Abel equation (de Zeeuw 1987). 
As a result, the corresponding distribution function can be given explicitly, and the 
kinematic properties can be calculated very easily. These models have the maximum 
possible streaming around the symmetry axis. Numerical solutions of this kind have 
been given by Bishop (1987). The similar prolate models require more work, due 
to the presence of the two types of long axis tubes. Exact distribution functions 
have recently been found by Park, de Zeeuw & Schwarzschild (1987). 

It is likely that triaxial models with maximum streaming, containing thin 
tube orbits of the three families as well as boxes, can also be constructed in nearly 
explicit form, by generalizing the analysis of the perfect elliptic disk by de Zeeuw, 
Hunter & Schwarzschild (1987). This would give insight in the relative importance 
of the different orbit families, and in the detailed behaviour of the solutions near 
the focal curves of the ellipsoidal coordinates. This would resolve questions that 
Statler's models cannot answer, due to lack of numerical accuracy that results from 
the finite grid of cells. 

Dejonghe & de Zeeuw (1987) have succeeded in generalizing Fricke's method 
(cf. §2.1) to axisymmetric three-integral models, by writing f{E,Lz,Iz) as a triple 
series in powers of E, Lz and Is. For each term the corresponding density in a 
given Stäckel potential can be calculated. Expansion of a given density in a series 
of these terms then gives / by comparison of coefficients. In practice, this last step 
may have to be done by numerical means, analogous to Schwarzschild's method, but 
now using these density components instead of individual orbit densities. The same 
method can be applied to triaxial systems also, and should give smooth solutions. 

In order to obtain fully analytic solutions, Dejonghe & de Zeeuw took a 
slightly different approach. The Kuzmin & Kutuzov (1962) model (cf. §2.1), has a 
potential that is of Stäckel form. The authors reconstruct part of the density distri-
bution of this model with three-integral components, and represent the remaining 
density by an f(E,Lz) found via the two-integral inversion method. 

All the above efforts have been directed at finding / for a given p. We have 
seen that for axisymmetric models often the approach that assumes a form for 
/ was taken. This was motivated by the fact that in these cases many solutions 
exist for a given density, so that a plausible choice for / is likely to lead to an 
equilibrium model. When it became evident that elliptical galaxies are probably 
triaxial, virtually nothing was known concerning the existence of non-axisymmetric 
equilibrium models, let alone regarding their non-uniqueness. Hence, guessing 
a plausible distribution function seemed rather difficult. Therefore, the second 
approach was adopted, notably by Schwarzschild. 
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Now we know that many equilibrium solutions are likely to exist for triaxial 
models as well, it should not be too difficult to guess a plausible form for / . It seems 
very useful to attempt to construct dynamical models with this first method as well, 
in particular for the Stäckel models. A first step in this direction has been taken 
recently by Stiavelli and Bertin (1985). It should be noted that in order to obtain 
self-consistent models, / should not be chosen to obey the Ellipsoidal Hypothesis, 
i.e., / = / ( Q ) , where Q is any linear combination of the three integrals Ε, I2 and 
I3 (e.g., Chandrasekhar 1942). Although such an assumed form for / has produced 
interesting spherical models (Eddington 1914; Osipkov 1979; Merritt 1985), no self-
gravitating axisymmetric of triaxial models of this kind exist (Eddington 1915a; 
Camm 1941; Fricke 1952). 

5.4 Stellar Hydrodynamics 

Eddington (1915a) already knew that in a Stäckel potential, the principal axes of 
the velocity ellipsoid are locally always aligned with the coordinate system in which 
the equations of motion separate. For triaxial models this means that the velocity 
ellipsoid is always aligned with the principal axes of the model in the central regions, 
and always aligned nearly radially at large distances. This is exactly what is also 
seen in the non-separable models (Merritt 1980). Furthermore, the Jeans equations 
have a simple form in ellipsoidal coordinates (Lynden-Bell 1960). Solution of them 
gives the three non trivial second velocity moments for any density in a given 
Stäckel potential. Since many different distribution functions are consistent with 
the same density, the danger of finding non-physical solutions of the equations is not 
very severe. For axisymmetric models it turns out that the equations are formally 
equivalent to those already solved by Bacon (1985) in a slightly different context 
(§2.3). Thus, by using his solutions, kinematic properties of axisymmetric Stäckel 
models can be derived easily. The triaxial case is under study by Wyn-Evans (1987, 
priv. comm.) . 

6. CONCLUDING REMARKS 

It is fair to say that in the last decade considerable progress has been made in 
the construction of equilibrium models. However, Hunter's (1977) remark that 
determining appropriate distribution functions for elliptical galaxies [is] a problem 
that deserves more study from fundamental stellar dynamic considerations than it 
has yet received, has not lost its value. 

For moderately flattened axisymmetric and non-rotating triaxial galaxies, the 
Stäckel models provide an adequate description of the internal dynamical structure. 
Construction of realistic three-integral models of this kind should evidently be 
pursued. Methods for doing this are already available. These models are well 
suited to establish which observations would have to be done in order to determine 
the intrinsic shape and structure of elliptical galaxies. 

Much work remains to be done for triaxial systems with rotating figures, not 
only for moderately flattened elliptical galaxies, but also for the rapidly rotating 
nearly flat bars. It is well possible, although not proven, that no realistic rotating 
potentials with exact integrals, in addition to the energy in the corotating frame, 
exist. As a result, construction of such systems may have to be done largely by 
numerical means. 
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It is evident that the family of triaxial equilibrium structures is very rich. The 
most important next step in the study of these systems is the delineation of the 
models that are dynamically stable. If we then can establish which of the models 
are favored by the elliptical galaxies, we will have a much better understanding of 
the formation of these systems. 

It is a pleasure to thank Herwig Dejonghe and Martin Schwarzschild for many 
stimulating discussions, and a careful reading of the manuscript. This research was 
supported in part by an RCA Fellowship, and by NSF Grant PHY 82-17352. 
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DISCUSSION 

Whitmore: I would like to add a note of caution about making the firm conclusion 
that bulges are completely explained by the oblate rotator models. In a paper by 
Whitmore, Rubin, and Ford two years ago (1984, Ap. J., 287, 66), we reanalysed 
Kormendy and Illingworth's observations along with some of our own. After taking 
into account several effects, the most important of which is contamination in the 
spectrum by light from the disk, we find that the spiral bulges fall about 30-40% 
below the oblate spheroid line. It has been stated during this conference that taking 
into account the flattening of the bulge by the disk potential makes the agreement 
nearly perfect. This is only about a 10% effect at best, so I would urge people to 
keep an open mind about this question. 

Illingworth: In response to Brad Whitmore's comment that the bulges of disk 
galaxies are not fully consistent with being oblate rotators, I would like to note 
that the detailed comparisons made by Jarvis and Freeman do not support that 
contention. These authors compared the Kormendy/Illingworth bulge kinematical 
data with their isotropic dispersion oblate rotationally-flattened models (which 
include a superimposed disk potential) and found excellent agreement. 

Jarvis: In relation to Brad's comment I would like to point out that at least in the 
case of one of the galaxies that we modeled, NGC7814, there is a negligibly small 
luminous disk. This means that contamination of bulge light by disk light would 
have been insignificant, leading us to believe that the kinematic observations are 
reliable and truly reflect the kinematics of the bulge alone. 

Vietri: I would like to add my voice to the cautionary note rung by Whitmore on 
the nature of bulges (and small ellipticals). In fact, the only bulge for which we 
have a good de-projection, M31, has been known for ~ 30 years to be inconsistent 
with being oblate (Lindblad 1956, Stockholm Obs. Ann., 19, No. 2) . It can only 
be triaxial, or at most prolate. Furthermore, Zaritsky &; Lo (1986, Αρ. J., 303, 66) 
found variations of ellipticities and major axis position angles in all 12 bulges they 
observed. 

Binney: A comment on the structure of Ellipsoid-Land. I believe there are two 
non-trivial state holders in Ellipsoid-Land: Statler ¿¿ Bishop. Though nobody has 
yet proved this, I believe that if you choose a distribution function at random, you 
have a finite chance of landing on Bishop's frontier province, and a finite chance of 
landing in Statler's interior. By contrast, there is no need to obtain a visa for any 
of Ellipsoid-Land's lower frontier provinces. 

de Zeeuw: In the "low countries" the orbital structure that is found in the Stäckel 
potentials is not generic; a small perturbation will produce a markedly different 
phase-space structure. Hence it is very likely that this part of the diagram is 
populated by unstable equilibrium models that are of minor interest only. I would 
think that the chance of landing on the oblate axisymmetric models is considerably 
smaller than ending up in the triaxial province. 
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