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Corrigendum

On the use of a discrete form of the Itô formula in the article
‘Almost sure asymptotic stability analysis of the θ-Maruyama

method applied to a test system with stabilising and
destabilising stochastic perturbations’

(LMS J. Comput. Math. 15 (2012) 71–83)

Gregory Berkolaiko, Evelyn Buckwar, Cónall Kelly and Alexandra Rodkina

Abstract

In the original article [LMS J. Comput. Math. 15 (2012) 71–83], the authors use a discrete form
of the Itô formula, developed by Appleby, Berkolaiko and Rodkina [Stochastics 81 (2009) no. 2,
99–127], to show that the almost sure asymptotic stability of a particular two-dimensional test
system is preserved when the discretisation step size is small. In this Corrigendum, we identify an
implicit assumption in the original proof of the discrete Itô formula that, left unaddressed, would
preclude its application to the test system of interest. We resolve this problem by reproving the
relevant part of the discrete Itô formula in such a way that confirms its applicability to our test
equation. Thus, we reaffirm the main results and conclusions of the original article.

1. Introduction

Consider the linear two-dimensional stochastic differential equation

d

(
X1(t)
X2(t)

)
=
(
λ 0
0 λ

) (
X1(t)
X2(t)

)
dt

+
(
σ 0
0 σ

) (
X1(t)
X2(t)

)
dW1(t) +

(
0 −ε
ε 0

) (
X1(t)
X2(t)

)
dW2(t), t > 0, (1.1)

where λ, σ, ε ∈ R and W1, W2 are independent Wiener processes. Equation (1.1) has an
equilibrium solution (X1, X2)≡ (0, 0) which is globally almost surely asymptotically stable
if and only if

2λ− σ2 + ε2 < 0. (1.2)

Following discretisation by the θ-Maruyama method, (1.1) becomes the 2-dimensional
difference equation (

X1,n+1

X2,n+1

)
=An+1

(
X1,n

X2,n

)
, n ∈ N, (1.3)

with random coefficient

An =


1 + (1− θ)hλ

1− θhλ
+

√
hσξ1,n

1− θhλ
−
√
hεξ2,n

1− θhλ
√
hεξ2,n

1− θhλ
1 + (1− θ)hλ

1− θhλ
+

√
hσξ1,n

1− θhλ

 , n ∈ N, (1.4)
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CORRIGENDUM 367

where h > 0 is the discretisation step size, θ ∈ [0, 1], and {ξ1,n}n∈N and {ξ2,n}n∈N are
independent sequences of standard normal random variables.

In [2], the authors presented a result stating that, for sufficiently small h, the almost sure
asymptotic stability of the equilibrium solution of (1.3) is also governed by condition (1.2). We
reproduce the result here.

Theorem 1.1. Let {Xn}n∈N be a solution of equation (1.3), and define {Zn}n∈N such that
Zn =X2

1,n +X2
2,n. Then there exists h0 = h0(λ, ε, θ, σ) such that for all h6 h0.

(i) limn→∞ Zn = 0 almost surely if and only if

2λ− σ2 + ε2 < 0;

(ii) limn→∞ Zn =∞ almost surely if and only if

2λ− σ2 + ε2 > 0.

However, the proof of Theorem 1.1, as given in [2], relies upon an implicit assumption that is
unwarranted in this case. The purpose of this article is to identify and explain the unwarranted
assumption, demonstrate that it is unnecessary, and hence confirm that the statement of
Theorem 1.1 and the conclusions of [2] are correct.

2. Identifying the problem

2.1. Application of a discrete form of the Itô formula

The transformation Zn =X2
1,n +X2

2,n in the statement of Theorem 1.1 has the effect of
recasting the 2-dimensional discrete system (1.3) as a 1-dimensional difference equation
of the form

Zn+1 = Zn(1 + hFh +
√
hGhζn+1), n ∈ N. (2.1)

By writing (2.1) in the form

Zn+1 = Z0 exp
[ n∑
i=0

ln(1 + hFh +
√
hGhζn+1)

]
, n ∈ N, (2.2)

the following necessary and sufficient almost sure asymptotic stability condition for
equation (2.1) emerges via the strong law of large numbers:

E[ln(1 + hFh +
√
hGhζn+1)]< 0. (2.3)

Note that terms of the sequence {ζn}n∈N are independent and identically distributed, and
hence the left-hand side of the inequality evaluates to a constant, independent of n.

In order to generate from (2.3) a necessary and sufficient condition for almost sure asymptotic
stability in terms of the system parameters, a discrete form of the Itô formula, first proved in
[1], was applied in [2] to expand the left-hand side of (2.3) for small values of h. This required
that the sequence {ζn}n∈N satisfy the following assumption.

Assumption 1. We assume that {ζn} is a sequence of Fn-measurable random variables
where

Eζn = 0, Eζ2
n = 1, E|ζn|3 are uniformly bounded, (2.4)

and each ζn has density function y = pn(x) satisfying

x3pn(x)→ 0 as |x| →∞ uniformly in n. (2.5)
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The result itself was stated as the following theorem.

Theorem 2.1. Consider ϕ : R→ R such that there exists δ > 0 and ϕ̃ : R→ R satisfying:

(i) ϕ̃≡ ϕ on Uδ = [1− δ, 1 + δ];
(ii) ϕ̃ ∈ C3(R) and |ϕ̃′′′(x)|6M for some M and all x ∈ R;

(iii)
∫

R |ϕ− ϕ̃| dx <∞.

For each n let fn and gn be Fn-measurable uniformly bounded random variables, |fn|, |gn|<K
and let ζn+1 be an Fn-independent random variable satisfying (2.4) and (2.5) in Assumption 1.
Then

E[ϕ(1 + fnh+ gn
√
hζn+1)|Fn] = ϕ(1) + ϕ′(1)fnh+

ϕ′′(1)
2

g2
nh+ hfnO(h) + hg2

nO(h), (2.6)

where the error term O(h)→ 0 as h→ 0, uniformly in n, fn and gn.

To understand the motivation for this article, we must review the proof of Theorem 2.1 in
outline; details may be found in [1].

Sketch Proof of Theorem 2.1. The proof has two parts. First, it is shown that (2.6)
holds for the auxiliary function ϕ̃, by writing the Taylor expansion

ϕ̃(1 + x) = ϕ̃(1) + ϕ̃′(1)(x) +
ϕ̃′′(1)

2
x2 +

ϕ̃′′′(ϑ)
6

x3,

with ϑ ∈ (0, x), and substituting x= fnh+ gn
√
hζn+1. This part of the proof requires that

ϕ̃′′′(ϑ) be uniformly bounded, and this explains the need for the auxiliary function ϕ̃: if
ϕ(x) = log(x) then ϕ′′′(x) is not uniformly bounded.

The second part of the proof is devoted to showing that ϕ̃ is a close approximation of ϕ, in
the sense that (omitting the subscript n)

|E[ϕ− ϕ̃]|6 hg2O(h), (2.7)

and therefore that (2.6) also holds for ϕ. Note that in the original proof in [1] it is assumed
for brevity that f and g are non-random constants, and the proof therefore examines the
non-conditional expectation, with the comment that the conditional version may be treated
similarly.

The following estimate is critical: omitting the subscript n, set c1 = 1 + hf and c2 =
√
hg,

4 := E[ϕ(c1 + c2ζ)− ϕ̃(c1 + c2ζ)]

=
∫

R
(ϕ(c1 + c2ζ)− ϕ̃(c1 + c2ζ))p(ζ) dζ

6 hg2 sup
r/∈Uδ

{
p(y)y3

(r − 1− hf)3

}
,

where the change of variables r = c1 + c2ζ has been made, and

y =
r − 1− hf√

hg

satisfies y→∞ as h→ 0. We see then, for fixed r /∈ Uδ, that (r − 1− hf)3 is bounded away
from zero for sufficiently small h, and by Assumption 1,

lim
y→∞

y3p(y) = 0, (2.8)

which gives (2.7) and completes the proof. 2
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2.2. Statement of the problem

Note that in the sketch proof of Theorem 2.1, the statement (2.8) is standing in for, and is
implicitly assumed to be equivalent to,

lim
h→0

[
r − 1− hf√

hg

]3
p

(
r − 1− hf√

hg

)
= 0,

for fixed r. This is in fact the case if the density p does not itself depend on h. However, recall
from [2] that terms of the sequence {ζn}n∈N may be expressed explicitly as follows. Defining

ηn :=
2(1 + (1− θ)λh)σξ1,n +

√
hσ2(ξ21,n − 1) +

√
hε2(ξ22,n − 1)

(1− θλh)2
, (2.9)

we have
ζn =

ηn√
E(η2

n)
. (2.10)

So the density function pn of each ζn depends very much on h in a way that is difficult to
characterise. Therefore, even though it is true [2, Lemma 2.8] that Assumption 1 holds for the
density function of each ζn, the original proof of the discrete form of the Itô formula given by
Theorem 2.1 does not work when those densities are h-dependent.

3. Resolving the problem

The solution is to revisit the second part of the proof of Theorem 2.1 and show that for (2.1),
ϕ̃ is a close approximation of ϕ in the sense of (2.7), even though the density function of each
ζn defined in (2.10) is h-dependent.

Recall that Theorem 2.1 was reformulated in [2, Corollary 2.4] as follows before being applied
to the left-hand side of (2.3), so that (2.6) takes the form

E[ϕ(1 + hFh +
√
hGhζ)|Fn] = ϕ(1) + hϕ′(1)f(h) + h

ϕ′′(1)
2

g2(h) + hO(h), (3.1)

where [2, Lemma 2.8]

Fh = f(h) +O(h) :=
2λ+ σ2 + ε2

(1− θλh)2
+O(h), (3.2)

G2
h = g2(h) +O(h) :=

4σ2

(1− θλh)2
+O(h). (3.3)

Note that, since each ζn is identically distributed, we omit the subscript in (3.1). For the
remainder of the article, let ζ be a random variable with the same distribution as terms of
the sequence {ζn}n∈N as given in (2.10), and let η be a random variable with the same
distribution as terms of the sequence {ηn}n∈N, as defined in (2.9). It is then sufficient to
prove the following result.

Theorem 3.1. Consider the random variable

U = 1 + hFh +
√
hGhζ, (3.4)

and

Fh =
2λ

(1− θλh)
+

(σ2 + ε2)
(1− θλh)2

+
hλ2

(1− θλh)2
, Gh =

√
E[η2]. (3.5)

Suppose also that ϕ and ϕ̃ satisfy conditions (i) and (ii) of Theorem 2.1, and additionally that

ϕ− ϕ̃ ∈ Ls[−δ, δ] for some s > 2. (3.6)
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Then, for h sufficiently small,

|E[ϕ(U)− ˜ϕ(U)]|6 hg2(h)O(h).

Remark 1. Note that the stronger integrability condition for ϕ− ϕ̃ imposed by (3.6) in the
statement of Theorem 3.1 is nonetheless satisfied by the specific choices of ϕ and ϕ̃ in the proof
of [2, Theorem 3.2].

Proof. We will assume, without loss of generality, that σ, ε> 0. Rewrite (3.4) as

U(ξ1, ξ2) = 1 + hFh + 2
√
hσ̃1(h)ξ1 + hσ̃2(h)(ξ21 − 1) + hε̃(h)(ξ22 − 1),

where the functions

σ̃1(h) :=
σ(1 + (1− θ)λh)

(1− θλh)2
,

σ̃2(h) :=
σ

(1− θλh)
,

ε̃(h) :=
ε

(1− θλh)
,

satisfy

lim
h→0

σ̃1(h) = lim
h→0

σ̃2(h) = σ, lim
h→0

σ̃1(h)
σ̃2(h)

= 1 and lim
h→0

ε̃(h) = ε. (3.7)

Extracting the perfect square gives

U = U(ξ1, ξ2)

= h

(
σ̃2(h)ξ1 +

σ̃1(h)√
hσ̃2(h)

)2

+ hε̃2(h)ξ22 + 1 + hFh −
σ̃2

1(h)
σ̃2

2(h)
− hε̃2(h). (3.8)

Now define

q(h) := 1 + hFh −
σ̃2

1(h)
σ̃2

2(h)
− hε̃2(h) =

(
1− σ̃2

1(h)
σ̃2

2(h)

)
+ h[Fh − ε̃2(h)],

where by (3.5) and (3.7) we can see that

lim
h→0

q(h) = 0. (3.9)

It is then possible to express U in the form

U(ξ1, ξ2) = h

(
σ̃2(h)ξ1 +

σ̃1(h)√
hσ̃2(h)

)2

+ hε̃2(h)ξ22 + q(h). (3.10)

Suppose that |U |6 δ. Then q(h) 6 U 6 δ and therefore the following inequalities hold:

hε̃2(h)ξ22 6 δ − q(h),

h

(
σ̃2(h)ξ1 +

σ̃1(h)√
hσ̃2(h)

)2

6 δ − q(h),

0 6 U − hε̃2(h)ξ22 − q(h) 6 δ − q(h). (3.11)

Solving (3.10) in terms of ξ1 we obtain

ξ1 =− σ̃1(h)√
hσ̃2

2(h)
±
√
U − hε̃2(h)ξ22 − q(h)√

hσ̃2(h)
=− σ̃1(h)/σ̃2(h)±

√
U − hε̃2(h)ξ22 − q(h)√
hσ̃2(h)

. (3.12)

Applying (3.7) and (3.9) for h sufficiently small, and with δ < 1/4,

σ̃1(h)
σ̃2(h)

−
√
U − hε̃2(h)ξ22 − q(h) >

σ̃1(h)
σ̃2(h)

−
√
δ − q(h) >

1
2
,
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and, therefore,

|ξ1|>
∣∣∣∣ σ̃1(h)/σ̃2(h)−

√
U − hε̃2(h)ξ22 − q(h)√
hσ̃2(h)

∣∣∣∣> ∣∣∣∣ σ̃1(h)/σ̃2(h)−
√
δ − q(h)√

hσ̃2(h)

∣∣∣∣> 1
2
√
hσ̃2(h)

.

(3.13)
Now we have

∆ = E|ϕ(U)− ϕ̃(U)|= 1
2π

∫∫
|U(ξ1,ξ2)|6δ

|ϕ(U)− ϕ̃(U)|e− 1
2 ξ

2
1e−

1
2 ξ

2
2 dξ1 dξ2. (3.14)

We change the variables (ξ1, ξ2) to (U, ξ2) in the integral (3.14), selecting the following branch:

ξ1 = − σ̃1(h)√
hσ̃2

2(h)
+

√
U − hε̃2(h)ξ22 − q(h)√

hσ̃2(h)
,

ξ2 = ξ2.

The corresponding Jacobian |J | is

|J |= 1
2σ̃2(h)

√
h
√
U − hε̃2(h)ξ22 − q(h)

.

Denote

u(U) :=

√
U − q(h)
hε̃2(h)

.

After changing variables in (3.14), the estimates in (3.11) and (3.13) give

|∆| 6 E|ϕ(U)− ϕ̃(U)|

=
1

2π

∫ δ
−δ

dU

∫u(U)

−u(U)

|ϕ(U)− ϕ̃(U)|e−
1
2 (σ̃1(h)/

√
hσ̃2

2(h)−
√
U−hε̃2(h)ξ22−q(h)/

√
hσ̃2(h))2e−

1
2 ξ

2
2

2σ̃2(h)
√
h
√
U − q(h)− hε̃2(h)ξ22

dξ2

6
1

2π

∫ δ
−δ
|ϕ(U)− ϕ̃(U)| dU

∫u(U)

−u(U)

e−
1
2 (1/2

√
hσ̃2(h))2e−

1
2 ξ

2
2

2σ̃2(h)
√
h
√
U − q(h)− hε̃2(h)ξ22

dξ2. (3.15)

Since

e−
1
2 ξ

2
2 6 1 and e−1/x 6 2x2 for x > 0, (3.16)

we can write

|∆| 6 128h2σ̃4
2(h)

2π2σ̃2(h)
√
h

∫ δ
−δ
|ϕ(U)− ϕ̃(U)| dU

∫u(U)

−u(U)

1√
U − q(h)− hε̃2(h)ξ22

dξ2

=
32h3/2σ̃3

2(h)
π

∫ δ
−δ
|ϕ(U)− ϕ̃(U)| dU

∫u(U)

−u(U)

√
hε̃(h)√

u2(U)− ξ22
dξ2

=
32h3/2σ̃3

2(h)ε̃(h)
π

∫ δ
−δ
|ϕ(U)− ϕ̃(U)| dU

∫u(U)

−u(U)

1√
u2(U)− ξ22

dξ2

=
32h3/2σ̃3

2(h)ε̃(h)
π

∫ δ
−δ
|ϕ(U)− ϕ̃(U)| dU

[
1

u(U)
arcsin

ξ2
u(U)

∣∣∣∣u(U)

−u(U)

]
= 32h3/2σ̃3

2(h)ε̃(h)
∫ δ
−δ
|ϕ(U)− ϕ̃(U)| 1√

U − q(h)/hσ2
2(h)

dU

= h2g2(h)
8σ2ε

(1− θλh)3

∫ δ
−δ
|ϕ(U)− ϕ̃(U)| 1√

U − q(h)
dU, (3.17)
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where g(h) is as defined in (3.3). Applying Hölder’s inequality with s > 2 and p < 2 such that
1/s+ 1/p= 1 gives

|∆|6 h2g2(h)
8σ2ε

(1− θλh)3

(∫ δ
−δ
|ϕ(U)− ϕ̃(U)|s dU

)1/s(∫ δ
−δ

1
(U − q(h))p/2

dU

)1/p

.

Finally, by applying (3.6) we have

|∆|6 hg2(h)O(h),

as required. 2

Remark 2. Note from (3.16) that, in order for the statement of Theorem 3.1 to hold, it is
sufficient that terms of the sequences {ξ1,n}n∈N and {ξ2,n}n∈N be identically distributed with
bounded density functions, the tails of which decay faster than 1/x4.

4. Conclusion

We draw the following conclusions.
(1) The main results and conclusions of [2] are correct.
(2) The proof of the discrete Itô formula developed in [1] must be adapted to the test

equation of interest in order to accommodate a perturbation with h-dependent density.
(3) There is a general implication for the linear stability analysis of numerical methods for

stochastic differential equations: the need to consider more than one test equation in
is highlighted in [3, 4], and this analysis demonstrates that the discrete Itô formula
cannot necessarily be applied to different test equations without adapting the proof to
the special structure of each.
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